1
|
Horio Y, Isegawa Y, Shichiri M. Daidzein phosphorylates and activates 5-lipoxygenase via the MEK/ERK pathway: a mechanism for inducing the production of 5-lipoxygenase metabolite that inhibit influenza virus intracellular replication. J Nutr Biochem 2023; 114:109276. [PMID: 36682398 DOI: 10.1016/j.jnutbio.2023.109276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
We previously reported that the soy isoflavone daidzein (Dz) suppresses the intracellular replication of influenza virus and that arachidonic acid-derived oxidation product via lipid oxidase 5-lipoxygenase (5-LOX) is involved in its antiviral effect. The activation of 5-LOX by Dz triggers anti-influenza activity; however, the mechanism of activation of 5-LOX remains unclear. Therefore, in this study, we aimed to clarify the activation mechanism using human monocyte-derived THP-1 cells differentiated using phorbol 12-myristate 13-acetate. THP-1 cells expressed 5-LOX endogenously and Dz did not induce 5-LOX expression. However, 8 h after treatment with Dz, the amount of 5-hydroxyeicosatetraenoic acid (5-HETE), an arachidonic acid oxidation product via 5-LOX, increased significantly suggesting that the enzyme is activated regardless of changes in 5-LOX protein levels. Intracellular Ca2+ content, ATP concentration, 5-LOX protein phosphorylation, and 5-LOX intracellular localization are known 5-LOX activation factors. The intracellular Ca2+ and ATP concentrations were not affected by Dz treatment. The enzymatic activity of 5-LOX is regulated by the phosphorylation of three serine residues and four tyrosine residues. Pretreatment with inhibitors of each kinase revealed that Dz-induced 5-HETE production was suppressed by the MEK/ERK inhibitor. 5-LOX in which the Ser663 residue was phosphorylated was found to be increased in the nuclear fraction of Dz-treated THP-1 cells. Furthermore, immunocytochemistry showed that 5-LOX translocates to the nuclear envelope following Dz treatment. These results indicate that Dz activates 5-LOX by phosphorylating Ser663 via the MEK/ERK pathway. Thus, these results demonstrate that Dz exerts anti-influenza virus activity via the MEK/ERK signal transduction pathway.
Collapse
Affiliation(s)
- Yuka Horio
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan; Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan.
| |
Collapse
|
2
|
Werz O, Gerstmeier J, Garscha U. Novel leukotriene biosynthesis inhibitors (2012-2016) as anti-inflammatory agents. Expert Opin Ther Pat 2017; 27:607-620. [DOI: 10.1080/13543776.2017.1276568] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
3
|
Garscha U, Voelker S, Pace S, Gerstmeier J, Emini B, Liening S, Rossi A, Weinigel C, Rummler S, Schubert US, Scriba GKE, Çelikoğlu E, Çalışkan B, Banoglu E, Sautebin L, Werz O. BRP-187: A potent inhibitor of leukotriene biosynthesis that acts through impeding the dynamic 5-lipoxygenase/5-lipoxygenase-activating protein (FLAP) complex assembly. Biochem Pharmacol 2016; 119:17-26. [PMID: 27592027 DOI: 10.1016/j.bcp.2016.08.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022]
Abstract
The pro-inflammatory leukotrienes (LTs) are formed from arachidonic acid (AA) in activated leukocytes, where 5-lipoxygenase (5-LO) translocates to the nuclear envelope to assemble a functional complex with the integral nuclear membrane protein 5-LO-activating protein (FLAP). FLAP, a MAPEG family member, facilitates AA transfer to 5-LO for efficient conversion, and LT biosynthesis critically depends on FLAP. Here we show that the novel LT biosynthesis inhibitor BRP-187 prevents the 5-LO/FLAP interaction at the nuclear envelope of human leukocytes without blocking 5-LO nuclear redistribution. BRP-187 inhibited 5-LO product formation in human monocytes and polymorphonuclear leukocytes stimulated by lipopolysaccharide plus N-formyl-methionyl-leucyl-phenylalanine (IC50=7-10nM), and upon activation by ionophore A23187 (IC50=10-60nM). Excess of exogenous AA markedly impaired the potency of BRP-187. Direct 5-LO inhibition in cell-free assays was evident only at >35-fold higher concentrations, which was reversible and not improved under reducing conditions. BRP-187 prevented A23187-induced 5-LO/FLAP complex assembly in leukocytes but failed to block 5-LO nuclear translocation, features that were shared with the FLAP inhibitor MK886. Whereas AA release, cyclooxygenases and related LOs were unaffected, BRP-187 also potently inhibited microsomal prostaglandin E2 synthase-1 (IC50=0.2μM), another MAPEG member. In vivo, BRP-187 (10mg/kg) exhibited significant effectiveness in zymosan-induced murine peritonitis, suppressing LT levels in peritoneal exudates as well as vascular permeability and neutrophil infiltration. Together, BRP-187 potently inhibits LT biosynthesis in vitro and in vivo, which seemingly is caused by preventing the 5-LO/FLAP complex assembly and warrants further preclinical evaluation.
Collapse
Affiliation(s)
- Ulrike Garscha
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743 Jena, Germany.
| | - Susanna Voelker
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743 Jena, Germany.
| | - Simona Pace
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743 Jena, Germany.
| | - Jana Gerstmeier
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743 Jena, Germany.
| | - Besa Emini
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743 Jena, Germany.
| | - Stefanie Liening
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743 Jena, Germany.
| | - Antonietta Rossi
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, 07743 Jena, Germany.
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, 07743 Jena, Germany.
| | - Ulrich S Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany.
| | - Gerhard K E Scriba
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743 Jena, Germany.
| | - Erşan Çelikoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Yenimahalle, Ankara, Turkey.
