1
|
Smeir M, Chumala P, Katselis GS, Liu L. Lymphocyte-Specific Protein 1 Regulates Expression and Stability of Endothelial Nitric Oxide Synthase. Biomolecules 2024; 14:111. [PMID: 38254711 PMCID: PMC10813790 DOI: 10.3390/biom14010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Nitric oxide (NO), synthesized by endothelial nitric oxide synthase (eNOS), plays a critical role in blood pressure regulation. Genome-wide association studies have identified genetic susceptibility loci for hypertension in human lymphocyte-specific protein 1 (LSP1) gene. LSP1 is recognized as modulator of leukocyte extravasation, and endothelial permeability, however, the role of LSP1 in regulation of NO signaling within endothelial cells (ECs) remains unknown. The present study investigated the role of LSP1 in the regulation of eNOS expression and activity utilizing human macrovascular ECs in vitro and LSP1 knockout (KO) mice. In ECs, specific CRISPR-Cas9 genomic editing deleted LSP1 and caused downregulation of eNOS expression. LSP1 gain-of-function through adenovirus-mediated gene transfer was associated with enhanced expression of eNOS. Co-immunoprecipitation and confocal fluorescence microscopy revealed that eNOS and LSP1 formed a protein complex under basal conditions in ECs. Furthermore, LSP1 deficiency in mice promoted significant upregulation and instability of eNOS. Utilizing a mass-spectrometry-based bottom-up proteomics approach, we identified novel truncated forms of eNOS in immunoprecipitates from LSP1 KO aortae. Our experimental data suggest an important role of endothelial LSP1 in regulation of eNOS expression and activity within human ECs and murine vascular tissues.
Collapse
Affiliation(s)
- Musstafa Smeir
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Paulos Chumala
- Department of Medicine, Canadian Center for Rural and Agricultural Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (P.C.); (G.S.K.)
| | - George S. Katselis
- Department of Medicine, Canadian Center for Rural and Agricultural Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (P.C.); (G.S.K.)
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| |
Collapse
|
2
|
Riley-Gillis B, Tsaih SW, King E, Wollenhaupt S, Reeb J, Peck AR, Wackman K, Lemke A, Rui H, Dezso Z, Flister MJ. Machine learning reveals genetic modifiers of the immune microenvironment of cancer. iScience 2023; 26:107576. [PMID: 37664640 PMCID: PMC10470213 DOI: 10.1016/j.isci.2023.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/01/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Heritability in the immune tumor microenvironment (iTME) has been widely observed yet remains largely uncharacterized. Here, we developed a machine learning approach to map iTME modifiers within loci from genome-wide association studies (GWASs) for breast cancer (BrCa) incidence. A random forest model was trained on a positive set of immune-oncology (I-O) targets, and then used to assign I-O target probability scores to 1,362 candidate genes in linkage disequilibrium with 155 BrCa GWAS loci. Cluster analysis of the most probable candidates revealed two subfamilies of genes related to effector functions and adaptive immune responses, suggesting that iTME modifiers impact multiple aspects of anticancer immunity. Two of the top ranking BrCa candidates, LSP1 and TLR1, were orthogonally validated as iTME modifiers using BrCa patient biopsies and comparative mapping studies, respectively. Collectively, these data demonstrate a robust and flexible framework for functionally fine-mapping GWAS risk loci to identify translatable therapeutic targets.
Collapse
Affiliation(s)
- Bridget Riley-Gillis
- Genomics Research Center, AbbVie Inc, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Shirng-Wern Tsaih
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emily King
- Genomics Research Center, AbbVie Inc, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Amy R. Peck
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kelsey Wackman
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela Lemke
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Zoltan Dezso
- Genomics Research Center, AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Michael J. Flister
- Genomics Research Center, AbbVie Inc, 1 North Waukegan Road, North Chicago, IL 60064, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Chen J, Xiao Q, Li X, Liu R, Long X, Liu Z, Xiong H, Li Y. The correlation of leukocyte-specific protein 1 (LSP1) rs3817198(T>C) polymorphism with breast cancer: A meta-analysis. Medicine (Baltimore) 2022; 101:e31548. [PMID: 36397430 PMCID: PMC9666160 DOI: 10.1097/md.0000000000031548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Multiple studies have investigated the correlation of single nucleotide polymorphisms (SNPs) in leukocyte-specific protein 1 (LSP1) with susceptibility to breast cancer (BC) and have yielded inconsistent conclusions, particularly rs3817198(T > C). Consequently, we performed a meta-analysis to estimate this relationship more comprehensively. METHODS Four databases were utilized to locate eligible publications: PubMed, Embase, Web of Science, and China National Knowledge Infrastructure. This meta-analysis included 14 studies, including 22 reports of 33194 cases and 36661 controls. The relationship of rs3817198 polymorphism with breast cancer was estimated using odds ratios (ORs) with 95% confidence intervals (CIs). The LSP1 co-expression network was constructed by STRING, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using DAVIDE. Download TCGA breast cancer mRNA-seq data and analyze the relationship between LSP1 expression and breast cancer chemotherapy sensitivity. RESULTS The results indicated that rs3817198(T > C) was positively correlated to with breast malignancy (dominant model: OR = 1.11, 95%CI = 1.06-1.17; recessive model: OR = 1.10, 95%CI = 1.04-1.15; heterozygous model: OR = 1.09, 95%CI = 1.04-1.15; homozygous model: OR = 1.18, 95%CI = 1.09-1.28; additive model: OR = 1.09, 95%CI = 1.05-1.13), among Caucasians and Asians. However, rs3817198(T > C) may reduce the risk of breast carcinoma in Africans. Rs3817198(T > C) might result in breast carcinoma in individuals with BRCA1 and BRCA2 variants and can contribute to estrogen receptor (ER)-positive breast carcinoma. The expression of LSP1 was inversely correlated with the IC50 of doxorubicin (P = 8.91e-15, Cor = -0.23), 5-fluorouracil (P = 1.18e-22, Cor = -0.29), and cisplatin (P = 1.35e-42, Cor = -0.40). CONCLUSION Our study identified that LSP1 rs3817198 polymorphism might result in breast malignancy, particularly among Caucasians and Asians, but lower breast cancer susceptibility in African populations. The expression of LSP1 was negatively correlated with the IC50 of doxorubicin, 5-fluorouracil, and cisplatin.
Collapse
Affiliation(s)
- Jian Chen
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Xiao
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xudong Li
- Surgery Department, Wannian Maternal and Child Health Hospital, Shangrao, Jiangxi, China
| | - Ruihao Liu
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaozhou Long
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhigao Liu
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Haiwei Xiong
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yingliang Li
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- * Correspondence: Yingliang Li, First Affiliated Hospital of Nanchang University, No 17, YongWaiZheng Street, DongHu District, Nanchang 330006, Jiangxi, China (e-mail: )
| |
Collapse
|
4
|
Hilchey SP, Palshikar MG, Mendelson ES, Shen S, Rasam S, Emo JA, Qu J, Thakar J, Zand MS. Cyclosporine A Modulates LSP1 Protein Levels in Human B Cells to Attenuate B Cell Migration at Low O 2 Levels. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081284. [PMID: 36013463 PMCID: PMC9410508 DOI: 10.3390/life12081284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/20/2022]
Abstract
Coordinated migration of B cells within and between secondary lymphoid tissues is required for robust antibody responses to infection or vaccination. Secondary lymphoid tissues normally expose B cells to a low O2 (hypoxic) environment. Recently, we have shown that human B cell migration is modulated by an O2-dependent molecular switch, centrally controlled by the hypoxia-induced (transcription) factor-1α (HIF1A), which can be disrupted by the immunosuppressive calcineurin inhibitor, cyclosporine A (CyA). However, the mechanisms by which low O2 environments attenuate B cell migration remain poorly defined. Proteomics analysis has linked CXCR4 chemokine receptor signaling to cytoskeletal rearrangement. We now hypothesize that the pathways linking the O2 sensing molecular switch to chemokine receptor signaling and cytoskeletal rearrangement would likely contain phosphorylation events, which are typically missed in traditional transcriptomic and/or proteomic analyses. Hence, we have performed a comprehensive phosphoproteomics analysis of human B cells treated with CyA after engagement of the chemokine receptor CXCR4 with CXCL12. Statistical analysis of the separate and synergistic effects of CyA and CXCL12 revealed 116 proteins whose abundance is driven by a synergistic interaction between CyA and CXCL12. Further, we used our previously described algorithm BONITA to reveal a critical role for Lymphocyte Specific Protein 1 (LSP1) in cytoskeletal rearrangement. LSP1 is known to modulate neutrophil migration. Validating these modeling results, we show experimentally that LSP1 levels in B cells increase with low O2 exposure, and CyA treatment results in decreased LSP1 protein levels. This correlates with the increased chemotactic activity observed after CyA treatment. Lastly, we directly link LSP1 levels to chemotactic capacity, as shRNA knock-down of LSP1 results in significantly increased B cell chemotaxis at low O2 levels. These results directly link CyA to LSP1-dependent cytoskeletal regulation, demonstrating a previously unrecognized mechanism by which CyA modulates human B cell migration. Data are available via ProteomeXchange with identifier PXD036167.
Collapse
Affiliation(s)
- Shannon P. Hilchey
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mukta G. Palshikar
- Biophysics, Structural, and Computational Biology Program, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Eric S. Mendelson
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY 14203, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY 14203, USA
| | - Sailee Rasam
- Department of Pharmaceutical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY 14203, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY 14203, USA
| | - Jason A. Emo
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY 14203, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY 14203, USA
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martin S. Zand
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Correspondence:
| |
Collapse
|
5
|
Le NPK, do Nascimento AF, Schneberger D, Quach CC, Zhang X, Aulakh GK, Dawicki W, Liu L, Gordon JR, Singh B. Deficiency of leukocyte-specific protein 1 (LSP1) alleviates asthmatic inflammation in a mouse model. Respir Res 2022; 23:165. [PMID: 35733161 PMCID: PMC9219131 DOI: 10.1186/s12931-022-02078-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Background Asthma is a major cause of morbidity and mortality in humans. The mechanisms of asthma are still not fully understood. Leukocyte-specific protein-1 (LSP-1) regulates neutrophil migration during acute lung inflammation. However, its role in asthma remains unknown. Methods An OVA-induced mouse asthma model in LSP1-deficient (Lsp1−/−) and wild-type (WT) 129/SvJ mice were used to test the hypothesis that the absence of LSP1 would inhibit airway hyperresponsiveness and lung inflammation. Results Light and electron microscopic immunocytochemistry and Western blotting showed that, compared with normal healthy lungs, the levels of LSP1 were increased in lungs of OVA-asthmatic mice. Compared to Lsp1−/− OVA mice, WT OVA mice had higher levels of leukocytes in broncho-alveolar lavage fluid and in the lung tissues (P < 0.05). The levels of OVA-specific IgE but not IgA and IgG1 in the serum of WT OVA mice was higher than that of Lsp1−/− OVA mice (P < 0.05). Deficiency of LSP1 significantly reduced the levels of IL-4, IL-5, IL-6, IL-13, and CXCL1 (P < 0.05) but not total proteins in broncho-alveolar lavage fluid in asthmatic mice. The airway hyper-responsiveness to methacholine in Lsp1−/− OVA mice was improved compared to WT OVA mice (P < 0.05). Histology revealed more inflammation (inflammatory cells, and airway and blood vessel wall thickening) in the lungs of WT OVA mice than in those of Lsp1−/− OVA mice. Finally, immunohistology showed localization of LSP1 protein in normal and asthmatic human lungs especially associated with the vascular endothelium and neutrophils. Conclusion These data show that LSP1 deficiency reduces airway hyper-responsiveness and lung inflammation, including leukocyte recruitment and cytokine expression, in a mouse model of asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02078-7.
