1
|
Garbayo E, El Moukhtari SH, Rodríguez-Nogales C, Agirre X, Rodriguez-Madoz JR, Rodriguez-Marquez P, Prósper F, Couvreur P, Blanco-Prieto MJ. RNA-loaded nanoparticles for the treatment of hematological cancers. Adv Drug Deliv Rev 2024; 214:115448. [PMID: 39303823 DOI: 10.1016/j.addr.2024.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Hematological cancers encompass a diverse group of malignancies affecting the blood, bone marrow, lymph nodes, and spleen. These disorders present unique challenges due to their complex etiology and varied clinical manifestations. Despite significant advancements in understanding and treating hematological malignancies, innovative therapeutic approaches are continually sought to enhance patient outcomes. This review highlights the application of RNA nanoparticles (RNA-NPs) in the treatment of hematological cancers. We delve into detailed discussions on in vitro and preclinical studies involving RNA-NPs for adult patients, as well as the application of RNA-NPs in pediatric hematological cancer. The review also addresses ongoing clinical trials involving RNA-NPs and explores the emerging field of CAR-T therapy engineered by RNA-NPs. Finally, we discuss the challenges still faced in translating RNA-NP research to clinics.
Collapse
Affiliation(s)
- Elisa Garbayo
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Xabier Agirre
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Juan R Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Paula Rodriguez-Marquez
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Felipe Prósper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain; Departmento de Hematología and CCUN, Clínica Universidad de Navarra, University of Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Université Paris-Saclay, Orsay Cedex, France.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain.
| |
Collapse
|
2
|
Bazarbachi AH, Avet-Loiseau H, Harousseau JL, Bazarbachi A, Mohty M. Precision medicine for multiple myeloma: The case for translocation (11;14). Cancer Treat Rev 2024; 130:102823. [PMID: 39255732 DOI: 10.1016/j.ctrv.2024.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/11/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
The t(11;14) translocation is among the most prevalent cytogenetic abnormalities in multiple myeloma (MM), distinguished by its unique features and biology that have been thoroughly explored for decades. What further sets this MM subtype apart is its oscillating prognostic significance, from initially being considered a favorable alteration to intermediate risk and potential future reclassification as favorable risk. Despite not being inherently a high-risk alteration indicative of an aggressive phenotype, it appears that t(11;14)-MM is less responsive to novel agents like proteasome inhibitors and immunomodulatory drugs which have otherwise transformed the disease's treatment landscape, perhaps partially explained by its reduced propensity for immunoglobulin production and oligosecretory nature. However, its distinct reliance on Bcl-2 has heightened its sensitivity to venetoclax. Further subclassification based on morphological and genomic characteristics could enhance our prediction models of treatment responses and enable more tailored therapeutic strategies for patients. This review aims to encapsulate the existing research evidence in this area.
Collapse
Affiliation(s)
- Abdul-Hamid Bazarbachi
- Division of Hematology/Oncology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA.
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse, INSERM, Myeloma Genomics Laboratory, University Cancer Institute Toulouse Oncopole, Université Paul Sabatier, Toulouse, France
| | - Jean-Luc Harousseau
- Institut de Cancerologie de l'Ouest, Centre René Gauducheau, Nantes-St Herblain, France
| | - Ali Bazarbachi
- Department of Internal Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohamad Mohty
- Sorbonne University, Service d'Hematologie Clinique et Thérapie Cellulaire, Hôpital Saint Antoine, and INSERM UMR 938, Paris, France.
| |
Collapse
|
3
|
Rivas‐Delgado A, López C, Clot G, Nadeu F, Grau M, Frigola G, Bosch‐Schips J, Radke J, Ishaque N, Alcoceba M, Tapia G, Luizaga L, Barcena C, Kelleher N, Villamor N, Baumann T, Muntañola A, Sancho‐Cia JM, García‐Sancho AM, Gonzalez‐Barca E, Matutes E, Brito JA, Karube K, Salaverria I, Enjuanes A, Wiemann S, Heppner FL, Siebert R, Climent F, Campo E, Giné E, López‐Guillermo A, Beà S. Testicular large B-cell lymphoma is genetically similar to PCNSL and distinct from nodal DLBCL. Hemasphere 2024; 8:e70024. [PMID: 39380845 PMCID: PMC11456803 DOI: 10.1002/hem3.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024] Open
Abstract
Testicular large B-cell lymphoma (TLBCL) is an infrequent and aggressive lymphoma arising in an immune-privileged site and has recently been recognized as a distinct entity from diffuse large B-cell lymphoma (DLBCL). We describe the genetic features of TLBCL and compare them with published series of nodal DLBCL and primary large B-cell lymphomas of the CNS (PCNSL). We collected 61 patients with TLBCL. We performed targeted next-generation sequencing, copy number arrays, and fluorescent in situ hybridization to assess chromosomal rearrangements in 40 cases with available material. Seventy percent of the cases showed localized stages. BCL6 rearrangements were detected in 36% of cases, and no concomitant BCL2 and MYC rearrangements were found. TLBCL had fewer copy number alterations (p < 0.04) but more somatic variants (p < 0.02) than nodal DLBCL and had more frequent 18q21.32-q23 (BCL2) gains and 6q and 9p21.3 (CDKN2A/B) deletions. PIM1, MYD88 L265P , CD79B, TBL1XR1, MEF2B, CIITA, EP300, and ETV6 mutations were more frequent in TLBCL, and BCL10 mutations in nodal DLBCL. There were no major genetic differences between TLBCL and PCNSL. Localized or disseminated TLBCL displayed similar genomic profiles. Using LymphGen, the majority of cases were classified as MCD. However, we observed a subgroup of patients classified as BN2, both in localized and disseminated TLBCL, suggesting a degree of genetic heterogeneity in the TLBCL genetic profile. TLBCL has a distinctive genetic profile similar to PCNSL, supporting its recognition as a separate entity from DLBCL and might provide information to devise targeted therapeutic approaches.
Collapse
Affiliation(s)
- Alfredo Rivas‐Delgado
- Department of HematologyHospital ClínicBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
| | - Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departament de Fonaments ClínicsUniversitat de BarcelonaBarcelonaSpain
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Marta Grau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Gerard Frigola
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| | - Jan Bosch‐Schips
- Department of PathologyHospital Universitari de Bellvitge, IDIBELLHospitalet de LlobregatSpain
| | - Josefine Radke
- Department of NeuropathologyCharité‐Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- Institute of Pathology, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Naveed Ishaque
- Berlin Institute of Health (BIH) at CharitéUniversitätsmedizin Berlin, Center for Digital HealthBerlinGermany
| | - Miguel Alcoceba
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of HematologyHospital Universitario de Salamanca, IBSALSalamancaSpain
- Department of HematologyCentro de Investigación del Cáncer‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Gustavo Tapia
- Departments of Hematology and Pathology, Institut Català d'OncologiaHospital Universitari Germans Trias i PujolBadalonaSpain
- Departament de Ciències MorfològiquesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Luis Luizaga
- Departments of Hematology and PathologyHospital Universitari Mutua de TerrassaTerrassaSpain
| | - Carmen Barcena
- Departments of Hematology and PathologyHospital Universitario 12 de OctubreMadridSpain
| | - Nicholas Kelleher
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Department of HematologyInstitut Català d'Oncologia‐Hospital Universitari de Girona Doctor Josep TruetaGironaSpain
| | - Neus Villamor
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| | - Tycho Baumann
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Departments of Hematology and PathologyHospital Universitario 12 de OctubreMadridSpain
| | - Ana Muntañola
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Departments of Hematology and PathologyHospital Universitari Mutua de TerrassaTerrassaSpain
| | - Juan M. Sancho‐Cia
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Departments of Hematology and Pathology, Institut Català d'OncologiaHospital Universitari Germans Trias i PujolBadalonaSpain
| | - Alejandro M. García‐Sancho
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of HematologyHospital Universitario de Salamanca, IBSALSalamancaSpain
- Department of HematologyCentro de Investigación del Cáncer‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Eva Gonzalez‐Barca
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Departament de Fonaments ClínicsUniversitat de BarcelonaBarcelonaSpain
- Department of HematologyInstitut Català d'Oncologia‐Hospital Duran i Reynals, Hospitalet de Lobregat, IDIBELLSpain
| | - Estella Matutes
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| | | | - Kennosuke Karube
- Department of Pathology and Laboratory MedicineNagoya University HospitalNagoyaJapan
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Anna Enjuanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Stefan Wiemann
- Division of Molecular Genome AnalysisGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)Partner Site Charité BerlinBerlinGermany
| | - Frank L. Heppner
- Department of NeuropathologyCharité‐Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- German Cancer Consortium (DKTK)Partner Site Charité BerlinBerlinGermany
| | - Reiner Siebert
- Institute of Human GeneticsUlm University & Ulm University Medical CenterUlmGermany
| | - Fina Climent
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Department of PathologyHospital Universitari de Bellvitge, IDIBELLHospitalet de LlobregatSpain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departament de Fonaments ClínicsUniversitat de BarcelonaBarcelonaSpain
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| | - Eva Giné
- Department of HematologyHospital ClínicBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Armando López‐Guillermo
- Department of HematologyHospital ClínicBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departament de MedicinaUniversitat de BarcelonaBarcelonaSpain
| | - Silvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departament de Fonaments ClínicsUniversitat de BarcelonaBarcelonaSpain
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| |
Collapse
|
4
|
Özoğul E, Montaner A, Pol M, Frigola G, Balagué O, Syrykh C, Bousquets-Muñoz P, Royo R, Fontaine J, Traverse-Glehen A, Bühler MM, Giudici L, Roncador M, Zenz T, Carras S, Valmary-Degano S, de Leval L, Bosch-Schips J, Climent F, Salmeron-Villalobos J, Bashiri M, Ruiz-Gaspà S, Costa D, Beà S, Salaverria I, Giné E, Quintanilla-Martinez L, Brousset P, Raffeld M, Jaffe ES, Puente XS, López C, Nadeu F, Campo E. Large B-cell lymphomas with CCND1 rearrangement have different immunoglobulin gene breakpoints and genomic profile than mantle cell lymphoma. Blood Cancer J 2024; 14:166. [PMID: 39313500 PMCID: PMC11420347 DOI: 10.1038/s41408-024-01146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Mantle cell lymphoma (MCL) is genetically characterized by the IG::CCND1 translocation mediated by an aberrant V(D)J rearrangement. CCND1 translocations and overexpression have been identified in occasional aggressive B-cell lymphomas with unusual features for MCL. The mechanism generating CCND1 rearrangements in these tumors and their genomic profile are not known. We have reconstructed the IG::CCND1 translocations and the genomic profile of 13 SOX11-negative aggressive B-cell lymphomas using whole genome/exome and target sequencing. The mechanism behind the translocation was an aberrant V(D)J rearrangement in three tumors and by an anomalous IGH class-switch recombination (CSR) or somatic hypermutation (SHM) mechanism in ten. The tumors with a V(D)J-mediated translocation were two blastoid MCL and one high-grade B-cell lymphoma. None of them had a mutational profile suggestive of DLBCL. The ten tumors with CSR/SHM-mediated IGH::CCND1 were mainly large B-cell lymphomas, with mutated genes commonly seen in DLBCL and BCL6 rearrangements in 6. Two cases, which transformed from marginal zone lymphomas, carried mutations in KLF2, TNFAIP3 and KMT2D. These findings expand the spectrum of tumors carrying CCND1 rearrangement that may occur as a secondary event in DLBCL mediated by aberrant CSR/SHM and associated with a mutational profile different from that of MCL.
Collapse
Affiliation(s)
- Ece Özoğul
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Pathology Department, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Anna Montaner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Melina Pol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Frigola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Olga Balagué
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Charlotte Syrykh
- Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse, CEDEX 9, France
- INSERM UMR1037 Cancer Research Center of Toulouse (CRCT), ERL 5294 National Center for Scientific Research (CNRS), University of Toulouse III Paul-Sabatier, Toulouse, France
- Institut Carnot Lymphome CALYM, Laboratoire d'Excellence 'TOUCAN', Toulouse, France
| | - Pablo Bousquets-Muñoz
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Romina Royo
- Barcelona Supercomputer Center, Barcelona, Spain
| | | | | | | | - Luca Giudici
- Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6900, Locarno, Switzerland
| | | | | | - Sylvain Carras
- Grenoble Alpes University, CHU Grenoble Alpes and INSERMN UMR 1209/CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Severine Valmary-Degano
- Grenoble Alpes University, CHU Grenoble Alpes and INSERMN UMR 1209/CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Laurence de Leval
- Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jan Bosch-Schips
- Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Fina Climent
- Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | - Melika Bashiri
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Ruiz-Gaspà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Dolors Costa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Eva Giné
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Leticia Quintanilla-Martinez
- Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Pierre Brousset
- Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse, CEDEX 9, France
- INSERM UMR1037 Cancer Research Center of Toulouse (CRCT), ERL 5294 National Center for Scientific Research (CNRS), University of Toulouse III Paul-Sabatier, Toulouse, France
- Institut Carnot Lymphome CALYM, Laboratoire d'Excellence 'TOUCAN', Toulouse, France
| | - Mark Raffeld
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elaine S Jaffe
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic de Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Hospital Clínic de Barcelona, Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
5
|
Cirrincione AM, Poos AM, Ziccheddu B, Kaddoura M, Bärtsch MA, Maclachlan K, Chojnacka M, Diamond B, John L, Reichert P, Huhn S, Blaney P, Gagler D, Rippe K, Zhang Y, Dogan A, Lesokhin AM, Davies F, Goldschmidt H, Fenk R, Weisel KC, Mai EK, Korde N, Morgan GJ, Usmani S, Landgren O, Raab MS, Weinhold N, Maura F. The biological and clinical impact of deletions before and after large chromosomal gains in multiple myeloma. Blood 2024; 144:771-783. [PMID: 38728430 PMCID: PMC11375460 DOI: 10.1182/blood.2024024299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Acquisition of a hyperdiploid (HY) karyotype or immunoglobulin heavy chain (IgH) translocations are considered key initiating events in multiple myeloma (MM). To explore if other genomic events can precede these events, we analyzed whole-genome sequencing data from 1173 MM samples. By integrating molecular time and structural variants within early chromosomal duplications, we indeed identified pregain deletions in 9.4% of patients with an HY karyotype without IgH translocations, challenging acquisition of an HY karyotype as the earliest somatic event. Remarkably, these deletions affected tumor suppressor genes (TSGs) and/or oncogenes in 2.4% of patients with an HY karyotype without IgH translocations, supporting their role in MM pathogenesis. Furthermore, our study points to postgain deletions as novel driver mechanisms in MM. Using multiomics approaches to investigate their biologic impact, we found associations with poor clinical outcome in newly diagnosed patients and profound effects on both the oncogene and TSG activity despite the diploid gene status. Overall, this study provides novel insights into the temporal dynamics of genomic alterations in MM.