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Yenimahalle, Ankara, Turkey.
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Yenimahalle, Ankara, Turkey.
| | - Lidia Sautebin
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
4
|
Lukic A, Ji J, Idborg H, Samuelsson B, Palmberg L, Gabrielsson S, Rådmark O. Pulmonary epithelial cancer cells and their exosomes metabolize myeloid cell-derived leukotriene C4 to leukotriene D4. J Lipid Res 2016; 57:1659-69. [PMID: 27436590 DOI: 10.1194/jlr.m066910] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 01/03/2023] Open
Abstract
Leukotrienes (LTs) play major roles in lung immune responses, and LTD4 is the most potent agonist for cysteinyl LT1, leading to bronchoconstriction and tissue remodeling. Here, we studied LT crosstalk between myeloid cells and pulmonary epithelial cells. Monocytic cells (Mono Mac 6 cell line, primary dendritic cells) and eosinophils produced primarily LTC4 In coincubations of these myeloid cells and epithelial cells, LTD4 became a prominent product. LTC4 released from the myeloid cells was further transformed by the epithelial cells in a transcellular manner. Formation of LTD4 was rapid when catalyzed by γ-glutamyl transpeptidase (GGT)1 in the A549 epithelial lung cancer cell line, but considerably slower when catalyzed by GGT5 in primary bronchial epithelial cells. When A549 cells were cultured in the presence of IL-1β, GGT1 expression increased about 2-fold. Also exosomes from A549 cells contained GGT1 and augmented LTD4 formation. Serine-borate complex (SBC), an inhibitor of GGT, inhibited conversion of LTC4 to LTD4 Unexpectedly, SBC also upregulated translocation of 5-lipoxygenase (LO) to the nucleus in Mono Mac 6 cells, and 5-LO activity. Our results demonstrate an active role for epithelial cells in biosynthesis of LTD4, which may be of particular relevance in the lung.
Collapse
Affiliation(s)
- Ana Lukic
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jie Ji
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Helena Idborg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Samuelsson
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lena Palmberg
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Susanne Gabrielsson
- Department of Medicine Solna, Unit for Immunology and Allergy, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
5
|
Zschaler J, Arnhold J. Impact of simultaneous stimulation of 5-lipoxygenase and myeloperoxidase in human neutrophils. Prostaglandins Leukot Essent Fatty Acids 2016; 107:12-21. [PMID: 27033421 DOI: 10.1016/j.plefa.2016.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/18/2022]
Abstract
Human neutrophil 5-lipoxygenase (5-LOX) oxidizes arachidonic acid (AA) to 5S-hydro(pero)xy-6E,8Z,11Z, 14Z-eicosatetraenoic acid (5-H(p)ETE) and leukotriene (LT)A4, which is further converted to the chemoattractant LTB4. These cells contain also the heme enzyme myeloperoxidase (MPO) producing several potent oxidants such as hypochlorous acid (HOCl). Previously, it was shown that MPO-metabolites influence 5-LOX product formation. Here, we addressed the question, whether a simultaneous activation of MPO and 5-LOX in neutrophils results in comparable changes of 5-LOX activity. Human neutrophils were stimulated with H2O2 or phorbol 12-myristate 13-acetate (PMA) for MPO activation and subsequently treated with calcium ionophore A23187 inducing 5-LOX product formation on endogenous AA. Special attention was drawn to neutrophil vitality, formation of MPO-derived metabolites and redox status. The pre-stimulation with H2O2 resulted in a concentration-dependent increase in the ratio of 5-HETE to the sum of LTB4+6-trans-LTB4 in consequence of MPO activation. Thereby no impairment of cell vitality and only a slightly reduction of total glutathione level was observed. An influence of MPO on 5-LOX product formation could be suggested using an MPO inhibitor. In contrast, the pre-stimulation with PMA resulted in different changes of 5-LOX product formation leading to a reduced amount of 5-HETE unaffected by MPO inhibition. Furthermore, impaired cell vitality and diminished redox status was detected after PMA stimulation. Nevertheless, a MPO-induced diminution of LTB4 was obvious. Further work is necessary to define the type of 5-LOX modification and investigate the effect of physiological MPO activators.
Collapse
Affiliation(s)
- Josefin Zschaler
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Jürgen Arnhold
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|
6
|
Roos J, Grösch S, Werz O, Schröder P, Ziegler S, Fulda S, Paulus P, Urbschat A, Kühn B, Maucher I, Fettel J, Vorup-Jensen T, Piesche M, Matrone C, Steinhilber D, Parnham MJ, Maier TJ. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells? Pharmacol Ther 2016; 157:43-64. [DOI: 10.1016/j.pharmthera.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Pergola C, Schaible AM, Nikels F, Dodt G, Northoff H, Werz O. Progesterone rapidly down-regulates the biosynthesis of 5-lipoxygenase products in human primary monocytes. Pharmacol Res 2015; 94:42-50. [PMID: 25681061 DOI: 10.1016/j.phrs.2015.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 02/03/2023]
Abstract
5-Lipoxygenase (5-LO), the key enzyme in the biosynthesis of pro-inflammatory leukotrienes (LTs) from arachidonic acid, is regulated by androgens in human neutrophils and monocytes accounting for sex differences in LT formation. Here we show that progesterone suppresses the synthesis of 5-LO metabolites in human primary monocytes. 5-LO product formation in monocytes stimulated with Ca(2+)-ionophore A23187 or with lipopolysaccharide/formyl peptide was suppressed by progesterone at concentrations of 10-100 nM in cells from females and at 1 μM in cells from males. Progesterone down-regulated 5-LO product formation in a rapid and reversible manner, but did not significantly inhibit 5-LO activity in cell-free assays using monocyte homogenates. Also, arachidonic acid release and its metabolism to other eicosanoids in monocytes were not significantly reduced by progesterone. The inhibitory effect of progesterone on LTs was still observed when mitogen-activated protein kinases were pharmacologically blocked, stimulatory 1-oleoyl-2-acetyl-sn-glycerol was exogenously supplied, or extracellular Ca(2+) was removed by chelation. Instead, suppression of PKA by means of two different pharmacological approaches (i.e. H89 and a cell-permeable PKA inhibitor peptide) prevented inhibition of 5-LO product generation by progesterone, to a similar extent as observed for the PKA activators prostaglandin E2 and 8-Br-cAMP, suggesting the involvement of PKA. In summary, progesterone affects the capacity of human primary monocytes to generate 5-LO products and, in addition to androgens, may account for sex-specific effects on pro-inflammatory LTs.