Collapse
Affiliation(s)
- Nguyen Phuong Khanh Le
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada.,Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | | | - David Schneberger
- Department of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Chi Cuong Quach
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Xiaobei Zhang
- Department of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Gurpreet K Aulakh
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada.,Small Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Wojciech Dawicki
- Department of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - John R Gordon
- Department of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Baljit Singh
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada. .,Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N5B4, Canada.
| |
Collapse
|
6
|
Koral K, Bhushan B, Orr A, Stoops J, Bowen WC, Copeland MA, Locker J, Mars WM, Michalopoulos GK. Lymphocyte-Specific Protein-1 Suppresses Xenobiotic-Induced Constitutive Androstane Receptor and Subsequent Yes-Associated Protein-Activated Hepatocyte Proliferation. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:887-903. [PMID: 35390317 PMCID: PMC9194659 DOI: 10.1016/j.ajpath.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 06/03/2023]
Abstract
Activation of constitutive androstane receptor (CAR) transcription factor by xenobiotics promotes hepatocellular proliferation, promotes hypertrophy without liver injury, and induces drug metabolism genes. Previous work demonstrated that lymphocyte-specific protein-1 (LSP1), an F-actin binding protein and gene involved in human hepatocellular carcinoma, suppresses hepatocellular proliferation after partial hepatectomy. The current study investigated the role of LSP1 in liver enlargement induced by chemical mitogens, a regenerative process independent of tissue loss. 1,4-Bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a direct CAR ligand and strong chemical mitogen, was administered to global Lsp1 knockout and hepatocyte-specific Lsp1 transgenic (TG) mice and measured cell proliferation, hypertrophy, and expression of CAR-dependent drug metabolism genes. TG livers displayed a significant decrease in Ki-67 labeling and liver/body weight ratios compared with wild type on day 2. Surprisingly, this was reversed by day 5, due to hepatocyte hypertrophy. There was no difference in CAR-regulated drug metabolism genes between wild type and TG. TG livers displayed increased Yes-associated protein (YAP) phosphorylation, decreased nuclear YAP, and direct interaction between LSP1 and YAP, suggesting LSP1 suppresses TCPOBOP-driven hepatocellular proliferation, but not hepatocyte volume, through YAP. Conversely, loss of LSP1 led to increased hepatocellular proliferation on days 2, 5, and 7. LSP1 selectively suppresses CAR-induced hepatocellular proliferation, but not drug metabolism, through the interaction of LSP1 with YAP, supporting the role of LSP1 as a selective growth suppressor.
Collapse
Affiliation(s)
- Kelly Koral
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Stoops
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew A Copeland
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Locker
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George K Michalopoulos
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
7
|
Yu R, Zhang J, Zhuo Y, Hong X, Ye J, Tang S, Zhang Y. Identification of Diagnostic Signatures and Immune Cell Infiltration Characteristics in Rheumatoid Arthritis by Integrating Bioinformatic Analysis and Machine-Learning Strategies. Front Immunol 2021; 12:724934. [PMID: 34691030 PMCID: PMC8526926 DOI: 10.3389/fimmu.2021.724934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023] Open
Abstract
Background Rheumatoid arthritis (RA) refers to an autoimmune rheumatic disease that imposes a huge burden on patients and society. Early RA diagnosis is critical to preventing disease progression and selecting optimal therapeutic strategies more effectively. In the present study, the aim was at examining RA's diagnostic signatures and the effect of immune cell infiltration in this pathology. Methods Gene Expression Omnibus (GEO) database provided three datasets of gene expressions. Firstly, this study adopted R software for identifying differentially expressed genes (DEGs) and conducting functional correlation analyses. Subsequently, we integrated bioinformatic analysis and machine-learning strategies for screening and determining RA's diagnostic signatures and further verify by qRT-PCR. The diagnostic values were assessed through receiver operating characteristic (ROC) curves. Moreover, this study employed cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) website for assessing the inflammatory state of RA, and an investigation was conducted on the relationship of diagnostic signatures and infiltrating immune cells. Results On the whole, 54 robust DEGs received the recognition. Lymphocyte-specific protein 1 (LSP1), Granulysin (GNLY), and Mesenchymal homobox 2 (MEOX2) (AUC = 0.955) were regarded as RA's diagnostic markers and showed their statistically significant difference by qRT-PCR. As indicated from the immune cell infiltration analysis, resting NK cells, neutrophils, activated NK cells, T cells CD8, memory B cells, and M0 macrophages may be involved in the development of RA. Additionally, all diagnostic signatures might be different degrees of correlation with immune cells. Conclusions In conclusion, LSP1, GNLY, and MEOX2 are likely to be available in terms of diagnosing and treating RA, and the infiltration of immune cells mentioned above may critically impact RA development and occurrence.
Collapse
Affiliation(s)
- Rongguo Yu
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Jiayu Zhang
- School of Clinical Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Youguang Zhuo
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xu Hong
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Jie Ye
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Susu Tang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Yiyuan Zhang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Schäringer K, Maxeiner S, Schalla C, Rütten S, Zenke M, Sechi A. LSP1-myosin1e bimolecular complex regulates focal adhesion dynamics and cell migration. FASEB J 2021; 35:e21268. [PMID: 33470457 DOI: 10.1096/fj.202000740rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
Several cytoskeleton-associated proteins and signaling pathways work in concert to regulate actin cytoskeleton remodeling, cell adhesion, and migration. Although the leukocyte-specific protein 1 (LSP1) has been shown to interact with the actin cytoskeleton, its function in the regulation of actin cytoskeleton dynamics is, as yet, not fully understood. We have recently demonstrated that the bimolecular complex between LSP1 and myosin1e controls actin cytoskeleton remodeling during phagocytosis. In this study, we show that LSP1 downregulation severely impairs cell migration, lamellipodia formation, and focal adhesion dynamics in macrophages. Inhibition of the interaction between LSP1 and myosin1e also impairs these processes resulting in poorly motile cells, which are characterized by few and small lamellipodia. Furthermore, cells in which LSP1-myosin1e interaction is inhibited are typically associated with inefficient focal adhesion turnover. Collectively, our findings show that the LSP1-myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling and focal adhesion dynamics required for cell migration.
Collapse
Affiliation(s)
- Katja Schäringer
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Sebastian Maxeiner
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Carmen Schalla
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Antonio Sechi
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Al-Mozaini M, Alzahrani A, Alsharif I, Shinwari Z, Halim M, Alhokail A, Alrajhi A, Alaiya A. Quantitative proteomics analysis reveals unique but overlapping protein signatures in HIV infections. J Infect Public Health 2021; 14:795-802. [PMID: 34030014 DOI: 10.1016/j.jiph.2021.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus-1 (HIV-1) exploits human host factors to complete its life cycle. Hence, discovery of HIV-regulated host proteins markers would better our understanding of the virus life-cycle and its contribution to pathogenesis and discovery of objective diagnostic and prognostic molecules. METHODS We conducted holistic total proteomics analysis of three closely related study populations including patients with HIV type-1 (HIV-1) and HIV type-2 (HIV-2) as well as HIV-1 elite controllers (HIV-1-EC). Peripheral blood plasma (PBP) samples were subjected to label-free quantitative liquid-chromatography tandem mass-spectrometry (LC-MS/MS). RESULTS Over 314 unique PBP protein species were identified of which 100 (approx. 32%) were significantly differentially expressed (≥2 to ∞ - fold-change; p < 0.05) between the three sample cohorts. Of the 100 proteins, 91 were significantly changed between pairs of HIV-1 versus HIV-1-EC, while 83 of the 100 proteins differed significantly between HIV-2 and HIV-1-EC. Interestingly, 76 proteins (87.5%) overlap between the two data sets indicating that majority of these proteins share similar expression changes between HIV-1 and HIV-2 sample groups. Two of the identified proteins, XRCC5 and PSME1, were implicated in the early phase of the pathway network for HIV life cycle, while others were involved in infectious disease and disease of signal transduction. Among them were MAP2K1, RPL23A, RPS3, CALR, PRDX1, SOD2, LMNB1, PHB, and FGB. Despite the high degree of similarity in protein profiles of HIV-1 and HIV-2, six proteins differed significantly including ETFB, PHB2, S100A9, LMO2, PPP3R1 and Vif, a fragment of virion infectivity factor of HIV-1. Additionally, 15 proteins were uniquely expressed, and one of them (LSP1) is present only in HIV-1-EC but absent in HIV1 and HIV-2 and vice versa for the rest 14 proteins. CONCLUSIONS Altogether, we have identified HIV-specific/related protein expression changes that might potentially be capable of early diagnosis and prognosis of HIV diseases and other related infectious diseases.
Collapse
Affiliation(s)
- Maha Al-Mozaini
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia; Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, KSA, Saudi Arabia.
| | - Alhusain Alzahrani
- College of Applied Medical Sciences, University of Hafr Al Baten, Hafr Al Baten, KSA, Saudi Arabia.
| | - Ibtihaj Alsharif
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia.
| | - Zakia Shinwari
- Proteomics Unit, Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia.
| | - Magid Halim
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia.
| | - Abdullah Alhokail
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia.
| | - Abdulrahman Alrajhi
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia.
| | - Ayodele Alaiya
- Proteomics Unit, Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA, Saudi Arabia.