Collapse
Affiliation(s)
- Anthony M Cirrincione
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Alexandra M Poos
- Heidelberg Myeloma Center, Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Bachisio Ziccheddu
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Marcella Kaddoura
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Marc-Andrea Bärtsch
- Heidelberg Myeloma Center, Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Kylee Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Monika Chojnacka
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Benjamin Diamond
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Lukas John
- Heidelberg Myeloma Center, Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Reichert
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Stefanie Huhn
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Patrick Blaney
- Myeloma Research Program, New York University Langone, Perlmutter Cancer Center, New York, NY
| | - Dylan Gagler
- Myeloma Research Program, New York University Langone, Perlmutter Cancer Center, New York, NY
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Yanming Zhang
- Cytogenetics Laboratory, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander M Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Faith Davies
- Myeloma Research Program, New York University Langone, Perlmutter Cancer Center, New York, NY
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, University-Hospital Duesseldorf, Duesseldorf, Germany
| | - Katja C Weisel
- Department of Oncology, Hematology, and Blood and Marrow Transplant, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elias K Mai
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Neha Korde
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gareth J Morgan
- Myeloma Research Program, New York University Langone, Perlmutter Cancer Center, New York, NY
| | - Saad Usmani
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ola Landgren
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Marc S Raab
- Heidelberg Myeloma Center, Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Niels Weinhold
- Heidelberg Myeloma Center, Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Francesco Maura
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| |
Collapse
|
6
|
Yagüe-Capilla M, Rudd SG. Understanding the interplay between dNTP metabolism and genome stability in cancer. Dis Model Mech 2024; 17:dmm050775. [PMID: 39206868 PMCID: PMC11381932 DOI: 10.1242/dmm.050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sean G Rudd
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
7
|
López C, Silkenstedt E, Dreyling M, Beà S. Biological and clinical determinants shaping heterogeneity in mantle cell lymphoma. Blood Adv 2024; 8:3652-3664. [PMID: 38748869 DOI: 10.1182/bloodadvances.2023011763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 07/12/2024] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is an uncommon mature B-cell lymphoma that presents a clinical spectrum ranging from indolent to aggressive disease, with challenges in disease management and prognostication. MCL is characterized by significant genomic instability, affecting various cellular processes, including cell cycle regulation, cell survival, DNA damage response and telomere maintenance, NOTCH and NF-κB/ B-cell receptor pathways, and chromatin modification. Recent molecular and next-generation sequencing studies unveiled a broad genetic diversity among the 2 molecular subsets, conventional MCL (cMCL) and leukemic nonnodal MCL (nnMCL), which may partially explain their clinical heterogeneity. Some asymptomatic and genetically stable nnMCL not requiring treatment at diagnosis may eventually progress clinically. Overall, the high proliferation of tumor cells, blastoid morphology, TP53 and/or CDKN2A/B inactivation, and high genetic complexity influence treatment outcome in cases treated with standard regimens. Emerging targeted and immunotherapeutic strategies are promising for refractory or relapsed cases and a few genetic and nongenetic determinants of refractoriness have been reported. This review summarizes the recent advances in MCL biology, focusing on molecular insights, prognostic markers, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain
| | - Elisabeth Silkenstedt
- Department of Medicine III, Ludwig-Maximilians-University Munich University Hospital, Munich, Germany
| | - Martin Dreyling
- Department of Medicine III, Ludwig-Maximilians-University Munich University Hospital, Munich, Germany
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Sureda-Gómez M, Iaccarino I, De Bolòs A, Meyer M, Balsas P, Richter J, Rodríguez ML, López C, Carreras-Caballé M, Glaser S, Nadeu F, Jares P, Clot G, Siciliano MC, Bellan C, Tornambè S, Boccacci R, Leoncini L, Campo E, Siebert R, Amador V, Klapper W. SOX11 expression is restricted to EBV-negative Burkitt lymphoma and is associated with molecular genetic features. Blood 2024; 144:187-200. [PMID: 38620074 DOI: 10.1182/blood.2023023242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
ABSTRACT SRY-related HMG-box gene 11 (SOX11) is a transcription factor overexpressed in mantle cell lymphoma (MCL), a subset of Burkitt lymphomas (BL) and precursor lymphoid cell neoplasms but is absent in normal B cells and other B-cell lymphomas. SOX11 has an oncogenic role in MCL but its contribution to BL pathogenesis remains uncertain. Here, we observed that the presence of Epstein-Barr virus (EBV) and SOX11 expression were mutually exclusive in BL. SOX11 expression in EBV-negative (EVB-) BL was associated with an IG∷MYC translocation generated by aberrant class switch recombination, whereas in EBV-negative (EBV-)/SOX11-negative (SOX11-) tumors the IG∷MYC translocation was mediated by mistaken somatic hypermutations. Interestingly, EBV- SOX11-expressing BL showed higher frequency of SMARCA4 and ID3 mutations than EBV-/SOX11- cases. By RNA sequencing, we identified a SOX11-associated gene expression profile, with functional annotations showing partial overlap with the SOX11 transcriptional program of MCL. Contrary to MCL, no differences on cell migration or B-cell receptor signaling were found between SOX11- and SOX11-positive (SOX11+) BL cells. However, SOX11+ BL showed higher adhesion to vascular cell adhesion molecule 1 (VCAM-1) than SOX11- BL cell lines. Here, we demonstrate that EBV- BL comprises 2 subsets of cases based on SOX11 expression. The mutual exclusion of SOX11 and EBV, and the association of SOX11 with a specific genetic landscape suggest a role of SOX11 in the early pathogenesis of BL.
Collapse
Affiliation(s)
- Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ingram Iaccarino
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel, Kiel, Germany
| | - Anna De Bolòs
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Mieke Meyer
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel, Kiel, Germany
| | - Patricia Balsas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Julia Richter
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel, Kiel, Germany
| | | | - Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | | | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Pedro Jares
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Department of Hematology Hospital Clinic of Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- University of Barcelona, Barcelona, Spain
| | - Maria Chiara Siciliano
- Department of Medical Biotechnologies, Section of Pathological Anatomy, University of Siena, Siena, Italy
| | - Cristiana Bellan
- Department of Medical Biotechnologies, Section of Pathological Anatomy, University of Siena, Siena, Italy
| | - Salvatore Tornambè
- Department of Medical Biotechnologies, Section of Pathological Anatomy, University of Siena, Siena, Italy
| | - Roberto Boccacci
- Department of Medical Biotechnologies, Section of Pathological Anatomy, University of Siena, Siena, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, Section of Pathological Anatomy, University of Siena, Siena, Italy
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Department of Hematology Hospital Clinic of Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel, Kiel, Germany
| |
Collapse
|
9
|
Yang P, Liu SZ, Li CY, Zhang WL, Wang J, Chen YT, Li S, Liu CL, Liu H, Cai QQ, Zhang W, Jing HM. Genetic and prognostic analysis of blastoid and pleomorphic mantle cell lymphoma: a multicenter analysis in China. Ann Hematol 2024; 103:2381-2391. [PMID: 38165416 DOI: 10.1007/s00277-023-05597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Blastoid or pleomorphic mantle cell lymphoma (B/P-MCL) is characterized by high invasiveness and unfavorable outcomes, which is still a challenge for treating MCL. This retrospective study was performed to comprehensively analyze the clinical, genomic characteristics and treatment options of patients with B/PMCL from multicenter in China. Data were obtained from 693 patients with B/PMCL from three centers in China between April 1999 and December 2019. Seventy-four patients with BMCL (n = 43) or PMCL (n = 31) were included in the analysis. The median age of the cohort was 60.0 years with a male-to-female ratio of 2.89:1. The 3-year progression-free survival (PFS) and overall survival (OS) rates were 44.1% and 46.0%, respectively. Mutations of TP53, ATM, NOTCH1, NOTCH2, NSD2, SMARCA4, CREBBP, KMT2D, FAT1, and TRAF2 genes were the most common genetic changes in B/P-MCL. Progression of disease within 12 months (POD12) could independently predict the poor prognosis of patients with blastoid and pleomorphic variants. Patients with POD12 carried a distinct mutation profile (TP53, SMARCA4, NSD2, NOTCH2, KMT2D, PTPRD, CREBBP, and CDKN2A mutations) compared to patients with non-POD12. First-line high-dose cytosine arabinoside exposure obtained survival benefits in these populations, and BTKi combination therapy as the front-line treatment had somewhat improvement in survival with no significant difference in the statistic. In conclusion, B/P-MCL had inferior outcomes and a distinct genomic profile. Patients with POD12 displayed a distinct mutation profile and a poor prognosis. New therapeutic drugs and clinical trials for B/P-MCL need to be further explored.
Collapse
Affiliation(s)
- Ping Yang
- Department of Hematology, Peking University Third Hospital, No. 49 Huayuan N Rd Haidian District, Beijing, China
| | - Shuo-Zi Liu
- Department of Hematology, Peking University Third Hospital, No. 49 Huayuan N Rd Haidian District, Beijing, China
| | - Chun-Yuan Li
- Department of Hematology, Peking University Third Hospital, No. 49 Huayuan N Rd Haidian District, Beijing, China
| | - Wei-Long Zhang
- Department of Hematology, Peking University Third Hospital, No. 49 Huayuan N Rd Haidian District, Beijing, China
| | - Jing Wang
- Department of Hematology, Peking University Third Hospital, No. 49 Huayuan N Rd Haidian District, Beijing, China
| | - Ying-Tong Chen
- Department of Hematology, Peking University Third Hospital, No. 49 Huayuan N Rd Haidian District, Beijing, China
| | - Sen Li
- Department of Hematology, Peking University Third Hospital, No. 49 Huayuan N Rd Haidian District, Beijing, China
| | - Cui-Ling Liu
- Department of Hematology, Peking University Third Hospital, No. 49 Huayuan N Rd Haidian District, Beijing, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, Beijing, China
| | - Qing-Qing Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei Zhang
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| | - Hong-Mei Jing
- Department of Hematology, Peking University Third Hospital, No. 49 Huayuan N Rd Haidian District, Beijing, China.
| |
Collapse
|
10
|
Ware AD, Davis K, Xian RR. Molecular Pathology of Mature Lymphoid Malignancies. Clin Lab Med 2024; 44:355-376. [PMID: 38821649 DOI: 10.1016/j.cll.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Lymphoid malignancies are a broad and heterogeneous group of neoplasms. In the past decade, the genetic landscape of these tumors has been explored and cataloged in fine detail offering a glimpse into the mechanisms of lymphomagenesis and new opportunities to translate these findings into patient management. A myriad of studies have demonstrated both distinctive and overlapping molecular and chromosomal abnormalities that have influenced the diagnosis and classification of lymphoma, disease prognosis, and treatment selection.
Collapse
Affiliation(s)
- Alisha D Ware
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - Katelynn Davis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rena R Xian
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Johns Hopkins School of Medicine, 1812 Ashland Avenue, Suite 200, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Carras S, Torroja A, Emadali A, Montaut E, Daguindau N, Tempescul A, Moreau A, Tchernonog E, Schmitt A, Houot R, Dartigeas C, Barbieux S, Corm S, Banos A, Fouillet L, Dupuis J, Macro M, Fleury J, Jardin F, Sarkozy C, Damaj G, Feugier P, Fornecker LM, Chabrot C, Dorvaux V, Bouabdallah K, Amorim S, Garidi R, Voillat L, Joly B, Morineau N, Moles MP, Zerazhi H, Fontan J, Arkam Y, Alexis M, Delwail V, Vilque JP, Ysebaert L, Burroni B, Callanan M, Le Gouill S, Gressin R. Long-term analysis of the RiBVD phase II trial reveals the unfavorable impact of TP53 mutations and hypoalbuminemia in older adults with mantle cell lymphoma; for the LYSA group. Haematologica 2024; 109:1857-1865. [PMID: 38031755 PMCID: PMC11141646 DOI: 10.3324/haematol.2023.283724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
Between 2011 and 2012, a phase II trial evaluated the use of the RiBVD (rituximab, bendamustine, velcade and dexamethasone) combination as first-line treatment for mantle cell lymphoma (MCL) patients over the age of 65. We have now re-examined the classic prognostic factors, adding an assessment of TP53 mutation status. Patients (N=74; median age 73 years) were treated with the RiBVD combination. Median progression-free survival (mPFS) was 79 months and median overall survival (mOS) was 111 months. TP53 mutation status was available for 54/74 (73%) patients. TP53 mutations (TP53mt) were found in 12 patients (22.2%). In multivariate analysis, among the prognostic factors (PF) evaluated, only TP53mt and an albumin level (Alb) 3.6 g/dL were independently associated with a shorter mPFS. A hazard ratio (HR) of 3.16 (1.3-9.9, P=0.014) was obtained for TP53mt versus TP53 wild-type (wt), and 3.6 (1.39-9.5, P=0.009) for Alb <3.6 g/dL versus Alb ≥3.6 g/dL. In terms of mOS, multivariate analysis identified three PF: TP53mt (HR: 5.9 [1.77-19.5, P=0.004]), Alb <3.6 g/dL (HR: 5.2 [1.46- 18.5, P=0.011]), and ECOG=2 (HR: 3.7 [1.31-10.6, P=0.014]). Finally, a score combining TP53 status and Alb distinguished three populations based on the presence of 0, 1, or 2 PF. For these populations, mPFS was 7.8 years, 28 months, and 2.5 months, respectively. Our prolonged follow-up confirmed the efficacy of the RiBVD regimen, comparing it favorably to other regimens. TP53mt and hypoalbuminemia emerge as strong PF that can be easily integrated into prognostic scores for older adult patients with MCL.