Collapse
Affiliation(s)
- Carlo Pergola
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| | - Anja M Schaible
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| | - Felix Nikels
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| | - Gabriele Dodt
- Interfakultäres Institut für Biochemie, University Tuebingen, 72076 Tuebingen, Germany.
| | - Hinnak Northoff
- Institute for Clinical and Experimental Transfusion Medicine, University Medical Center Tuebingen, 72076 Tuebingen, Germany.
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| |
Collapse
|
8
|
Pergola C, Gerstmeier J, Mönch B, Çalışkan B, Luderer S, Weinigel C, Barz D, Maczewsky J, Pace S, Rossi A, Sautebin L, Banoglu E, Werz O. The novel benzimidazole derivative BRP-7 inhibits leukotriene biosynthesis in vitro and in vivo by targeting 5-lipoxygenase-activating protein (FLAP). Br J Pharmacol 2015; 171:3051-64. [PMID: 24641614 DOI: 10.1111/bph.12625] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/25/2014] [Accepted: 02/03/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Leukotrienes (LTs) are inflammatory mediators produced via the 5-lipoxygenase (5-LOX) pathway and are linked to diverse disorders, including asthma, allergic rhinitis and cardiovascular diseases. We recently identified the benzimidazole derivative BRP-7 as chemotype for anti-LT agents by virtual screening targeting 5-LOX-activating protein (FLAP). Here, we aimed to reveal the in vitro and in vivo pharmacology of BRP-7 as an inhibitor of LT biosynthesis. EXPERIMENTAL APPROACH We analysed LT formation and performed mechanistic studies in human neutrophils and monocytes, in human whole blood (HWB) and in cell-free assays. The effectiveness of BRP-7 in vivo was evaluated in rat carrageenan-induced pleurisy and mouse zymosan-induced peritonitis. KEY RESULTS BRP-7 potently suppressed LT formation in neutrophils and monocytes and this was accompanied by impaired 5-LOX co-localization with FLAP. Neither the cellular viability nor the activity of 5-LOX in cell-free assays was affected by BRP-7, indicating that a functional FLAP is needed for BRP-7 to inhibit LTs, and FLAP bound to BRP-7 linked to a solid matrix. Compared with the FLAP inhibitor MK-886, BRP-7 did not significantly inhibit COX-1 or microsomal prostaglandin E2 synthase-1, implying the selectivity of BRP-7 for FLAP. Finally, BRP-7 was effective in HWB and impaired inflammation in vivo, in rat pleurisy and mouse peritonitis, along with reducing LT levels. CONCLUSIONS AND IMPLICATIONS BRP-7 potently suppresses LT biosynthesis by interacting with FLAP and exhibits anti-inflammatory effectiveness in vivo, with promising potential for further development.
Collapse
Affiliation(s)
- C Pergola
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Phosphorylation mimicking mutations of ALOX5 orthologs of different vertebrates do not alter reaction specificities of the enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1460-6. [DOI: 10.1016/j.bbalip.2014.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 12/19/2022]
|
10
|
Rådmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:331-9. [PMID: 25152163 DOI: 10.1016/j.bbalip.2014.08.012] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022]
Abstract
5-Lipoxygenase (5-LOX) catalyzes two steps in the biosynthesis of leukotrienes (LTs), lipid mediators of inflammation derived from arachidonic acid. In this review we focus on 5-LOX biochemistry including 5-LOX interacting proteins and regulation of enzyme activity. LTs function in normal host defense, and have roles in many disease states where acute or chronic inflammation is part of the pathophysiology, as briefly summarized at the end of this chapter. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Olof Rådmark
- Dept of Medical Biochemistry and Biophysics, Div. of Chemistry II, Karolinska Institutet, Sweden
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Jena, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Germany
| | - Bengt Samuelsson
- Dept of Medical Biochemistry and Biophysics, Div. of Chemistry II, Karolinska Institutet, Sweden
| |
Collapse
|
11
|
Roles of coactosin-like protein (CLP) and 5-lipoxygenase-activating protein (FLAP) in cellular leukotriene biosynthesis. Proc Natl Acad Sci U S A 2014; 111:11371-6. [PMID: 25034252 DOI: 10.1073/pnas.1410983111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
5-Lipoxygenase (5LO) is a key enzyme in leukotriene (LT) biosynthesis. Two accessory proteins, coactosin-like protein (CLP) and 5-lipoxygenase-activating protein (FLAP), can support 5LO activity. To study the roles of CLP and FLAP, we knocked down these proteins in the human monocytic cell line Mono Mac 6 (MM6). Expression of CLP increased MM6 cellular 5LO activity for all stimuli tested. CLP is not absolutely crucial, however; some 5LO activity remained in all incubations of CLP knockdown cells. FLAP knockdown had minor effects in the presence of exogenous arachidonic acid, but led to prominent reductions in 5LO product formation from endogenous substrate. Similar effects were observed after CLP and FLAP knockdown in human primary macrophages as well. In addition, FLAP knockdown reduced conversion of leukotriene A4 to leukotriene C4 (LTC4), suggesting a role for the activity of LTC4 synthase. After stimulation of MM6 cells by phorbol myristate acetate and ionophore A23187, a perinuclear ring pattern was observed for 5LO. This redistribution from cytosolic to perinuclear was clearly compromised in both CLP- and FLAP-deficient cells. In addition, association of CLP with the nucleus was almost absent after 5LO knockdown, and was clearly reduced in FLAP knockdown cells. Coimmunoprecipitation experiments indicated that 5LO-CLP complex formation in MM6 cells was increased by stimulation with ionophore, and that this complex was formed to the same extent in FLAP knockdown cells. A possible interpretation of our findings is that on cell stimulation, formation of the 5LO-CLP complex augments the translocation from cytosol to nucleus, whereas FLAP stabilizes association of this complex with the perinuclear membrane.