| |
Collapse
|
10
|
Kwon R, Hong BK, Lee KG, Choi E, Sabbagh L, Cho CS, Lee N, Kim WU. Regulation of tumor growth by leukocyte-specific protein 1 in T cells. J Immunother Cancer 2020; 8:jitc-2020-001180. [PMID: 33020243 PMCID: PMC7537340 DOI: 10.1136/jitc-2020-001180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Clinical efficacy of T cell-based cancer immunotherapy is limited by the lack of T cell infiltration in the tumor mass, especially in solid tumors. Our group demonstrated previously that leukocyte-specific protein 1 (LSP1), an intracellular signal regulator, negatively regulates T cell infiltration in inflamed tissues. METHODS To determine the immuno-regulatory effects of LSP1 in T cells on tumor progression, we investigated the growth of B16 melanoma in Lsp1 knockout (KO) mice and T cell-specific Lsp1 transgenic (Tg) mice. The immune cell subpopulation infiltrated into the tumor mass as well as the expression of interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) in T cells was assessed by flow cytometry and/or immunohistochemistry. Chemotactic migration was assayed with Lsp1 KO and Lsp1 Tg T cells. Adoptive transfer of Lsp1 KO or Lsp1 Tg T cells was performed in B16 melanoma-challenged Rag1 KO mice. RESULTS Lsp1 KO mice showed decreased growth of B16 melanoma and increased infiltration of T cells in the tumor mass, which were completely reversed in T cell-specific Lsp1 Tg mice. Lsp1 KO CD8+ T cells also exhibited elevated migratory capacity in response to CXCL9 and CXCL10, whereas Lsp1 Tg CD8+ T cells did the opposite. LSP1 expression was increased in tumor-infiltrating T cells and could be induced by T cell receptor activation. Intriguingly, gene expression profiling of Lsp1 KO T cells suggested enhanced cytotoxicity. Indeed, expression of IFN-γ and TNF-α was increased in tumor-infiltrating CD4+ and CD8+ T cells of Lsp1 KO mice, while it was markedly reduced in those of Lsp1 Tg mice. Adoptive transfer of Lsp1 KO T cells to Rag1 KO mice was more effective in suppressing melanoma growth than transfer of Lsp1 Tg T cells. Of note, when treated with antiprogrammed cell death protein 1 (PD-1) antibody, inhibition of melanoma growth was more pronounced in Lsp1 KO mice than in Lsp1-sufficient mice, suggesting that Lsp1 depletion additively increases the antitumor effects of anti-PD-1 antibody. CONCLUSIONS LSP1 in T cells regulates the growth of B16 melanoma in mice, possibly by affecting migration and infiltration of T cells into the tumor and by modulating production of antitumor effector cytokines by CD8+ T cells. These findings provide evidence that LSP1 can be a target to improve the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Riri Kwon
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bong-Ki Hong
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang-Gu Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunbyeol Choi
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Laurent Sabbagh
- Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Chul-Soo Cho
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Naeun Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea .,Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Koral K, Haynes M, Bowen WC, Orr A, Mars W, Michalopoulos GK. Lymphocyte-Specific Protein-1 Controls Sorafenib Sensitivity and Hepatocellular Proliferation through Extracellular Signal-Regulated Kinase 1/2 Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2074-2086. [PMID: 30126548 DOI: 10.1016/j.ajpath.2018.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
Abstract
The gene leukocyte-specific protein-1 (LSP1), encodes an F-actin binding protein that directly interacts with the mitogen-activated protein kinase pathway. LSP1 has copy number variations in 52% of human hepatocellular carcinoma (HCC). LSP1 suppresses proliferation and migration in hepatocytes. LSP1 binds to the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein/extracellular signal-regulated kinase (ERK)/ERK signaling cassette, the target for sorafenib, a crucial chemotherapeutic agent for HCC. This study addresses the role of LSP1 in liver regeneration and sensitivity to sorafenib in normal and neoplastic hepatocytes. Two mouse models, an Lsp1 global knockout (LSP1KO) and a hepatocyte-specific Lsp1 transgenic (LSP1TG) mouse, were used. After two-thirds hepatectomy (PHx), LSP1KO mice displayed increased proliferation and ERK activation, whereas LSP1TG mice displayed suppressed proliferation and decreased ERK activation. LSP1KO hepatocytes cultured without growth factors exhibited increased proliferation, whereas LSP1TG hepatocytes showed decreased proliferation. Rat and human hepatoma cells expressing Lsp1 shRNA displayed increased sensitivity to sorafenib, as evidenced by decreased cell numbers and phosphorylated ERK expression compared with control. LSP1 KO mice treated with sorafenib before PHx displayed decreased hepatocyte proliferation. Our data show that loss of LSP1 function, observed in HCC, leads to increased sensitivity to sorafenib treatment and enhanced hepatocellular proliferation after PHx in vivo and in cultured cells.
Collapse
Affiliation(s)
- Kelly Koral
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meagan Haynes
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy Mars
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
12
|
Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nat Commun 2018; 9:515. [PMID: 29410425 PMCID: PMC5802837 DOI: 10.1038/s41467-018-02904-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/05/2018] [Indexed: 01/06/2023] Open
Abstract
Subcellular fine-tuning of the actomyosin cytoskeleton is a prerequisite for polarized cell migration. We identify LSP (lymphocyte-specific protein) 1 as a critical regulator of actomyosin contractility in primary macrophages. LSP1 regulates adhesion and migration, including the parameters cell area and speed, and also podosome turnover, oscillation and protrusive force. LSP1 recruits myosin IIA and its regulators, including myosin light chain kinase and calmodulin, and competes with supervillin, a myosin hyperactivator, for myosin regulators, and for actin isoforms, notably β-actin. Actin isoforms are anisotropically distributed in myosin IIA-expressing macrophages, and contribute to the differential recruitment of LSP1 and supervillin, thus enabling an actomyosin symmetry break, analogous to the situation in cells expressing two myosin II isoforms. Collectively, these results show that the cellular pattern of actin isoforms builds the basis for the differential distribution of two actomyosin machineries with distinct properties, leading to the establishment of discrete zones of actomyosin contractility. The actomyosin cytoskeleton plays an important role in polarised cell migration. Here the authors identify lymphocyte-specific protein (LSP)-1 as a regulator of actomyosin contractility in macrophages, by competing with supervillin for myosin IIA activators acting specifically on the β-actin isoform.
Collapse
|
13
|
Postnikoff C, Gorbet M. The Effect of Closed-Eye Tear Film Conditions on Blood-Isolated Neutrophils, In Vitro. Ocul Immunol Inflamm 2017; 26:706-716. [PMID: 28323491 DOI: 10.1080/09273948.2017.1281423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Eyelid closure results in influx of neutrophils onto the ocular surface, which are non-responsive to inflammatory stimuli. This investigation examined whether incubation of blood-isolated neutrophils in closed-eye conditions induce a tear-film neutrophil phenotype. METHODS Blood-isolated neutrophils were incubated combining various conditions: hypoxia, corneal epithelial cells (HCEC), artificial tear solution (ATS). RESULTS A hypoxic environment induced no differential effect on membrane receptor expression. Incubation in the presence of HCEC resulted in membrane receptor upregulation and increase in caspase activation. CONCLUSIONS Hypoxia, corneal epithelial cell exposure, or artificial tear fluid are insufficient to replicate a tear-film neutrophil phenotype using blood-isolated neutrophils.
Collapse
Affiliation(s)
- Cameron Postnikoff
- a Systems Design Engineering , University of Waterloo , Waterloo , Ontario , Canada
| | - Maud Gorbet
- a Systems Design Engineering , University of Waterloo , Waterloo , Ontario , Canada.,b School of Optometry and Vision Science , University of Waterloo , Waterloo , Ontario , Canada
| |
Collapse
|
14
|
Le NPK, Channabasappa S, Hossain M, Liu L, Singh B. Leukocyte-specific protein 1 regulates neutrophil recruitment in acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L995-1008. [PMID: 26320151 DOI: 10.1152/ajplung.00068.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/25/2015] [Indexed: 01/21/2023] Open
Abstract
The mechanisms of excessive migration of activated neutrophils into inflamed lungs, credited with tissue damage, are not fully understood. We explored the hitherto unknown expression of leukocyte-specific protein 1 (LSP1) in human and mouse lungs and neutrophils and examined its role in neutrophil migration in acute lung inflammation. Autopsied septic human lungs showed increased LSP1 labeling in epithelium, endothelium, and leukocytes, including in their nuclei compared with normal lungs. We induced acute lung inflammation through intranasal administration of E. coli lipopolysaccharide (LPS) (80 μg) in LSP1-deficient (Lsp1(-/-)) and wild-type (WT) 129/SvJ mice. Immunocytochemistry and Western blots showed increased expression of LSP1 and phosphorylated LSP1 in lungs of LPS-treated WT mice. Histology showed more congestion, inflammation, and Gr-1(+) neutrophils in lung of WT mice than Lsp1(-/-) mice. LPS-treated WT mice had significantly more neutrophils in bronchoalveolar lavage (BAL) and myeloperoxidase levels in lungs compared with Lsp1(-/-) mice. However, there were no differences in lung tissue and BAL concentrations of keratinocyte-derived chemokine, monocyte chemoattractant protein-1, macrophage inflammatory protein-1α and -1β, vascular permeability, and phosphorylated p38 MAPK between LPS-treated WT and Lsp1(-/-) mice, whereas TNF-α concentration was higher in BAL fluid from LPS-treated WT. Immunoelectron microscopy showed increased LSP1 in the nuclei of LPS-treated neutrophils. We also found increased levels of phosphorylated LSP1 associated with plasma membrane, nucleus, and cytosol at various times after LPS treatment of murine bone marrow-derived neutrophils, suggesting its role in modulation of neutrophil cytoskeleton and the membrane. These data collectively show increased expression of LSP1 in inflamed mouse and human lungs and its role in neutrophil recruitment and lung inflammation.
Collapse
Affiliation(s)
- Nguyen Phuong Khanh Le
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Shankaramurthy Channabasappa
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mokarram Hossain
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Baljit Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada;
| |
Collapse
|
15
|
Hossain M, Qadri SM, Xu N, Su Y, Cayabyab FS, Heit B, Liu L. Endothelial LSP1 Modulates Extravascular Neutrophil Chemotaxis by Regulating Nonhematopoietic Vascular PECAM-1 Expression. THE JOURNAL OF IMMUNOLOGY 2015; 195:2408-16. [PMID: 26238489 DOI: 10.4049/jimmunol.1402225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 07/05/2015] [Indexed: 01/13/2023]
Abstract
During inflammation, leukocyte-endothelial cell interactions generate molecular signals that regulate cell functions. The Ca(2+)- and F-actin-binding leukocyte-specific protein 1 (LSP1) expressed in leukocytes and nonhematopoietic endothelial cells is pivotal in regulating microvascular permeability and leukocyte recruitment. However, cell-specific function of LSP1 during leukocyte recruitment remains elusive. Using intravital microscopy of cremasteric microvasculature of chimeric LSP1-deficient mice, we show that not neutrophil but endothelial LSP1 regulates neutrophil transendothelial migration and extravascular directionality without affecting the speed of neutrophil migration in tissue in response to CXCL2 chemokine gradient. The expression of PECAM-1-sensitive α6β1 integrins on the surface of transmigrated neutrophils was blunted in mice deficient in endothelial LSP1. Functional blocking studies in vivo and in vitro elucidated that α6β1 integrins orchestrated extravascular directionality but not the speed of neutrophil migration. In LSP1-deficient mice, PECAM-1 expression was reduced in endothelial cells, but not in neutrophils. Similarly, LSP1-targeted small interfering RNA silencing in murine endothelial cells mitigated mRNA and protein expression of PECAM-1, but not ICAM-1 or VCAM-1. Overexpression of LSP1 in endothelial cells upregulated PECAM-1 expression. Furthermore, the expression of transcription factor GATA-2 that regulates endothelial PECAM-1 expression was blunted in LSP1-deficient or LSP1-silenced endothelial cells. The present study unravels endothelial LSP1 as a novel cell-specific regulator of integrin α6β1-dependent neutrophil extravascular chemotactic function in vivo, effective through GATA-2-dependent transcriptional regulation of endothelial PECAM-1 expression.
