1
|
Lau KM, To KF. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer. Int J Mol Sci 2016; 17:E1434. [PMID: 27589731 PMCID: PMC5037713 DOI: 10.3390/ijms17091434] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand binding transactivate target genes at consensus genomic sites via interactions with various transcriptional co-regulators to mold estrogenic signaling. With animal models, Noble revealed estrogen dependencies of PCa, providing insight into potential uses of antiestrogens in the treatment. Subsequently, various clinical trials were conducted and molecular and functional consequences of antiestrogen treatment in PCa were delineated. Besides, estrogens can also trigger rapid non-genomic signaling responses initiated at the plasma membrane, at least partially via an orphan G-protein-coupled receptor GPR30. Activation of GPR30 significantly inhibited in vitro and in vivo PCa cell growth and the underlying mechanism was elucidated. Currently, molecular networks of estrogenic and antiestrogenic signaling via ERα, ERβ and GPR30 in PCa have not been fully deciphered. This crucial information could be beneficial to further developments of effective estrogen- and antiestrogen-based therapy for PCa patients.
Collapse
Affiliation(s)
- Kin-Mang Lau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in Southern China, and Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in Southern China, and Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Gust M, Fortier M, Garric J, Fournier M, Gagné F. Effects of short-term exposure to environmentally relevant concentrations of different pharmaceutical mixtures on the immune response of the pond snail Lymnaea stagnalis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 445-446:210-218. [PMID: 23333517 DOI: 10.1016/j.scitotenv.2012.12.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/13/2012] [Accepted: 12/13/2012] [Indexed: 05/28/2023]
Abstract
Pharmaceuticals are pollutants of potential concern in the aquatic environment where they are commonly introduced as complex mixtures via municipal effluents. Many reports underline the effects of pharmaceuticals on immune system of non target species. Four drug mixtures were tested, and regrouped pharmaceuticals by main therapeutic use: psychiatric (venlafaxine, carbamazepine, diazepam), antibiotic (ciprofloxacine, erythromycin, novobiocin, oxytetracycline, sulfamethoxazole, trimethoprim), hypolipemic (atorvastatin, gemfibrozil, benzafibrate) and antihypertensive (atenolol, furosemide, hydrochlorothiazide, lisinopril). Their effects were then compared with a treated municipal effluent known for its contamination, and its effects on the immune response of Lymnaea stagnalis. Adult L. stagnalis were exposed for 3 days to an environmentally relevant concentration of the four mixtures individually and as a global mixture. Effects on immunocompetence (hemocyte viability and count, ROS and thiol levels, phagocytosis) and gene expression were related to the immune response and oxidative stress: catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), Selenium-dependent glutathione peroxidase (SeGPx), two isoforms of the nitric oxide synthetase gene (NOS1 and NOS2), molluscan defensive molecule (MDM), Toll-like receptor 4 (TLR4), allograft inflammatory factor-1 (AIF) and heat-shock protein 70 (HSP70). Immunocompetence was differently affected by the therapeutic class mixtures compared to the global mixture, which increased hemocyte count, ROS levels and phagocytosis, and decreased intracellular thiol levels. TLR4 gene expression was the most strongly increased, especially by psychiatric mixture (19-fold), while AIF-1, GR and CAT genes were downregulated. A decision tree analysis revealed that the immunotoxic responses caused by the municipal effluent were comparable to those obtained with the global pharmaceutical mixture, and the latter shared similarity with the antibiotic mixture. This suggests that pharmaceutical mixtures in municipal effluents represent a risk for gastropods at the immunocompetence levels and the antibiotic group could represent a model therapeutic class for municipal effluent toxicity studies in L. stagnalis.
Collapse
Affiliation(s)
- M Gust
- IRSTEA, UR MAEP, Laboratoire d'écotoxicologie, 3 bis quai Chauveau, 69009 Lyon, France.
| | | | | | | | | |
Collapse
|
3
|
Abstract
Lung cancer is the leading cause of cancer mortality in both women and men worldwide but gender differences exist in their clinical and biological manifestations. In particular, among life time non-smoker, female are far more likely to develop lung carcinoma than male. Recent studies demonstrated that estrogens are synthesized in situ in both male and female lung cancers through aromatase, suggesting that sex steroid may contribute to the pathogenesis and development of lung carcinoma. In addition, human lung carcinomas have been recently demonstrated to be frequently associated with expression of estrogen receptors in both male and female patients and a lower expression of aromatase was reported to be associated with better prognosis. Preclinical studies further demonstrated that aromatase inhibitor (AI) suppressed the lung tumor growth both in vitro and in vivo. These findings all suggest a potential role of intratumoral aromatase in biological behavior of non-small cell lung cancer (NSCLC), the most common form of human lung malignancy. Therefore, AIs may become viable therapeutic options for disease management in NSCLC patients but further studies are definitely required to obtain a better understanding of the potential roles of intratumoral aromatase expression as a predictive biomarker for clinical outcome in these NSCLC patients.