Collapse
|
12
|
Rossi A, Pergola C, Pace S, Rådmark O, Werz O, Sautebin L. In vivo sex differences in leukotriene biosynthesis in zymosan-induced peritonitis. Pharmacol Res 2014; 87:1-7. [PMID: 24892983 DOI: 10.1016/j.phrs.2014.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/14/2014] [Accepted: 05/21/2014] [Indexed: 11/15/2022]
Abstract
Leukotrienes (LTs) are 5-lipoxygenase (5-LO) metabolites which are implicated in sex-dependent inflammatory diseases (asthma, autoimmune diseases, etc.). We have recently reported sex differences in LT biosynthesis in in vitro models such as human whole blood, neutrophils and monocytes, due to down-regulation of 5-LO product formation by androgens. Here we present evidences for sex differences in LT synthesis and related inflammatory reactions in an in vivo model of inflammation (mouse zymosan-induced peritonitis). On the cellular level, differential 5-LO subcellular compartmentalization in peritoneal macrophages (PM) from male and female mice might be the basis for these differences. Sex differences in vascular permeability and neutrophil recruitment (cell number and myeloperoxidase activity) into peritoneal cavity were evident upon intraperitoneal zymosan injection, with more prominent responses in female mice. This was accompanied by higher levels of LTC4 and LTB4 in peritoneal exudates of female compared to male mice. Interestingly, LT peritoneal levels in orchidectomized mice were higher than in sham male mice. In accordance with the in vivo results, LT formation in stimulated PM from female mice was higher than in male PM, accompanied by alterations in 5-LO subcellular localization. The increased formation of LTC4 in incubations of PM from orchidectomized mice confirms a role of sex hormones. In conclusion, sex differences observed in LT biosynthesis during peritonitis in vivo may be related, at least in part, to a variant 5-LO localization in PM from male and female mice.
Collapse
Affiliation(s)
- Antonietta Rossi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Carlo Pergola
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich-Schiller-University, Jena, Germany.
| | - Simona Pace
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich-Schiller-University, Jena, Germany.
| | - Lidia Sautebin
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
13
|
Al-Zamil HA, Ai-Twaijiri AS, Al-Mobeireek AF, Mustafa AA. Effects of zafirlukast on the function of humanpolymorphonuclear neutrophil leukocytes in asthmatic patients: A prospective, controlled, in vitro study. Curr Ther Res Clin Exp 2014; 66:279-93. [PMID: 24672130 DOI: 10.1016/j.curtheres.2005.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2005] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROSS) play an important role in the pathogenesis of asthma, and oxidative stress contributes to the initiation and worsening of inflammatory respiratory disorders (eg, asthma). Thus, antioxidant drugs may have a role in reducing or preventing damage in asthma. OBJECTIVE The aim of the study was to investigate the antioxidant effect of zafirlukast, a leukotriene receptor antagonist, in asthma. METHODS This prospective, controlled, in vitro study was conducted at KingKhalid University Hospital, Riyadh, Saudi Arabia. The generation of ROSS by polymorphonuclear neutrophil leukocytes (PMNs) in patients with mild to moderate asthma (forced expiratory volume in 1 second [FEVI], >70% of the predicted value) and healthy volunteers was assessed using chemiluminescence (CL) with phorbol 12-myristate 13-acetate (PMA) and opsonized zymosan (OPZ) in the presence of different concentrations of zafirlukast (1.25-60 μg/mL). The xanthine/xanthine oxidase (X-XOD) reaction was used to test the scavenging effect of the drug. RESULTS Six asthmatic patients (4 women, 2 men; mean age, 30.8 years; meanFEVI, 82.5% of the predicted value) and 8 healthy volunteers (4 women, 4 men; mean age, 28.8 years) were enrolled. A dose-dependent inhibition of the CL response was observed in both groups. However, patients with asthma required higher concentrations of zafirlukast to achieve an inhibitory effect similar to that in healthy controls. This difference was significant at concentrations of 20 to 60 μg/mL (all, P ≤ 0.05). When PMNs were challenged with OPZ, inhibition was also dose dependent in controls at all concentrations (all, P ≤ 0.05), but the inhibitory effect was not significant in the asthmatic patients at any concentration. The difference in the inhibitory effect between the 2 groups was significant at 30, 40, and 60 μg/mL (P < 0.02, <0.01, and <0.01, respectively). The mean (SEM) viability of the PMNs in the healthy controls was significantly affected only at the highest concentration compared with the control saline dose (86.5% [5.8%] vs 97.0% [8.%]; P < 0.05). No scavenging effect of zafirlukast was found using the X XOD system. Incubating PMA-stimulated cells with zafirlukast (5 and 10 μg/mL) for 10 minutes to 1 hour significantly increased the inhibitory effect of the drug by 15% to 46% (all, P < 0.001). When zafirlukast was tested for reversibility of its inhibitory effect on ROS production, its action was found to be irreversible at a concentration of 30 μg/mL (P < 0.001) and partially reversible at 60 μg/mL compared with the baseline saline control. CONCLUSIONS Zafirlukast inhibited ROS generation by PMNs in a dose-dependentmanner in asthmatic patients and healthy subjects. However, asthmatic patients required much higher concentrations compared with controls. The incubation of the stimulated cells with zafirlukast increased the inhibitory effect. This finding suggests that the therapeutic effect of zafirlukast in asthma may be in part related to its antioxidant action.