Collapse
Affiliation(s)
- Sylvain Carras
- Université Grenoble Alpes, University Hospital, Institute For Advanced Biosciences (INSERM U1209, CNRSéUMR 5309, UGA), Molecular Biology Department, Grenoble
- Université Grenoble Alpes, University Hospital, Institute For Advanced Biosciences (INSERM U1209, CNRS UMR 5309, UGA), Oncohematology Department, Grenoble
| | - Alexia Torroja
- Université Grenoble Alpes, University Hospital, Institute For Advanced Biosciences (INSERM U1209, CNRS UMR 5309, UGA), Oncohematology Department, Grenoble
| | - Anouk Emadali
- Université Grenoble Alpes, University Hospital, Institute for Advanced Biosciences (INSERM U1209, CNRS UMR 5309, UGA), Research & Innovation Unit, Grenoble
| | - Emilie Montaut
- Université Grenoble Alpes, University Hospital, Institute for Advanced Biosciences (INSERM U1209, CNRS UMR 5309, UGA), Research & Innovation Unit, Grenoble
| | | | | | - Anne Moreau
- Pathology Department, University Hospital, Nantes
| | | | - Anna Schmitt
- Hematology Department, Cancerology Institute Bergonie, Bordeaux
| | - Roch Houot
- Hematology Department, University Hospital, Rennes
| | | | | | - Selim Corm
- Hematology Department, Chambery Hospital, Chambery
| | - Anne Banos
- Hematology Department, Bayonne Cote Basque Hospital, Bayonne
| | | | - Jehan Dupuis
- Lymphoid Malignancies Unit, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Créteil
| | | | - Joel Fleury
- Hematology Department, Cancerology Institute, Clermont-Ferrand
| | | | | | - Ghandi Damaj
- Hematology Department, University Hospital, Caen
| | | | | | - Cecile Chabrot
- Hematology Department, University Hospital, Clermont-Ferrand
| | | | | | - Sandy Amorim
- Hematology & Cellular Therapy Department, Hospital Saint Vincent de Paul, Université Catholique de Lille, Lille
| | - Reda Garidi
- Hematology Department, Hospital Saint Quentin, Saint Quentin
| | - Laurent Voillat
- Hematology Department, Hospital Chalon sur Saone, Chalon sur Saone
| | - Bertrand Joly
- Hematology Department, Corbeil Hospital, Corbeil-Essonnes
| | - Nadine Morineau
- Hematology Department, Hospital La Roche Sur Yon, La Roche Sur Yon
| | | | | | - Jean Fontan
- Hematology Department, University Hospital, Besançon
| | - Yazid Arkam
- Hematology Department, Mulhouse Hospital, Mulhouse
| | - Magda Alexis
- Hematology Department, Orleans Hospital, Orleans
| | - Vincent Delwail
- Onco-Hematology Department, University Hospital Poitiers and INSERM, CIC 1402, University of Poitiers, Poitiers
| | | | - Loic Ysebaert
- Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse
| | - Barbara Burroni
- Assistance Publique – Hôpitaux de Paris (APHP), Hôpital Cochin, Department of Pathology, Centre de Recherche des Cordeliers, Sorbonne University, Inserm, UMRS 1138, Université Paris Cité, F-75006 Paris
| | - Mary Callanan
- Unit For Innovation in Genetics and Epigenetics and Oncology, Dijon University Hospital, Dijon, France
| | - Steven Le Gouill
- Institut Curie, Paris and Paris Saint Quentin University, UVSQ, Paris
| | - Rémy Gressin
- Université Grenoble Alpes, University Hospital, Institute For Advanced Biosciences (INSERM U1209, CNRS UMR 5309, UGA), Oncohematology Department, Grenoble
| |
Collapse
|
12
|
Kishida M, Fujisawa M, Steidl C. Molecular biomarkers in classic Hodgkin lymphoma. Semin Hematol 2024:S0037-1963(24)00069-6. [PMID: 38969539 DOI: 10.1053/j.seminhematol.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024]
Abstract
Classic Hodgkin lymphoma is a unique B-cell derived malignancy featuring rare malignant Hodgkin and Reed Sternberg (HRS) cells that are embedded in a quantitively dominant tumor microenvironment (TME). Treatment of classic Hodgkin lymphoma has significantly evolved in the past decade with improving treatment outcomes for newly diagnosed patients and the minority of patients suffering from disease progression. However, the burden of toxicity and treatment-related long-term sequelae remains high in a typically young patient population. This highlights the need for better molecular biomarkers aiding in risk-adapted treatment strategies and predicting response to an increasing number of available treatments that now prominently involve multiple immunotherapy options. Here, we review modern molecular biomarker approaches that reflect both the biology of the malignant HRS cells and cellular components in the TME, while holding the promise to improve diagnostic frameworks for clinical decision-making and be feasible in clinical trials and routine practice. In particular, technical advances in sequencing and analytic pipelines using liquid biopsies, as well as deep phenotypic characterization of tissue architecture at single-cell resolution, have emerged as the new frontier of biomarker development awaiting further validation and implementation in routine diagnostic procedures.
Collapse
Affiliation(s)
- Makoto Kishida
- Centre for Lymphoid Cancer department, BC Cancer, Vancouver, British Columbia, Canada
| | - Manabu Fujisawa
- Centre for Lymphoid Cancer department, BC Cancer, Vancouver, British Columbia, Canada; Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Christian Steidl
- Centre for Lymphoid Cancer department, BC Cancer, Vancouver, British Columbia, Canada; Institute of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Abdelrazak Morsy MH, Lilienthal I, Lord M, Merrien M, Wasik AM, Sureda-Gómez M, Amador V, Johansson HJ, Lehtiö J, Garcia-Torre B, Martin-Subero JI, Tsesmetzis N, Tao S, Schinazi RF, Kim B, Sorteberg AL, Wickström M, Sheppard D, Rassidakis GZ, Taylor IA, Christensson B, Campo E, Herold N, Sander B. SOX11 is a novel binding partner and endogenous inhibitor of SAMHD1 ara-CTPase activity in mantle cell lymphoma. Blood 2024; 143:1953-1964. [PMID: 38237141 PMCID: PMC11103171 DOI: 10.1182/blood.2023022241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
ABSTRACT Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.
Collapse
Affiliation(s)
- Mohammad Hamdy Abdelrazak Morsy
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Martin Lord
- Department of Pharmaceutical Biosciences, Immuno-oncology, Uppsala University Biomedical Centre, Uppsala, Sweden
| | - Magali Merrien
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Agata Magdalena Wasik
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | | | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Jose Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Sijia Tao
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Agnes L. Sorteberg
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Devon Sheppard
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Georgios Z. Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Birger Christensson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hematopathology Section, Department of Anatomic Pathology, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
- Paediatric Oncology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Sander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
De Bolòs A, Sureda-Gómez M, Carreras-Caballé M, Rodríguez ML, Clot G, Beà S, Giné E, Campo E, Balsas P, Amador V. SOX11/PRDX2 axis modulates redox homeostasis and chemoresistance in aggressive mantle cell lymphoma. Sci Rep 2024; 14:7863. [PMID: 38570586 PMCID: PMC10991377 DOI: 10.1038/s41598-024-58216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell neoplasm characterized by an aggressive behavior, short responses to conventional therapies and SOX11 overexpression, which is associated with aggressive disease features and inferior clinical outcome of patients. Oxidative stress is known to induce tumorigenesis and tumor progression, whereas high expression levels of antioxidant genes have been associated with chemoresistance in different cancers. However, the role of oxidative stress in MCL pathogenesis and the involvement of SOX11 regulating redox homeostasis in MCL cells are largely unknown. Here, by integrating gene set enrichment analysis of two independent series of MCL, we observed that SOX11+ MCL had higher reactive oxygen species (ROS) levels compared to SOX11- MCL primary tumors and increased expression of Peredoxine2 (PRDX2), which upregulation significantly correlated with SOX11 overexpression, higher ROS production and worse overall survival of patients. SOX11 knockout (SOX11KO) significantly reduced PRDX2 expression, and SOX11KO and PRDX2 knockdown (PRDX2KD) had increased ROS levels and ROS-mediated tumor cell death upon treatment with drugs, compared to control MCL cell lines. Our results suggest an aberrant redox homeostasis associated with chemoresistance in aggressive MCL through SOX11-mediated PRDX2 upregulation, highlighting PRDX2 as promising target for new therapeutic strategies to overcome chemoresistance in aggressive MCLs.
Collapse
Affiliation(s)
- Anna De Bolòs
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Silvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Eva Giné
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Patricia Balsas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
15
|
Rodrigues JM, Hollander P, Schmidt L, Gkika E, Razmara M, Kumar D, Geisler C, Grønbæk K, Eskelund CW, Räty R, Kolstad A, Sundström C, Glimelius I, Porwit A, Jerkeman M, Ek S. MYC protein is a high-risk factor in mantle cell lymphoma and identifies cases beyond morphology, proliferation and TP53/p53 - a Nordic Lymphoma Group study. Haematologica 2024; 109:1171-1183. [PMID: 37646663 PMCID: PMC10985440 DOI: 10.3324/haematol.2023.283352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
The transcription factor MYC is a well-described oncogene with an important role in lymphomagenesis, but its significance for clinical outcome in mantle cell lymphoma (MCL) remains to be determined. We performed an investigation of the expression of MYC protein in a cohort of 251 MCL patients complemented by analyses of structural aberrations and mRNA, in a sub-cohort of patients. Fourteen percent (n=35) of patients showed high MYC protein expression with >20% positive cells (MYChigh), among whom only one translocation was identified, and 86% (n=216) of patients showed low MYC protein expression. Low copy number gains of MYC were detected in ten patients, but with no correlation to MYC protein levels. However, MYC mRNA levels correlated significantly to MYC protein levels with a R2 value of 0.76. Patients with a MYChigh tumor had both an independent inferior overall survival and an inferior progression-free survival (hazard ratio [HR]=2.03, 95% confidence interval [95% CI]: 1.2-3.4 and HR=2.2, 95% CI: 1.04-4.6, respectively) when adjusted for additional high-risk features. Patients with MYChigh tumors also tended to have additional high-risk features and to be older at diagnosis. A subgroup of 13 patients had concomitant MYChigh expression and TP53/p53 alterations and a substantially increased risk of progression (HR=16.9, 95% CI: 7.4-38.3) and death (HR=7.8, 95% CI: 4.4-14.1) with an average overall survival of only 0.9 years. In summary, we found that at diagnosis a subset of MCL patients (14%) overexpressed MYC protein, and had a poor prognosis but that MYC rearrangements were rare. Tumors with concurrent MYC overexpression and TP53/p53 alterations pinpointed MCL patients with a dismal prognosis with a median overall survival of less than 3 years. We propose that MYC needs to be assessed beyond the current high-risk factors in MCL in order to identify cases in need of alternative treatment.
Collapse
Affiliation(s)
| | - Peter Hollander
- Cancer Immunotherapy, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | | | | | - Masoud Razmara
- Department of Clinical Pathology, Akademiska University Hospital, Uppsala
| | | | | | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen
| | - Christian W Eskelund
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen
| | - Riikka Räty
- Department of Hematology, Helsinki University Hospital, Helsinki
| | - Arne Kolstad
- Department of Oncology, Innlandet Hospital Trust, Division Gjøvik-Lillehammer
| | - Christer Sundström
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala
| | - Ingrid Glimelius
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala
| | - Anna Porwit
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund
| | - Mats Jerkeman
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund
| | - Sara Ek
- Department of Immunotechnology, Lund University.
| |
Collapse
|
16
|
López C, Fischer A, Rosenwald A, Siebert R, Ott G, Kurz KS. Genetic alterations in mature B- and T-cell lymphomas - a practical guide to WHO-HAEM5. MED GENET-BERLIN 2024; 36:59-73. [PMID: 38835967 PMCID: PMC11006337 DOI: 10.1515/medgen-2024-2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The identification of recurrent genomic alterations in tumour cells has a significant role in the classification of mature B- and T-cell lymphomas. Following the development of new technologies, such as next generation sequencing and the improvement of classical technologies such as conventional and molecular cytogenetics, a huge catalogue of genomic alterations in lymphoid neoplasms has been established. These alterations are relevant to refine the taxonomy of the classification of lymphomas, to scrutinize the differential diagnosis within different lymphoma entities and to help assessing the prognosis and clinical management of the patients. Consequently, here we describe the key genetic alterations relevant in mature B- and T-cell lymphomas.
