1
|
Goubran H, Ahmed S, Ragab G, Seghatchian J, Burnouf T. Platelet proteomics: Clinical implications - Decoding the black box! Transfus Apher Sci 2024; 64:104060. [PMID: 39719751 DOI: 10.1016/j.transci.2024.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Platelets are anucleate blood cells traditionally associated with hemostasis but now increasingly recognized for their multifaceted roles in immunity, inflammation, and tissue repair. Advances in platelet proteomics, employing high-throughput techniques such as mass spectrometry, have significantly enhanced our understanding of platelet biology and its clinical implications in transfusion medicine. Platelet proteomics offers a retrospective view of physiological and pathological changes over the platelet's 7-10-day lifespan, making it a unique tool for studying cumulative biological events. Recent applications include the identification of biomarkers for cardiovascular, infectious, autoimmune diseases and cancer. In neurodegeneration and aging, platelets have been explored for their shared molecular pathways with neurons, with findings implicating Tau, amyloid-beta, and alpha-synuclein as potential biomarkers. Proteomics is also emerging as an important factor in the development of evidence-based, tailor-made platelet-derived therapies. While promising, platelet proteomics requires further standardization and computational advances to support transitioning from research to routine clinical practice.
Collapse
Affiliation(s)
- Hadi Goubran
- Saskatoon Cancer Centre, Saskatoon, SK, Canada; Department of Oncology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Shahid Ahmed
- Saskatoon Cancer Centre, Saskatoon, SK, Canada; Department of Oncology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Gaafar Ragab
- Rheumatology and Immunology Unit, Internal Medicine Department, Cairo University, Egypt
| | - Jerard Seghatchian
- International Consultancy in Modern Personalized Blood Components Therapies and Innovative DDR Strategies, London, England, UK
| | - Thierry Burnouf
- Graduate Institute of Biological Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Hu X, Zhu S, Yang X, Shan M, Wang J, Da X, Gui Y, Liu Y, Yang R, Xu G. Association Between Preoperative Lymphocyte-to-Monocyte Ratio and Occurrence of Postoperative Cognitive Dysfunction: A Prospective Cohort Study. J Inflamm Res 2024; 17:9527-9537. [PMID: 39600683 PMCID: PMC11590630 DOI: 10.2147/jir.s481106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose Postoperative cognitive dysfunction (POCD) is a common postoperative complication. Studies have reported that lymphocyte-to-monocyte ratio (LMR) was a predictor of many diseases associated with inflammation. However, further examination of the relationship between preoperative LMR and POCD is needed. We aimed to investigate the association between POCD and preoperative LMR levels to examine the potential of LMR to predict POCD. Patients and Methods This was a prospective cohort study that included patients who underwent elective major abdominal surgery at our hospital between January 2019 and January 2022. Multivariate logistic regression analysis was used to analyze the effects of preoperative LMR on POCD development. The optimal threshold of preoperative LMR for predicting POCD was determined by receiver operating characteristic (ROC) approach. A subgroup analysis was performed according to age, sex, type of surgery and hypertension. Results Of 964 patients, 362 (37.6%) developed POCD. The preoperative LMR level in the Non-POCD group was higher than that in the POCD group. According to the ROC curve, a cutoff value of 3.758 of the preoperative LMR level could be used to predict POCD occurrence and the area under the curve (AUC) was 0.747 (95% CI: 0.715-0.779, P < 0.001). The results of the subgroup analyses were consistent with the primary ones, and no heterogeneity was observed in the subgroup analyses (P for interaction > 0.05). Conclusion LMR was significantly associated with the occurrence of POCD after major abdominal surgery. Preoperative low LMR levels can be used to identify patients who may be at high risk of POCD.
Collapse
Affiliation(s)
- Xudong Hu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People’s Republic of China
| | - Sihui Zhu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People’s Republic of China
| | - Xiao Yang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People’s Republic of China
| | - Menglei Shan
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People’s Republic of China
| | - Jiawei Wang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People’s Republic of China
| | - Xin Da
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People’s Republic of China
| | - Yongkang Gui
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People’s Republic of China
| | - Yang Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People’s Republic of China
| | - Rui Yang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People’s Republic of China
| | - Guanghong Xu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
3
|
Pereira-Macedo J, Pias AD, Duarte-Gamas L, Myrcha P, Andrade JP, António N, Marreiros A, Rocha-Neves J. Predictive Factors Driving Positive Awake Test in Carotid Endarterectomy Using Machine Learning. Ann Vasc Surg 2024; 111:110-121. [PMID: 39580028 DOI: 10.1016/j.avsg.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Positive neurologic awake testing during the carotid cross-clamping may be present in around 8% of patients undergoing carotid endarterectomy (CEA). The present work aimed to assess the accuracy of an artificial intelligence (AI)-powered risk calculator in predicting intraoperative neurologic deficits (INDs). METHODS Data was collected from carotid interventions performed between January 2012 and January 2023 under regional anesthesia. Patients with IND were selected along with consecutive controls without IND in a case-control study design. A predictive model for IND was developed using machine learning, specifically Extreme Gradient Boosting (XGBoost) model, and its performance was assessed and compared to an existing predictive model. Shapley Additive exPlanations (SHAP) analysis was employed for the model interpretation. RESULTS Among 216 patients, 108 experienced IND during CEA. The AI-based predictive model achieved a robust area under the curve of 0.82, with an accuracy of 0.75, precision of 0.88, sensitivity of 0.59, and F1Score of 0.71. High body mass index (BMI) increased contralateral carotid stenosis, and a history of limb paresis or plegia were significant IND risk factors. Elevated preoperative platelet and hemoglobin levels were associated with reduced IND risk. CONCLUSIONS This AI model provides precise IND prediction in CEA, enabling tailored interventions for high-risk patients and ultimately improving surgical outcomes. BMI, contralateral stenosis, and selected blood parameters emerged as pivotal predictors, bringing significant advancements to decision-making in CEA procedures. Further validation in larger cohorts is essential for broader clinical implementation.