Collapse
Affiliation(s)
- Mokarram Hossain
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Syed M Qadri
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Najia Xu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Francisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; and
| | - Bryan Heit
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada;
| |
Collapse
|
16
|
Jin SY, Choi JS, Choi YL, Choi YL, Kim DH, Lee SH. Identification of leukocyte-specific protein 1-positive cells: a clue to the cell of origin and a marker for the diagnosis of dermatofibroma. Ann Dermatol 2015; 27:157-62. [PMID: 25834354 PMCID: PMC4377404 DOI: 10.5021/ad.2015.27.2.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/12/2014] [Accepted: 07/09/2014] [Indexed: 11/08/2022] Open
Abstract
Background Dermatofibroma (DF) comprises a heterogeneous group of mesenchymal tumors, with fibroblastic and histiocytic elements present in varying proportions. The cell of origin of DF has been investigated, but remains unclear. Objective The present study attempted to investigate the expression of leukocyte-specific protein 1 (LSP1), a marker of fibrocytes, in DF. Additionally, we evaluated the effectiveness of LSP1 in the differential diagnosis of DF from dermatofibrosarcoma protuberans (DFSP). Methods Immunohistochemical staining was performed on 20 cases of DF using antibodies against LSP1, CD68, and factor XIIIa (FXIIIa). In addition, the expression of LSP1 and FXIIIa was evaluated in 20 cases of DFSP. Results Eighteen of 20 cases (90%) of DF stained positive for LSP1, with variation in the intensity of expression. CD68 was positive in 10 cases (50%), and FXIIIa was expressed in all cases of DF. There were differences between the regional expression patterns of the three markers in individual tumors. In contrast, only 2 of 20 cases of DFSP expressed LSP1, and none of DFSP cases stained positive for FXIIIa. Conclusion The LSP1-positive cells in DF could potentially be fibrocyte-like cells. FXIIIa and CD68 expression suggests that dermal dendritic cells and histiocytes are constituent cells of DF. It is known that fibrocytes, dermal dendritic cells and histiocytes are all derived from CD14+ monocytes. Therefore, we suggest that DF may originate from CD14+ monocytes. Additionally, the LSP1 immunohistochemical stain could be useful in distinguishing between DF and DFSP.
Collapse
Affiliation(s)
- Sang Yun Jin
- Department of Dermatology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Jong Sun Choi
- Department of Pathology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Yoon La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Hun Kim
- Department of Dermatology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Seung Ho Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
17
|
Maxeiner S, Shi N, Schalla C, Aydin G, Hoss M, Vogel S, Zenke M, Sechi AS. Crucial role for the LSP1-myosin1e bimolecular complex in the regulation of Fcγ receptor-driven phagocytosis. Mol Biol Cell 2015; 26:1652-64. [PMID: 25717183 PMCID: PMC4436777 DOI: 10.1091/mbc.e14-05-1005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 02/19/2015] [Indexed: 01/24/2023] Open
Abstract
The actin cytoskeleton is fundamental for the innate immune process of phagocytosis. This study shows that LSP1 plays a pivotal role in the regulation of actin cytoskeleton remodeling during Fcγ receptor–mediated phagocytosis and that its interactions with myosin1e and actin are crucial for the efficiency of this actin-driven process. Actin cytoskeleton remodeling is fundamental for Fcγ receptor–driven phagocytosis. In this study, we find that the leukocyte-specific protein 1 (LSP1) localizes to nascent phagocytic cups during Fcγ receptor–mediated phagocytosis, where it displays the same spatial and temporal distribution as the actin cytoskeleton. Down-regulation of LSP1 severely reduces the phagocytic activity of macrophages, clearly demonstrating a crucial role for this protein in Fcγ receptor–mediated phagocytosis. We also find that LSP1 binds to the class I molecular motor myosin1e. LSP1 interacts with the SH3 domain of myosin1e, and the localization and dynamics of both proteins in nascent phagocytic cups mirror those of actin. Furthermore, inhibition of LSP1–myosin1e and LSP1–actin interactions profoundly impairs pseudopodial formation around opsonized targets and their subsequent internalization. Thus the LSP1–myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling during Fcγ receptor–driven phagocytosis.
Collapse
Affiliation(s)
- Sebastian Maxeiner
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Nian Shi
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Carmen Schalla
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Guelcan Aydin
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Mareike Hoss
- Electron Microscopy Facility, Uniklinik RWTH Aachen, Applied Ecology, D-52074 Aachen, Germany
| | - Simon Vogel
- Fraunhofer Institute for Molecular Biology and Applied Ecology, D-52074 Aachen, Germany
| | - Martin Zenke
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| | - Antonio S Sechi
- Institute of Biomedical Engineering, Department of Cell Biology, Applied Ecology, D-52074 Aachen, Germany
| |
Collapse
|
18
|
Abstract
Neutrophil granulocytes are key effector cells of the vertebrate immune system. They represent 50-70% of the leukocytes in the human blood and their loss by disease or drug side effect causes devastating bacterial infections. Their high turnover rate, their fine-tuned killing machinery, and their arsenal of toxic vesicles leave them particularly vulnerable to various genetic deficiencies. The aim of this review is to highlight those congenital immunodeficiencies which impede the dynamics of neutrophils, such as migration, cytoskeletal rearrangements, vesicular trafficking, and secretion.
Collapse
|
19
|
Abstract
The importance of the cytoskeleton in mounting a successful immune response is evident from the wide range of defects that occur in actin-related primary immunodeficiencies (PIDs). Studies of these PIDs have revealed a pivotal role for the actin cytoskeleton in almost all stages of immune system function, from hematopoiesis and immune cell development, through to recruitment, migration, intercellular and intracellular signaling, and activation of both innate and adaptive immune responses. The major focus of this review is the immune defects that result from mutations in the Wiskott-Aldrich syndrome gene (WAS), which have a broad impact on many different processes and give rise to clinically heterogeneous immunodeficiencies. We also discuss other related genetic defects and the possibility of identifying new genetic causes of cytoskeletal immunodeficiency.
Collapse
Affiliation(s)
- Dale A Moulding
- Molecular Immunology Unit, Center for Immunodeficiency, Institute of Child Health, University College London, London, UK
| | | | | | | |
Collapse
|
20
|
Hossain M, Qadri SM, Su Y, Liu L. ICAM-1-mediated leukocyte adhesion is critical for the activation of endothelial LSP1. Am J Physiol Cell Physiol 2013; 304:C895-904. [PMID: 23447036 DOI: 10.1152/ajpcell.00297.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leukocyte-endothelial interaction triggers signaling events in endothelial cells prior to transendothelial migration of leukocytes. Leukocyte-specific protein 1 (LSP1), expressed in endothelial cells, plays a pivotal role in regulating subsequent recruitment steps following leukocyte adhesion. In neutrophils, LSP1 is activated by phosphorylation of its serine residues by molecules downstream of p38 MAPK and PKC. Whether leukocyte adhesion to endothelial cells is required for endothelial LSP1 activation remains elusive. In addition, discrepancies in the functions of endothelial and leukocyte LSP1 in leukocyte adhesion prevail. We demonstrate that adhesion of wild-type (Lsp1(+/+)) neutrophils to LSP1-deficient (Lsp1(-/-)) endothelial cells was significantly reduced compared with adhesion to Lsp1(+/+) endothelial cells. Immunoblotting revealed increased phosphorylated endothelial LSP1 in the presence of adherent Lsp1(-/-) neutrophils [stimulated by macrophage inflammatory protein-2 (CXCL2), TNF-α, or thapsigargin], but not cytokine or chemokine alone. Pharmacological inhibition of p38 MAPK by SB-203580 (10 μM) significantly blunted the phosphorylation of endothelial LSP1. Functionally blocking endothelial ICAM-1 or neutrophil β2-integrins diminished neutrophil adhesion and phosphorylation of endothelial LSP1. The engagement of endothelial ICAM-1 cross-linking, which mimics leukocyte adhesion, resulted in phosphorylation of endothelial LSP1. In neutrophil-depleted Lsp1(+/+) mice, administration of ICAM-1 cross-linking antibody resulted in increased phosphorylation of LSP1 and p38 MAPK in TNF-α-stimulated cremaster muscle. In conclusion, endothelial LSP1 participates in leukocyte adhesion in vitro, and leukocyte adhesion through ICAM-1 fosters the activation of endothelial LSP1, an effect at least partially mediated by the activation of p38 MAPK. Endothelial LSP1, in contrast to neutrophil LSP1, is not phosphorylated by cytokine or chemokine stimulation alone.
Collapse
Affiliation(s)
- Mokarram Hossain
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
21
|
Sabbagh L, Andreeva D, Laramée GD, Oussa NAE, Lew D, Bisson N, Soumounou Y, Pawson T, Watts TH. Leukocyte-specific protein 1 links TNF receptor-associated factor 1 to survival signaling downstream of 4-1BB in T cells. J Leukoc Biol 2013; 93:713-21. [PMID: 23446150 DOI: 10.1189/jlb.1112579] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
4-1BB is a member of the TNFR superfamily, which contributes to the activation of signaling pathways required for the survival of activated and memory T cells. We have shown previously that TRAF1, an adaptor protein recruited to 4-1BB, is required for 4-1BB-mediated CD8 T cell survival in vivo. With the use of a proteomics approach in primary T cells, we have identified LSP1 as a novel protein recruited to the 4-1BB signaling complex in a TRAF1-dependent manner. Further characterization of the interaction between TRAF1 and LSP1 revealed that LSP1 requires the TRAF-N domain of TRAF1 for direct association. Similarly to TRAF1(-/-) T cells, LSP1(-/-) T cells exhibit impaired ERK activation following stimulation through 4-1BB and consequently, are unable to down-modulate expression of the proapoptotic Bcl-2 family member Bim. Moreover, we demonstrate that the absence of LSP1 expression leads to defective expansion and survival of T cells in response to 4-1BB stimulation. Thus, we have identified LSP1 as a new mediator involved in 4-1BB signaling and T cell survival. Collectively, our work shows that TRAF1 and LSP1 cooperate downstream of 4-1BB to activate ERK signaling and down-modulate the levels of Bim leading to enhanced T cell survival.