Collapse
Affiliation(s)
- Cristina López
- Universität Würzburg Institut für Pathologie Würzburg Germany
| | - Anja Fischer
- Universität Ulm und Universitätsklinikum Ulm Institut für Humangenetik Ulm Germany
| | - Andreas Rosenwald
- Robert-Bosch-Krankenhaus Abteilung für Klinische Pathologie Stuttgart Germany
| | - Reiner Siebert
- Robert-Bosch-Krankenhaus Abteilung für Klinische Pathologie Stuttgart Germany
| | - German Ott
- Universität Ulm und Universitätsklinikum Ulm Institut für Humangenetik Ulm Germany
| | - Katrin S Kurz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Molecular Pathology Laboratory Barcelona Spain
| |
Collapse
|
17
|
Kumar A. MYC overexpression: adding another piece to the puzzle of high-risk mantle cell lymphoma. Haematologica 2024; 109:1027-1028. [PMID: 37855068 PMCID: PMC10985434 DOI: 10.3324/haematol.2023.284105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Anita Kumar
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center.
| |
Collapse
|
18
|
Medeiros LJ, Chadburn A, Natkunam Y, Naresh KN. Fifth Edition of the World Health Classification of Tumors of the Hematopoietic and Lymphoid Tissues: B-cell Neoplasms. Mod Pathol 2024; 37:100441. [PMID: 38309432 DOI: 10.1016/j.modpat.2024.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
We review B-cell neoplasms in the 5th edition of the World Health Organization classification of hematolymphoid tumors (WHO-HEM5). The revised classification is based on a multidisciplinary approach including input from pathologists, clinicians, and other experts. The WHO-HEM5 follows a hierarchical structure allowing the use of family (class)-level definitions when defining diagnostic criteria are partially met or a complete investigational workup is not possible. Disease types and subtypes have expanded compared with the WHO revised 4th edition (WHO-HEM4R), mainly because of the expansion in genomic knowledge of these diseases. In this review, we focus on highlighting changes and updates in the classification of B-cell lymphomas, providing a comparison with WHO-HEM4R, and offering guidance on how the new classification can be applied to the diagnosis of B-cell lymphomas in routine practice.
Collapse
Affiliation(s)
- L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle; Section of Pathology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle
| |
Collapse
|
19
|
Nylund P, Nikkarinen A, Ek S, Glimelius I. Empowering macrophages: the cancer fighters within the tumour microenvironment in mantle cell lymphoma. Front Immunol 2024; 15:1373269. [PMID: 38566987 PMCID: PMC10985169 DOI: 10.3389/fimmu.2024.1373269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
In Mantle Cell Lymphoma (MCL), the role of macrophages within the tumour microenvironment (TME) has recently gained attention due to their impact on prognosis and response to therapy. Despite their low absolute number in MCL tumour tissue, recent findings reveal an association between the levels of macrophages and prognosis, consistent with trends observed in other lymphoma subtypes. M2-like macrophages, identified by markers such as CD163, contribute to angiogenesis and suppression of the immune response. Clinical trials with MCL patients treated with chemoimmunotherapy and targeted treatments underscore the adverse impact of high levels of M2-like macrophages. Immunomodulatory drugs like lenalidomide reduce the levels of MCL-associated CD163+ macrophages and enhance macrophage phagocytic activity. Similarly, clinical approaches targeting the CD47 "don't eat me" signalling, in combination with the anti-CD20-antibody rituximab, demonstrate increased macrophage activity and phagocytosis of MCL tumour cells. Cell-based therapies such as chimeric antigen receptor (CAR) T-cell have shown promise but various challenges persist, leading to a potential interest in CAR-macrophages (CAR-M). When macrophages are recruited to the TME, they offer advantages including phagocytic function and responsiveness to microenvironment alterations, suggesting their potential as a manipulable and inducible alternative when CAR T-cell therapies fails in the complex landscape of MCL treatment.
Collapse
Affiliation(s)
- Patrick Nylund
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Unit, Uppsala University, Uppsala, Sweden
| | - Anna Nikkarinen
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Unit, Uppsala University, Uppsala, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ingrid Glimelius
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Unit, Uppsala University, Uppsala, Sweden
- Division of Clinical Epidemiology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
20
|
Daddacha W, Monroe D, Schlafstein A, Withers A, Thompson E, Danelia D, Luong N, Sesay F, Rath S, Usoro E, Essien M, Jung A, Jiang J, Hu J, Mahboubi B, Williams A, Steinbeck J, Yang X, Buchwald Z, Dynan W, Switchenko J, Kim B, Khan M, Jaye D, Yu D. SAMHD1 expression contributes to doxorubicin resistance and predicts survival outcomes in diffuse large B-cell lymphoma patients. NAR Cancer 2024; 6:zcae007. [PMID: 38406263 PMCID: PMC10894040 DOI: 10.1093/narcan/zcae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a commonly diagnosed, aggressive non-Hodgkin's lymphoma. While R-CHOP chemoimmunotherapy is potentially curative, about 40% of DLBCL patients will fail, highlighting the need to identify biomarkers to optimize management. SAMHD1 has a dNTPase-independent role in promoting resection to facilitate DNA double-strand break (DSB) repair by homologous recombination. We evaluated the relationship of SAMHD1 levels with sensitivity to DSB-sensitizing agents in DLBCL cells and the association of SAMHD1 expression with clinical outcomes in 79 DLBCL patients treated with definitive therapy and an independent cohort dataset of 234 DLBCL patients. Low SAMHD1 expression, Vpx-mediated, or siRNA-mediated degradation/depletion in DLBCL cells was associated with greater sensitivity to doxorubicin and PARP inhibitors. On Kaplan-Meier log-rank survival analysis, low SAMHD1 expression was associated with improved overall survival (OS), which on subset analysis remained significant only in patients with advanced stage (III-IV) and moderate to high risk (2-5 International Prognostic Index (IPI)). The association of low SAMHD1 expression with improved OS remained significant on multivariate analysis independent of other adverse factors, including IPI, and was validated in an independent cohort. Our findings suggest that SAMHD1 expression mediates doxorubicin resistance and may be an important prognostic biomarker in advanced, higher-risk DLBCL patients.
Collapse
Affiliation(s)
- Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dominique Monroe
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashley J Schlafstein
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allison E Withers
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elizabeth B Thompson
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nho C Luong
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fatmata Sesay
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sandip K Rath
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edidiong R Usoro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark E Essien
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew T Jung
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jinmeng G Jiang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jiaxuan Hu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bijan Mahboubi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arilyn Williams
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Julia E Steinbeck
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zachary S Buchwald
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William S Dynan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
21
|
Xu D, Bewicke-Copley F, Close K, Okosun J, Gale RP, Apperley J, Weinstock DM, Wendel HG, Fitzgibbon J. Targeting lysine demethylase 5 (KDM5) in mantle cell lymphoma. Blood Cancer J 2024; 14:29. [PMID: 38351059 PMCID: PMC10864367 DOI: 10.1038/s41408-024-00999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Danmei Xu
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK.
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK.
- Centre for Haematology, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK.
- Oxford Cancer and Haematology centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK.
| | - Findlay Bewicke-Copley
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Karina Close
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Robert Peter Gale
- Centre for Haematology, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Jane Apperley
- Centre for Haematology, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Merck and Co., Rahway, NJ, USA
| | - Hans-Guido Wendel
- Memorial Sloan-Kettering Cancer Center, Cancer Biology & Genetics, New York, NY, 10065, USA
| | - Jude Fitzgibbon
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| |
Collapse
|
22
|
Li X, Zhang Y, Wang C, Wang L, Ye Y, Xue R, Shi Y, Su Q, Zhu Y, Wang L. Drug-Loaded Biomimetic Carriers for Non-Hodgkin's Lymphoma Therapy: Advances and Perspective. ACS Biomater Sci Eng 2024; 10:723-742. [PMID: 38296812 DOI: 10.1021/acsbiomaterials.3c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chemotherapy remains the mainstay of treatment for the lymphoma patient population, despite its relatively poor therapeutic results, high toxicity, and low specificity. With the advancement of biotechnology, the significance of drug-loading biomimetic materials in the medical field has become increasingly evident, attracting extensive attention from the scientific community and the pharmaceutical industry. Given that they can cater to the particular requirements of lymphoma patients, drug-loading biomimetic materials have recently become a potent and promising delivery approach for various applications. This review mainly reviews the recent advancements in the treatment of tumors with biological drug carrier-loaded drugs, outlines the mechanisms of lymphoma development and the diverse treatment modalities currently available, and discusses the merits and limitations of biological drug carriers. What is more, the practical application of biocarriers in tumors is explored by providing examples, and the possibility of loading such organisms with antilymphoma drugs for the treatment of lymphoma is conceived.
Collapse
Affiliation(s)
- Xiaoqi Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong China
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Linyi Key Laboratory of Nanomedicine, Linyi 276000, Shandong China
| | - Yu Zhang
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong China
| | - Chao Wang
- Department of Hematology, Linyi People's Hospital, Linyi 276000, Shandong China
| | - Liyuan Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong China
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Linyi Key Laboratory of Nanomedicine, Linyi 276000, Shandong China
| | - Yufu Ye
- Department of Hepatobiliary and Pancreatic Surgery, the First Affliliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, Zhejiang China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Hangzhou310000, Zhejiang China
| | - Renyu Xue
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
| | - Yuanwei Shi
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong China
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
| | - Quanping Su
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
| | - Yanxi Zhu
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Linyi Key Laboratory of Nanomedicine, Linyi 276000, Shandong China
- Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou 221000, Jiangsu China
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Linyi 276000, Shandong China
- Linyi Key Laboratory of Tumor Biology, Linyi 276000, Shandong China
- Linyi Key Laboratory of Nanomedicine, Linyi 276000, Shandong China
- Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou 221000, Jiangsu China
| |
Collapse
|
23
|
Kawaji‐Kanayama Y, Tsukamoto T, Nakano M, Tokuda Y, Nagata H, Mizuhara K, Katsuragawa‐Taminishi Y, Isa R, Fujino T, Matsumura‐Kimoto Y, Mizutani S, Shimura Y, Taniwaki M, Tashiro K, Kuroda J. miR-17-92 cluster-BTG2 axis regulates B-cell receptor signaling in mantle cell lymphoma. Cancer Sci 2024; 115:452-464. [PMID: 38050664 PMCID: PMC10859618 DOI: 10.1111/cas.16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
B-cell receptor (BCR) signaling is critically activated and stable for mantle cell lymphoma (MCL), but the underlying mechanism of the activated BCR signaling pathway is not clear. The pathogenic basis of miR-17-92 cluster remains unclear although the oncogenic microRNA (miRNA) miR-17-92 cluster is highly expressed in patients with MCL. We revealed that miR-17-92 cluster overexpression is partly dependent on SOX11 expression and chromatin acetylation of MIR17HG enhancer regions. Moreover, miR-17-92 cluster regulates not only cell proliferation but BCR signaling activation in MCL cell lines. To comprehensively identify miR-17-92 cluster target genes, we performed pulldown-seq, where target RNA of miRNA was captured using the biotinylated miRNA mimics and magnetic bead-coated streptavidin, and quantified using next-generation sequencing. The pulldown-seq identified novel miRNA target genes, including tumor suppressors such as BTG2 (miR-19b), CDKN2A (miR-17), SYNE1 (miR-20a), TET2 (miR-18, miR-19b, and miR-92a), TNFRSF10A (miR-92a), and TRAF3 (miR-17). Notably, the gene expression profile data of patients with MCL revealed that BTG2 expression was negatively associated with that of BCR signature genes, and low BTG2 expression was associated with poor overall survival. Moreover, BTG2 silencing in MCL cell lines significantly induced BCR signaling overactivation and cell proliferation. Our results suggest an oncogenic role of miR-17-92 cluster-activating BCR signaling throughout BTG2 deregulation in MCL. Furthermore, this may contribute to the prediction of the therapeutic efficacy and improved outcomes of MCL.
Collapse
Affiliation(s)
- Yuka Kawaji‐Kanayama
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Taku Tsukamoto
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Masakazu Nakano
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Yuichi Tokuda
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroaki Nagata
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Kentaro Mizuhara
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yoko Katsuragawa‐Taminishi
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Reiko Isa
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Takahiro Fujino
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yayoi Matsumura‐Kimoto
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
- Department of HematologyJapan Community Health Care Organization, Kyoto Kuramaguchi Medical CenterKyotoJapan
| | - Shinsuke Mizutani
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yuji Shimura
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Masafumi Taniwaki
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
- Department of HematologyAiseikai Yamashina HospitalKyotoJapan
- Center for Molecular Diagnostic and TherapeuticsKyoto Prefectural University of MedicineKyotoJapan
| | - Kei Tashiro
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Junya Kuroda
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
24
|
Fend F, van den Brand M, Groenen PJ, Quintanilla-Martinez L, Bagg A. Diagnostic and prognostic molecular pathology of lymphoid malignancies. Virchows Arch 2024; 484:195-214. [PMID: 37747559 PMCID: PMC10948535 DOI: 10.1007/s00428-023-03644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
With the explosion in knowledge about the molecular landscape of lymphoid malignancies and the increasing availability of high throughput techniques, molecular diagnostics in hematopathology has moved from isolated marker studies to a more comprehensive approach, integrating results of multiple genes analyzed with a variety of techniques on the DNA and RNA level. Although diagnosis of lymphoma still relies on the careful integration of clinical, morphological, phenotypic, and, if necessary molecular features, and only few entities are defined strictly by genetic features, genetic profiling has contributed profoundly to our current understanding of lymphomas and shaped the two current lymphoma classifications, the International Consensus Classification and the fifth edition of the WHO classification of lymphoid malignancies. In this review, the current state of the art of molecular diagnostics in lymphoproliferations is summarized, including clonality analysis, mutational studies, and gene expression profiling, with a focus on practical applications for diagnosis and prognostication. With consideration for differences in accessibility of high throughput techniques and cost limitations, we tried to distinguish between diagnostically relevant and in part disease-defining molecular features and optional, more extensive genetic profiling, which is usually restricted to clinical studies, patients with relapsed or refractory disease or specific therapeutic decisions. Although molecular diagnostics in lymphomas currently is primarily done for diagnosis and subclassification, prognostic stratification and predictive markers will gain importance in the near future.