Collapse
Affiliation(s)
- Juliana Pereira-Macedo
- Department of General Surgery, Médio-Ave Local Health Unit, Santo Tirso, Portugal; CINTESIS@RISE, RISE-Health, Unit of Research, Porto, Portugal.
| | - Ana Daniela Pias
- Faculdade de Medicina e Ciências Biomédicas da Universidade do Algarve, Portugal, ABC, Algarve Biomedical Center, Faro, Portugal
| | - Luís Duarte-Gamas
- Department of Angiology and Vascular Surgery, Tâmega e Sousa Local Health Unit, Penafiel, Portugal
| | - Piotr Myrcha
- 1st Chair and Department of General and Vascular Surgery, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland; Department of General, Vascular and Oncological Surgery, Masovian Brodnowski Hospital, Warsaw, Poland
| | - José P Andrade
- CINTESIS@RISE, RISE-Health, Unit of Research, Porto, Portugal; Department of Biomedicine - Unit of Anatomy, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Nuno António
- NOVA Information Management School (NOVA IMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Marreiros
- Faculdade de Medicina e Ciências Biomédicas da Universidade do Algarve, Portugal, ABC, Algarve Biomedical Center, Faro, Portugal
| | - João Rocha-Neves
- CINTESIS@RISE, RISE-Health, Unit of Research, Porto, Portugal; Department of Biomedicine - Unit of Anatomy, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Beura SK, Panigrahi AR, Yadav P, Kulkarni PP, Lakhanpal V, Singh B, Singh SK. Role of Thrombosis in Neurodegenerative Diseases: An Intricate Mechanism of Neurovascular Complications. Mol Neurobiol 2024:10.1007/s12035-024-04589-4. [PMID: 39482419 DOI: 10.1007/s12035-024-04589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Thrombosis, the formation of blood clots in arteries or veins, poses a significant health risk by disrupting the blood flow. It can potentially lead to major cardiovascular complications such as acute myocardial infarction or ischemic stroke (arterial thrombosis) and deep vein thrombosis or pulmonary embolism (venous thrombosis). Nevertheless, over the course of several decades, researchers have observed an association between different cardiovascular events and neurodegenerative diseases, which progressively harm and impair parts of the nervous system, particularly the brain. Furthermore, thrombotic complications have been identified in numerous clinical instances of neurodegenerative diseases, particularly Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. Substantial research indicates that endothelial dysfunction, vascular inflammation, coagulation abnormalities, and platelet hyperactivation are commonly observed in these conditions, collectively contributing to an increased risk of thrombosis. Thrombosis can, in turn, contribute to the onset, pathogenesis, and severity of these neurological disorders. Hence, this concise review comprehensively explores the correlation between cardiovascular diseases and neurodegenerative diseases, elucidating the cellular and molecular mechanisms of thrombosis in these neurodegenerative diseases. Additionally, a detailed discussion is provided on the commonly employed antithrombotic medications in the context of these neuronal diseases.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | | | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Paresh P Kulkarni
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Bhupinder Singh
- Department of Cardiology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
5
|
Michailidou D, Giaglis S, Dale GL. The platelet-mitochondria nexus in autoimmune and musculoskeletal diseases. Clin Immunol 2024; 267:110350. [PMID: 39218194 DOI: 10.1016/j.clim.2024.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Platelets are crucial for thrombosis and hemostasis. Importantly, they contain mitochondria that are responsible for energy generation and therefore vital for platelet survival and activation. Activated platelets can release mitochondria that may be free or encapsulated in platelet extracellular vesicles (EVs). Extruded mitochondria are a well-known source of mitochondrial DNA, and mitochondrial antigens that can be targeted by autoantibodies forming immune complexes (IC). Interaction of IC with the platelet cell surface FcγRIIA receptor results in platelet activation and release of platelet granule components. In this review, we summarize how platelets and mitochondria may contribute to the pathogenesis of different autoimmune and musculoskeletal diseases. Targeting key drivers of mitochondrial extrusion may ultimately lead to urgently needed targeted pharmacological interventions for treating inflammation and thrombotic diathesis, and halting organ damage in some of these rheumatological conditions.
Collapse
Affiliation(s)
- Despina Michailidou
- Division of Rheumatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Division of Rheumatology, Oklahoma City VA Health Care System, Oklahoma City, OK, USA.
| | - Stavros Giaglis
- Laboratory for Experimental Rheumatology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - George L Dale
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Delila L, Nebie O, Le NTN, Timmerman K, Lee DY, Wu YW, Chou ML, Buée L, Chou SY, Blum D, Devos D, Burnouf T. Neuroprotective effects of intranasal extracellular vesicles from human platelet concentrates supernatants in traumatic brain injury and Parkinson's disease models. J Biomed Sci 2024; 31:87. [PMID: 39237980 PMCID: PMC11375990 DOI: 10.1186/s12929-024-01072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The burgeoning field of regenerative medicine has significantly advanced with recent findings on biotherapies using human platelet lysates (HPLs), derived from clinical-grade platelet concentrates (PCs), for treating brain disorders. These developments have opened new translational research avenues to explore the neuroprotective effects of platelet-extracellular vesicles (PEVs). Their potential in managing neurodegenerative conditions like traumatic brain injury (TBI) and Parkinson's disease (PD) warrants further exploration. We aimed here to characterize the composition of a PEV preparation isolated from platelet concentrate (PC) supernatant, and determine its neuroprotective potential and neurorestorative effects in cellular and animal models of TBI and PD. METHODS We isolated PEVs from the supernatant of clinical-grade PC collected from healthy blood donors utilizing high-speed centrifugation. PEVs were characterized by biophysical, biochemical, microscopic, and LC-MS/MS proteomics methods to unveil biological functions. Their functionality was assessed in vitro using SH-SY5Y neuronal cells, LUHMES dopaminergic neurons, and BV-2 microglial cells, and in vivo by intranasal administration in a controlled cortical impact (CCI)-TBI model using 8-weeks-old male C57/BL6 mice, and in a PD model induced by MPTP in 5-month-old male C57/BL6 mice. RESULTS PEVs varied in size from 50 to 350 nm, predominantly around 200 nm, with concentrations ranging between 1010 and 1011/mL. They expressed specific platelet membrane markers, exhibited a lipid bilayer by cryo-electron microscopy and, importantly, showed low expression of pro-coagulant phosphatidylserine. LC-MS/MS indicated a rich composition of trophic factors, including neurotrophins, anti-inflammatory agents, neurotransmitters, and antioxidants, unveiling their multifaceted biological functions. PEVs aided in the restoration of neuronal functions in SH-SY5Y cells and demonstrated remarkable neuroprotective capabilities against erastin-induced ferroptosis in dopaminergic neurons. In microglial cells, they promoted anti-inflammatory responses, particularly under inflammatory conditions. In vivo, intranasally delivered PEVs showed strong anti-inflammatory effects in a TBI mouse model and conserved tyrosine hydroxylase expression of dopaminergic neurons of the substantia nigra in a PD model, leading to improved motor function. CONCLUSIONS The potential of PEV-based therapies in neuroprotection opens new therapeutic avenues for neurodegenerative disorders. The study advocates for clinical trials to establish the efficacy of PEV-based biotherapies in neuroregenerative medicine.