Collapse
Affiliation(s)
- Mohit K Verma
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seriyo-machi, Aoba-ku, Sendai 980-8575, Miyagi-ken, Japan
| | | | | |
Collapse
|
4
|
Gomes MG, Silva CMD, Ribeiro AFC, Ocarino NM, Moro L, Vasconcelos AC, Serakides R. [Apoptosis, proliferation and spleen histomorphometry of adult female rats with thyroid and ovarian hypofunction]. ACTA ACUST UNITED AC 2008; 52:1031-8. [PMID: 18820815 DOI: 10.1590/s0004-27302008000600015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/18/2008] [Indexed: 11/22/2022]
Abstract
Apoptosis, proliferation and histomorphometry of spleen were investigated in ovariectomized and non-ovariectomized adult Wistar rats maintained in hypothyroidism induced by daily administration of propylthiouracil (PTU) during 120 days. Two groups ovariectomized euthyroid and non-ovariectomized euthyroid were used as controls. Plasma was collected for free T4 dosage and the spleen for histomorphometry analysis, apoptosis index and the immunohistochemistry expression of caspase 3 and CDC47. Values of free T4 were lower in rats treated with PTU (p<0.05). In the hypothyroid groups there was some decrease in the spleen weight as well as the number and size of lymphoid follicles and there was some increase in the apoptotic index and the caspase 3 expression (p<0.05). However, the increase in the apoptosis index and the expression of caspase 3 in ovariectomized hypothyroid rats spleen was less accentuated than non-ovariectomized hypothyroid ones (p<0.05). The ovariectomized euthyroid group presented white pulp hyperplasia in comparison to the non-ovariectomized euthyroid group. There was no difference in the CDC47 expression between groups. It was concluded that the thyroid and ovarian hypofunction have distinct effects on the spleen and that in the hypothyroidism-hypogonadism association, the increase in the apoptosis index and in the expression of splenic caspase 3 is not as much as in isolated hypothyroidism.
Collapse
Affiliation(s)
- Mardelene G Gomes
- Setor de Patologia do Departamento de Clínica e Cirurgia Veterinárias da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | | | | | |
Collapse
|
5
|
Liu D, Iruthayanathan M, Homan LL, Wang Y, Yang L, Wang Y, Dillon JS. Dehydroepiandrosterone stimulates endothelial proliferation and angiogenesis through extracellular signal-regulated kinase 1/2-mediated mechanisms. Endocrinology 2008; 149:889-98. [PMID: 18079198 PMCID: PMC2275364 DOI: 10.1210/en.2007-1125] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dehydroepiandrosterone (DHEA) activates a plasma membrane receptor on vascular endothelial cells and phosphorylates ERK 1/2. We hypothesize that ERK1/2-dependent vascular endothelial proliferation underlies part of the beneficial vascular effect of DHEA. DHEA (0.1-10 nm) activated ERK1/2 in bovine aortic endothelial cells (BAECs) by 15 min, causing nuclear translocation of phosphorylated ERK1/2 and phosphorylation of nuclear p90 ribosomal S6 kinase. ERK1/2 phosphorylation was dependent on plasma membrane-initiated activation of Gi/o proteins and the upstream MAPK kinase because the effect was seen with albumin-conjugated DHEA and was blocked by pertussis toxin or PD098059. A 15-min incubation of BAECs with 1 nm DHEA (or albumin-conjugated DHEA) increased endothelial proliferation by 30% at 24 h. This effect was not altered by inhibition of estrogen or androgen receptors or nitric oxide production. There was a similar effect of DHEA to increase endothelial migration. DHEA also increased the formation of primitive capillary tubes of BAECs in vitro in solubilized basement membrane. These rapid DHEA-induced effects were reversed by the inhibition of either Gi/o-proteins or ERK1/2. Additionally, DHEA enhanced angiogenesis in vivo in a chick embryo chorioallantoic membrane assay. These findings indicate that exposure to DHEA, at concentrations found in human blood, causes vascular endothelial proliferation by a plasma membrane-initiated activity that is Gi/o and ERK1/2 dependent. These data, along with previous findings, define an important vascular endothelial cell signaling pathway that is activated by DHEA and suggest that this steroid may play a role in vascular function.
Collapse
Affiliation(s)
- Dongmin Liu
- Division of Endocrinology, Veterans Affairs Medical Center, University of Iowa,Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Malorni W, Campesi I, Straface E, Vella S, Franconi F. Redox features of the cell: a gender perspective. Antioxid Redox Signal 2007; 9:1779-801. [PMID: 17822369 DOI: 10.1089/ars.2007.1596] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse subcellular activities, including cell proliferation,differentiation and, in some instances, cell injury and death. The implications of reactive species inhuman pathology have also been studied in detail. However, although the role of free radicals in the pathogenesis of human diseases has been extensively analyzed in different systems (i.e., in vitro, ex vivo, and in vivo),it is still far from elucidated. In particular, the possible role of gender 4 differences in human pathophysiology associated with reactive species is a promising new field of investigation. Although the complex scenario this presents is still incomplete, important gender-associated "redox features" of cells have already been described in the literature. Here we summarize the different aspects of redox-associated molecules and enzymes in regard to gender differences in terms of the intracellular production and biochemical activity of reactive species. These are often associated with the pathogenetic mechanisms underlying several human morbidities(e.g., degenerative diseases) and can represent a specific target for new pharmacologic strategies. Gender differences may thus pose an important challenge for future studies aimed at the clinical management of diseases characterized by a redox imbalance.
Collapse
Affiliation(s)
- Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore di Sanita', Rome, Italy.
| | | | | | | | | |
Collapse
|
7
|
Smith JM, Shen Z, Wira CR, Fanger MW, Shen L. Effects of Menstrual Cycle Status and Gender on Human Neutrophil Phenotype. Am J Reprod Immunol 2007; 58:111-9. [PMID: 17631004 DOI: 10.1111/j.1600-0897.2007.00494.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PROBLEM The effects of gender and fluctuating ovarian hormones on neutrophil phenotype have yet to be characterized. METHOD OF STUDY Neutrophils from females at days 7, 14, 21, and 28 of the menstrual cycle were analyzed by flow cytometry for surface receptor, granule protein, and intracellular cytokine expression. Comparisons were made to neutrophils from males isolated at 7-day intervals during 1 month. RESULTS Decreased MMP-9 and TNF-alpha expression by neutrophils from females was observed during the periovulatory period. Comparing the genders, cells from females during the periovulatory period expressed less CD11b and CD18 than those from males. CXCR1 surface levels were higher on neutrophils from female donors. CONCLUSIONS Neutrophil phenotype varies minimally during the menstrual cycle and between the genders. Our data provide support for a potential anti-inflammatory effect of ovarian hormones on neutrophils.