Collapse
Affiliation(s)
- Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany.
| | - Michiel van den Brand
- Pathology-DNA, Location Rijnstate Hospital, Arnhem, the Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Patricia Jta Groenen
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, Tübingen, Germany
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Abstract
Lymphoid neoplasms represent a heterogeneous group of disease entities and subtypes with markedly different molecular and clinical features. Beyond genetic alterations, lymphoid tumors also show widespread epigenomic changes. These severely affect the levels and distribution of DNA methylation, histone modifications, chromatin accessibility, and three-dimensional genome interactions. DNA methylation stands out as a tracer of cell identity and memory, as B cell neoplasms show epigenetic imprints of their cellular origin and proliferative history, which can be quantified by an epigenetic mitotic clock. Chromatin-associated marks are informative to uncover altered regulatory regions and transcription factor networks contributing to the development of distinct lymphoid tumors. Tumor-intrinsic epigenetic and genetic aberrations cooperate and interact with microenvironmental cells to shape the transcriptome at different phases of lymphoma evolution, and intraclonal heterogeneity can now be characterized by single-cell profiling. Finally, epigenetics offers multiple clinical applications, including powerful diagnostic and prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Morsy MHA, Lilienthal I, Lord M, Merrien M, Wasik AM, Sureda-Gómez M, Amador V, Johansson HJ, Lehtiö J, Garcia-Torre B, Martin-Subero JI, Tsesmetzis N, Tao S, Schinazi RF, Kim B, Sorteberg AL, Wickström M, Sheppard D, Rassidakis GZ, Taylor IA, Christensson B, Campo E, Herold N, Sander B. SOX11 is a novel binding partner and endogenous inhibitor of SAMHD1 ara-CTPase activity in mantle cell lymphoma. Blood 2024; 143:1953-1964. [PMID: 38774451 PMCID: PMC7615944 DOI: 10.1182/blood.2023022241/2210808/blood.2023022241.pdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.
Collapse
Affiliation(s)
- Mohammad Hamdy Abdelrazak Morsy
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 21561, Alexandria, Egypt
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Martin Lord
- Department of Pharmaceutical Biosciences, Immuno-oncology, Uppsala University Biomedical Centre (BMC), SE-751 24, Uppsala, Sweden
| | - Magali Merrien
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Agata Magdalena Wasik
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Beatriz Garcia-Torre
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Sijia Tao
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Agnes L Sorteberg
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Devon Sheppard
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Georgios Z Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Birger Christensson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Section, Department of Anatomic Pathology, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
- Paediatric Oncology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| |
Collapse
|
27
|
Bühler MM, Kulis M, Duran‐Ferrer M, López C, Clot G, Nadeu F, Romo M, Giné E, López‐Guillermo A, Beà S, Campo E, Martín‐Subero JI. Robust identification of conventional and leukemic nonnodal mantle cell lymphomas using epigenetic biomarkers. Hemasphere 2024; 8:e30. [PMID: 38434527 PMCID: PMC10878179 DOI: 10.1002/hem3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/07/2023] [Indexed: 03/05/2024] Open
Affiliation(s)
- Marco M. Bühler
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Martí Duran‐Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of Basic Clinical Practice, Faculty of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of Basic Clinical Practice, Faculty of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Mònica Romo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Eva Giné
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematology DepartmentHospital ClínicBarcelonaSpain
| | - Armando López‐Guillermo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Hematology DepartmentHospital ClínicBarcelonaSpain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of Basic Clinical Practice, Faculty of MedicineUniversity of BarcelonaBarcelonaSpain
- Hematopathology Section, Pathology DepartmentHospital ClinicBarcelonaSpain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of Basic Clinical Practice, Faculty of MedicineUniversity of BarcelonaBarcelonaSpain
- Hematopathology Section, Pathology DepartmentHospital ClinicBarcelonaSpain
| | - José Ignacio Martín‐Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Department of Basic Clinical Practice, Faculty of MedicineUniversity of BarcelonaBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| |
Collapse
|
28
|
Ramsower CA, Rosenthal A, Robetorye RS, Mwangi R, Maurer M, Villa D, McDonnell T, Feldman A, Cohen JB, Habermann T, Campo E, Clot G, Bühler MM, Kulis M, Martin-Subero JI, Giné E, Cook JR, Hill B, Raess PW, Beiske KH, Reichart A, Hartmann S, Holte H, Scott D, Rimsza L. Evaluation of clinical parameters and biomarkers in older, untreated mantle cell lymphoma patients receiving bendamustine-rituximab. Br J Haematol 2024; 204:160-170. [PMID: 37881141 PMCID: PMC11315408 DOI: 10.1111/bjh.19153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
Mantle cell lymphoma (MCL) is clinically and biologically heterogeneous. While various prognostic features have been proposed, none currently impact therapy selection, particularly in older patients, for whom treatment is primarily dictated by age and comorbidities. Herein, we undertook a comprehensive comparison of clinicopathological features in a cohort of patients 60 years and older, uniformly treated with bendamustine and rituximab, with a median survival of >8 years. The strongest prognostic indicators in this cohort were a high-risk call by a simplified MCL international prognostic index (s-MIPI) (HR: 3.32, 95% CI: 1.65-6.68 compared to low risk), a high-risk call by MCL35 (HR: 10.34, 95% CI: 2.37-45.20 compared to low risk) and blastoid cytology (HR: 4.21, 95% CR: 1.92-9.22 compared to classic). Patients called high risk by both the s-MIPI and MCL35 had the most dismal prognosis (HR: 11.58, 95% CI: 4.10-32.72), while those with high risk by either had a moderate but clinically relevant prognosis (HR: 2.95, 95% CI: 1.49-5.82). A robust assay to assess proliferation, such as MCL35, along with stringent guidelines for cytological evaluation of MCL, in combination with MIPI, may be a strong path to risk-stratify older MCL patients in future clinical trials.
Collapse
Affiliation(s)
| | - Allison Rosenthal
- Division of Hematology and Medical Oncology, Mayo Clinic, Arizona, Phoenix, USA
| | - Ryan S Robetorye
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona, USA
| | - Raphael Mwangi
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Diego Villa
- Division of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Tim McDonnell
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew Feldman
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathon B Cohen
- Department of Hematology and Medical Oncology, Emory University-Winship Cancer Institute, Atlanta, Georgia, USA
| | | | - Elias Campo
- Lymphoid Neoplasms Program, Institute for Biomedical Research August Pi I Sunyer, Barcelona, Spain
- Laboratory of Pathology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Guillem Clot
- Lymphoid Neoplasms Program, Institute for Biomedical Research August Pi I Sunyer, Barcelona, Spain
| | - Marco M Bühler
- Lymphoid Neoplasms Program, Institute for Biomedical Research August Pi I Sunyer, Barcelona, Spain
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zürich, Switzerland
| | - Marta Kulis
- Lymphoid Neoplasms Program, Institute for Biomedical Research August Pi I Sunyer, Barcelona, Spain
| | - Jose Ignacio Martin-Subero
- Lymphoid Neoplasms Program, Institute for Biomedical Research August Pi I Sunyer, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain
| | - Eva Giné
- Department of Hematology, Hospital Clinic of the University of Barcelona, Barcelona, Spain
| | - James R Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian Hill
- Department of Hematology and Medical Oncology, Cleveland Clinic-Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Philipp W Raess
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Klaus H Beiske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Alexander Reichart
- Hematology and Oncology, Medical Office of Dres. Brudler/Reichart, Ausburg, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Harald Holte
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B Cell Malignancies, Oslo, Norway
| | - David Scott
- Department of Lymphoid Cancer Research, BC Cancer Centre, Vancouver, British Columbia, Canada
| | - Lisa Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
29
|
Vose JM, Fu K, Wang L, Mansoor A, Stewart D, Cheng H, Smith L, Yuan J, Qureishi HN, Link BK, Cessna MH, Barr PM, Kahl BS, Mckinney MS, Khan N, Advani RH, Martin P, Goy AH, Phillips TJ, Mehta A, Kamdar M, Crump M, Pro B, Flowers CR, Jacobson CA, Smith SM, Stephens DM, Bachanova V, Jin Z, Wu S, Hernandez-Ilizaliturri F, Torka P, Anampa-Guzmán A, Kashef F, Li X, Sharma S, Greiner TC, Armitage JO, Lunning M, Weisenburger DD, Bociek RG, Iqbal J, Yu G, Bi C. Integrative analysis of clinicopathological features defines novel prognostic models for mantle cell lymphoma in the immunochemotherapy era: a report from The North American Mantle Cell Lymphoma Consortium. J Hematol Oncol 2023; 16:122. [PMID: 38104096 PMCID: PMC10725579 DOI: 10.1186/s13045-023-01520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Patients with mantle cell lymphoma (MCL) exhibit a wide variation in clinical presentation and outcome. However, the commonly used prognostic models are outdated and inadequate to address the needs of the current multidisciplinary management of this disease. This study aims to investigate the clinical and pathological features of MCL in the immunochemotherapy era and improve the prognostic models for a more accurate prediction of patient outcomes. METHODS The North American Mantle Cell Lymphoma Project is a multi-institutional collaboration of 23 institutions across North America to evaluate and refine prognosticators for front-line therapy. A total of 586 MCL cases diagnosed between 2000 and 2012 are included in this study. A comprehensive retrospective analysis was performed on the clinicopathological features, treatment approaches, and outcomes of these cases. The establishment of novel prognostic models was based on in-depth examination of baseline parameters, and subsequent validation in an independent cohort of MCL cases. RESULTS In front-line strategies, the use of hematopoietic stem cell transplantation was the most significant parameter affecting outcomes, for both overall survival (OS, p < 0.0001) and progression-free survival (PFS, p < 0.0001). P53 positive expression was the most significant pathological parameter correlating with inferior outcomes (p < 0.0001 for OS and p = 0.0021 for PFS). Based on the baseline risk factor profile, we developed a set of prognostic models incorporating clinical, laboratory, and pathological parameters that are specifically tailored for various applications. These models, when tested in the validation cohort, exhibited strong predictive power for survival and showed a stratification resembling the training cohort. CONCLUSIONS The outcome of patients with MCL has markedly improved over the past two decades, and further enhancement is anticipated with the evolution of clinical management. The innovative prognostic models developed in this study would serve as a valuable tool to guide the selection of more suitable treatment strategies for patients with MCL.
Collapse
Affiliation(s)
- Julie M Vose
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Nebraska Medicine Fred and Pamela Buffett Cancer Center, 505 S 45Th St, Omaha, NE, 68105, USA
| | - Kai Fu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lu Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Adnan Mansoor
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Douglas Stewart
- Departments of Oncology and Medicine, University of Calgary, Calgary, Canada
| | - Hongxia Cheng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Lynette Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ji Yuan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hina Naushad Qureishi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brian K Link
- Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, Iowa, USA
| | - Melissa H Cessna
- Department of Pathology, Intermountain Medical Center, Murray, UT, USA
| | - Paul M Barr
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Brad S Kahl
- Department of Medicine, Oncology Division, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Matthew S Mckinney
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Nadia Khan
- Department of Hematology/Oncology, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ranjana H Advani
- Division of Oncology, Stanford Cancer Institute, Stanford, CA, USA
| | - Peter Martin
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Andre H Goy
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | - Tycel J Phillips
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Amitkumar Mehta
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Manali Kamdar
- Division of Hematology, University of Colorado, Denver, CO, USA
| | - Michael Crump
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre - University Health Network, Toronto, ON, Canada
| | - Barbara Pro
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Christopher R Flowers
- Division of Cancer Medicine, Department of Lymphoma-Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Caron A Jacobson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sonali M Smith
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Deborah M Stephens
- Huntsman Cancer Institute at University of Utah, Salt Lake City, UT, USA
| | - Veronika Bachanova
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Zhaohui Jin
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Shishou Wu
- Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, No.20 Yuhuangding East Road, Yantai, 264000, China
| | | | - Pallawi Torka
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Anampa-Guzmán
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Farshid Kashef
- Department of Pathology, University at Buffalo, Buffalo, NY, USA
| | - Xing Li
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - James O Armitage
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Nebraska Medicine Fred and Pamela Buffett Cancer Center, 505 S 45Th St, Omaha, NE, 68105, USA
| | - Matthew Lunning
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Nebraska Medicine Fred and Pamela Buffett Cancer Center, 505 S 45Th St, Omaha, NE, 68105, USA
| | - Dennis D Weisenburger
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G Bociek
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Nebraska Medicine Fred and Pamela Buffett Cancer Center, 505 S 45Th St, Omaha, NE, 68105, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Guohua Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, No.20 Yuhuangding East Road, Yantai, 264000, China.
| | - Chengfeng Bi
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Nebraska Medicine Fred and Pamela Buffett Cancer Center, 505 S 45Th St, Omaha, NE, 68105, USA.
| |
Collapse
|
30
|
Ware AD, Wake LM, Fedoriw Y. Lymphomas and Amyloid in the Gastrointestinal Tract. Surg Pathol Clin 2023; 16:719-743. [PMID: 37863562 DOI: 10.1016/j.path.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Lymphoproliferative disorders are a heterogeneous group of neoplasms with varying clinical, morphologic, immunophenotypic, and genetic characteristics. A subset of lymphomas have a proclivity for the gastrointestinal tract, although this region may also be involved by systemic lymphomas. In addition, a number of indolent lymphoproliferative disorders of the gastrointestinal tract have been defined over the past decade, and it is important to accurately differentiate these neoplasms to ensure that patients receive the proper management. Here, the authors review lymphoid neoplasms that show frequent gastrointestinal involvement and provide updates from the recent hematolymphoid neoplasm classification systems.