Collapse
Affiliation(s)
- Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition, LiCEND COEN Center, Lille, France
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition, LiCEND COEN Center, Lille, France
- Alzheimer & Tauopathies, Labex DISTALZ, Lille, France
| | - Nhi Thao Ngoc Le
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kelly Timmerman
- Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition, LiCEND COEN Center, Lille, France
| | - Deng-Yao Lee
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition, LiCEND COEN Center, Lille, France
- Alzheimer & Tauopathies, Labex DISTALZ, Lille, France
- NeuroTMULille, Lille Neuroscience & Cognition, Lille, France
| | - Szu-Yi Chou
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, 11031, Taiwan
- NeuroTMULille, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, 11031, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - David Blum
- Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition, LiCEND COEN Center, Lille, France
- Alzheimer & Tauopathies, Labex DISTALZ, Lille, France
- NeuroTMULille, Lille Neuroscience & Cognition, Lille, France
| | - David Devos
- Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition, LiCEND COEN Center, Lille, France.
- NeuroTMULille, Lille Neuroscience & Cognition, Lille, France.
- Department of Medical Pharmacology, Expert Center of Parkinson's Disease and ALS, CHU-Lille, Lille, France.
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- NeuroTMULille, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- PhD Program in Graduate Institute of Mind Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Ghaffari MK, Rafati A, Karbalaei N, Haghani M, Nemati M, Sefati N, Namavar MR. The effect of intra-nasal co-treatment with insulin and growth factor-rich serum on behavioral defects, hippocampal oxidative-nitrosative stress, and histological changes induced by icv-STZ in a rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4833-4849. [PMID: 38157024 DOI: 10.1007/s00210-023-02899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Impaired insulin and growth factor functions are thought to drive many alterations in neurodegenerative diseases like dementia and seem to contribute to oxidative stress and inflammatory responses. Recent studies revealed that nasal growth factor therapy could induce neuronal and oligodendroglia protection in rodent brain damage induction models. Impairment of several growth factors signaling was reported in neurodegenerative diseases. So, in the present study, we examined the effects of intranasal co-treatment of insulin and a pool of growth factor-rich serum (GFRS) which separated from activated platelets on memory, and behavioral defects induced by intracerebroventricular streptozotocin (icv-STZ) rat model also investigated changes in the hippocampal oxidative-nitrosative state and histology. We found that icv-STZ injection (3 mg/kg bilaterally) impairs spatial learning and memory in Morris Water Maze, leads to anxiogenic-like behavior in the open field arena, and induces oxidative-nitrosative stress, neuroinflammation, and neuronal/oligodendroglia death in the hippocampus. GFRS (1µl/kg, each other day, 9 doses) and regular insulin (4 U/40 µl, daily, 18 doses) treatments improved learning, memory, and anxiogenic behaviors. The present study showed that co-treatment (GFRS + insulin with respective dose) has more robust protection against hippocampal oxidative-nitrosative stress, neuroinflammation, and neuronal/oligodendroglia survival in comparison with the single therapy. Memory and behavioral improvements in the co-treatment of insulin and GFRS could be attributed to their effects on neuronal/oligodendroglia survival and reduction of neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rafati
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Sefati
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Le NTN, Han CL, Delila L, Nebie O, Chien HT, Wu YW, Buée L, Blum D, Burnouf T. Proteomics of human platelet lysates and insight from animal studies on platelet protein diffusion to hippocampus upon intranasal administration. APL Bioeng 2024; 8:026111. [PMID: 38726021 PMCID: PMC11080963 DOI: 10.1063/5.0196553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Human platelet lysates (HPLs) from allogeneic platelet concentrates (PCs) are biomaterials, which are rich in various trophic factors, increasingly used in regenerative medicine and biotherapy. Understanding how preparation methods influence the HPL protein profile, biological function, and clinical outcomes is crucial. Our study sheds light on the proteomes and functionality of different HPLs, with the aim of advancing their scientifically grounded clinical applications. To achieve this, PCs suspended in plasma underwent three distinct processing methods, resulting in seven HPL types. We used three characterization techniques: label-free proteomics and tandem mass tag (TMT)-based quantitative proteomics, both before and after the immunodepletion of abundant plasma proteins. Bioinformatic tools assessed the proteome, and western blotting validated our quantitative proteomics data. Subsequent pre-clinical studies with fluorescent labeling and label-free proteomics were used as a proof of concept for brain diffusion. Our findings revealed 1441 proteins detected using the label-free method, 952 proteins from the TMT experiment before and after depletion, and 1114 proteins from the subsequent TMT experiment on depleted HPLs. Most detected proteins were cytoplasmic, playing key roles in catalysis, hemostasis, and immune responses. Notably, the processing methodologies significantly influenced HPL compositions, their canonical pathways, and, consequently, their functionality. Each HPL exhibited specific abundant proteins, providing valuable insight for tailored clinical applications. Immunoblotting results for selected proteins corroborated our quantitative proteomics data. The diffusion and differential effects to the hippocampus of a neuroprotective HPL administered intranasally to mice were demonstrated. This proteomics study advances our understanding of HPLs, suggesting ways to standardize and customize their production for better clinical efficacy in regenerative medicine and biotherapy. Proteomic analyses also offered objective evidence that HPPL, upon intranasal delivery, not only effectively diffuses to the hippocampus but also alters protein expression in mice, bolstering its potential as a treatment for memory impairments.
Collapse
Affiliation(s)
- Nhi Thao Ngoc Le
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei, Taiwan
| | | | - Hsin-Tung Chien
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei, Taiwan
| | | | - David Blum
- Authors to whom correspondence should be addressed: and . Tel.: +886 988 925 235
| | - Thierry Burnouf
- Authors to whom correspondence should be addressed: and . Tel.: +886 988 925 235
| |
Collapse
|
9
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
10
|
Sokolov AV, Lafta MS, Nordberg DOT, Jonsson J, Schiöth HB. Depression proteomic profiling in adolescents with transcriptome analyses in independent cohorts. Front Psychiatry 2024; 15:1372106. [PMID: 38812487 PMCID: PMC11133714 DOI: 10.3389/fpsyt.2024.1372106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Depression is a major global burden with unclear pathophysiology and poor treatment outcomes. Diagnosis of depression continues to rely primarily on behavioral rather than biological methods. Investigating tools that might aid in diagnosing and treating early-onset depression is essential for improving the prognosis of the disease course. While there is increasing evidence of possible biomarkers in adult depression, studies investigating this subject in adolescents are lacking. Methods In the current study, we analyzed protein levels in 461 adolescents assessed for depression using the Development and Well-Being Assessment (DAWBA) questionnaire as part of the domestic Psychiatric Health in Adolescent Study conducted in Uppsala, Sweden. We used the Proseek Multiplex Neuro Exploratory panel with Proximity Extension Assay technology provided by Olink Bioscience, followed by transcriptome analyses for the genes corresponding to the significant proteins, using four publicly available cohorts. Results We identified a total of seven proteins showing different levels between DAWBA risk groups at nominal significance, including RBKS, CRADD, ASGR1, HMOX2, PPP3R1, CD63, and PMVK. Transcriptomic analyses for these genes showed nominally significant replication of PPP3R1 in two of four cohorts including whole blood and prefrontal cortex, while ASGR1 and CD63 were replicated in only one cohort. Discussion Our study on adolescent depression revealed protein-level and transcriptomic differences, particularly in PPP3R1, pointing to the involvement of the calcineurin pathway in depression. Our findings regarding PPP3R1 also support the role of the prefrontal cortex in depression and reinforce the significance of investigating prefrontal cortex-related mechanisms in depression.