Collapse
Affiliation(s)
- Jennifer M Smith
- Department of Microbiology & Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
There is still an unresolved paradox with respect to the immunomodulating role of estrogens. On one side, we recognize inhibition of bone resorption and suppression of inflammation in several animal models of chronic inflammatory diseases. On the other hand, we realize the immunosupportive role of estrogens in trauma/sepsis and the proinflammatory effects in some chronic autoimmune diseases in humans. This review examines possible causes for this paradox. This review delineates how the effects of estrogens are dependent on criteria such as: 1) the immune stimulus (foreign antigens or autoantigens) and subsequent antigen-specific immune responses (e.g., T cell inhibited by estrogens vs. activation of B cell); 2) the cell types involved during different phases of the disease; 3) the target organ with its specific microenvironment; 4) timing of 17beta-estradiol administration in relation to the disease course (and the reproductive status of a woman); 5) the concentration of estrogens; 6) the variability in expression of estrogen receptor alpha and beta depending on the microenvironment and the cell type; and 7) intracellular metabolism of estrogens leading to important biologically active metabolites with quite different anti- and proinflammatory function. Also mentioned are systemic supersystems such as the hypothalamic-pituitary-adrenal axis, the sensory nervous system, and the sympathetic nervous system and how they are influenced by estrogens. This review reinforces the concept that estrogens have antiinflammatory but also proinflammatory roles depending on above-mentioned criteria. It also explains that a uniform concept as to the action of estrogens cannot be found for all inflammatory diseases due to the enormous variable responses of immune and repair systems.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Division of Rheumatology, Department of Internal Medicine I, University Hospital, 93042 Regensburg, Germany.
| |
Collapse
|
9
|
Liu D, Si H, Reynolds KA, Zhen W, Jia Z, Dillon JS. Dehydroepiandrosterone protects vascular endothelial cells against apoptosis through a Galphai protein-dependent activation of phosphatidylinositol 3-kinase/Akt and regulation of antiapoptotic Bcl-2 expression. Endocrinology 2007; 148:3068-76. [PMID: 17395704 DOI: 10.1210/en.2006-1378] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adrenal steroid dehydroepiandrosterone (DHEA) may improve vascular function, but the mechanism is unclear. In the present study, we show that DHEA significantly increased cell viability, reduced caspase-3 activity, and protected both bovine and human vascular endothelial cells against serum deprivation-induced apoptosis. This effect was dose dependent and maximal at physiological concentrations (0.1-10 nM). DHEA stimulation of bovine aortic endothelial cells resulted in rapid and dose-dependent phosphorylation of Akt, which was blocked by LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), the upstream kinase of Akt. Accordingly, inhibition of PI3K or transfection of the cells with dominant-negative Akt ablated the antiapoptotic effect of DHEA. The induced Akt phosphorylation and subsequent cytoprotective effect of DHEA were dependent on activation of Galphai proteins, but were estrogen receptor independent, because these effects were blocked by pertussis toxin but not by the estrogen receptor inhibitor ICI182,780 or the aromatase inhibitor aminoglutethimide. Finally, DHEA enhanced antiapoptotic Bcl-2 protein expression, its promoter activity, and gene transcription attributable to the activation of the PI3K/Akt pathway. Neutralization of Bcl-2 by antibody transfection significantly decreased the antiapoptotic effect of DHEA. These findings provide the first evidence that DHEA acts as a survival factor for endothelial cells by triggering the Galphai-PI3K/Akt-Bcl-2 pathway to protect cells against apoptosis. This may represent an important mechanism underlying the vascular protective effect of DHEA.
Collapse
Affiliation(s)
- Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Borisenkov MF, Mongalev NP. Comparative analysis of function of reproductive organs of cow and female reindeer. Cellular composition of blood in vessels of reproductive organs. J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s0022093006030100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Yang L, Hu Y, Hou Y. Effects of 17β-estradiol on the maturation, nuclear factor kappa B p65 and functions of murine spleen CD11c-positive dendritic cells. Mol Immunol 2006; 43:357-66. [PMID: 16310049 DOI: 10.1016/j.molimm.2005.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 02/15/2005] [Indexed: 01/30/2023]
Abstract
Physiological gender differences in immune capabilities are now well recognized and suggest that sex steroid hormones such as estrogens may be involved in the regulation of the immunocompetence. In this paper, CD11c-positive murine spleen dendritic cells (SDCs) were treated with various concentrations of 17beta-estradiol (E2) for 24h. The viability, phenotype, nuclear factor kappa B p65 (NF-kappaBp65), endocytosis, stimulatory capacity and cytokine expression were analyzed. Our results showed that E2 increased the viability and MHC-II expression but decreased nuclear NF-kappaBp65 level and endocytosis of SDCs. E2 also increased the stimulatory capacity of SDCs from low-dose group but decreased it from middle- and high-dose ones. In addition, E2 increased the intracellular expression of IL-6 and IL-10 in SDCs, but no obvious change appeared in IL-12 and TNF-alpha. These data suggested that E2 might influence the immune responses by changing the viability, maturation, NF-kappaBp65, endocytosis, stimulatory capacity and cytokine expression of SDCs.