Collapse
Affiliation(s)
- Hana A Al-Zamil
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Ai-Twaijiri
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Ali A Mustafa
- Department of Pharmacology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Schaible AM, Traber H, Temml V, Noha SM, Filosa R, Peduto A, Weinigel C, Barz D, Schuster D, Werz O. Potent inhibition of human 5-lipoxygenase and microsomal prostaglandin E₂ synthase-1 by the anti-carcinogenic and anti-inflammatory agent embelin. Biochem Pharmacol 2013; 86:476-86. [PMID: 23623753 DOI: 10.1016/j.bcp.2013.04.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 11/30/2022]
Abstract
Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) possesses anti-inflammatory and anti-carcinogenic properties in vivo, and these features have been related to interference with multiple targets including XIAPs, NFκB, STAT-3, Akt and mTOR. However, interference with these proteins requires relatively high concentrations of embelin (IC₅₀>4 μM) and cannot fully explain its bioactivity observed in several functional studies. Here we reveal human 5-lipoxygenase (5-LO) and microsomal prostaglandin E₂ synthase (mPGES)-1 as direct molecular targets of embelin. Thus, embelin potently suppressed the biosynthesis of eicosanoids by selective inhibition of 5-LO and mPGES-1 with IC₅₀=0.06 and 0.2 μM, respectively. In intact human polymorphonuclear leukocytes and monocytes, embelin consistently blocked the biosynthesis of various 5-LO products regardless of the stimulus (fMLP or A23187) with IC₅₀=0.8-2 μM. Neither the related human 12- and 15-LO nor the cyclooxygenases-1 and -2 or cytosolic phospholipase A₂ were significantly affected by 10 μM embelin. Inhibition of 5-LO and mPGES-1 by embelin was (I) essentially reversible after wash-out, (II) not impaired at higher substrate concentrations, (III) unaffected by inclusion of Triton X-100, and (IV) did not correlate to its proposed antioxidant properties. Docking simulations suggest concrete binding poses in the active sites of both 5-LO and mPGES-1. Because 5-LO- and mPGES-1-derived eicosanoids play roles in inflammation and cancer, the interference of embelin with these enzymes may contribute to its biological effects and suggests embelin as novel chemotype for development of dual 5-LO/mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Anja M Schaible
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A novel C(28)-hydroxylated lupeolic acid suppresses the biosynthesis of eicosanoids through inhibition of cytosolic phospholipase A2. Biochem Pharmacol 2012; 84:681-91. [DOI: 10.1016/j.bcp.2012.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 11/23/2022]
|
16
|
Pergola C, Jazzar B, Rossi A, Northoff H, Hamburger M, Sautebin L, Werz O. On the inhibition of 5-lipoxygenase product formation by tryptanthrin: mechanistic studies and efficacy in vivo. Br J Pharmacol 2012; 165:765-76. [PMID: 21797843 DOI: 10.1111/j.1476-5381.2011.01605.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Leukotrienes (LTs) are pro-inflammatory mediators produced by 5-lipoxygenase (5-LO). Currently available 5-LO inhibitors either lack efficacy or are toxic and novel approaches are required to establish a successful anti-LT therapy. Here we provide a detailed evaluation of the effectiveness of the plant-derived alkaloid tryptanthrin as an inhibitor of LT biosynthesis. EXPERIMENTAL APPROACH We analysed LT formation and performed mechanistic studies in human neutrophils stimulated with pathophysiologically relevant stimuli (LPS and formyl peptide), as well as in cell-free assays (neutrophil homogenates or recombinant human 5-LO) and in human whole blood. The in vivo effectiveness of tryptanthrin was evaluated in the rat model of carrageenan-induced pleurisy. KEY RESULTS Tryptanthrin potently reduced LT-formation in human neutrophils (IC(50) = 0.6µM). However, tryptanthrin is not a redox-active compound and did not directly interfere with 5-LO activity in cell-free assays. Similarly, tryptanthrin did not inhibit the release of arachidonic acid, the activation of MAPKs, or the increase in [Ca(2+) ](i) , but it modified the subcellular localization of 5-LO. Moreover, tryptanthrin potently suppressed LT formation in human whole blood (IC(50) = 10µM) and reduced LTB(4) levels in the rat pleurisy model after a single oral dose of 10mg·kg(-1) . CONCLUSIONS AND IMPLICATIONS Our data reveal that tryptanthrin is a potent natural inhibitor of cellular LT biosynthesis with proven efficacy in whole blood and is effective in vivo after oral administration. Its unique pharmacological profile supports further analysis to exploit its pharmacological potential.