Collapse
Affiliation(s)
| | | | | | | | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Yubolphan R, Pratchayasakul W, Koonrungsesomboon N, Chattipakorn N, Chattipakorn SC. Potential links between platelets and amyloid-β in the pathogenesis of Alzheimer's disease: Evidence from in vitro, in vivo, and clinical studies. Exp Neurol 2024; 374:114683. [PMID: 38211684 DOI: 10.1016/j.expneurol.2024.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a prevalent comorbidity among patients with Alzheimer's disease (AD), present in up to 80% of cases with varying levels of severity. There is evidence to suggest that CAA might intensify cognitive deterioration in AD patients, thereby accelerating the development of AD pathology. As a source of amyloids, it has been postulated that platelets play a significant role in the pathogenesis of both AD and CAA. Although several studies have demonstrated that platelet activation plays an important role in the pathogenesis of AD and CAA, a clear understanding of the mechanisms involved in the three steps: platelet activation, platelet adhesion, and platelet aggregation in AD pathogenesis still remains elusive. Moreover, potential therapeutic targets in platelet-mediated AD pathogenesis have not been explicitly addressed. Therefore, the aim of this review is to collate and discuss the in vitro, in vivo, and clinical evidence related to platelet dysfunction, including associated activation, adhesion, and aggregation, with specific reference to amyloid-related AD pathogenesis. Potential therapeutic targets of platelet-mediated AD pathogenesis are also discussed. By enriching the understanding of the intricate relationship between platelet dysfunction and onset of AD, researchers may unveil new therapeutic targets or strategies to tackle this devastating neurodegeneration.
Collapse
Affiliation(s)
- Ruedeemars Yubolphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
12
|
Stratiievska A, Filippova O, Özpolat T, Byrne D, Bailey SL, Chauhan A, Mollica MY, Harris J, Esancy K, Chen J, Dhaka AK, Sniadecki NJ, López JA, Stolla M. Cold temperature induces a TRPM8-independent calcium release from the endoplasmic reticulum in human platelets. PLoS One 2024; 19:e0289395. [PMID: 38437228 PMCID: PMC10911599 DOI: 10.1371/journal.pone.0289395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
The detection of temperature by the human sensory system is life-preserving and highly evolutionarily conserved. Platelets are sensitive to temperature changes and are activated by a decrease in temperature, akin to sensory neurons. However, the molecular mechanism of this temperature-sensing ability is unknown. Yet, platelet activation by temperature could contribute to numerous clinical sequelae, most importantly to reduced quality of ex vivo-stored platelets for transfusion. In this multidisciplinary study, we present evidence for the expression of the temperature-sensitive ion channel transient receptor potential cation channel subfamily member 8 (TRPM8) in human platelets and precursor cells. We found the TRPM8 mRNA and protein in MEG-01 cells and platelets. Inhibition of TRPM8 prevented temperature-induced platelet activation and shape change. However, chemical agonists of TRPM8 did not seem to have an acute effect on platelets. When exposing platelets to below-normal body temperature, we detected a cytosolic calcium increase which was independent of TRPM8 but was completely dependent on the calcium release from the endoplasmic reticulum. Because of the high interindividual variability of TRPM8 expression, a population-based approach should be the focus of future studies. Our study suggests that the cold response of platelets is complex and TRPM8 appears to play a role in early temperature-induced activation of platelets, while other mechanisms likely contribute to later stages of temperature-mediated platelet response.
Collapse
Affiliation(s)
| | - Olga Filippova
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - Tahsin Özpolat
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - Daire Byrne
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - S Lawrence Bailey
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - Aastha Chauhan
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - Molly Y Mollica
- Bloodworks Research Institute, Seattle, WA, United States of America
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD, United States of America
| | - Jeff Harris
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - Kali Esancy
- Department of Biological Structure, University of Washington, Seattle, WA, United States of America
| | - Junmei Chen
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - Ajay K Dhaka
- Department of Biological Structure, University of Washington, Seattle, WA, United States of America
| | - Nathan J Sniadecki
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
- Department of Mechanical Engineering, Bioengineering, University of Washington, Seattle, WA, United States of America
| | - José A López
- Bloodworks Research Institute, Seattle, WA, United States of America
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, United States of America
| | - Moritz Stolla
- Bloodworks Research Institute, Seattle, WA, United States of America
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Mechanical Engineering, Bioengineering, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
13
|
González Brito R, Montenegro P, Méndez A, Shabgahi RE, Pasquarelli A, Borges R. Analytical Determination of Serotonin Exocytosis in Human Platelets with BDD-on-Quartz MEA Devices. BIOSENSORS 2024; 14:75. [PMID: 38391994 PMCID: PMC10886747 DOI: 10.3390/bios14020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Amperometry is arguably the most widely used technique for studying the exocytosis of biological amines. However, the scarcity of human tissues, particularly in the context of neurological diseases, poses a challenge for exocytosis research. Human platelets, which accumulate 90% of blood serotonin, release it through exocytosis. Nevertheless, single-cell amperometry with encapsulated carbon fibers is impractical due to the small size of platelets and the limited number of secretory granules on each platelet. The recent technological improvements in amperometric multi-electrode array (MEA) devices allow simultaneous recordings from several high-performance electrodes. In this paper, we present a comparison of three MEA boron-doped diamond (BDD) devices for studying serotonin exocytosis in human platelets: (i) the BDD-on-glass MEA, (ii) the BDD-on-silicon MEA, and (iii) the BDD on amorphous quartz MEA (BDD-on-quartz MEA). Transparent electrodes offer several advantages for observing living cells, and in the case of platelets, they control activation/aggregation. BDD-on-quartz offers the advantage over previous materials of combining excellent electrochemical properties with transparency for microscopic observation. These devices are opening exciting perspectives for clinical applications.