Collapse
Affiliation(s)
- Linsong Yang
- Immunology and Reproductive Biology Lab, Nanjing University, Nanjing 210093, PR China
| | | | | |
Collapse
|
12
|
Heberden C, Reine F, Grosse B, Henry C, Zagar Y, Chaumaz G, Lieberherr M. Detection of a raft-located estrogen receptor-like protein distinct from ER alpha. Int J Biochem Cell Biol 2005; 38:376-91. [PMID: 16263324 DOI: 10.1016/j.biocel.2005.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/30/2005] [Accepted: 09/08/2005] [Indexed: 11/20/2022]
Abstract
17Beta-estradiol (17beta-E2) elicits at the cell membrane rapid actions that remain insensitive to the inhibitory effect of ICI 182,780, a pure estrogen antagonist, and therefore cannot be attributed to the classic nuclear receptors. We addressed the question of the identity of the protein involved in these rapid actions. We first examined the responses of several cell lines for intracellular calcium mobilization, an effect not inhibited by ICI 182,780, tamoxifen and raloxifen. We then demonstrated the presence of binding sites in the membranes, by incubating them with antibodies directed against different domains of ER alpha, and by flow cytometry analysis. The membrane proteins were eluted by affinity chromatography using E2 conjugated to bovine serum albumin as a ligand. Western blots of the elution fractions using an antibody directed against the ligand binding site of ER alpha showed the existence of a protein of approximately 50 kDa. The protein was concentrated in the lipid rafts, together with another heavier form of approximately 66 kDa. The 50 kDa protein was immunoprecipitable, and co-immunoprecipitation experiments showed that it was associated with the Gbeta(1-4) protein, but not with caveolin-1. The protein was expressed in ER alpha-null cells, like HO-23 and Cos-7 cells. Therefore, in the lipid rafts, there exists a protein, similar to, but molecularly distinct from ER alpha.
Collapse
Affiliation(s)
- Christine Heberden
- Laboratoire de Nutrition et Sécurité Alimentaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Kaloyianni M, Stamatiou R, Dailianis S. Zinc and 17beta-estradiol induce modifications in Na+/H+ exchanger and pyruvate kinase activity through protein kinase C in isolated mantle/gonad cells of Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:257-66. [PMID: 16054875 DOI: 10.1016/j.cca.2005.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/29/2005] [Accepted: 07/04/2005] [Indexed: 10/25/2022]
Abstract
We investigated the transduction pathway mediated by Zn and 17beta-estradiol in isolated mantle/gonad cells of the mussel Mytilus galloprovincialis. Both the essential metal Zn, and the estrogen 17beta-estradiol, caused an increase in intracellular pH (pHi) of isolated mantle/gonad cells of the mussel M. galloprovincialis, thus indicating the activation of the Na+/H+ exchanger (NHE). The observed effect was inhibited by EIPA (20 nM), a specific NHE inhibitor, thus verifying NHE activation. Protein kinase C (PKC) also seemed to play an activating role in zinc and 17beta-estradiol effects on NHE and PK activity. In addition, the glycolytic enzyme pyruvate kinase (PK) was increased after zinc, while it was decreased after 17beta-estradiol treatment. It is noteworthy that, both the latter effects were reversed in the presence of EIPA, indicating the involvement of NHE in the signaling mechanism. cAMP seems to participate in the signaling mechanism induced by Zn but not to that induced by 17beta-estradiol. The potential implication of the heavy metal and 17beta-estradiol on the reproductive activity of the marine animals is discussed.
Collapse
Affiliation(s)
- Martha Kaloyianni
- Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | | | | |
Collapse
|
14
|
Salamon E, Esch T, Stefano GB. Role of amygdala in mediating sexual and emotional behavior via coupled nitric oxide release. Acta Pharmacol Sin 2005; 26:389-95. [PMID: 15780186 DOI: 10.1111/j.1745-7254.2005.00083.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Although the anatomical configuration of the amygdala has been studied a great deal, very little research has been conducted on understanding the precise mechanism by which this emotional regulatory center exerts its control on emotional and sexual behavior. By applying research methodology from the Neuroscience Research Institute, State University of New York, College at Old Westbury, we intended to demonstrate that much of the mediated effects of the amygdala, specifically the regulation of the male and female sexual response cycles, as well as related emotional considerations, exert their effects coupled to nitric oxide (NO) release. Furthermore, by using current anatomical and histological data, we demonstrated that amygdalar tissue rich in endocannabinoid and opiate, as well as catecholamine, receptors could exert its neurochemical effects within an NO-mediated paradigm. This paradigm, together with the existence of estrogen and androgen signaling within the amygdala, further lends credence to our theoretical framework. We begin with a brief anatomical and functional review of amygdalar function, and then proceed to demonstrate its relationship with NO.
Collapse
Affiliation(s)
- Elliott Salamon
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, New York 11568, USA.
| | | | | |
Collapse
|
15
|
Cassidy RA, Natarajan S, Vaughan GM. The link between the insecticide heptachlor epoxide, estradiol, and breast cancer. Breast Cancer Res Treat 2005; 90:55-64. [PMID: 15770527 DOI: 10.1007/s10549-004-2755-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Given the suspected effects of estrogens on breast cancer, xenoestrogenic insecticides may be a risk factor. Studies of the weak xenoestrogen, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), have failed to demonstrate a causal relationship, though another estrogenic organochlorine insecticide, dieldrin, belonging to the cyclodiene family, has recently been linked to breast cancer. Other cyclodienes such as heptachlor epoxide (HE) and oxychlordane (OC) present in breast tissue have not been evaluated as rigorously, presumably due to their lower concentration and lower recovery using solvent extraction procedures. We used sparging extraction coupled with gas chromatography to determine the levels of HE, OC, and DDE in adipose tissue within breast biopsies in a series of 34 women evaluated for breast abnormality. Of the three insecticides tested, only HE (p=0.007) was positively associated with prevalence of breast cancer in the biopsies. In rapid, non-genomic studies using isolated human leukocytes, flow cytometric methods were used to measure HE-induced oxidants and DNA damage. These studies indicated that HE, at concentrations similar to those in breast biopsies, induced an inverted-U increase in intracellular oxidants and DNA strand breaks [both blocked by specific nitric oxide- (NO-) synthesis blockade withL: -NMMA] in human polymorphonuclear leukocytes (PMNs). HE-treated PMNs also induced damage to surrounding lymphocytes in mixed-leukocyte incubations (also inhibited by NO blockade). The HE-induced changes in NO were inhibited by 17beta-estradiol-(17beta-E2) receptor antagonists and were mimicked by similar concentrations of 17beta-E2. The addition of tumor necrosis factor-alpha (TNF-alpha) increased intracellular oxidants and DNA damage and shifted the responses to lower HE concentrations. This study, along with others, suggests that HE-induced NO production may contribute to initiation, promotion, and progression of cancer.