Collapse
Affiliation(s)
- Laurent Sabbagh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Different microvascular permeability responses elicited by the CXC chemokines MIP-2 and KC during leukocyte recruitment: Role of LSP1. Biochem Biophys Res Commun 2012; 423:484-9. [DOI: 10.1016/j.bbrc.2012.05.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/28/2012] [Indexed: 11/18/2022]
|
23
|
Grieb G, Steffens G, Pallua N, Bernhagen J, Bucala R. Circulating fibrocytes--biology and mechanisms in wound healing and scar formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 291:1-19. [PMID: 22017972 DOI: 10.1016/b978-0-12-386035-4.00001-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fibrocytes were first described in 1994 as fibroblast-like, peripheral blood cells. These bone marrow-derived mesenchymal progenitor cells migrate into regions of tissue injury. They are unique in their expression of hematopoietic and monocyte lineage markers and extracellular matrix proteins. Several studies have focused on the specific role of fibrocytes in the process of wound repair and tissue regeneration. We discuss herein the biology and mechanistic action of fibrocytes in wound healing, scar formation, and maintenance of tissue integrity. Fibrocytes synthesize and secrete different cytokines, chemokines, and growth factors, providing a wound milieu that supports tissue repair. They further promote angiogenesis and contribute to wound closure via pathways involving specific cytokines, leukocyte-specific protein-1, serum amyloid P, and adenosine A(2A) receptors. Fibrocytes are involved in inflammatory fibrotic processes in such diseases as systemic fibrosis, atherosclerosis, asthma, hypertrophic scarring, and keloid formation. Accumulating literature has emphasized the important role of fibrocytes in wound healing and fibrosis. Detailed mechanisms nevertheless remain to be investigated to elucidate the full therapeutic potential of fibrocytes in the treatment of fibrosing disorders and the enhancement of tissue repair.
Collapse
Affiliation(s)
- Gerrit Grieb
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
24
|
Endothelial LSP1 is involved in endothelial dome formation, minimizing vascular permeability changes during neutrophil transmigration in vivo. Blood 2010; 117:942-52. [PMID: 21030556 DOI: 10.1182/blood-2010-02-270561] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The endothelium actively participates in neutrophil migration out of the vasculature via dynamic, cytoskeleton-dependent rearrangements leading to the formation of transmigratory cups in vitro, and to domes that completely surround the leukocyte in vivo. Leukocyte-specific protein 1 (LSP1), an F-actin-binding protein recently shown to be in the endothelium, is critical for effective transmigration, although the mechanism has remained elusive. Herein we show that endothelial LSP1 is expressed in the nucleus and cytosol of resting endothelial cells and associates with the cytoskeleton upon endothelial activation. Two-photon microscopy revealed that endothelial LSP1 was crucial for the formation of endothelial domes in vivo in response to neutrophil chemokine keratinocyte-derived chemokine (KC) as well as in response to endogenously produced chemokines stimulated by cytokines (tumor necrosis factor α [TNFα] or interleukin-1β [IL-1β]). Endothelial domes were significantly reduced in Lsp1(-/-) compared with wild-type (WT) mice. Lsp1(-/-) animals not only showed impaired neutrophil emigration after KC and TNFα stimulation, but also had disproportionate increases in vascular permeability. We demonstrate that endothelial LSP1 is recruited to the cytoskeleton in inflammation and plays an important role in forming endothelial domes thereby regulating neutrophil transendothelial migration. The permeability data may underscore the physiologic relevance of domes and the role for LSP1 in endothelial barrier integrity.
Collapse
|
25
|
Haenen S, Vanoirbeek JAJ, De Vooght V, Maes E, Schoofs L, Nemery B, Hoet PHM, Clynen E. Proteome analysis of multiple compartments in a mouse model of chemical-induced asthma. J Proteome Res 2010; 9:5868-76. [PMID: 20860378 DOI: 10.1021/pr100638m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Occupational asthma is the principal cause of work-related respiratory disease in the industrial world. Toluene-2,4-diisocyanate (TDI) is one of the most common respiratory sensitizers leading to occupational asthma. Using a mouse model of chemical-induced asthma, we explored proteome changes in multiple compartments of mice sensitized and challenged with TDI or acetone-olive oil (AOO; vehicle). Airway reactivity to methacholine and a bronchoalveolar lavage (BAL) cell count was assessed in treated and control mice, 1 day after challenge. Subsequently, two-dimensional differential gel electrophoresis (2D-DIGE) was performed on auricular lymph nodes, BAL, and serum comparing TDI-treated and vehicle-treated control mice. The differentially expressed proteins were identified by mass spectrometry and pathway analysis was performed. TDI-treated mice exhibit increased airway reactivity (2.6-fold increase) and a neutrophilic inflammation in the BAL fluid, compared to control mice. 2D-DIGE showed 53, 210, and 40 differentially expressed proteins in the auricular lymph nodes, BAL, and serum of TDI-treated versus vehicle-treated mice, respectively. Several of the identified proteins could be linked with inflammation, neutrophil chemotaxis, and/or oxidative stress. Physiologic and immunologic readouts of the asthmatic phenotype, such as inflammation, were confirmed in three compartments by several of the differentially expressed proteins via 2D-DIGE and computerized pathway analysis.
Collapse
Affiliation(s)
- Steven Haenen
- Katholieke Universiteit Leuven, Research Unit Lung Toxicology, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Peritoneal damage: the inflammatory response and clinical implications of the neuro-immuno-humoral axis. World J Surg 2010; 34:704-20. [PMID: 20049432 DOI: 10.1007/s00268-009-0382-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The peritoneum is a bilayer serous membrane that lines the abdominal cavity. We present a review of peritoneal structure and physiology, with a focus on the peritoneal inflammatory response to surgical injury and its clinical implications. METHODS We conducted a nonsystematic clinical review. A search of the Ovid MEDLINE database from 1950 through January 2009 was performed using the following search terms: peritoneum, adhesions, cytokine, inflammation, and surgery. RESULTS The peritoneum is a metabolically active organ, responding to insult through a complex array of immunologic and inflammatory cascades. This response increases with the duration and extent of injury and is central to the concept of surgical stress, manifesting via a combination of systemic effects, and local neural pathways via the neuro-immuno-humoral axis. There may be a decreased systemic inflammatory response after minimally invasive surgery; however, it is unclear whether this is due to a reduced local peritoneal reaction. CONCLUSIONS Interventions that dampen the peritoneal response and/or block the neuro-immuno-humoral pathway should be further investigated as possible avenues of enhancing recovery after surgery, and reducing postoperative complications.
Collapse
|
27
|
HIV-1 gp120-induced migration of dendritic cells is regulated by a novel kinase cascade involving Pyk2, p38 MAP kinase, and LSP1. Blood 2009; 114:3588-600. [PMID: 19700666 DOI: 10.1182/blood-2009-02-206342] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Targeting dendritic cell (DC) functions such as migration is a pivotal mechanism used by HIV-1 to disseminate within the host. The HIV-1 envelope protein is the most important of the virally encoded proteins that exploits the migratory capacity of DCs. In the present study, we elucidated the signaling machinery involved in migration of immature DCs (iDCs) in response to HIV-1 envelope protein. We observed that M-tropic HIV-1 glycoprotein 120 (gp120) induces phosphorylation of the nonreceptor tyrosine kinase, Pyk2. Inhibition of Pyk2 activity using a pharmacologic inhibitor, kinase-inactive Pyk2 mutant, and Pyk2-specific small interfering RNA blocked gp120-induced chemotaxis, confirming the role of Pyk2 in iDC migration. In addition, we also illustrated the importance of Pyk2 in iDC migration induced by virion-associated envelope protein, using aldithriol-2-inactivated M-tropic HIV-1 virus. Further analysis of the downstream signaling mechanisms involved in gp120-induced migration revealed that Pyk2 activates p38 mitogen-activated protein kinase, which in turn activates the F-actin-binding protein, leukocyte-specific protein 1, and enhances its association with actin. Taken together, our studies provide an insight into a novel gp120-mediated pathway that regulates DC chemotaxis and contributes to the dissemination of HIV-1 within an infected person.
Collapse
|
28
|
Wan H, Coppens JMC, van Helden-Meeuwsen CG, Leenen PJM, van Rooijen N, Khan NA, Kiekens RCM, Benner R, Versnel MA. Chorionic gonadotropin alleviates thioglycollate-induced peritonitis by affecting macrophage function. J Leukoc Biol 2009; 86:361-70. [PMID: 19414540 DOI: 10.1189/jlb.0208126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human chorionic gonadotrophin (hCG) is a hormone produced during pregnancy and present at the implantation site and in the maternal blood. Pregnancy has been proposed to represent a controlled state of inflammation at an early stage at the implantation site and later, systemically extended to the maternal circulation. Earlier, we reported that hCG can inhibit the development of diabetes in NOD mice and LPS-induced septic shock in a murine model. We hypothesize that hCG can contribute to the reduction of inflammation by modifying Mphi function. Here, the TG-induced peritonitis model for inflammation was used to investigate the effect of hCG on cytokine production and cell recruitment in vivo. hCG pretreatment in TG-induced peritonitis increased the number of peritoneal cells, especially PMN and monocytes, compared with mice injected with TG only. This increased cell number was partially explained by increased cell survival induced by hCG. Despite the cellular infiltrate, hCG pretreatment decreased i.p. TNF-alpha, IL-6, PTX3, CCL3, and CCL5 levels. By depleting peritoneal resident Mphi using clodronate liposomes prior to the application of hCG and the TG trigger, we established that Mphi are the main responsive cells to hCG, as the suppressed TNF-alpha and IL-6 production and increased PMN influx are abolished in their absence. Together, these data suggest that hCG contributes to the controlled inflammatory state of pregnancy by regulating Mphi proinflammatory function.
Collapse
Affiliation(s)
- Hui Wan
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Increased Severity of Bleomycin-Induced Skin Fibrosis in Mice with Leukocyte-Specific Protein 1 Deficiency. J Invest Dermatol 2008; 128:2767-76. [DOI: 10.1038/jid.2008.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Braunersreuther V, Steffens S, Arnaud C, Pelli G, Burger F, Proudfoot A, Mach F. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler Thromb Vasc Biol 2008; 28:1090-6. [PMID: 18388327 DOI: 10.1161/atvbaha.108.165423] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease that represents the primary cause of death through coronary disease and stroke. Chemokines are known to play a crucial role in this disease by recruiting inflammatory leukocytes to the endothelium. Recently, the chemokine variant [44AANA47]-RANTES was shown to impair inflammatory cell recruitment in vivo by interfering with heparin binding and oligomerization. METHODS AND RESULTS In this study we report that curative treatment with [44AANA47]-RANTES limits atherosclerotic plaque formation in LDLr-/- mice. This was associated with reduced infiltration of T cells and macrophages and reduced production of matrix metalloproteinase (MMP)-9. By contrast, the relative smooth muscle cell and collagen content was increased, indicating a more stable plaque phenotype. In addition, we provide evidence for direct inhibition of leukocyte recruitment into aortic root lesions, attenuated leukocyte rolling and arrest in mesenteric vessels, as well as a reduced proinflammatory response following Con A stimulation in vitro. CONCLUSIONS Interference with chemokine oligomerization and chemokine/heparin interactions is a powerful novel approach that inhibits progression of established atherosclerosis in mice. By inhibiting leukocyte recruitment into plaques, [44AANA47]-RANTES mediates a less inflammatory plaque phenotype and thus reduced systemic inflammatory state.