Collapse
Affiliation(s)
- Rosalía González Brito
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| | - Pablo Montenegro
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| | - Alicia Méndez
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| | - Ramtin E. Shabgahi
- Institute of Electron Devices and Circuits, Ulm University, 89069 Ulm, Germany; (R.E.S.); (A.P.)
| | - Alberto Pasquarelli
- Institute of Electron Devices and Circuits, Ulm University, 89069 Ulm, Germany; (R.E.S.); (A.P.)
| | - Ricardo Borges
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| |
Collapse
|
14
|
Solomon OD, Villarreal P, Domingo ND, Ochoa L, Vanegas D, Cardona SM, Cardona AE, Stephens R, Vargas G. Dynamic intravital imaging reveals reactive vessel-associated microglia play a protective role in cerebral malaria coagulopathy. Sci Rep 2023; 13:19526. [PMID: 37945689 PMCID: PMC10636186 DOI: 10.1038/s41598-023-43208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023] Open
Abstract
Vascular congestion and coagulopathy have been shown to play a role in human and experimental cerebral malaria (eCM), but little is known about the role of microglia, or microglia-vascular interactions and hypercoagulation during disease progression in this fatal infection. Recent studies show microglia bind to fibrinogen, a glycoprotein involved in thrombosis. An eCM model of Plasmodium chabaudi infection in mice deficient in the regulatory cytokine IL-10 manifests neuropathology, including hypercoagulation with extensive fibrin(ogen) deposition and neuroinflammation. Intravital microscopy and immunofluorescence are applied to elucidate the role of microglia in eCM. Results show microgliosis and coagulopathy occur early in disease at 3 dpi (day post-infection), and both are exacerbated as disease progresses to 7dpi. Vessel associated microglia increase significantly at 7 dpi, and the expression of the microglial chemoattractant CCL5 (RANTES) is increased versus uninfected and localized with fibrin(ogen) in vessels. PLX3397 microglia depletion resulted in rapid behavioral decline, severe hypothermia, and greater increase in vascular coagulopathy. This study suggests that microglia play a prominent role in controlling infection-initiated coagulopathy and supports a model in which microglia play a protective role in cerebral malaria by migrating to and patrolling the cerebral vasculature, potentially regulating degree of coagulation during systemic inflammation.
Collapse
Affiliation(s)
- Olivia D Solomon
- The Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Biomedical Engineering and Imaging Sciences Group, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Paula Villarreal
- The Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Biomedical Engineering and Imaging Sciences Group, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nadia D Domingo
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lorenzo Ochoa
- Biomedical Engineering and Imaging Sciences Group, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Sandra M Cardona
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Astrid E Cardona
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Robin Stephens
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Gracie Vargas
- Biomedical Engineering and Imaging Sciences Group, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
15
|
Awamura T, Nakasone ES, Gangcuangco LM, Subia NT, Bali AJ, Chow DC, Shikuma CM, Park J. Platelet and HIV Interactions and Their Contribution to Non-AIDS Comorbidities. Biomolecules 2023; 13:1608. [PMID: 38002289 PMCID: PMC10669125 DOI: 10.3390/biom13111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Platelets are anucleate cytoplasmic cell fragments that circulate in the blood, where they are involved in regulating hemostasis. Beyond their normal physiologic role, platelets have emerged as versatile effectors of immune response. During an infection, cell surface receptors enable platelets to recognize viruses, resulting in their activation. Activated platelets release biologically active molecules that further trigger host immune responses to protect the body against infection. Their impact on the immune response is also associated with the recruitment of circulating leukocytes to the site of infection. They can also aggregate with leukocytes, including lymphocytes, monocytes, and neutrophils, to immobilize pathogens and prevent viral dissemination. Despite their host protective role, platelets have also been shown to be associated with various pathophysiological processes. In this review, we will summarize platelet and HIV interactions during infection. We will also highlight and discuss platelet and platelet-derived mediators, how they interact with immune cells, and the multifaceted responsibilities of platelets in HIV infection. Furthermore, we will give an overview of non-AIDS comorbidities linked to platelet dysfunction and the impact of antiretroviral therapy on platelet function.
Collapse
Affiliation(s)
- Thomas Awamura
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Elizabeth S. Nakasone
- University of Hawai‘i Cancer Center, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
- Department of Medicine, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
| | - Louie Mar Gangcuangco
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Natalie T. Subia
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Aeron-Justin Bali
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Dominic C. Chow
- Department of Medicine, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Cecilia M. Shikuma
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| |
Collapse
|
16
|
Ding L, Hou M, Li H, Zhou L, Cao Y. Photosensitive Peptide Enabling Molecular Recognition Tandem Covalent Biosensing for Evaluating and Preventing Venous Thromboembolism in Dravet Syndrome. Anal Chem 2023; 95:15950-15955. [PMID: 37856656 DOI: 10.1021/acs.analchem.3c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Venous thromboembolism (VTE) is a complication of Dravet syndrome, accounting for many unexpected deaths. To control VTE more tightly and to prevent such tragedies, a reliable and low-cost risk evaluation assay is urgently needed, so that the daily routine of VTE risk evaluation can be established. In this work, we have developed such an assay combining the photocatalytic activity of Bengal red to trigger the target-specific self-splicing of a peptide probe and subsequent cross-linking with P-selectin. Following this protocol, a robust and one-step detection can be achieved, without using any costly enzymes, antibodies, or nanomaterials, but the same level of sensitivity and robustness can be attained. Specifically, the effect of epilepsy on elevating platelet P-selectin can be observed by using the proposed assay. This may in the near future promise a new method for evaluating the side effects of P-selectin through relatively noninvasive peripheral blood sampling.
Collapse
Affiliation(s)
| | - Meihui Hou
- School of Biological Science and Technology, △Department of Chemistry and Chemical EngineeringUniversity of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Hao Li
- School of Biological Science and Technology, △Department of Chemistry and Chemical EngineeringUniversity of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Lei Zhou
- School of Biological Science and Technology, △Department of Chemistry and Chemical EngineeringUniversity of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444. China
| |
Collapse
|
17
|
Taneva SG, Todinova S, Andreeva T. Morphometric and Nanomechanical Screening of Peripheral Blood Cells with Atomic Force Microscopy for Label-Free Assessment of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:14296. [PMID: 37762599 PMCID: PMC10531602 DOI: 10.3390/ijms241814296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.