Collapse
|
16
|
Nieto-Fernandez FE, Ianuzzi F, Ruiz A, Nodimele L. Estradiol-stimulated nitric oxide release in nervous tissue, vasculature, and gonads of the giant cockroach Blaberus craniifer. ACTA BIOLOGICA HUNGARICA 2004; 55:143-8. [PMID: 15270228 DOI: 10.1556/abiol.55.2004.1-4.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The vertebrate system of steroid hormones appears to have been conserved widely throughout the animal kingdom. The sex hormone estrogen, 17-beta-estradiol (E2), long considered to be exclusively a vertebrate hormone, is found also in invertebrates related to reproductive and developmental processes such as spawning, vitellogenesis and molting. These processes are affected by estrogen induced changes at the genomic level and take place at a large time scale. The discovery of surface membrane receptors for E2 has opened new possibilities for the involvement of estrogen in biological functions other than reproductive. These processes take place within a few seconds to minutes and involve sudden cytosolic calcium transients, activation of adenylate cyclase or activation of phospholipase C (PLC). E2 can modulate the production of nitric oxide (NO) in endotheliar and other cells. A similar mechanism linking estrogen to cNOS catalized nitric oxide (NO) release is reported herein for the first time in several tissues of the giant cockroach Blaberus craniifer. This process has been identified in the brain, nerve cord, vasculature and ovaries. This effect is concentration dependent and is inhibited by tamoxifen an estrogen receptor blocker.
Collapse
Affiliation(s)
- F E Nieto-Fernandez
- SUNY College at Old Westbury, Neuroscience Research Institute, Old Westbury, NY 11568, USA.
| | | | | | | |
Collapse
|
17
|
Canesi L, Ciacci C, Betti M, Lorusso LC, Marchi B, Burattini S, Falcieri E, Gallo G. Rapid effects of 17beta-estradiol on cell signaling and function of Mytilus hemocytes. Gen Comp Endocrinol 2004; 136:58-71. [PMID: 14980797 DOI: 10.1016/j.ygcen.2003.12.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 12/02/2003] [Accepted: 12/04/2003] [Indexed: 11/25/2022]
Abstract
Estrogens affect the functioning of several non-reproductive tissues, the immune system in particular. In mammalian immunocytes, 17beta-estradiol (E2) has both dose- and cell-type specific effects and the responses to E2 seem to be mediated by rapid, non-genomic mechanisms; these may be initiated at either membrane or cytosolic locations, and can result in both direct local effects, such as modification of ion fluxes, and regulation of gene transcription secondary to activation of different kinase cascades, including mitogen activated protein kinases (MAPKs). In this work, the short-term effects of E(2) and the possible mechanisms of estrogen-mediated cell signaling were investigated in the hemocytes, the immune cells of the bivalve mollusc, the mussel Mytilus galloprovincialis Lam. The results show that E2 (25nM) caused a rapid and significant increase in hemocyte cytosolic [Ca2+]; lower concentrations (5 nM) showed a smaller, not significant effect. Both E2 concentrations affected the phosphorylation state of the components of tyrosine kinase-mediated signal transduction MAPK- and STAT- (signal transducers and activators of transcription) like proteins within 5-15 min from E2 addition. A greater effect and clearer time course were observed with 25 nM E2: in particular, E2 induced a transient increase in p-ERK2 MAPK and a persistent increase in p-p38 MAPK. Moreover, both STAT3 and STAT5 were tyrosine phosphorylated in response to E2. E2 (5 nM) induced both morphological (as evaluated by SEM) and functional changes (such as extracellular release of hydrolytic enzymes, lysosomal membrane destabilisation, and stimulation of the bactericidal activity) within 10-30 min from addition. Lysosomal membrane destabilisation induced by both E2 concentrations was abolished by hemocyte preincubation with the p38 MAPK inhibitor SB203580, and significantly reduced by PD98059 and Wortmannin (inhibitors of ERK MAPK and PI3-K, respectively), this suggesting that rapid activation of kinase cascades is involved in mediating the effects of E2 in mussel hemocytes. The antiestrogen Tamoxifen prevented or strongly reduced most, but not all, the effects of E2. Western blotting with heterologous anti-ERalpha-anti-ERbeta-antibodies revealed the presence of immunoreactive ERalpha- and ERbeta-like proteins in hemocyte protein extracts. Overall, our data support the hypothesis that the rapid effects and mechanisms of action of 17beta-estradiol are extremely conserved and that they may play a crucial role in endocrine-immune interactions in invertebrates.