Collapse
Affiliation(s)
- Vincent Braunersreuther
- Division of Cardiology, Department of Medicine, University Hospital, Foundation for Medical Researches, 64 Avenue Roseraie, 1211 Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Smith AL, Ganesh L, Leung K, Jongstra-Bilen J, Jongstra J, Nabel GJ. Leukocyte-specific protein 1 interacts with DC-SIGN and mediates transport of HIV to the proteasome in dendritic cells. ACTA ACUST UNITED AC 2007; 204:421-30. [PMID: 17296787 PMCID: PMC2118718 DOI: 10.1084/jem.20061604] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dendritic cells (DCs) capture and internalize human immunodeficiency virus (HIV)-1 through C-type lectins, including DC-SIGN. These cells mediate efficient infection of T cells by concentrating the delivery of virus through the infectious synapse, a process dependent on the cytoplasmic domain of DC-SIGN. Here, we identify a cellular protein that binds specifically to the cytoplasmic region of DC-SIGN and directs internalized virus to the proteasome. This cellular protein, leukocyte-specific protein 1 (LSP1), was defined biochemically by immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. LSP1 is an F-actin binding protein involved in leukocyte motility and found on the cytoplasmic surface of the plasma membrane. LSP1 interacted specifically with DC-SIGN and other C-type lectins, but not the inactive mutant DC-SIGNΔ35, which lacks a cytoplasmic domain and shows altered virus transport in DCs. LSP1 diverts HIV-1 to the proteasome. Down-regulation of LSP1 with specific small interfering RNAs in human DCs enhanced HIV-1 transfer to T cells, and bone marrow DCs from lsp1−/− mice also showed an increase in transfer of HIV-1BaL to a human T cell line. Proteasome inhibitors increased retention of viral proteins in lsp1+/+ DCs, and substantial colocalization of virus to the proteasome was observed in wild-type compared with LSP1-deficient cells. Collectively, these data suggest that LSP1 protein facilitates virus transport into the proteasome after its interaction with DC-SIGN through its interaction with cytoskeletal proteins.
Collapse
Affiliation(s)
- Alvin L Smith
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
32
|
Zhang LX, Zhao LF, Zhang AS, Chen XG, Xu CS. Expression patterns and action analysis of genes associated with physiological responses during rat liver regeneration: cellular immune response. World J Gastroenterol 2006; 12:7514-21. [PMID: 17167843 PMCID: PMC4087600 DOI: 10.3748/wjg.v12.i46.7514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/01/2006] [Accepted: 10/07/2006] [Indexed: 02/07/2023] Open
Abstract
AIM To study the cellular immune response during rat liver regeneration (LR) at a transcriptional level. METHODS Genes associated with the cellular immune response were obtained by collecting the data from databases and retrieving articles. Gene expression changes during LR were detected by rat genome 230 2.0 array. RESULTS A total of 127 genes were found to be associated with LR. The number of initially and totally expressing genes in the initial phase of LR [0.5-4 h after partial hepatectomy (PH)], transition from G(0)-G(1) (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) was 54, 11, 34, 3 and 54, 49, 70, 49 respectively, illustrating that the associated genes were mainly triggered at the initiation of LR, and worked at different phases. According to their expression similarity, these genes were classified into 41 up-regulated, 21 predominantly up-regulated, 41 down-regulated, 14 predominantly down-regulated, 10 similarly up-regulated and down-regulated genes, respectively. The total up- and down-regulated expression times were 419 and 274, respectively, demonstrating that the expression of most genes was increased while the expression of a small number of genes was decreased. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities were staggered during LR. According to the gene expression patterns, they were classified into 21 types, showing the activities were diverse and complicated during LR. CONCLUSION Antigen processing and presentation are enhanced mainly in the forepart, prophase and anaphase of LR. T-cell activation and antigen elimination are enhanced mainly in the forepart and prophase of LR. A total of 127 genes associated with LR play an important role in cellular immunity.
Collapse
Affiliation(s)
- Lian-Xing Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | | | | | | | | |
Collapse
|
33
|
Buckley CD, Ross EA, McGettrick HM, Osborne CE, Haworth O, Schmutz C, Stone PCW, Salmon M, Matharu NM, Vohra RK, Nash GB, Rainger GE. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J Leukoc Biol 2005; 79:303-11. [PMID: 16330528 DOI: 10.1189/jlb.0905496] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies have demonstrated that neutrophils are not a homogenous population of cells. Here, we have identified a subset of human neutrophils with a distinct profile of cell-surface receptors [CD54(high), CXC chemokine receptor 1(low) (CXCR1(low))], which represent cells that have migrated through an endothelial monolayer and then re-emerged by reverse transmigration (RT). RT neutrophils, when in contact with endothelium, were rescued from apoptosis, demonstrate functional priming, and were rheologically distinct from neutrophils that had not undergone transendothelial migration. In vivo, 1-2% of peripheral blood neutrophils in patients with systemic inflammation exhibit a RT phenotype. A smaller population existed in healthy donors ( approximately 0.25%). RT neutrophils were distinct from naïve circulatory neutrophils (CD54(low), CXCR1(high)) and naïve cells after activation with formyl-Met-Leu-Phe (CD54(low), CXCR1(low)). It is important that the RT phenotype (CD54(high), CXCR1(low)) is also distinct from tissue-resident neutrophils (CD54(low), CXCR1(low)). Our results demonstrate that neutrophils can migrate in a retrograde direction across endothelial cells and suggest that a population of tissue-experienced neutrophils with a distinct phenotype and function are present in the peripheral circulation in humans in vivo.
Collapse
|
34
|
Abstract
Endothelial cells are key regulators of the inflammatory response. Lining blood vessels, they provide in the steady state an antiinflammatory, anticoagulatory surface. However, in the case of injury or infection, endothelial cells control the adhesion and migration of inflammatory cells, as well as the exchange of fluid from the bloodstream into the damaged tissue. Thus, expression of endothelial adhesion molecules, cytokines, and changes in permeability need to be tightly regulated to allow for a controlled inflammatory response. Acute inflammation is characterized by tissue infiltration of neutrophils, followed by monocytes/macrophages. For successful tissue regeneration and healing, the acute inflammatory response needs to be actively shut down, a process called resolution of inflammation. Unsuccessful resolution may lead to excessive tissue damage and ultimately results in chronic, self-promoting inflammation. This review will summarize recent advances in the field of endothelial biology, which point to an active participation of the endothelial barrier in the resolving process.
Collapse
Affiliation(s)
- Alexandra Kadl
- Cardiovascular Research Center and Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
35
|
Gombart AF, Krug U, O'Kelly J, An E, Vegesna V, Koeffler HP. Aberrant expression of neutrophil and macrophage-related genes in a murine model for human neutrophil-specific granule deficiency. J Leukoc Biol 2005; 78:1153-65. [PMID: 16204633 DOI: 10.1189/jlb.0504286] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophil-specific granule deficiency involves inheritance of germline mutations in the CCAAT/enhancer-binding protein epsilon (C/EBPE) gene. Humans and mice lacking active C/EBPepsilon suffer frequent bacterial infections as a result of functionally defective neutrophils and macrophages. We hypothesized that these defects reflected dysregulation of important immune response genes. To test this, gene expression differences of peritoneally derived neutrophils and macrophages from C/EBPepsilon-/- and wild-type mice were determined with DNA microarrays. Of 283 genes, 146 known genes and 21 expressed sequence tags (ESTs) were down-regulated, and 85 known genes and 31 ESTs were up-regulated in the C/EBP-/- mice. These included genes involved in cell adhesion/chemotaxis, cytoskeletal organization, signal transduction, and immune/inflammatory responses. The cytokines CC chemokine ligand 4, CXC chemokine ligand 2, and interleukin (IL)-6, as well as cytokine receptors IL-8RB and granulocyte-colony stimulating factor, were down-regulated. Chromatin immunoprecipitation analysis identified binding of C/EBPepsilon to their promoter regions. Increased expression for lipid metabolism genes apolipoprotein E (APOE), scavenger receptor class B-1, sorting protein-related receptor containing low-density lipoprotein receptor class A repeat 1, and APOC2 in the C/EBPepsilon-/- mice correlated with reduced total cholesterol levels in these mice before and after maintenance on a high-fat diet. Also, C/EBPepsilon-deficient macrophages showed a reduced capacity to accumulate lipids. In summary, dysregulation of numerous, novel C/EBPepsilon target genes impairs innate immune response and possibly other important biological processes mediated by neutrophils and macrophages.
Collapse
Affiliation(s)
- Adrian F Gombart
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, Burns & Allen Research Institute and David Geffen School of Medicine at University of California Los Angeles, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Pereira SR, Faça VM, Gomes GG, Chammas R, Fontes AM, Covas DT, Greene LJ. Changes in the proteomic profile during differentiation and maturation of human monocyte-derived dendritic cells stimulated with granulocyte macrophage colony stimulating factor/interleukin-4 and lipopolysaccharide. Proteomics 2005; 5:1186-98. [PMID: 15800872 DOI: 10.1002/pmic.200400988] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dendritic cells (DCs) are highly specialized antigen-presenting cells that play an essential role in the immune response. We used the proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry to identify the protein changes that occur during differentiation of DCs from monocytes (Mo) stimulated with granulocyte macrophage colony stimulating factor/interleukin-4 (GM-CSF/IL-4) and during the maturation of immature DCs stimulated with lipopolysaccharide. Sixty-three differentially expressed proteins (+/- two-fold) were unambiguously identified with sequence coverage greater than 20%. They corresponded to only 36 different proteins, because 11 were present as 38 electrophoretic forms. Some proteins such as tropomyosin 4 and heat shock protein 71 presented differentially expressed electrophoretic forms, suggesting that many of the changes in protein expression that accompany differentiation and maturation of DCs occur in post-translationally modified proteins. The largest differences in expression were observed for actin (21-fold in Mo), Rho GDP-dissociation inhibitor 2 (20-fold in Mo), vimentin (eight-fold in immature DCs), lymphocyte-specific protein 1 (12-fold in mature DCs) and thioredoxin (14-fold in mature DCs). Several proteins are directly related to functional and morphological characteristics of DCs, such as cytoskeletal proteins (cytoskeleton rearrangement) and chaperones (antigen processing and presentation), but other proteins have not been assigned specific functions in DCs. Only a few proteins identified here were the same as those reported in proteomic studies of DCs, which used different stimuli to produce the cells (GM-CSF/IL-4 and tumor necrosis factor-alpha). These data suggest that the DC protein profile depends on the stimuli used for differentiation and especially for maturation.