Collapse
Affiliation(s)
- Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
- Faculty of Life Sciences, Reutlingen University, Alteburgstraße 150, D-72762 Reutlingen, Germany
| |
Collapse
|
18
|
Rust C, Malan-Muller S, van den Heuvel LL, Tonge D, Seedat S, Pretorius E, Hemmings SMJ. Platelets bridging the gap between gut dysbiosis and neuroinflammation in stress-linked disorders: A narrative review. J Neuroimmunol 2023; 382:578155. [PMID: 37523892 DOI: 10.1016/j.jneuroim.2023.578155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
In this narrative review, we examine the association between gut dysbiosis, neuroinflammation, and stress-linked disorders, including depression, anxiety, and post-traumatic stress disorder (PTSD), and investigate whether tryptophan (TRP) metabolism and platelets play a role in this association. The mechanisms underlying the aetiology of stress-linked disorders are complex and not yet completely understood. However, a potential link between chronic inflammation and these disorders may potentially be found in TRP metabolism and platelets. By critically analysing existing literature on platelets, the gut microbiome, and stress-linked disorders, we hope to elicit the role of platelets in mediating the effects on serotonin (5-HT) levels and neuroinflammation. We have included studies specifically investigating platelets and TRP metabolism in relation to inflammation, neuroinflammation and neuropsychiatric disorders. Alteration in microbial composition due to stress could contribute to increased intestinal permeability, facilitating the translocation of microbial products, and triggering the release of pro-inflammatory cytokines. This causes platelets to become hyperactive and secrete 5-HT into the plasma. Increased levels of pro-inflammatory cytokines may also lead to increased permeability of the blood-brain barrier (BBB), allowing inflammatory mediators entry into the brain, affecting the balance of TRP metabolism products, such as 5-HT, kynurenic acid (KYNA), and quinolinic acid (QUIN). These alterations may contribute to neuroinflammation and possible neurological damage. Furthermore, platelets can cross the compromised BBB and interact with astrocytes and neurons, leading to the secretion of 5-HT and pro-inflammatory factors, exacerbating inflammatory conditions in the brain. The mechanisms underlying neuroinflammation resulting from peripheral inflammation are still unclear, but the connection between the brain and gut through the bloodstream could be significant. Identifying peripheral biomarkers and mechanisms in the plasma that reflect neuroinflammation may be important. This review serves as a foundation for further research on the association between the gut microbiome, blood microbiome, and neuropsychiatric disorders. The integration of these findings with protein and metabolite markers in the blood may expand our understanding of the subject.
Collapse
Affiliation(s)
- Carlien Rust
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa.
| | - Stefanie Malan-Muller
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Neurochemistry Research Institute UCM, Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Daniel Tonge
- School of Life Sciences, Faculty of Natural Sciences, Keele University, ST5 5BG Newcastle, England, UK
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology Biosciences Building, University of Liverpool, Liverpool, United Kingdom.
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| |
Collapse
|
19
|
Chou ML, Babamale AO, Walker TL, Cognasse F, Blum D, Burnouf T. Blood-brain crosstalk: the roles of neutrophils, platelets, and neutrophil extracellular traps in neuropathologies. Trends Neurosci 2023; 46:764-779. [PMID: 37500363 DOI: 10.1016/j.tins.2023.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Systemic inflammation, neurovascular dysfunction, and coagulopathy often occur concurrently in neuropathologies. Neutrophils and platelets have crucial synergistic roles in thromboinflammation and are increasingly suspected as effector cells contributing to the pathogenesis of neuroinflammatory diseases. In this review, we summarize the roles of platelet-neutrophil interactions in triggering complex pathophysiological events affecting the brain that may lead to the disruption of brain barriers, infiltration of toxic factors into the parenchyma, and amplification of neuroinflammation through the formation of neutrophil extracellular traps (NETs). We highlight the clinical significance of thromboinflammation in neurological disorders and examine the contributions of damage-associated molecular patterns (DAMPs) derived from platelets and neutrophils. These DAMPs originate from both infectious and non-infectious risk factors and contribute to the activation of inflammasomes during brain disorders. Finally, we identify knowledge gaps in the molecular mechanisms underlying neurodegenerative disease pathogenesis and emphasize the potential of interventions targeting platelets and neutrophils to treat neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; INSERM UMRS 938, Centre de Recherche Saint-Antoine, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris 75012, France
| | - Abdulkareem Olarewaju Babamale
- Taiwan International Graduate Program in Molecular Medicine, Academia Sinica, Taipei 11266, Taiwan; Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Tara L Walker
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 42023 Saint-Étienne, France; University Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023 Saint-Etienne, France
| | - David Blum
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, F-59000 Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, Lille F-59000, France; NeuroTMULille International Laboratory, University of Lille, F-59000 Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; NeuroTMULille International Laboratory, Taipei Medical University, Taipei 10031, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei 11031, Taiwan; Brain and Consciousness Research Centre, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| |
Collapse
|
20
|
Ma Y, Jiang Q, Yang B, Hu X, Shen G, Shen W, Xu J. Platelet mitochondria, a potent immune mediator in neurological diseases. Front Physiol 2023; 14:1210509. [PMID: 37719457 PMCID: PMC10502307 DOI: 10.3389/fphys.2023.1210509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Dysfunction of the immune response is regarded as a prominent feature of neurological diseases, including neurodegenerative diseases, malignant tumors, acute neurotraumatic insult, and cerebral ischemic/hemorrhagic diseases. Platelets play a fundamental role in normal hemostasis and thrombosis. Beyond those normal functions, platelets are hyperactivated and contribute crucially to inflammation and immune responses in the central nervous system (CNS). Mitochondria are pivotal organelles in platelets and are responsible for generating most of the ATP that is used for platelet activation and aggregation (clumping). Notably, platelet mitochondria show marked morphological and functional alterations under heightened inflammatory/oxidative stimulation. Mitochondrial dysfunction not only leads to platelet damage and apoptosis but also further aggravates immune responses. Improving mitochondrial function is hopefully an effective strategy for treating neurological diseases. In this review, the authors discuss the immunomodulatory roles of platelet-derived mitochondria (PLT-mitos) in neurological diseases and summarize the neuroprotective effects of platelet mitochondria transplantation.
Collapse
Affiliation(s)
- Yan Ma
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Yang
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Hu
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Shen
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
| | - Wei Shen
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Xu
- Wuhan Blood Center, Wuhan, Hubei, China
| |
Collapse
|
21
|
Stratiievska A, Filippova O, Özpolat T, Byrne D, Bailey SL, Mollica MY, Harris J, Esancy K, Chen J, Dhaka AK, Sniadecki NJ, López JA, Stolla M. Cold temperature induces a TRPM8-independent calcium release from the endoplasmic reticulum in human platelets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549670. [PMID: 37502986 PMCID: PMC10370076 DOI: 10.1101/2023.07.19.549670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Platelets are sensitive to temperature changes and akin to sensory neurons, are activated by a decrease in temperature. However, the molecular mechanism of this temperature-sensing ability is unknown. Yet, platelet activation by temperature could contribute to numerous clinical sequelae, most importantly to reduced quality of ex vivo-stored platelets for transfusion. In this interdisciplinary study, we present evidence for the expression of the temperature-sensitive ion channel transient receptor potential cation channel subfamily member 8 (TRPM8) in human platelets and precursor cells. We found the TRPM8 mRNA and protein in MEG-01 cells and platelets. Inhibition of TRPM8 prevented temperature-induced platelet activation and shape change. However, chemical agonists of TRPM8 did not seem to have an acute effect on platelets. When exposing platelets to below-normal body temperature, we detected a cytosolic calcium increase which was independent of TRPM8 but was completely dependent on the calcium release from the endoplasmic reticulum. Because of the high interindividual variability of TRPM8 expression, a population-based approach should be the focus of future studies. Our study suggests that the cold response of platelets is complex and TRPM8 appears to play a role in early temperature-induced activation of platelets, while other mechanisms likely contribute to later stages of temperature-mediated platelet response.