Collapse
Affiliation(s)
- Laura Canesi
- Istituto di Scienze Fisiologiche, Università di Urbino Carlo Bo, Loc. Crocicchia, 61029 Urbino (PU), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen DB, Bird IM, Zheng J, Magness RR. Membrane estrogen receptor-dependent extracellular signal-regulated kinase pathway mediates acute activation of endothelial nitric oxide synthase by estrogen in uterine artery endothelial cells. Endocrinology 2004; 145:113-25. [PMID: 14512434 DOI: 10.1210/en.2003-0547] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rapid uterine vasodilatation after estrogen administration is believed to be mediated by endothelial production of nitric oxide (NO) via endothelial NO synthase (eNOS). However, the mechanism(s) by which estrogen activates eNOS in uterine artery endothelial cells (UAEC) is unknown. In this study, we observed that estradiol-17beta (E2) and E2-BSA rapidly (<2 min) increased total NOx production in UAEC in vitro. This was associated with rapid eNOS phosphorylation and activation but was unaltered by pretreatment with actinomycin-D. Estrogen receptor-alpha protein was detectable in isolated plasma membrane proteins by immunoblotting, and E2-BSA-fluorescein isothiocyanate binding was evident on the plasma membrane of UAEC. E2 did not mobilize intracellular Ca2+, but E2 and ionomycin in combination induced greater eNOS phosphorylation than either E2 or ionomycin alone. E2 did not stimulate rapid Akt phosphorylation. E2 stimulated rapid ERK2/1 activation in a time- and dose-dependent manner, with maximal responses observed at 5-10 min with E2 (10 nm to 1 microm) treatment. Acute activation of eNOS and NOx production by E2 could be inhibited by PD98059 but not by LY294002. When E2-BSA was applied, similar responses in NOx production, eNOS, and ERK2/1 activation to those of E2 were achieved. In addition, E2 and E2-BSA-induced ERK2/1 activation and ICI 182,780 could inhibit NOx production by E2. Thus, acute activation of eNOS to produce NO in UAEC by estrogen is at least partially through an ERK pathway, possibly via estrogen receptor localized on the plasma membrane. This pathway may provide a novel mechanism for NO-mediated rapid uterine vasodilatation by estrogen.
Collapse
Affiliation(s)
- Dong-Bao Chen
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California 92093-0802, USA.
| | | | | | | |
Collapse
|
19
|
Abrahams VM, Collins JE, Wira CR, Fanger MW, Yeaman GR. Inhibition of Human Polymorphonuclear Cell Oxidative Burst by 17-β-estradiol and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Am J Reprod Immunol 2003; 50:463-72. [PMID: 14750553 DOI: 10.1046/j.8755-8920.2003.00111.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PROBLEM Polymorphonuclear cell (PMN) function may be directly influenced by 17-beta-estradiol and the endocrine disruptor, 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD). This may have significant consequences on PMN function within the female reproductive tract. This study evaluated the effects of 17-beta-estradiol and TCDD on PMN oxidative burst. METHOD OF STUDY Peripheral blood PMN were isolated from normal male donors. Following treatment with 17-beta-estradiol, TCDD or both, PMN were stimulated with phorbol 12-myristate 13-acetate. Superoxide production was measured by lucigenin-enhanced chemiluminescence. RESULTS Following 24-hr culture with either 17-beta-estradiol or TCDD, PMN superoxide production was significantly reduced, however, no such inhibition was observed when PMN were cultured with both estradiol and TCDD. Using antagonists, the estradiol and TCDD effects on PMN superoxide production was shown to be estrogen and aryl hydrocarbon receptor mediated. CONCLUSIONS Estradiol and TCDD influence PMN oxidative burst through receptor mediated events. Such altered PMN function may have profound effects upon the normal endometrial cycle.
Collapse
Affiliation(s)
- Vikki M Abrahams
- Department of Microbiology and Immunology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | | | | | | | | |
Collapse
|
20
|
Molloy EJ, O'Neill AJ, Grantham JJ, Sheridan-Pereira M, Fitzpatrick JM, Webb DW, Watson RWG. Sex-specific alterations in neutrophil apoptosis: the role of estradiol and progesterone. Blood 2003; 102:2653-9. [PMID: 12791649 DOI: 10.1182/blood-2003-02-0649] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Women are conferred with greater immunologic and survival benefits compared to men. Female sex steroids contribute to this sexual dimorphism. Furthermore, during human pregnancy when female sex hormones are elevated, neutrophil apoptosis is delayed. This study examines the specific effects of estradiol and progesterone on neutrophil apoptosis and function in healthy adult men and women. We also examined the contribution of these hormones to the persistence and resolution of an inflammatory response. Spontaneous apoptosis was significantly decreased in women compared with men. Physiologic doses of estradiol and progesterone caused a further delay in spontaneous apoptosis in both men and women but did not diminish Fas antibody-induced apoptosis. The delay in apoptosis was mediated at the level of the mitochondria with decreased release of cytochrome c, which may alter caspase cleavage and activity. There were no associated alterations in neutrophil CD11b, but production of reactive oxygen intermediates (ROIs) in women was increased. Thus, female sex hormones mediate delayed neutrophil apoptosis in both sexes and enhance female intracellular production of ROIs. Modulating hormonal responses may be an effective therapeutic tool in combating inflammatory diseases.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Department of Surgery, Mater Misericordiae University Hospital, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
21
|
Azenabor AA, Chaudhry AU. 17 beta-estradiol induces L-type Ca2+ channel activation and regulates redox function in macrophages. J Reprod Immunol 2003; 59:17-28. [PMID: 12892900 DOI: 10.1016/s0165-0378(02)00084-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
17 beta-estradiol induces rapid effects on cells of the immune system via plasma membrane surface receptor but the ways in which delayed signals involving intracellular receptors affect the same functions are not well understood. To study the delayed but sustained events in estradiol signaling, we have investigated macrophage Ca(2+) signaling, detected specific Ca(2+) ion channel activated and found a relationship between intracellular calcium [Ca(2+)](i) and macrophage release of reactive oxygen species (ROS) and nitric oxide (NO) during delayed 17 beta-estradiol activity. We found evidence of additional effect of estradiol on capacitative entry of Ca(2+), Ca(2+) entry through L-type channel and a direct relationship between [Ca(2+)](i) and generation of ROS and NO. This study demonstrates that 17 beta-estradiol exhibits a delayed phase of Ca(2+) influx involving L-type channel and regulates macrophage immune redox function.