Collapse
Affiliation(s)
- C Pergola
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Jena, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Pucci M, Pasquariello N, Battista N, Di Tommaso M, Rapino C, Fezza F, Zuccolo M, Jourdain R, Finazzi Agrò A, Breton L, Maccarrone M. Endocannabinoids stimulate human melanogenesis via type-1 cannabinoid receptor. J Biol Chem 2012; 287:15466-78. [PMID: 22431736 DOI: 10.1074/jbc.m111.314880] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We show that a fully functional endocannabinoid system is present in primary human melanocytes (normal human epidermal melanocyte cells), including anandamide (AEA), 2-arachidonoylglycerol, the respective target receptors (CB(1), CB(2), and TRPV1), and their metabolic enzymes. We also show that at higher concentrations AEA induces normal human epidermal melanocyte apoptosis (∼3-fold over controls at 5 μM) through a TRPV1-mediated pathway that increases DNA fragmentation and p53 expression. However, at lower concentrations, AEA and other CB(1)-binding endocannabinoids dose-dependently stimulate melanin synthesis and enhance tyrosinase gene expression and activity (∼3- and ∼2-fold over controls at 1 μM). This CB(1)-dependent activity was fully abolished by the selective CB(1) antagonist SR141716 or by RNA interference of the receptor. CB(1) signaling engaged p38 and p42/44 mitogen-activated protein kinases, which in turn activated the cyclic AMP response element-binding protein and the microphthalmia-associated transcription factor. Silencing of tyrosinase or microphthalmia-associated transcription factor further demonstrated the involvement of these proteins in AEA-induced melanogenesis. In addition, CB(1) activation did not engage the key regulator of skin pigmentation, cyclic AMP, showing a major difference compared with the regulation of melanogenesis by α-melanocyte-stimulating hormone through melanocortin 1 receptor.
Collapse
Affiliation(s)
- Mariangela Pucci
- Department of Biomedical Sciences, University of Teramo, 64100 Teramo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Esser J, Gehrmann U, Salvado MD, Wetterholm A, Haeggström JZ, Samuelsson B, Gabrielsson S, Scheynius A, Rådmark O. Zymosan suppresses leukotriene C₄ synthase activity in differentiating monocytes: antagonism by aspirin and protein kinase inhibitors. FASEB J 2011; 25:1417-27. [PMID: 21228223 DOI: 10.1096/fj.10-175828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are potent proinflammatory mediators with particular relevance for asthma. However, control of cysLT biosynthesis in the time period after onset of acute inflammation has not been extensively studied. As a model for later phases of inflammation, we investigated regulation of leukotriene (LT) C(4) synthase (LTC(4)S) in differentiating monocytes, exposed for several days to fungal zymosan. Incubations with LTA(4) revealed 20-fold increased LTC(4)S activity during differentiation of monocytic Mono Mac 6 (MM6) cells, which was reduced by 80% in the presence of zymosan (25 μg/ml, 96 h). Zymosan (48 h) similarly attenuated LTC(4)S activity of primary human monocyte-derived macrophages and dendritic cells. Several findings indicate phosphoregulation of LTC(4)S: increased activity during MM6 cell differentiation correlated with reduced phosphorylation of 70-kDa ribosomal protein S6 kinase (p70S6K), which could phosphorylate purified LTC(4)S; the p70S6K inhibitor rapamycin (20 nM) doubled LTC(4)S activity of undifferentiated MM6 cells, and protein kinase A and C inhibitors (H-89, CGP-53353, and staurosporine) reversed the zymosan-induced suppression of LTC(4)S activity. Finally, zymosan (48 h) up-regulated PGE(2) biosynthesis, and aspirin (10 μM) or prostaglandin E(2) (PGE(2)) receptor antagonists counteracted the zymosan effect. Our results suggest a late PGE(2)-mediated phosphoregulation of LTC(4)S during microbial exposure, which may contribute to resolution of inflammation, with implications for aspirin hypersensitivity.
Collapse
Affiliation(s)
- Julia Esser
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Esser J, Gehrmann U, D'Alexandri FL, Hidalgo-Estévez AM, Wheelock CE, Scheynius A, Gabrielsson S, Rådmark O. Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J Allergy Clin Immunol 2010; 126:1032-40, 1040.e1-4. [PMID: 20728205 DOI: 10.1016/j.jaci.2010.06.039] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND Leukotrienes (LTs) are potent proinflammatory lipid mediators with key roles in the pathogenesis of asthma and inflammation. Recently, nanovesicles (exosomes), released from macrophages and dendritic cells (DCs), have become increasingly appreciated as messengers in immunity. OBJECTIVE We investigated whether exosomes from human macrophages, DCs, and plasma contain enzymes for LT biosynthesis and studied potential roles for exosomes in transcellular LT metabolism and granulocyte chemotaxis. METHODS The presence of LT pathway enzymes and LT biosynthesis in exosomes and cells was analyzed by Western blot, immunoelectron microscopy, and enzyme activity assays. Surface marker expression was evaluated by flow cytometry, and granulocyte migration was assessed in a multiwell chemotaxis system. RESULTS Exosomes from macrophages and DCs contain functional enzymes for LT biosynthesis. After incubation of intact cells with the LT biosynthesis intermediate LTA(4), LTB(4) was the major product of macrophages, whereas DCs primarily formed LTC(4). However, in exosomes from both cell types, LTC(4) was the predominant LTA(4) metabolite. Exosomal LTC(4) formation (per milligram protein) exceeded that of cells. In macrophages and DCs, TGF-β1 upregulated LTA(4) hydrolase along with increased LTB(4) formation also in the exosomes. Moreover, TGF-β1 modified the expression of surface marker proteins on cells and exosomes and reduced the exosome yield from macrophages. On Ca(2+)-ionophore and arachidonic acid stimulation, exosomes produced chemotactic eicosanoids and induced granulocyte migration. Interestingly, active LTA(4) hydrolase and LTC(4) synthase were present also in exosomes from human plasma. CONCLUSION Our findings indicate that exosomes can contribute to inflammation by participation in LT biosynthesis and granulocyte recruitment.