Collapse
Affiliation(s)
| | | | | | - Daire Byrne
- Bloodworks Research Institute, Seattle, WA, USA
| | | | - Molly Y. Mollica
- Bloodworks Research Institute, Seattle, WA, USA
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Jeff Harris
- Bloodworks Research Institute, Seattle, WA, USA
| | - Kali Esancy
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Junmei Chen
- Bloodworks Research Institute, Seattle, WA, USA
| | - Ajay K. Dhaka
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Nathan J. Sniadecki
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Department of Mechanical Engineering, Bioengineering, University of Washington, Seattle, WA, USA
| | - José A López
- Bloodworks Research Institute, Seattle, WA, USA
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Moritz Stolla
- Bloodworks Research Institute, Seattle, WA, USA
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Wang L, Wang D, Ye Z, Xu J. Engineering Extracellular Vesicles as Delivery Systems in Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300552. [PMID: 37080941 PMCID: PMC10265081 DOI: 10.1002/advs.202300552] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Extracellular vesicles (EVs) are transport vesicles secreted by living cells and released into the extracellular environment. Recent studies have shown that EVs serve as "messengers" in intercellular and inter-organismal communication, in both normal and pathological processes. EVs, as natural nanocarriers, can deliver bioactivators in therapy with their endogenous transport properties. This review article describes the engineering EVs of sources, isolation method, cargo loading, boosting approach, and adjustable targeting of EVs. Furthermore, the review summarizes the recent progress made in EV-based delivery systems applications, including cancer, cardiovascular diseases, liver, kidney, nervous system diseases, and COVID-19 and emphasizes the obstacles and challenges of EV-based therapies and possible strategies.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Di Wang
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Jianbin Xu
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| |
Collapse
|
23
|
Fišar Z, Hroudová J, Zvěřová M, Jirák R, Raboch J, Kitzlerová E. Age-Dependent Alterations in Platelet Mitochondrial Respiration. Biomedicines 2023; 11:1564. [PMID: 37371659 PMCID: PMC10295145 DOI: 10.3390/biomedicines11061564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial dysfunction is an important cellular hallmark of aging and neurodegeneration. Platelets are a useful model to study the systemic manifestations of mitochondrial dysfunction. To evaluate the age dependence of mitochondrial parameters, citrate synthase activity, respiratory chain complex activity, and oxygen consumption kinetics were assessed. The effect of cognitive impairment was examined by comparing the age dependence of mitochondrial parameters in healthy individuals and those with neuropsychiatric disease. The study found a significant negative slope of age-dependence for both the activity of individual mitochondrial enzymes (citrate synthase and complex II) and parameters of mitochondrial respiration in intact platelets (routine respiration, maximum capacity of electron transport system, and respiratory rate after complex I inhibition). However, there was no significant difference in the age-related changes of mitochondrial parameters between individuals with and without cognitive impairment. These findings highlight the potential of measuring mitochondrial respiration in intact platelets as a means to assess age-related mitochondrial dysfunction. The results indicate that drugs and interventions targeting mitochondrial respiration may have the potential to slow down or eliminate certain aging and neurodegenerative processes. Mitochondrial respiration in platelets holds promise as a biomarker of aging, irrespective of the degree of cognitive impairment.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic; (J.H.); (M.Z.); (R.J.); (J.R.); (E.K.)
| | | | | | | | | | | |
Collapse
|
24
|
Yu Y, Lian Z. Update on transfusion-related acute lung injury: an overview of its pathogenesis and management. Front Immunol 2023; 14:1175387. [PMID: 37251400 PMCID: PMC10213666 DOI: 10.3389/fimmu.2023.1175387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Transfusion-related acute lung injury (TRALI) is a severe adverse event and a leading cause of transfusion-associated death. Its poor associated prognosis is due, in large part, to the current dearth of effective therapeutic strategies. Hence, an urgent need exists for effective management strategies for the prevention and treatment of associated lung edema. Recently, various preclinical and clinical studies have advanced the current knowledge regarding TRALI pathogenesis. In fact, the application of this knowledge to patient management has successfully decreased TRALI-associated morbidity. This article reviews the most relevant data and recent progress related to TRALI pathogenesis. Based on the existing two-hit theory, a novel three-step pathogenesis model composed of a priming step, pulmonary reaction, and effector phase is postulated to explain the process of TRALI. TRALI pathogenesis stage-specific management strategies based on clinical studies and preclinical models are summarized with an explication of their models of prevention and experimental drugs. The primary aim of this review is to provide useful insights regarding the underlying pathogenesis of TRALI to inform the development of preventive or therapeutic alternatives.
Collapse
Affiliation(s)
| | - Zhengqiu Lian
- Department of Blood Transfusion, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
25
|
Chen H, Lin C, Xue HM, Chen C, Yang M. The heat shock protein DNAJB2 as a novel biomarker for essential thrombocythemia diagnosis associated with immune infiltration. Thromb Res 2023; 223:131-138. [PMID: 36746103 DOI: 10.1016/j.thromres.2023.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Essential thrombocythemia (ET) is a rare myeloproliferative malignancy which may lead to severe thrombohemorrhagic complications. The diagnosis of ET is primarily based on bone marrow morphology and exclusion of other possibilities of myeloproliferative neoplastic diseases; the lack of gene biomarkers fails to provide a prompt diagnosis of ET. Therefore, this study was designed to identify biomarkers for early ET diagnosis, especially that associated with immune cell infiltration, by using the Gene Expression Omnibus (GEO) database and machine-learning algorithms. METHODS Two publicly available gene expression profiles (GSE9827 and GSE123732) from the GEO database were used to identify the differentially expressed genes (DEGs) between bone marrow samples of ET patients and healthy individuals, and functional enrichment analyses were conducted. The least absolute shrinkage and selection operator (LASSO) regression model and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine-learning algorithm were performed to select the candidate gene biomarker. The expression level and diagnostic effectiveness of the identified gene biomarker were further validated using GSE567 and GSE2006 datasets. The involvement of infiltrating immune cells and their correlations with the gene biomarker were examined using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. RESULTS There were 105 DEGs identified between ET and healthy control samples. Disease Ontology (DO) analysis showed that the diseases enriched by those DEGs were mainly human cancers, neurological diseases and inflammation while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that pathways related to immune responses were primarily involved. The heat shock protein, DNAJB2, was identified as the potential biomarker for ET diagnosis with high effectiveness, with the area under the receiver operating characteristic (ROC) curve (AUC) equals to 0.905 in the validation cohort. The expression level of DNAJB2 in ET samples was indeed significantly higher than that in healthy control ones. The immune cell infiltration analysis showed that DNAJB2 was positively correlated with CD8+ T cells in ET with the proportion significantly higher than that in normal controls. CONCLUSION The present study identified DNAJB2 as a novel diagnostic biomarker for ET with high effectiveness based on ET and normal samples from the GEO database, which provides new insights into predicting ET with accuracy and promptness in clinical practice.