Collapse
Affiliation(s)
- A A Azenabor
- Department of Health Sciences, Enderis Hall, Room 469, University of Wisconsin, 2400 East Hartford Avenue, Milwaukee, WI 53211, USA.
| | | |
Collapse
|
22
|
Winters KRH, Meyer E, Van Merris VM, Van Den Broeck WLM, Duchateau L, Burvenich C. Sex steroid hormones do not influence the oxidative burst activity of polymorphonuclear leukocytes from ovariectomized cows in vitro. Steroids 2003; 68:397-406. [PMID: 12798490 DOI: 10.1016/s0039-128x(03)00040-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During the periparturient period, dairy cows are subjected to physiological changes that may induce immunosuppression and an increased susceptibility of the animal to bacterial infections such as mastitis. The incidence of clinical environmental mastitis is high during the last period of gestation, at parturition and during the first month of lactation, suggesting a potential influence of sex steroid hormones. Efficient functioning of polymorphonuclear leukocytes (PMN) is necessary during the early phase of infection to clear the mammary gland from invading pathogens. The purpose of this study was to investigate the effect of sex steroid hormones on the oxidative burst activity of isolated PMN from ovariectomized cows. Ovariectomy was performed to minimize the interference of endogenous estrogen and progesterone levels, which are known to vary extensively during the estrus cycle. Isolated PMN were incubated with different concentrations of 17beta-estradiol, estrone or progesterone. A flow cytometric technique was used to quantify the oxidation of intracellular 2',7'-dichlorofluorescin by the oxidative burst system of PMN following stimulation with phorbol myristate acetate. Staurosporine was used as a positive control for our in vitro model. No statistically significant changes in PMN oxidative burst activity were observed at physiological or pharmacological levels of the three sex steroid hormones. A large variation existed in the oxidative burst activity among cows. In an additional experiment, the expression of estrogen receptor alpha and of progesterone receptor in PMN was evaluated immunohistochemically. No specific staining was detected for both receptors in isolated PMN following incubation with different concentrations of sex steroid hormones.
Collapse
Affiliation(s)
- Kathleen R H Winters
- Department of Physiology, Biochemistry and Biometrics, Faculty of Veterinary Medicine, Milk Secretion and Mastitis Research Center, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Mize AL, Young LJ, Alper RH. Uncoupling of 5-HT1A receptors in the brain by estrogens: regional variations in antagonism by ICI 182,780. Neuropharmacology 2003; 44:584-91. [PMID: 12668044 DOI: 10.1016/s0028-3908(03)00044-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previously we have shown that 17beta-estradiol (in vivo and in vitro) rapidly decreases the function of serotonin(1A) (5-HT(1A)) receptors, allowing us to hypothesize that 17beta-estradiol accomplished this via activation of a membrane estrogen receptor. Hippocampus and frontal cortex obtained from ovariectomized rats were incubated with 17beta-estradiol or bovine serum albumin (BSA)-estradiol in the presence or absence of the estrogen receptor (ER) antagonist ICI 182,780. Membranes were prepared to measure R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding (a measure of 5-HT(1A) receptor coupling and function). In both hippocampus and frontal cortex, 17beta-estradiol and BSA-estradiol (50 nM) decreased R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding. ICI 182,780 blocked the effect of both the estrogens in hippocampus, but only the effect of 17beta-estradiol in frontal cortex. Due to the inability of ICI 182,780 to block the effects of BSA-estradiol in frontal cortex, similar experiments were performed using the selective estrogen receptor modulator tamoxifen as the agonist. Tamoxifen (100 nM and 1 microM) decreased R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding. ICI 182,780 (1 microM) blocked the ability of tamoxifen to decrease 5-HT(1A) receptor coupling in the hippocampus, but not in the frontal cortex. Taken together, these data support the existence of a pharmacologically distinct ER in hippocampus vs. frontal cortex that might be responsible for rapid uncoupling of 5-HT(1A) receptors.
Collapse
Affiliation(s)
- A L Mize
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas School of Medicine, Kansas City, USA
| | | | | |
Collapse
|
24
|
Flores-Delgado G, Anderson KD, Warburton D. Nongenomic estrogen action regulates tyrosine phosphatase activity and tuberin stability. Mol Cell Endocrinol 2003; 199:143-51. [PMID: 12581886 DOI: 10.1016/s0303-7207(02)00288-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Estrogen action and tuberin function has been suggested to play a crucial role in the proliferation of lung smooth muscle-like cells and/or myofibroblasts in pulmonary lymphangioleiomyomatosis (LAM). Tuberin is a tumor suppressor phosphoprotein, which also regulates fluid phase endocytosis. Its activity, turnover and complex association with hamartin depends on its phosphorylation status. We have recently reported that nongenomic estrogen action regulates the phosphorylation status of several cytoplasmic proteins. Herein, we demonstrate that estrogen increases tyrosine phosphatase activity, which can be abrogated by antiestrogen ICI 182780 and tyrosine phosphatase inhibitor bpV(phen), but not by the protein synthesis inhibitor cyclohexamide. Furthermore, we show that estrogen transiently enhances the turnover of tuberin, which follows an inverse pattern to that observed for tyrosine phosphatase and endocytosis activity. We showed that tuberin phosphorylation protects it from degradation and induces its accumulation in female human lung fibroblasts and myofibroblasts. Our results suggest that nongenomic estrogen action induces tyrosine phosphatase activity that regulates stability of tyrosine phosphorylated proteins, including tuberin, which may play a crucial role in cellular specific functions such as endocytosis.