Collapse
Affiliation(s)
- Julia Esser
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Rådmark O, Samuelsson B. Regulation of the activity of 5-lipoxygenase, a key enzyme in leukotriene biosynthesis. Biochem Biophys Res Commun 2010; 396:105-10. [PMID: 20494120 DOI: 10.1016/j.bbrc.2010.02.173] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 02/28/2010] [Indexed: 01/22/2023]
Abstract
5-Lipoxygenase (5LO) catalyzes two steps in the biosynthesis of leukotrienes (LTs), lipid mediators of inflammation derived from arachidonic acid. LTs function in normal host defense, and have pathophysiological roles in chronic inflammatory diseases as asthma and atherosclerosis. Also, possible effects of 5LO products in relation to tumorigenesis have been described. Thus, insight regarding the biochemistry of 5LO is relevant for better understanding of normal physiology, and for development of therapy.
Collapse
Affiliation(s)
- Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | |
Collapse
|
21
|
Kubala L, Schmelzer KR, Klinke A, Kolarova H, Baldus S, Hammock BD, Eiserich JP. Modulation of arachidonic and linoleic acid metabolites in myeloperoxidase-deficient mice during acute inflammation. Free Radic Biol Med 2010; 48:1311-20. [PMID: 20156554 PMCID: PMC2856720 DOI: 10.1016/j.freeradbiomed.2010.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 01/30/2010] [Accepted: 02/09/2010] [Indexed: 01/15/2023]
Abstract
Acute inflammation is a common feature of many life-threatening pathologies, including septic shock. One hallmark of acute inflammation is the peroxidation of polyunsaturated fatty acids forming bioactive products that regulate inflammation. Myeloperoxidase (MPO) is an abundant phagocyte-derived hemoprotein released during phagocyte activation. Here, we investigated the role of MPO in modulating biologically active arachidonic acid (AA) and linoleic acid (LA) metabolites during acute inflammation. Wild-type and MPO-knockout (KO) mice were exposed to intraperitoneally injected endotoxin for 24 h, and plasma LA and AA oxidation products were comprehensively analyzed using a liquid chromatography-mass spectrometry method. Compared to wild-type mice, MPO-KO mice had significantly lower plasma levels of LA epoxides and corresponding LA- and AA-derived fatty acid diols. AA and LA hydroxy intermediates (hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids) were also significantly lower in MPO-KO mice. Conversely, MPO-deficient mice had significantly higher plasma levels of cysteinyl-leukotrienes with well-known proinflammatory properties. In vitro experiments revealed significantly lower amounts of AA and LA epoxides, LA- and AA-derived fatty acid diols, and AA and LA hydroxy intermediates in stimulated polymorphonuclear neutrophils isolated from MPO-KO mice. Our results demonstrate that MPO modulates the balance of pro- and anti-inflammatory lipid mediators during acute inflammation and, in this way, may control acute inflammatory diseases.
Collapse
Affiliation(s)
- Lukas Kubala
- Department of Internal Medicine, University of California at Davis, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Steinbrink SD, Pergola C, Bühring U, George S, Metzner J, Fischer AS, Häfner AK, Wisniewska JM, Geisslinger G, Werz O, Steinhilber D, Maier TJ. Sulindac sulfide suppresses 5-lipoxygenase at clinically relevant concentrations. Cell Mol Life Sci 2010; 67:797-806. [PMID: 20091083 PMCID: PMC11115735 DOI: 10.1007/s00018-009-0206-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 10/25/2009] [Accepted: 11/06/2009] [Indexed: 11/30/2022]
Abstract
Sulindac is a non-selective inhibitor of cyclooxygenases (COX) used to treat inflammation and pain. Additionally, non-COX targets may account for the drug's chemo-preventive efficacy against colorectal cancer and reduced gastrointestinal toxicity. Here, we demonstrate that the pharmacologically active metabolite of sulindac, sulindac sulfide (SSi), targets 5-lipoxygenase (5-LO), the key enzyme in the biosynthesis of proinflammatory leukotrienes (LTs). SSi inhibited 5-LO in ionophore A23187- and LPS/fMLP-stimulated human polymorphonuclear leukocytes (IC(50) approximately 8-10 microM). Importantly, SSi efficiently suppressed 5-LO in human whole blood at clinically relevant plasma levels (IC(50) = 18.7 microM). SSi was 5-LO-selective as no inhibition of related lipoxygenases (12-LO, 15-LO) was observed. The sulindac prodrug and the other metabolite, sulindac sulfone (SSo), failed to inhibit 5-LO. Mechanistic analysis demonstrated that SSi directly suppresses 5-LO with an IC(50) of 20 muM. Together, these findings may provide a novel molecular basis to explain the COX-independent pharmacological effects of sulindac under therapy.