Collapse
Affiliation(s)
- Alisha D Ware
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, 160 Medical Drive, Brinkhous-Bullitt Building, CB#7525, Chapel Hill, NC 27599, USA
| | - Laura M Wake
- Department of Pathology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology Building, Room 401, Baltimore, MD 21287, USA
| | - Yuri Fedoriw
- Department of Pathology & Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 160 Medical Drive, Brinkhous-Bullitt Building, CB#7525, Chapel Hill, NC 27599, USA.
| |
Collapse
|
31
|
Grau M, López C, Martín-Subero JI, Beà S. Cytogenomics of B-cell non-Hodgkin lymphomas: The "old" meets the "new". Best Pract Res Clin Haematol 2023; 36:101513. [PMID: 38092483 DOI: 10.1016/j.beha.2023.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 12/18/2023]
Abstract
For the routine diagnosis of haematological neoplasms an integrative approach is used considering the morphology, and the immunophenotypic, and molecular features of the tumor sample, along with clinical information. The identification and characterization of recurrent chromosomal aberrations mainly detected by conventional and molecular cytogenetics in the tumor cells has a major impact on the classification of lymphoid neoplasms. Some of the B-cell non-Hodgkin lymphomas are characterized by particular chromosomal aberrations, highlighting the relevance of conventional and molecular cytogenetic studies in their diagnosis and prognosis. In the current genomics era, next generation sequencing provides relevant information as the mutational profiles of haematological malignancies, improving their classification and also the clinical management of the patients. In addition, other new technologies have emerged recently, such as the optical genome mapping, which can overcome some of the limitations of conventional and molecular cytogenetics and may become more widely used in the cytogenetic laboratories in the upcoming years. Moreover, epigenetic alterations may complement genetic changes for a deeper understanding of the pathogenesis underlying B-cell neoplasms and a more precise risk-based patient stratification. Overall, here we describe the current state of the genomic data integrating chromosomal rearrangements, copy number alterations, and somatic variants, as well as a succinct overview of epigenomic changes, which altogether constitute a comprehensive diagnostic approach in B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Marta Grau
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina López
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain
| | - José Ignacio Martín-Subero
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Sílvia Beà
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain.
| |
Collapse
|
32
|
Karolová J, Kazantsev D, Svatoň M, Tušková L, Forsterová K, Maláriková D, Benešová K, Heizer T, Dolníková A, Klánová M, Winkovska L, Svobodová K, Hojný J, Krkavcová E, Froňková E, Zemanová Z, Trněný M, Klener P. Sequencing-based analysis of clonal evolution of 25 mantle cell lymphoma patients at diagnosis and after failure of standard immunochemotherapy. Am J Hematol 2023; 98:1627-1636. [PMID: 37605345 DOI: 10.1002/ajh.27044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023]
Abstract
Our knowledge of genetic aberrations, that is, variants and copy number variations (CNVs), associated with mantle cell lymphoma (MCL) relapse remains limited. A cohort of 25 patients with MCL at diagnosis and the first relapse after the failure of standard immunochemotherapy was analyzed using whole-exome sequencing. The most frequent variants at diagnosis and at relapse comprised six genes: TP53, ATM, KMT2D, CCND1, SP140, and LRP1B. The most frequent CNVs at diagnosis and at relapse included TP53 and CDKN2A/B deletions, and PIK3CA amplifications. The mean count of mutations per patient significantly increased at relapse (n = 34) compared to diagnosis (n = 27). The most frequent newly detected variants at relapse, LRP1B gene mutations, correlated with a higher mutational burden. Variant allele frequencies of TP53 variants increased from 0.35 to 0.76 at relapse. The frequency and length of predicted CNVs significantly increased at relapse with CDKN2A/B deletions being the most frequent. Our data suggest, that the resistant MCL clones detected at relapse were already present at diagnosis and were selected by therapy. We observed enrichment of genetic aberrations of DNA damage response pathway (TP53 and CDKN2A/B), and a significant increase in MCL heterogeneity. We identified LRP1B inactivation as a new potential driver of MCL relapse.
Collapse
Affiliation(s)
- J Karolová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - D Kazantsev
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Svatoň
- CLIP - Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - L Tušková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Forsterová
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - D Maláriková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Benešová
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - T Heizer
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Dolníková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Klánová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - L Winkovska
- CLIP - Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - K Svobodová
- Center for Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital, Prague, Czech Republic
| | - J Hojný
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - E Krkavcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - E Froňková
- CLIP - Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Z Zemanová
- Center for Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital, Prague, Czech Republic
| | - M Trněný
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
33
|
Raghani NR, Shah DD, Shah TS, Chorawala MR, Patel RB. Combating relapsed and refractory Mantle cell lymphoma with novel therapeutic armamentarium: Recent advances and clinical prospects. Crit Rev Oncol Hematol 2023; 190:104085. [PMID: 37536448 DOI: 10.1016/j.critrevonc.2023.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a rare, aggressive subtype of non-Hodgkin's lymphoma (NHL), accounting for 5% of all cases. Due to its virulence factor, it is an incurable disease and keeps relapsing despite an intensive treatment regimen. Advancements in research and drug discovery have shifted the treatment strategy from conventional chemotherapy to targeted agents and immunotherapies. The establishment of the role of Bruton tyrosine kinase led to the development of ibrutinib, a first-generation BTK inhibitor, and its successors. A conditioning regimen based immunotherapeutic agent like ibritumumob, has also demonstrated a viable response with a favorable toxicity profile. Brexucabtagene Autoleucel, the only approved CAR T-cell therapy, has proven advantageous for relapsed/refractory MCL in both children and adults. This article reviews certain therapies that could help update the current approach and summarizes a few miscellaneous agents, which, seldom studied in trials, could alleviate the regression observed in traditional therapies. DATA AVAILABILITY: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Neha R Raghani
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Disha D Shah
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Tithi S Shah
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Rakesh B Patel
- Department of Internal Medicine, Division of Hematology and Oncology, UI Carver College of Medicine: The University of Iowa Roy J and Lucille A Carver College of Medicine, 375 Newton Rd, Iowa City, IA 52242, USA.
| |
Collapse
|
34
|
Sircar A, Singh S, Xu-Monette ZY, Coyle KM, Hilton LK, Chavdoula E, Ranganathan P, Jain N, Hanel W, Tsichlis P, Alinari L, Peterson BR, Tao J, Muthusamy N, Baiocchi R, Epperla N, Young KH, Morin R, Sehgal L. Exploiting the fibroblast growth factor receptor-1 vulnerability to therapeutically restrict the MYC-EZH2-CDKN1C axis-driven proliferation in Mantle cell lymphoma. Leukemia 2023; 37:2094-2106. [PMID: 37598282 PMCID: PMC10539170 DOI: 10.1038/s41375-023-02006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
Mantle cell lymphoma (MCL) is a lethal hematological malignancy with a median survival of 4 years. Its lethality is mainly attributed to a limited understanding of clinical tumor progression and resistance to current therapeutic regimes. Intrinsic, prolonged drug treatment and tumor-microenvironment (TME) facilitated factors impart pro-tumorigenic and drug-insensitivity properties to MCL cells. Hence, elucidating neoteric pharmacotherapeutic molecular targets involved in MCL progression utilizing a global "unified" analysis for improved disease prevention is an earnest need. Using integrated transcriptomic analyses in MCL patients, we identified a Fibroblast Growth Factor Receptor-1 (FGFR1), and analyses of MCL patient samples showed that high FGFR1 expression was associated with shorter overall survival in MCL patient cohorts. Functional studies using pharmacological intervention and loss of function identify a novel MYC-EZH2-CDKN1C axis-driven proliferation in MCL. Further, pharmacological targeting with erdafitinib, a selective small molecule targeting FGFRs, induced cell-cycle arrest and cell death in-vitro, inhibited tumor progression, and improved overall survival in-vivo. We performed extensive pre-clinical assessments in multiple in-vivo model systems to confirm the therapeutic potential of erdafitinib in MCL and demonstrated FGFR1 as a viable therapeutic target in MCL.
Collapse
Affiliation(s)
- Anuvrat Sircar
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Satishkumar Singh
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Krysta Mila Coyle
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Laura K Hilton
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Evangelia Chavdoula
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Parvathi Ranganathan
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Walter Hanel
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Philip Tsichlis
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Lapo Alinari
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Blake R Peterson
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jianguo Tao
- Division of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Natarajan Muthusamy
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Robert Baiocchi
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Narendranath Epperla
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Durham, NC, USA
| | - Ryan Morin
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, BC, Canada
| | - Lalit Sehgal
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
35
|
Lefebvre C, Veronese L, Nadal N, Gaillard JB, Penther D, Daudignon A, Chauzeix J, Nguyen-Khac F, Chapiro E. Cytogenetics in the management of mature B-cell non-Hodgkin lymphomas: Guidelines from the Groupe Francophone de Cytogénétique Hematologique (GFCH). Curr Res Transl Med 2023; 71:103425. [PMID: 38016420 DOI: 10.1016/j.retram.2023.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023]
Abstract
Non-Hodgkin lymphomas (NHL) consist of a wide range of clinically, phenotypically and genetically distinct neoplasms. The accurate diagnosis of mature B-cell non-Hodgkin lymphoma relies on a multidisciplinary approach that integrates morphological, phenotypical and genetic characteristics together with clinical features. Cytogenetic analyses remain an essential part of the diagnostic workup for mature B-cell lymphomas. Karyotyping is particularly useful to identify hallmark translocations, typical cytogenetic signatures as well as complex karyotypes, all bringing valuable diagnostic and/or prognostic information. Besides the well-known recurrent chromosomal abnormalities such as, for example, t(14;18)(q32;q21)/IGH::BCL2 in follicular lymphoma, recent evidences support a prognostic significance of complex karyotype in mantle cell lymphoma and Waldenström macroglobulinemia. Fluorescence In Situ Hybridization is also a key analysis playing a central role in disease identification, especially in genetically-defined entities, but also in predicting transformation risk or prognostication. This can be exemplified by the pivotal role of MYC, BCL2 and/or BCL6 rearrangements in the diagnostic of aggressive or large B-cell lymphomas. This work relies on the World Health Organization and the International Consensus Classification of hematolymphoid tumors together with the recent cytogenetic advances. Here, we review the various chromosomal abnormalities that delineate well-established mature B-cell non-Hodgkin lymphoma entities as well as newly recognized genetic subtypes and provide cytogenetic guidelines for the diagnostic management of mature B-cell lymphomas.
Collapse
Affiliation(s)
- C Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble, France.
| | - L Veronese
- Service de Cytogénétique Médicale, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand; EA7453 CHELTER, Université Clermont Auvergne, France
| | - N Nadal
- Service de génétique chromosomique et moléculaire, CHU Dijon, Dijon, France
| | - J-B Gaillard
- Unité de Génétique Chromosomique, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Montpellier, France
| | - D Penther
- Laboratoire de Génétique Oncologique, Centre Henri Becquerel, Rouen, France
| | - A Daudignon
- Laboratoire de Génétique Médicale - Hôpital Jeanne de Flandre - CHRU de Lille, France
| | - J Chauzeix
- Service d'Hématologie biologique CHU de Limoges - CRIBL, UMR CNRS 7276/INSERM 1262, Limoges, France
| | - F Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - E Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| |
Collapse
|
36
|
Brownmiller T, Caplen NJ. The HNRNPF/H RNA binding proteins and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1788. [PMID: 37042074 PMCID: PMC10523889 DOI: 10.1002/wrna.1788] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Meriranta L, Pitkänen E, Leppä S. Blood has never been thicker: Cell-free DNA fragmentomics in the liquid biopsy toolbox of B-cell lymphomas. Semin Hematol 2023; 60:132-141. [PMID: 37455222 DOI: 10.1053/j.seminhematol.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Liquid biopsies utilizing plasma circulating tumor DNA (ctDNA) are anticipated to revolutionize decision-making in cancer care. In the field of lymphomas, ctDNA-based blood tests represent the forefront of clinically applicable tools to harness decades of genomic research for disease profiling, quantification, and detection. More recently, the discovery of nonrandom fragmentation patterns in cell-free DNA (cfDNA) has opened another avenue of liquid biopsy research beyond mutational interrogation of ctDNA. Through examination of structural features, nucleotide content, and genomic distribution of massive numbers of plasma cfDNA molecules, the study of fragmentomics aims at identifying new tools that augment existing ctDNA-based analyses and discover new ways to profile cancer from blood tests. Indeed, the characterization of aberrant lymphoma ctDNA fragment patterns and harnessing them with powerful machine-learning techniques are expected to unleash the potential of nonmutant molecules for liquid biopsy purposes. In this article, we review cfDNA fragmentomics as an emerging approach in the ctDNA research of B-cell lymphomas. We summarize the biology behind the formation of cfDNA fragment patterns and discuss the preanalytical and technical limitations faced with current methodologies. Then we go through the advances in the field of lymphomas and envision what other noninvasive tools based on fragment characteristics could be explored. Last, we place fragmentomics as one of the facets of ctDNA analyses in emerging multiview and multiomics liquid biopsies. We pay attention to the unknowns in the field of cfDNA fragmentation biology that warrant further mechanistic investigation to provide rational background for the development of these precision oncology tools and understanding of their limitations.