Collapse
Affiliation(s)
- Guillermo Flores-Delgado
- Department of Surgery and the Developmental Biology Program, Childrens Hospital Los Angeles Research Institute, University of Southern California, 4650, Sunset Blvd. MS#35, 90027, USA.
| | | | | |
Collapse
|
25
|
Maccarrone M, Bari M, Battista N, Finazzi-Agrò A. Estrogen stimulates arachidonoylethanolamide release from human endothelial cells and platelet activation. Blood 2002; 100:4040-8. [PMID: 12393387 DOI: 10.1182/blood-2002-05-1444] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estrogen replacement therapy has been associated with reduction of cardiovascular events in postmenopausal women, though the mechanism for this benefit remains unclear. Here we show that at physiological concentrations estrogen activates the anandamide membrane transporter of human endothelial cells and leads to rapid elevation of calcium (apparent within 5 minutes) and release of nitric oxide (within 15 minutes). These effects are mediated by estrogen binding to a surface receptor, which shows an apparent dissociation constant (K(d)) of 9.4 +/- 1.4 nM, a maximum binding (B(max)) of 356 +/- 12 fmol x mg protein(-1), and an apparent molecular mass of approximately 60 kDa. We also show that estrogen binding to surface receptors leads to stimulation of the anandamide-synthesizing enzyme phospholipase D and to inhibition of the anandamide-hydrolyzing enzyme fatty acid amide hydrolase, the latter effect mediated by 15-lipoxygenase activity. Because the endothelial transporter is shown to move anandamide across the cell membranes bidirectionally, taken together these data suggest that the physiological activity of estrogen is to stimulate the release, rather than the uptake, of anandamide from endothelial cells. Moreover, we show that anandamide released from estrogen-stimulated endothelial cells, unlike estrogen itself, inhibits the secretion of serotonin from adenosine diphosphate (ADP)-stimulated platelets. Therefore, it is suggested that the peripheral actions of anandamide could be part of the molecular events responsible for the beneficial effects of estrogen.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Italy.
| | | | | | | |
Collapse
|
26
|
Burlando B, Marchi B, Panfoli I, Viarengo A. Essential role of Ca2+ -dependent phospholipase A2 in estradiol-induced lysosome activation. Am J Physiol Cell Physiol 2002; 283:C1461-8. [PMID: 12372807 DOI: 10.1152/ajpcell.00429.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism of lysosome activation by 17beta-estradiol has been studied in mussel blood cells. Cell treatment with estradiol induced a sustained increase of cytosolic free Ca2+ that was completely prevented by preincubating the cells with the Ca2+ chelator BAPTA-AM. Estradiol treatment was also followed by destabilization of the lysosomal membranes, as detected in terms of the lysosomes' increased permeability to neutral red. The effect of estradiol on lysosomes was almost completely prevented by preincubation with the inhibitor of cytosolic Ca2+ -dependent PLA2 (cPLA2), arachidonyl trifluoromethyl ketone (AACOCF3), and was significantly reduced by preincubation with BAPTA-AM. In contrast, it was virtually unaffected by preincubation with the inhibitor of Ca2+ -independent PLA2, (E)-6-(bromomethylene)tetrahydro-3-(1-naphtalenyl)-2H-pyran-2-one (BEL). The Ca2+ ionophore A-23187 yielded similar effects on [Ca2+](i) and lysosomes. Exposure to estradiol also resulted in cPLA2 translocation from cytosol to membranes, lysosome enlargement, and increased protein degradation. These results suggest that the destabilization of lysosomal membranes following cell exposure to estradiol occurs mainly through a Ca2+ -dependent mechanism involving activation of Ca2+ -dependent PLA2. This mechanism promotes lysosome fusion and catabolic activities and may mediate short-term estradiol effects.
Collapse
Affiliation(s)
- Bruno Burlando
- Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale Amedeo Avogadro, 15100 Alessandria, Biologia e Genetica, Università di Genova, 16132 Genoa, Italy.
| | | | | | | |
Collapse
|
27
|
Lim H, Song H, Paria BC, Reese J, Das SK, Dey SK. Molecules in blastocyst implantation: uterine and embryonic perspectives. VITAMINS AND HORMONES 2002; 64:43-76. [PMID: 11898397 DOI: 10.1016/s0083-6729(02)64002-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synchronized development of the embryo to the active stage of the blastocyst, differentiation of the uterus to the receptive state, and a "cross talk" between the blastocyst and uterine luminal epithelium are essential to the process of implantation. In spite of considerable accumulation of information and the present state of the knowledge, our understanding of the definitive mechanisms that regulate these events remains elusive. Although there are species variations in the process of implantation, many basic similarities do exist among various species. This review focuses on specific aspects of the implantation process in mice with the hope that many of the findings will be relevant to the process in humans. To establish signaling mechanisms of embryo-uterine interactions during implantation, studies on both embryonic and uterine consequences are required to generate more meaningful information. Due to ethical restriction and experimental limitation, it is difficult to generate such information in humans. This review has attempted to provide a comprehensive, but not complete, narration of a number of embryonic and uterine factors that are involved in the process of implantation in autocrine, paracrine, and/or juxtacrine manners in mice at the physiological, cellular, molecular, and genetic levels.
Collapse
Affiliation(s)
- Hyunjung Lim
- Department of Molecular and Integrative Physiology, Ralph L. Smith Research Center, University of Kansas Medical Center, Kansas City, Kansas 66160-7338, USA
| | | | | | | | | | | |
Collapse
|