Collapse
Affiliation(s)
- Hui Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chao Lin
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hong-Man Xue
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Mo Yang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
26
|
Delila L, Nebie O, Le NTN, Barro L, Chou M, Wu Y, Watanabe N, Takahara M, Buée L, Blum D, Devos D, Burnouf T. Neuroprotective activity of a virus-safe nanofiltered human platelet lysate depleted of extracellular vesicles in Parkinson's disease and traumatic brain injury models. Bioeng Transl Med 2023; 8:e10360. [PMID: 36684076 PMCID: PMC9842020 DOI: 10.1002/btm2.10360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 01/25/2023] Open
Abstract
Brain administration of human platelet lysates (HPL) is a potential emerging biotherapy of neurodegenerative and traumatic diseases of the central nervous system. HPLs being prepared from pooled platelet concentrates, thereby increasing viral risks, manufacturing processes should incorporate robust virus-reduction treatments. We evaluated a 19 ± 2-nm virus removal nanofiltration process using hydrophilic regenerated cellulose hollow fibers on the properties of a neuroprotective heat-treated HPL (HPPL). Spiking experiments demonstrated >5.30 log removal of 20-22-nm non-enveloped minute virus of mice-mock particles using an immuno-quantitative polymerase chain reaction assay. The nanofiltered HPPL (NHPPL) contained a range of neurotrophic factors like HPPL. There was >2 log removal of extracellular vesicles (EVs), associated with decreased expression of pro-thrombogenic phosphatidylserine and procoagulant activity. LC-MS/MS proteomics showed that ca. 80% of HPPL proteins, including neurotrophins, cytokines, and antioxidants, were still found in NHPPL, whereas proteins associated with some infections and cancer-associated pathways, pro-coagulation and EVs, were removed. NHPPL maintained intact neuroprotective activity in Lund human mesencephalic dopaminergic neuron model of Parkinson's disease (PD), stimulated the differentiation of SH-SY5Y neuronal cells and showed preserved anti-inflammatory function upon intranasal administration in a mouse model of traumatic brain injury (TBI). Therefore, nanofiltration of HPL is feasible, lowers the viral, prothrombotic and procoagulant risks, and preserves the neuroprotective and anti-inflammatory properties in neuronal pre-clinical models of PD and TBI.
Collapse
Affiliation(s)
- Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
- Univ. Lille, Inserm, CHU‐Lille, U1172, Lille Neuroscience & CognitionLilleFrance
- Alzheimer & TauopathiesLabex DISTALZLilleFrance
| | - Nhi Thao Ngoc Le
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
| | - Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
- Present address:
National Center of Blood TransfusionOuagadougouBurkina Faso
| | - Ming‐Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
- Present address:
Institute of Clinical Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yu‐Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
| | | | | | - Luc Buée
- Univ. Lille, Inserm, CHU‐Lille, U1172, Lille Neuroscience & CognitionLilleFrance
- Alzheimer & TauopathiesLabex DISTALZLilleFrance
- NeuroTMULilleLille Neuroscience & CognitionLilleFrance
| | - David Blum
- Univ. Lille, Inserm, CHU‐Lille, U1172, Lille Neuroscience & CognitionLilleFrance
- Alzheimer & TauopathiesLabex DISTALZLilleFrance
- NeuroTMULilleLille Neuroscience & CognitionLilleFrance
| | - David Devos
- Univ. Lille, Inserm, CHU‐Lille, U1172, Lille Neuroscience & CognitionLilleFrance
- NeuroTMULilleLille Neuroscience & CognitionLilleFrance
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
- International PhD Program in Biomedical Engineering, College of Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
- NeuroTMULilleTaipei Medical UniversityTaipeiTaiwan
- International PhD Program in Cell Therapy and Regeneration MedicineTaipei Medical UniversityTaipeiTaiwan
- PhD Program in Graduate Institute of Mind Brain and Consciousness, College of Humanities and Social SciencesTaipei Medical UniversityTaipeiTaiwan
- Neuroscience Research CenterTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
27
|
Nebie O, Buée L, Blum D, Burnouf T. Can the administration of platelet lysates to the brain help treat neurological disorders? Cell Mol Life Sci 2022; 79:379. [PMID: 35750991 PMCID: PMC9243829 DOI: 10.1007/s00018-022-04397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Neurodegenerative disorders of the central nervous system (CNS) and brain traumatic insults are characterized by complex overlapping pathophysiological alterations encompassing neuroinflammation, alterations of synaptic functions, oxidative stress, and progressive neurodegeneration that eventually lead to irreversible motor and cognitive dysfunctions. A single pharmacological approach is unlikely to provide a complementary set of molecular therapeutic actions suitable to resolve these complex pathologies. Recent preclinical data are providing evidence-based scientific rationales to support biotherapies based on administering neurotrophic factors and extracellular vesicles present in the lysates of human platelets collected from healthy donors to the brain. Here, we present the most recent findings on the composition of the platelet proteome that can activate complementary signaling pathways in vivo to trigger neuroprotection, synapse protection, anti-inflammation, antioxidation, and neurorestoration. We also report experimental data where the administration of human platelet lysates (HPL) was safe and resulted in beneficial neuroprotective effects in established rodent models of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, traumatic brain injury, and stroke. Platelet-based biotherapies, prepared from collected platelet concentrates (PC), are emerging as a novel pragmatic and accessible translational therapeutic strategy for treating neurological diseases. Based on this assumption, we further elaborated on various clinical, manufacturing, and regulatory issues that need to be addressed to ensure the ethical supply, quality, and safety of HPL preparations for treating neurodegenerative and traumatic pathologies of the CNS. HPL made from PC may become a unique approach for scientifically based treatments of neurological disorders readily accessible in low-, middle-, and high-income countries.
Collapse
Affiliation(s)
- Ouada Nebie
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France.
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France.
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thierry Burnouf
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Brain and Consciousness Research Centre, Taipei Medical University Shuang-Ho Hospital, New Taipei City, 23561, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|