Collapse
Affiliation(s)
- Leo Meriranta
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Esa Pitkänen
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), HILIFE, Helsinki, Finland
| | - Sirpa Leppä
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
38
|
Castillo DR, Park D, Jeon WJ, Joung B, Lee J, Yang C, Pham B, Hino C, Chong E, Shields A, Nguyen A, Brothers J, Liu Y, Zhang KK, Cao H. Unveiling the Prognostic Significance of BCL6+/CD10+ Mantle Cell Lymphoma: Meta-Analysis of Individual Patients and Systematic Review. Int J Mol Sci 2023; 24:10207. [PMID: 37373354 DOI: 10.3390/ijms241210207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma (NHL) characterized by a hallmark translocation of t (11; 14). CD10 negativity has been used to differentiate MCL from other NHL types; however, recently, there has been an increase in the number of reported cases of CD10-positive MCL. This warrants further investigation into this rarer immunophenotype and its clinical significance. BCL6, which is a master transcription factor for the regulation of cell proliferation and key oncogene in B cell lymphomagenesis, has been reported to have co-expression with CD10 in MCL. The clinical significance of this aberrant antigen expression remains unknown. We conducted a systematic review by searching four databases and selected five retrospective analyses and five case series. Two survival analyses were conducted to determine if BCL6 positivity conferred a survival difference: 1. BCL6+ vs. BCL6- MCL. 2. BCL6+/CD10+ vs. BCL6-/CD10+ MCL. Correlation analysis was conducted to determine if BCL6 positivity correlated with the Ki67 proliferation index (PI). Overall survival (OS) rates were performed by the Kaplan-Meier method and log-rank test. Our analyses revealed that BCL6+ MCL had significantly shorter overall survival (median OS: 14 months vs. 43 months; p = 0.01), BCL6+/CD10+ MCL had an inferior outcome vs. BCL6+/CD10- MCL (median OS: 20 months vs. 55 months p = 0.1828), BCL6+ MCL had significantly higher percentages of Ki67% (Ki67% difference: 24.29; p = 0.0094), and BCL6 positivity had a positive correlation with CD10+ status with an odds ratio 5.11 (2.49, 10.46; p = 0.0000286). Our analysis showed that BCL6 expression is correlated with CD10 positivity in MCL, and BCL6 expression demonstrated an inferior overall survival. The higher Ki67 PI in BCL6+ MCL compared to BCL6- MCL further supports the idea that the BCL6+ immunophenotype may have prognostic value in MCL. MCL management should consider incorporating prognostic scoring systems adjusted for BCL6 expression. Targeted therapies against BCL6 may offer potential therapeutic options for managing MCL with aberrant immunophenotypes.
Collapse
Affiliation(s)
- Dani Ran Castillo
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Daniel Park
- Department of Internal Medicine, School of Medicine, University of California San Francisco-Fresno, Fresno, CA 93701, USA
| | - Won Jin Jeon
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Bowon Joung
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jae Lee
- School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chieh Yang
- Department of Internal Medicine, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Bryan Pham
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Christopher Hino
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Esther Chong
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Anthony Nguyen
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA
| | - Joel Brothers
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yan Liu
- Department of Pathology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ke K Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Huynh Cao
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
39
|
Mateos-Jaimez J, Mangolini M, Vidal A, Kulis M, Colomer D, Campo E, Ringshausen I, Martin-Subero JI, Maiques-Diaz A. Robust CRISPR-Cas9 Genetic Editing of Primary Chronic Lymphocytic Leukemia and Mantle Cell Lymphoma Cells. Hemasphere 2023; 7:e909. [PMID: 37304935 PMCID: PMC10249715 DOI: 10.1097/hs9.0000000000000909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- Judith Mateos-Jaimez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maurizio Mangolini
- Department of Hematology and Cambridge Stem Cell Institute, University of Cambridge, United Kingdom
| | - Anna Vidal
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Kulis
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Dolors Colomer
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Pathology Department, Hospital Clinic, Barcelona, Spain
- University of Barcelona, Spain
| | - Elias Campo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Pathology Department, Hospital Clinic, Barcelona, Spain
- University of Barcelona, Spain
| | - Ingo Ringshausen
- Department of Hematology and Cambridge Stem Cell Institute, University of Cambridge, United Kingdom
| | - Jose I. Martin-Subero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alba Maiques-Diaz
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
40
|
Silkenstedt E, Dreyling M. Mantle cell lymphoma-Update on molecular biology, prognostication and treatment approaches. Hematol Oncol 2023; 41 Suppl 1:36-42. [PMID: 37294961 DOI: 10.1002/hon.3149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
Mantle cell lymphoma (MCL) is clinically characterized by its heterogenous behavior with courses ranging from indolent cases that do not require therapy for years to highly aggressive MCL with very limited prognosis. The development and implementation of new targeted and immunotherapeutic approaches have already improved therapeutic options especially for refractory or relapsed disease. Nevertheless, to further optimize MCL treatment, early identification of individual risk profile and risk-adapted, patient-tailored choice of therapeutic strategy needs to be prospectively incorporated in clinical patient management. This review summarizes the current knowledge and standard of care regarding biology and clinical management of MCL, highlighting the implementation of new therapeutic approaches especially targeting the immune system.
Collapse
Affiliation(s)
| | - Martin Dreyling
- Department of Medicine III, LMU University Hospital, Munich, Germany
| |
Collapse
|
41
|
Ribeiro ML, Sánchez Vinces S, Mondragon L, Roué G. Epigenetic targets in B- and T-cell lymphomas: latest developments. Ther Adv Hematol 2023; 14:20406207231173485. [PMID: 37273421 PMCID: PMC10236259 DOI: 10.1177/20406207231173485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Non-Hodgkin's lymphomas (NHLs) comprise a diverse group of diseases, either of mature B-cell or of T-cell derivation, characterized by heterogeneous molecular features and clinical manifestations. While most of the patients are responsive to standard chemotherapy, immunotherapy, radiation and/or stem cell transplantation, relapsed and/or refractory cases still have a dismal outcome. Deep sequencing analysis have pointed out that epigenetic dysregulations, including mutations in epigenetic enzymes, such as chromatin modifiers and DNA methyltransferases (DNMTs), are prevalent in both B- cell and T-cell lymphomas. Accordingly, over the past decade, a large number of epigenetic-modifying agents have been developed and introduced into the clinical management of these entities, and a few specific inhibitors have already been approved for clinical use. Here we summarize the main epigenetic alterations described in B- and T-NHL, that further supported the clinical development of a selected set of epidrugs in determined diseases, including inhibitors of DNMTs, histone deacetylases (HDACs), and extra-terminal domain proteins (bromodomain and extra-terminal motif; BETs). Finally, we highlight the most promising future directions of research in this area, explaining how bioinformatics approaches can help to identify new epigenetic targets in B- and T-cell lymphoid neoplasms.
Collapse
Affiliation(s)
- Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras
Leukaemia Research Institute, Badalona, Spain
- Laboratory of Immunopharmacology and Molecular
Biology, Sao Francisco University Medical School, Braganca Paulista,
Brazil
| | - Salvador Sánchez Vinces
- Laboratory of Immunopharmacology and Molecular
Biology, Sao Francisco University Medical School, Braganca Paulista,
Brazil
| | - Laura Mondragon
- T Cell Lymphoma Group, Josep Carreras Leukaemia
Research Institute, IJC. Ctra de Can Ruti, Camí de les Escoles s/n, 08916
Badalona, Barcelona, Spain
| | - Gael Roué
- Lymphoma Translational Group, Josep Carreras
Leukaemia Research Institute, IJC. Ctra de Can Ruti, Camí de les Escoles
s/n, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
42
|
Maura F, Ziccheddu B, Xiang JZ, Bhinder B, Rosiene J, Abascal F, Maclachlan KH, Eng KW, Uppal M, He F, Zhang W, Gao Q, Yellapantula VD, Trujillo-Alonso V, Park SI, Oberley MJ, Ruckdeschel E, Lim MS, Wertheim GB, Barth MJ, Horton TM, Derkach A, Kovach AE, Forlenza CJ, Zhang Y, Landgren O, Moskowitz CH, Cesarman E, Imielinski M, Elemento O, Roshal M, Giulino-Roth L. Molecular Evolution of Classic Hodgkin Lymphoma Revealed Through Whole-Genome Sequencing of Hodgkin and Reed Sternberg Cells. Blood Cancer Discov 2023; 4:208-227. [PMID: 36723991 PMCID: PMC10150291 DOI: 10.1158/2643-3230.bcd-22-0128] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/02/2023] Open
Abstract
The rarity of malignant Hodgkin and Reed Sternberg (HRS) cells in classic Hodgkin lymphoma (cHL) limits the ability to study the genomics of cHL. To circumvent this, our group has previously optimized fluorescence-activated cell sorting to purify HRS cells. Using this approach, we now report the whole-genome sequencing landscape of HRS cells and reconstruct the chronology and likely etiology of pathogenic events leading to cHL. We identified alterations in driver genes not previously described in cHL, APOBEC mutational activity, and the presence of complex structural variants including chromothripsis. We found that high ploidy in cHL is often acquired through multiple, independent chromosomal gains events including whole-genome duplication. Evolutionary timing analyses revealed that structural variants enriched for RAG motifs, driver mutations in B2M, BCL7A, GNA13, and PTPN1, and the onset of AID-driven mutagenesis usually preceded large chromosomal gains. This study provides a temporal reconstruction of cHL pathogenesis. SIGNIFICANCE Previous studies in cHL were limited to coding sequences and therefore not able to comprehensively decipher the tumor complexity. Here, leveraging cHL whole-genome characterization, we identify driver events and reconstruct the tumor evolution, finding that structural variants, driver mutations, and AID mutagenesis precede chromosomal gains. This article is highlighted in the In This Issue feature, p. 171.