Collapse
Affiliation(s)
- Sandra Rodrigues Pereira
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Dar A, Munir S, Vishwanathan S, Manuja A, Griebel P, Tikoo S, Townsend H, Potter A, Kapur V, Babiuk LA. Transcriptional analysis of avian embryonic tissues following infection with avian infectious bronchitis virus. Virus Res 2005; 110:41-55. [PMID: 15845254 PMCID: PMC7114260 DOI: 10.1016/j.virusres.2005.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/27/2004] [Accepted: 01/03/2005] [Indexed: 12/21/2022]
Abstract
Avian infectious bronchitis virus (IBV) infection is one of the major viral respiratory diseases of chickens. Better understanding of the molecular basis of viral pathogenesis should contribute significantly towards the development of improved prophylactic, therapeutic and diagnostic reagents to control infections. In the present investigation, transcriptional profiles were analyzed by using RNA recovered from the lung tissue of IBV infected 18-day-old chicken embryos at 6, 24, 48 and 72 h post IBV infection. This microarray analysis was completed using avian cDNA arrays comprised of fragments of 1191 unique chicken and turkey gene transcripts. These arrays were generated from normalized cDNA subtraction libraries that were derived from avian pneumovirus (APV) infected chicken embryo fibroblast (CEF) cultures and tissues obtained from APV infected turkeys subtracted with their respective uninfected cultures and tissues. Of the 1191 unique genes represented on the array, the expression of a total of 327 genes (27% of total) were altered by two-fold or more from 6 through 72 h post-infection. A comparative analysis of IBV regulated genes with genes previously reported to change in expression following infection with other avian respiratory viruses revealed both conserved and unique changes. Real-time qRT-PCR was used to confirm the regulated expression of genes related to several functional classes including kinases, interferon induced genes, chemokines and adhesion molecules, vesicular trafficking and fusion protein genes, extracellular matrix protein genes, cell cycle, metabolism, cell physiology and development, translation, RNA binding, lysosomal, protein degradation and ubiquitination related genes. Microarray analysis served as an efficient tool in facilitating a comparative analysis of avian respiratory viral infections and provided insight into host transcriptional changes that were conserved as well as those which were unique to individual pathogens.
Collapse
Affiliation(s)
- Arshud Dar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The antibodies submitted to the T-cell section were evaluated by different laboratories. We focused our studies on antibodies that reacted to defined molecules to the CD28 family and their ligands B7/butyrophilin family.
Collapse
Affiliation(s)
- Armand Bensussan
- INSERM 659, Faculté de Médecine de Créteil, Créteil, France. Armand.Bensussan2im3.inserm.fr
| | | |
Collapse
|
39
|
Spisani S, Falzarano S, Traniello S, Nalli M, Selvatici R. A 'pure' chemoattractant formylpeptide analogue triggers a specific signalling pathway in human neutrophil chemotaxis. FEBS J 2005; 272:883-91. [PMID: 15691323 DOI: 10.1111/j.1742-4658.2004.04497.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As it has not yet been established whether the second messengers involved in the neutrophil response have identical or specific signalling requirements for each physiological function, protein kinase C (PKC) isoforms and mitogen activated protein kinases (MAPKs) were studied in human chemotaxis triggered by the full agonist for-Met-Leu-Phe-OMe (fMLP-OMe) and the 'pure' chemoattractant for-Thp-Leu-Ain-OMe [Thp1,Ain3] analogue. Experiments were performed in the presence or absence of extracellular Ca2+, known to be an important modulator of second messengers. Our data demonstrate that specific PKC beta1 translocation and p38 MAPK phosphorylation are strongly associated with the chemotactic response of the neutrophils triggered by both peptides, while Ca2+ is not necessary for chemotaxis to occur. PKC and MAPK inhibitors were used in Western blotting assays and in cell locomotion experiments to investigate if the MAPK signalling pathway was controlled by PKC activation. The most important finding emerging from this study is that PKC and MAPK activate the chemotactic function of human neutrophils by two independent pathways.
Collapse
Affiliation(s)
- Susanna Spisani
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Italy
| | | | | | | | | |
Collapse
|
40
|
Liu L, Cara DC, Kaur J, Raharjo E, Mullaly SC, Jongstra-Bilen J, Jongstra J, Kubes P. LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration. ACTA ACUST UNITED AC 2005; 201:409-18. [PMID: 15684321 PMCID: PMC2213033 DOI: 10.1084/jem.20040830] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leukocyte-specific protein 1 (LSP1), an F-actin binding protein and a major downstream substrate of p38 mitogen-activated protein kinase as well as protein kinase C, has been reported to be important in leukocyte chemotaxis. Although its distribution has been thought to be restricted to leukocytes, herein we report that LSP1 is expressed in endothelium and is essential to permit neutrophil emigration. Using intravital microscopy to directly visualize leukocyte rolling, adhesion, and emigration in postcapillary venules in LSP1-deficient (Lsp1−/−) mice, we found that LSP1 deficiency inhibits neutrophil extravasation in response to various cytokines (tumor necrosis factor-α and interleukin-1β) and to neutrophil chemokine keratinocyte-derived chemokine in vivo. LSP1 deficiency did not affect leukocyte rolling or adhesion. Generation of Lsp1−/− chimeric mice using bone marrow transplantation revealed that in mice with Lsp1−/− endothelial cells and wild-type leukocytes, neutrophil transendothelial migration out of postcapillary venules is markedly restricted. In contrast, Lsp1−/− neutrophils in wild-type mice were able to extravasate normally. Consistent with altered endothelial function was a reduction in vascular permeability to histamine in Lsp1−/− animals. Western blot analysis and immunofluorescence microscopy examination confirmed the presence of LSP1 in wild-type but not in Lsp1−/− mouse microvascular endothelial cells. Cultured human endothelial cells also stained positive for LSP1. Our results suggest that LSP1 expressed in endothelium regulates neutrophil transendothelial migration.
Collapse
Affiliation(s)
- Lixin Liu
- Immunology Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shim MH, Hoover A, Blake N, Drachman JG, Reems JA. Gene expression profile of primary human CD34+CD38lo cells differentiating along the megakaryocyte lineage. Exp Hematol 2004; 32:638-48. [PMID: 15246160 DOI: 10.1016/j.exphem.2004.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2003] [Revised: 04/08/2004] [Accepted: 04/12/2004] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To identify genes involved in megakaryopoiesis, high-density oligonucleotide microarrays were used to compare transcript profiles from undifferentiated CD34+CD38lo cells and culture-derived megakaryocytes (MKs). MATERIALS AND METHODS Megakaryocyte differentiation was achieved in vitro by inducing primary human CD34+CD38lo cells in serum-deprived media supplemented with the cytokine combination of interleukin-3, interleukin-6, stem cell factor, and thrombopoietin for 10 days. Three replicate microarray experiments were performed using hematopoietic cells isolated from three different organ donors and high-density oligonucleotide microarrays. RESULTS Analysis of gene array data resulted in 304 differentially expressed genes (p < or = 0.001, fold change > or = 3). A third of the 25 most highly up-regulated genes were known to participate in hemostasis (z = 6.75), and no genes known to be associated with MKs were among the down-regulated genes. We also found a large proportion of up-regulated transcripts in gene ontology categories of adhesion and receptor activity (85%) and signal transduction activity (68%). At the same time, 70% of genes within transcription factor functions were down-regulated. Confirmatory studies indicated that the array results correlated with mRNA and protein expression levels in primary MKs. CONCLUSION This study provides a global expression profile of human MKs and a list of novel and previously uncharacterized candidate genes that are important components of megakaryopoiesis.
Collapse
Affiliation(s)
- Mi-Hyun Shim
- Puget Sound Blood Center, Seattle, WA 98104, USA.
| | | | | | | | | |
Collapse
|
42
|
Ohira T, Bannenberg G, Arita M, Takahashi M, Ge Q, Van Dyke TE, Stahl GL, Serhan CN, Badwey JA. A Stable Aspirin-Triggered Lipoxin A4Analog Blocks Phosphorylation of Leukocyte-Specific Protein 1 in Human Neutrophils. THE JOURNAL OF IMMUNOLOGY 2004; 173:2091-8. [PMID: 15265945 DOI: 10.4049/jimmunol.173.3.2091] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipoxins and their aspirin-triggered 15-epimers are endogenous anti-inflammatory agents that block neutrophil chemotaxis in vitro and inhibit neutrophil influx in several models of acute inflammation. In this study, we examined the effects of 15-epi-16-(p-fluoro)-phenoxy-lipoxin A(4) methyl ester, an aspirin-triggered lipoxin A(4)-stable analog (ATLa), on the protein phosphorylation pattern of human neutrophils. Neutrophils stimulated with the chemoattractant fMLP were found to exhibit intense phosphorylation of a 55-kDa protein that was blocked by ATLa (10-50 nM). This 55-kDa protein was identified as leukocyte-specific protein 1, a downstream component of the p38-MAPK cascade in neutrophils, by mass spectrometry, Western blotting, and immunoprecipitation experiments. ATLa (50 nM) also reduced phosphorylation/activation of several components of the p38-MAPK pathway in these cells (MAPK kinase 3/MAPK kinase 6, p38-MAPK, MAPK-activated protein kinase-2). These results indicate that ATLa exerts its anti-inflammatory effects, at least in part, by blocking activation of the p38-MAPK cascade in neutrophils, which is known to promote chemotaxis and other proinflammatory responses by these cells.
Collapse
Affiliation(s)
- Taisuke Ohira
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard University Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wong MJ, Malapitan IA, Sikorski BA, Jongstra J. A cell-free binding assay maps the LSP1 cytoskeletal binding site to the COOH-terminal 30 amino acids. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1642:17-24. [PMID: 12972289 DOI: 10.1016/s0167-4889(03)00082-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The leukocyte specific protein 1 or LSP1 is a multi functional protein involved in such divers biological processes as the regulation of neutrophil motility, chemotaxis, adhesion and membrane immunoglobulin M (mIgM) mediated apoptosis of B-lymphocytes. The 330-amino-acid mouse LSP1 protein contains a high-affinity F-actin binding site and in intact cells localizes to the F-actin filament containing cytoskeleton. Here we use a high-speed F-actin co sedimentation assay and transfection experiments in the LSP1- T-lymphoma cell line BW5147 to show that LSP1 interacts with F-actin and the cytoskeleton through residues downstream of amino acid residue 230. We then designed a novel cell-free cytoskeleton binding assay in which a set of GST-LSP1 fusion proteins are allowed to bind to the cytoskeleton in NP-40 soluble lysates of BW5147 cells and are recovered in the low-speed detergent insoluble pellet. Using this assay the cytoskeleton binding site of mouse LSP1 maps to the 300-330 interval. These results will allow the design of LSP1 mutants that do not bind to the cytoskeleton to determine the importance of LSP1 cytoskeleton binding for the diverse functions of LSP1.
Collapse
Affiliation(s)
- Michael J Wong
- Toronto Western Research Institute, Cell and Molecular Biology Division and the Department of Immunology, University of Toronto, Toronto, ON, Canada M5T 2S8
| | | | | | | |
Collapse
|
44
|
Singh S, Powell DW, Rane MJ, Millard TH, Trent JO, Pierce WM, Klein JB, Machesky LM, McLeish KR. Identification of the p16-Arc subunit of the Arp 2/3 complex as a substrate of MAPK-activated protein kinase 2 by proteomic analysis. J Biol Chem 2003; 278:36410-7. [PMID: 12829704 DOI: 10.1074/jbc.m306428200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p38 MAPK pathway regulates multiple neutrophil functional responses via activation of the serine-threonine kinase MAPK-activated protein kinase 2 (MAPKAPK2). To identify substrates of MAPKAPK2 that mediate these responses, a proteomic approach was used in which in vitro phosphorylation of neutrophil lysates by exogenously added active recombinant MAPKAPK2 was followed by protein separation using two-dimensional electrophoresis. Peptide mass fingerprinting of peptides defined by MALDI-MS was then utilized to identify phosphorylated proteins detected by autoradiography. Six candidate substrates were identified, including the p16 subunit of the seven-member Arp2/3 complex (p16-Arc). In vitro studies confirmed that MAPKAPK2 interacts with and phosphorylates the A isoform, but not the B isoform, of p16-Arc with a stoichiometry of 0.6 to 0.7. MAPKAPK2 also phosphorylated p16-Arc in intact Arp2/3 complexes precipitated from neutrophil lysates. Mutation of serine-77 to alanine on the A isoform prevented phosphorylation by MAPKAPK2. The ability of MAPKAPK2 to phosphorylate one isoform of p16-Arc suggests a possible mechanism by which the p38 MAPK cascade regulates remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- Saurabh Singh
- Department of Biochemistry and Molecular Biology, Medicine, and Pharmacology, University of Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Powell DW, Rane MJ, Joughin BA, Kalmukova R, Hong JH, Tidor B, Dean WL, Pierce WM, Klein JB, Yaffe MB, McLeish KR. Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding. Mol Cell Biol 2003; 23:5376-87. [PMID: 12861023 PMCID: PMC165733 DOI: 10.1128/mcb.23.15.5376-5387.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAPK2) mediates multiple p38 MAPK-dependent inflammatory responses. To define the signal transduction pathways activated by MAPKAPK2, we identified potential MAPKAPK2 substrates by using a functional proteomic approach consisting of in vitro phosphorylation of neutrophil lysate by active recombinant MAPKAPK2, protein separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and phosphoprotein identification by peptide mass fingerprinting with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and protein database analysis. One of the eight candidate MAPKAPK2 substrates identified was the adaptor protein, 14-3-3zeta. We confirmed that MAPKAPK2 interacted with and phosphorylated 14-3-3zeta in vitro and in HEK293 cells. The chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated p38-MAPK-dependent phosphorylation of 14-3-3 proteins in human neutrophils. Mutation analysis showed that MAPKAPK2 phosphorylated 14-3-3zeta at Ser-58. Computational modeling and calculation of theoretical binding energies predicted that both phosphorylation at Ser-58 and mutation of Ser-58 to Asp (S58D) compromised the ability of 14-3-3zeta to dimerize. Experimentally, S58D mutation significantly impaired both 14-3-3zeta dimerization and binding to Raf-1. These data suggest that MAPKAPK2-mediated phosphorylation regulates 14-3-3zeta functions, and this MAPKAPK2 activity may represent a novel pathway mediating p38 MAPK-dependent inflammation.
Collapse
Affiliation(s)
- David W Powell
- Departments of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Khan AI, Kubes P. L-selectin: an emerging player in chemokine function. Microcirculation 2003; 10:351-8. [PMID: 12851651 DOI: 10.1038/sj.mn.7800201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2002] [Accepted: 02/26/2003] [Indexed: 12/15/2022]
Abstract
The emigration of leukocytes across the blood-endothelium barrier and their subsequent transmigration through the interstitium is a complex process that is vital for maintaining the efficiency of the body's innate and adaptive immunity. The chemokines, a family of low-molecular-weight chemoattractant cytokines, are well recognized to be key players in this process. However, recent investigations have highlighted an important role played by the selectin family of adhesion molecules in enhancing chemokine functions. This review summarizes the in vitro and in vivo studies that support this growing notion. It discusses chemotaxis in the context of the phosphoinositide 3-kinase and p38 mitogen-activated protein kinase pathways, and their relation to several chemoattractants (i.e., interleukin-8, leukotriene-B(4), formyl-methionyl-leucyl-phenylalanine, keratinocyte-derived cytokine, and macrophage inflammatory protein-2), the possible role played by L-selectin, and finally how chemotaxis can be altered in different inflammatory settings, such as lipopolysaccharide-mediated endotoxemia or chronic vasculitis.
Collapse
Affiliation(s)
- Adil I Khan
- Immunology Research Group, Department of Physiology and Biophysics, University of Calgary Medical Center, Calgary, Alberta, Canada.
| | | |
Collapse
|
47
|
Marafioti T, Jabri L, Pulford K, Brousset P, Mason DY, Delsol G. Leucocyte-specific protein (LSP1) in malignant lymphoma and Hodgkin's disease. Br J Haematol 2003; 120:671-8. [PMID: 12588355 DOI: 10.1046/j.1365-2141.2003.04137.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biopsies from 319 haematopoietic neoplasms were immunostained for intracellular leucocyte-specific protein 1 (LSP1) to assess its distribution and to compare its diagnostic value with that of CD45 (leucocyte common antigen: LCA). Most small B-cell neoplasms expressed LSP1, but one third of diffuse large B-cell lymphomas (DLBCL) were LSP1 negative. Among the cases with DLBCL (76 samples) tested for both LSP1 and CD45, one fifth expressed only CD45, but five samples were LSP1-positive and negative for CD45. The latter pattern was also seen in four of nine myelomas. Five out of 14 T-lymphoblastic lymphomas co-expressed LSP1 and CD45, and three cases were LSP1 negative and CD45-positive. Most peripheral T-cell lymphomas co-expressed LSP1 and CD45. All anaplastic lymphoma kinase (ALK)-negative lymphomas of anaplastic large cell morphology (T and null phenotype) expressed LSP1 although the percentage of LSP1-positive tumour cells was variable, however, only seven out of 30 cases with ALK-positive lymphoma were LSP1 positive. LSP1 was expressed on Reed-Sternberg cells in 60 out of 66 cases with classic Hodgkin's disease but neoplastic cells were usually negative in lymphocyte predominant Hodgkin's. This study confirms the wide expression of LSP1 within haematopoietic neoplasms and its diagnostic value for a minority of lymphoid tumours that have lost CD45 expression. Furthermore, the strong expression of LSP1 in classic Hodgkin's disease, contrasting with its heterogeneous expression in ALK-negative anaplastic lymphomas, may help to distinguish the latter lymphomas from patients with tumour cell-rich Hodgkin's disease.
Collapse
Affiliation(s)
- Teresa Marafioti
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Cicchetti G, Allen PG, Glogauer M. Chemotactic signaling pathways in neutrophils: from receptor to actin assembly. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 13:220-8. [PMID: 12090462 DOI: 10.1177/154411130201300302] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this review, we present an overview of the signaling elements between neutrophil chemotactic receptors and the actin cytoskeleton that drives cell motility. From receptor-ligand interactions, activation of heterotrimeric G-proteins, their downstream effectors PLC and PI-3 kinase, the activation of small GTPases of the Rho family, and their regulation of particular cytoskeletal regulatory proteins, we describe pathways specific to the chemotaxing neutrophil and elements documented to be important for neutrophil function.
Collapse
Affiliation(s)
- Gregor Cicchetti
- Hematology Division, Harvard Medical School, Brigham and Women's Hospital, LMRC 301, Boston, MA 02115, USA
| | | | | |
Collapse
|
49
|
Wang C, Hayashi H, Harrison R, Chiu B, Chan JR, Ostergaard HL, Inman RD, Jongstra J, Cybulsky MI, Jongstra-Bilen J. Modulation of Mac-1 (CD11b/CD18)-mediated adhesion by the leukocyte-specific protein 1 is key to its role in neutrophil polarization and chemotaxis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:415-23. [PMID: 12077272 DOI: 10.4049/jimmunol.169.1.415] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leukocyte-specific protein 1 (LSP1) is an intracellular filamentous-actin binding protein which modulates cell motility. The cellular process in which LSP1 functions to regulate motility is not yet identified. In this study, we show that LSP1 negatively regulates fMLP-induced polarization and chemotaxis of neutrophils through its function on adhesion via specific integrins. Using LSP1-deficient (Lsp1(-/-)) mice, we show increased neutrophil migration into mouse knee joints during zymosan-induced acute inflammation, an inflammatory model in which the number of resident synoviocytes are not affected by LSP1-deficiency. In vitro chemotaxis experiments performed by time-lapse videomicroscopy showed that purified Lsp1(-/-) bone-marrow neutrophils exhibit an increased migration rate toward a gradient of fMLP as compared with wild-type neutrophils. This difference was observed when cells migrated on fibrinogen, but not fibronectin, suggesting a role for LSP1 in modulating neutrophil adhesion by specific integrins. LSP1 is also a negative regulator of fMLP-induced adhesion to fibrinogen or ICAM-1, but not to ICAM-2, VCAM-1, or fibronectin. These results suggest that LSP1 regulates the function of Mac-1 (CD11b/CD18), which binds only to fibrinogen and ICAM-1 among the substrates we tested. fMLP-induced filamentous actin polarization is also increased in the absence of LSP1 when cells were layered on fibrinogen, but not on fibronectin. Our findings suggest that the increased neutrophil recruitment in Lsp1(-/-) mice during acute inflammation derives from the negative regulatory role of LSP1 on neutrophil adhesion, polarization, and migration via specific integrins, such as Mac-1, which mediate neutrophil responses to chemotactic stimuli.
Collapse
Affiliation(s)
- Chunjie Wang
- Cellular and Molecular Biology Division, Toronto Western Research Institute, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang Q, Li Y, Howard TH. Hair-forming activity of human lymphocyte specific protein 1 requires cooperation between its caldesmon-like domains and the villin headpiece-like domains. CELL MOTILITY AND THE CYTOSKELETON 2001; 49:179-88. [PMID: 11746662 DOI: 10.1002/cm.1031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
LSP1 is an F-actin binding with multiple F-actin binding domains. Overexpression of LSP1 in NAD 47/89 patient's neutrophils created hair-like projections on the patient's neutrophil cell surfaces and inhibited neutrophil cell motility and transfection of LSP1 in serial cell lines recreate the NAD 47/89 phenotype and produce branching hair-like surface projections. Although LSP1 contains hair-forming ability and LSP1 F-actin binding domains have been defined, the LSP1 domains responsible for its hair-forming activity, the relationship to the F-actin binding domains, and the required domain interactions, if any, for hair formation are not well understood. To define the hair-forming domains of LSP1, the relationship to the known F-actin binding domains, and binding domain interactions, LSP1 truncates, which include or exclude the different F-actin binding domains, were created by PCR. LSP1 mutants were created by site-directed mutagenesis to define the amino acids important for hair formation. Sf9 cells were infected with recombinant baculovirus expressing the cDNA of LSP1 truncates and mutants, and the morphology of infected Sf9 cells was documented by DIC optics. Results show that (1) the hair-forming activity of LSP1 is localized to the basic C-terminal half of the molecule, which contains all of the F-actin binding domains; (2) both the caldesmon-like domains and the villin headpiece-like domains are required for the hair-forming activity of LSP1; (3) basic amino acids in the villin headpiece regions are crucial for the hair-forming activity of LSP1 molecule. The results suggest cooperation between the caldesmon-like domains and the villin headpiece-like domains are required for the hair-forming activity of human LSP1 in cells.
Collapse
Affiliation(s)
- Q Zhang
- Department of Cell Biology, School of Medicine, The University of Alabama at Birmingham, Al, USA
| | | | | |
Collapse
|