Collapse
Affiliation(s)
- Francesco Maura
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Bachisio Ziccheddu
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Jenny Z. Xiang
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Bhavneet Bhinder
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Joel Rosiene
- Weill Cornell Medical College, New York, New York
| | - Federico Abascal
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Kylee H. Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Wha Eng
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Manik Uppal
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Feng He
- Weill Cornell Medical College, New York, New York
| | - Wei Zhang
- Weill Cornell Medical College, New York, New York
| | - Qi Gao
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkata D. Yellapantula
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology and Laboratory Medicine at Children's Hospital Los Angeles, Los Angeles, California
| | | | - Sunita I. Park
- Department of Pathology, Children's Hospital of Atlanta, Atlanta, Georgia
| | | | | | - Megan S. Lim
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Gerald B. Wertheim
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Matthew J. Barth
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Terzah M. Horton
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Andriy Derkach
- Department of Epidemiology and Statistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Yanming Zhang
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ola Landgren
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Craig H. Moskowitz
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | | | - Marcin Imielinski
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Olivier Elemento
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Mikhail Roshal
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
43
|
Zhang X, Han Y, Nie Y, Jiang Y, Sui X, Ge X, Liu F, Zhang Y, Wang X. PAX5 aberrant expression incorporated in MIPI-SP risk scoring system exhibits additive value in mantle cell lymphoma. J Mol Med (Berl) 2023; 101:595-606. [PMID: 37126184 DOI: 10.1007/s00109-023-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
Mantle cell lymphoma (MCL) is a subtype of non-Hodgkin lymphoma with highly heterogeneous clinical courses. Paired-box 5 (PAX5), the regulator of B cell differentiation and growth, is abnormally expressed in several types of cancers. Herein, we explored the prognostic value of PAX5 in MCL by comprehensively analyzing the clinical features and laboratory data of 82 MCL cases. PAX5 positivity was associated with shorter overall survival (OS; p = 0.011) and was identified as an independent prognostic factor in MCL patients. The elevated β2-MG (p = 0.027) and advanced Mantle Cell Lymphoma International Prognostic Index (MIPI) score (p = 0.014) were related to positive PAX5 expression. The MIPI-SP risk scoring system was established and exhibited a superior prognostic value for OS depending on an area under the curve (AUC) of 0.770 (95% CI, 0.658-0.881) than MIPI score. Bioinformatic analysis of PAX5-related genes supported the mechanistic roles of PAX5 in MCL. This study provides insight into the potential role of PAX5 in MCL, and the novel risk scoring system MIPI-SP optimizes the risk stratification and facilitates prognosis evaluation in MCL patients. KEY MESSAGES: • Paired-box 5 positivity indicated adverse prognosis in mantle cell lymphoma patients. • Positive PAX5 expression was related to MIPI score and β2-MG in MCL patients. • MIPI-SP risk scoring system has superior prognostic value than MIPI score in MCL.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yu Nie
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xiaohui Sui
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
44
|
Cheng L, Zhang F, Zhao X, Wang L, Duan W, Guan J, Wang K, Liu Z, Wang X, Wang Z, Wu H, Chen Z, Teng L, Li Y, Xiao F, Fan T, Jian F. Mutational landscape of primary spinal cord astrocytoma. J Pathol 2023. [PMID: 37114614 DOI: 10.1002/path.6084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Primary spinal cord astrocytoma (SCA) is a rare disease. Knowledge about the molecular profiles of SCAs mostly comes from intracranial glioma; the pattern of genetic alterations of SCAs is not well understood. Herein, we describe genome-sequencing analyses of primary SCAs, aiming to characterize the mutational landscape of primary SCAs. We utilized whole exome sequencing (WES) to analyze somatic nucleotide variants (SNVs) and copy number variants (CNVs) among 51 primary SCAs. Driver genes were searched using four algorithms. GISTIC2 was used to detect significant CNVs. Additionally, recurrently mutated pathways were also summarized. A total of 12 driver genes were identified. Of those, H3F3A (47.1%), TP53 (29.4%), NF1 (19.6%), ATRX (17.6%), and PPM1D (17.6%) were the most frequently mutated genes. Furthermore, three novel driver genes seldom reported in glioma were identified: HNRNPC, SYNE1, and RBM10. Several germline mutations, including three variants (SLC16A8 rs2235573, LMF1 rs3751667, FAM20C rs774848096) that were associated with risk of brain glioma, were frequently observed in SCAs. Moreover, 12q14.1 (13.7%) encompassing the oncogene CDK4 was recurrently amplified and negatively affected patient prognosis. Besides frequently mutated RTK/RAS pathway and PI3K pathway, the cell cycle pathway controlling the phosphorylation of retinoblastoma protein (RB) was mutated in 39.2% of patients. Overall, a considerable degree of the somatic mutation landscape is shared between SCAs and brainstem glioma. Our work provides a key insight into the molecular profiling of primary SCAs, which might represent candidate drug targets and complement the molecular atlas of glioma. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Fan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, PR China
| | - Xingang Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, PR China
| | - Leiming Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Jian Guan
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Xingwen Wang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Zuowei Wang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Lianghong Teng
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Yifei Li
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Tao Fan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, PR China
| | - Fengzeng Jian
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| |
Collapse
|
45
|
Anagnostopoulos I, Zamò A. [Classification of indolent B-cell lymphomas : Novelties and open questions]. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:154-165. [PMID: 37093245 DOI: 10.1007/s00292-023-01186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 04/25/2023]
Abstract
The 5th edition of the WHO classification (WHO-HAEM5) and the International Consensus Classification (ICC) have considerable overlap but also some distinct differences in categorizing indolent B‑cell lymphomas. Most differences with the expected impact on the daily diagnostic routine relate to follicular lymphoma (FL). Grading of FL remains mandatory only in the ICC; a diffuse growth pattern in an FL with > 15 blasts per high-power field (FL grade 3A) is not automatically classified as DLBCL according to WHO-HAEM5, and an FL subtype with unusual morphology (blastoid or large centrocyte) and biology is recognized as an entity only in the WHO-HAEM5. With the exception of B‑prolymphocytic leukemia, which is no longer acknowledged in WHO-HAEM5, there are only minor differences between both classifications and include updated names of entities, improved diagnostic criteria, and upgrades from provisional to definite entities.
Collapse
Affiliation(s)
- Ioannis Anagnostopoulos
- Institut für Pathologie, Universität Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Deutschland.
| | - Alberto Zamò
- Institut für Pathologie, Universität Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Deutschland
| |
Collapse
|
46
|
Wang Z, Dai Z, Zhang H, Liang X, Zhang X, Wen Z, Luo P, Zhang J, Liu Z, Zhang M, Cheng Q. Tumor-secreted lactate contributes to an immunosuppressive microenvironment and affects CD8 T-cell infiltration in glioblastoma. Front Immunol 2023; 14:894853. [PMID: 37122693 PMCID: PMC10130393 DOI: 10.3389/fimmu.2023.894853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/05/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Glioblastoma is a malignant brain tumor with poor prognosis. Lactate is the main product of tumor cells, and its secretion may relate to immunocytes' activation. However, its role in glioblastoma is poorly understood. Methods This work performed bulk RNA-seq analysis and single cell RNA-seq analysis to explore the role of lactate in glioblastoma progression. Over 1400 glioblastoma samples were grouped into different clusters according to their expression and the results were validated with our own data, the xiangya cohort. Immunocytes infiltration analysis, immunogram and the map of immune checkpoint genes' expression were applied to analyze the potential connection between the lactate level with tumor immune microenvironment. Furthermore, machine learning algorithms and cell-cell interaction algorithm were introduced to reveal the connection of tumor cells with immunocytes. By co-culturing CD8 T cells with tumor cells, and performing immunohistochemistry on Xiangya cohort samples further validated results from previous analysis. Discussion In this work, lactate is proved that contributes to glioblastoma immune suppressive microenvironment. High level of lactate in tumor microenvironment can affect CD8 T cells' migration and infiltration ratio in glioblastoma. To step further, potential compounds that targets to samples from different groups were also predicted for future exploration.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- MRC Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhipeng Wen
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
47
|
Araujo-Ayala F, Dobaño-López C, Valero JG, Nadeu F, Gava F, Faria C, Norlund M, Morin R, Bernes-Lasserre P, Serrat N, Playa-Albinyana H, Giménez R, Campo E, Lagarde JM, López-Guillermo A, Gine E, Colomer D, Bezombes C, Pérez-Galán P. A novel patient-derived 3D model recapitulates mantle cell lymphoma lymph node signaling, immune profile and in vivo ibrutinib responses. Leukemia 2023:10.1038/s41375-023-01885-1. [PMID: 37031299 DOI: 10.1038/s41375-023-01885-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/10/2023]
Abstract
Mantle cell lymphoma (MCL), a rare and aggressive B-cell non-Hodgkin lymphoma, mainly develops in the lymph node (LN) and creates a protective and immunosuppressive niche that facilitates tumor survival, proliferation and chemoresistance. To capture disease heterogeneity and tumor microenvironment (TME) cues, we have developed the first patient-derived MCL spheroids (MCL-PDLS) that recapitulate tumor oncogenic pathways and immune microenvironment in a multiplexed system that allows easy drug screening, including immunotherapies. MCL spheroids, integrated by tumor B cells, monocytes and autologous T-cells self-organize in disc-shaped structures, where B and T-cells maintain viability and proliferate, and monocytes differentiate into M2-like macrophages. RNA-seq analysis demonstrated that tumor cells recapitulate hallmarks of MCL-LN (proliferation, NF-kB and BCR), with T cells exhibiting an exhaustion profile (PD1, TIM-3 and TIGIT). MCL-PDLS reproduces in vivo responses to ibrutinib and demonstrates that combination of ibrutinib with nivolumab (anti-PD1) may be effective in ibrutinib-resistant cases by engaging an immune response with increased interferon gamma and granzyme B release. In conclusion, MCL-PDLS recapitulates specific MCL-LN features and in vivo responses to ibrutinib, representing a robust tool to study MCL interaction with the immune TME and to perform drug screening in a patient-derived system, advancing toward personalized therapeutic approaches.
Collapse
Affiliation(s)
- Ferran Araujo-Ayala
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Cèlia Dobaño-López
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Juan García Valero
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Ferran Nadeu
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Fabien Gava
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, Toulouse, France
- Université de Toulouse, Inserm, CNRS, Université Toulouse IIIPaul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
| | - Carla Faria
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, Toulouse, France
- Université de Toulouse, Inserm, CNRS, Université Toulouse IIIPaul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
| | | | | | | | - Neus Serrat
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
| | - Heribert Playa-Albinyana
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Rubén Giménez
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Elías Campo
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- Hospital Clínic, Barcelona, Spain
- University of Barcelona, Medical School, Barcelona, Spain
| | | | - Armando López-Guillermo
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- Hospital Clínic, Barcelona, Spain
- University of Barcelona, Medical School, Barcelona, Spain
| | - Eva Gine
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- Hospital Clínic, Barcelona, Spain
| | - Dolors Colomer
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- Hospital Clínic, Barcelona, Spain
- University of Barcelona, Medical School, Barcelona, Spain
| | - Christine Bezombes
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, Toulouse, France
- Université de Toulouse, Inserm, CNRS, Université Toulouse IIIPaul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- IUCT-Oncopole, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome CALYM, Pierre-Bénite, France
| | - Patricia Pérez-Galán
- Fundació de Recerca Clínic Barcelona (FCRB)-IDIBAPS, Barcelona, Spain.
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.
| |
Collapse
|
48
|
Wilson MR, Barrett A, Cheah CY, Eyre TA. How I manage mantle cell lymphoma: indolent versus aggressive disease. Br J Haematol 2023; 201:185-198. [PMID: 36807902 DOI: 10.1111/bjh.18697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Mantle cell lymphoma (MCL) is a mature B-cell lymphoma with a variable clinical course and historically poor prognosis. Management is challenging in part due to the heterogeneity of the disease course, with indolent and aggressive subtypes now well recognised. Indolent MCL is often characterised by a leukaemic presentation, SOX11 negativity and low proliferation index (Ki-67). Aggressive MCL is characterised by rapid onset widespread lymphadenopathy, extra-nodal involvement, blastoid or pleomorphic histology and high Ki-67. Tumour protein p53 (TP53) aberrations in aggressive MCL are recognised with clear negative impact on survival. Until recently, trials have not addressed these specific subtypes separately. With the increasing availability of targeted novel agents and cellular therapies, the treatment landscape is constantly evolving. In this review, we describe the clinical presentation, biological factors, and specific management considerations of both indolent and aggressive MCL and discuss current and potential future evidence which may help move to a more personalised approach.
Collapse
Affiliation(s)
| | - Aisling Barrett
- Haematology and Cancer Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, UK
| | - Chan Yoon Cheah
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Division of Internal Medicine, University of Western Australia, Perth, Australia
| | - Toby A Eyre
- Haematology and Cancer Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, UK
| |
Collapse
|
49
|
Schroers-Martin JG, Alig S, Garofalo A, Tessoulin B, Sugio T, Alizadeh AA. Molecular Monitoring of Lymphomas. ANNUAL REVIEW OF PATHOLOGY 2023; 18:149-180. [PMID: 36130071 DOI: 10.1146/annurev-pathol-050520-044652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular monitoring of tumor-derived alterations has an established role in the surveillance of leukemias, and emerging nucleic acid sequencing technologies are likely to similarly transform the clinical management of lymphomas. Lymphomas are well suited for molecular surveillance due to relatively high cell-free DNA and circulating tumor DNA concentrations, high somatic mutational burden, and the existence of stereotyped variants enabling focused interrogation of recurrently altered regions. Here, we review the clinical scenarios and key technologies applicable for the molecular monitoring of lymphomas, summarizing current evidence in the literature regarding molecular subtyping and classification, evaluation of treatment response, the surveillance of active cellular therapies, and emerging clinical trial strategies.
Collapse
Affiliation(s)
- Joseph G Schroers-Martin
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA;
| | - Stefan Alig
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA;
| | - Andrea Garofalo
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA;
| | - Benoit Tessoulin
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA; .,Current affiliation: Clinical Hematology Department, Nantes University Hospital, Nantes, France
| | - Takeshi Sugio
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA;
| | - Ash A Alizadeh
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA; .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
50
|
Sureda-Gómez M, Balsas P, Rodríguez ML, Nadeu F, De Bolòs A, Eguileor Á, Kulis M, Castellano G, López C, Giné E, Demajo S, Jares P, Martín-Subero JI, Beà S, Campo E, Amador V. Tumorigenic role of Musashi-2 in aggressive mantle cell lymphoma. Leukemia 2023; 37:408-421. [PMID: 36509891 PMCID: PMC9898029 DOI: 10.1038/s41375-022-01776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
SOX11 overexpression has been associated with aggressive behavior of mantle cell lymphomas (MCL). SOX11 is overexpressed in embryonic and cancer stem cells (CSC) of some tumors. Although CSC have been isolated from primary MCL, their relationship to SOX11 expression and contribution to MCL pathogenesis and clinical evolution remain unknown. Here, we observed enrichment in leukemic and hematopoietic stem cells gene signatures in SOX11+ compared to SOX11- MCL primary cases. Musashi-2 (MSI2) emerged as one of the most significant upregulated stem cell-related genes in SOX11+ MCLs. SOX11 is directly bound to the MSI2 promoter upregulating its expression in vitro. MSI2 intronic enhancers were strongly activated in SOX11+ MCL cell lines and primary cases. MSI2 upregulation was significantly associated with poor overall survival independently of other high-risk features of MCL. MSI2 knockdown decreased the expression of genes related to apoptosis and stem cell features and significantly reduced clonogenic growth, tumor cell survival and chemoresistance in MCL cells. MSI2-knockdown cells had reduced tumorigenic engraftment into mice bone marrow and spleen compared to control cells in xenotransplanted mouse models. Our results suggest that MSI2 might play a key role in sustaining stemness and tumor cell survival, representing a possible novel target for therapeutic interventions in MCL.
Collapse
Affiliation(s)
- Marta Sureda-Gómez
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Balsas
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta-Leonor Rodríguez
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ferran Nadeu
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Anna De Bolòs
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Álvaro Eguileor
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Kulis
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Giancarlo Castellano
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina López
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Eva Giné
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.5841.80000 0004 1937 0247Department of Hematology Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Santiago Demajo
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pedro Jares
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - José I. Martín-Subero
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Silvia Beà
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.410458.c0000 0000 9635 9413Hematopathology Section, Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Elias Campo
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.410458.c0000 0000 9635 9413Hematopathology Section, Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|