Collapse
Affiliation(s)
- Svenja D. Steinbrink
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Carlo Pergola
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ulrike Bühring
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Julia Metzner
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Astrid S. Fischer
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Joanna M. Wisniewska
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt/Main, Germany
| | - Oliver Werz
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Thorsten J. Maier
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| |
Collapse
|
23
|
Pergola C, Werz O. 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opin Ther Pat 2010; 20:355-75. [DOI: 10.1517/13543771003602012] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Coactosin-like protein functions as a stabilizing chaperone for 5-lipoxygenase: role of tryptophan 102. Biochem J 2009; 425:265-74. [DOI: 10.1042/bj20090856] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The activity of 5-LO (5-lipoxygenase), which catalyses two initial steps in the biosynthesis of pro-inflammatory LTs (leukotrienes), is strictly regulated. One recently discovered factor, CLP (coactosin-like protein), binds 5-LO and promotes LT formation. In the present paper we report that CLP also stabilizes 5-LO and prevents non-turnover inactivation of the enzyme in vitro. Mutagenesis of tryptophan residues in the 5-LO β-sandwich showed that 5-LO-Trp102 is essential for binding to CLP, and for CLP to support 5-LO activity. In addition, the stabilizing effect also depended on binding between CLP and 5-LO. After mutations which prevent interaction (5-LO-W102A or CLP-K131A), the protective effect of CLP was absent. A calculated 5-LO–CLP docking model indicates that CLP may bind to additional residues in both domains of 5-LO, thus possibly stabilizing the 5-LO structure. To obtain further support for binding between CLP and 5-LO in a living cell, subcellular localization of CLP and 5-LO in the monocytic cell line Mono Mac 6 was determined. In these cells, 5-LO associates with a nuclear fraction only when differentiated cells are primed with phorbol ester and stimulated with ionophore. The same pattern of redistribution was found for CLP, indicating that the two proteins associate with the nucleus in a co-ordinated fashion. The results of the present study support a role for CLP as a chaperoning scaffold factor, influencing both the stability and the activity of 5-LO.
Collapse
|
25
|
Stoffers KL, Sorg BL, Seuter S, Rau O, Rådmark O, Steinhilber D. Calcitriol upregulates open chromatin and elongation markers at functional vitamin D response elements in the distal part of the 5-lipoxygenase gene. J Mol Biol 2009; 395:884-96. [PMID: 19837082 DOI: 10.1016/j.jmb.2009.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022]
Abstract
5-Lipoxygenase (5-LO) gene expression is strongly upregulated during induction of myeloid cell differentiation by 1alpha,25-dihydroxyvitamin D(3) (calcitriol) and transforming growth factor-beta (TGFbeta) in a promoter-independent manner. In an activity-guided approach using reporter gene assays where the distal part of the 5-LO gene was included in the reporter gene plasmid, we localized vitamin D response elements (VDREs) within exon 10, exon 12, and intron M. We found that these newly identified VDRE sites are bound by vitamin D receptor both in vitro by gel-shift analysis and in vivo by chromatin immunoprecipitation assays. In reporter gene assays, the distal part of the 5-LO gene has promoter-like activity that is inducible by calcitriol in a vitamin D receptor-dependent manner. The vitamin D effects were attenuated when the VDREs in exon 10, exon 12, and intron M were deleted or mutated. When we analyzed the effects of calcitriol plus TGFbeta on chromatin modifications at exon 10, exon 12, and intron M of the 5-LO gene in Mono Mac 6 cells by chromatin immunoprecipitation analysis, we found an increase in histone H4 K20 monomethylation and a prominent presence of histone H3 K36 trimethylation. Combined treatment with calcitriol and TGFbeta also increased histone H4 acetylation, a marker for open chromatin, and the elongation form of RNA polymerase II at these sites, whereas the transcription initiation marker histone H3 K4 trimethylation was almost undetectable. The data suggest that calcitriol induces chromatin opening and transcript elongation via VDREs located at the 3'-end of the 5-LO gene.
Collapse
Affiliation(s)
- Kirsten L Stoffers
- Institute of Pharmaceutical Chemistry/ZAFES, University of Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Feißt C, Pergola C, Rakonjac M, Rossi A, Koeberle A, Dodt G, Hoffmann M, Hoernig C, Fischer L, Steinhilber D, Franke L, Schneider G, Rådmark O, Sautebin L, Werz O. Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo. Cell Mol Life Sci 2009; 66:2759-71. [PMID: 19579006 PMCID: PMC11115900 DOI: 10.1007/s00018-009-0078-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 01/02/2023]
Abstract
We previously showed that, in vitro, hyperforin from St. John's wort (Hypericum perforatum) inhibits 5-lipoxygenase (5-LO), the key enzyme in leukotriene biosynthesis. Here, we demonstrate that hyperforin possesses a novel and unique molecular pharmacological profile as a 5-LO inhibitor with remarkable efficacy in vivo. Hyperforin (4 mg/kg, i.p.) significantly suppressed leukotriene B(4) formation in pleural exudates of carrageenan-treated rats associated with potent anti-inflammatory effectiveness. Inhibition of 5-LO by hyperforin, but not by the iron-ligand type 5-LO inhibitor BWA4C or the nonredox-type inhibitor ZM230487, was abolished in the presence of phosphatidylcholine and strongly reduced by mutation (W13A-W75A-W102A) of the 5-LO C2-like domain. Moreover, hyperforin impaired the interaction of 5-LO with coactosin-like protein and abrogated 5-LO nuclear membrane translocation in ionomycin-stimulated neutrophils, processes that are typically mediated via the regulatory 5-LO C2-like domain. Together, hyperforin is a novel type of 5-LO inhibitor apparently acting by interference with the C2-like domain, with high effectiveness in vivo.
Collapse
Affiliation(s)
- Christian Feißt
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Carlo Pergola
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Marija Rakonjac
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Andreas Koeberle
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Gabriele Dodt
- Interfakultäres Institut für Biochemie, Hoppe-Seyler-Straße 4, University of Tuebingen, 72076 Tübingen, Germany
| | - Marika Hoffmann
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Christina Hoernig
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Lutz Fischer
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Lutz Franke
- Institute of Organic Chemistry and Chemical Biology, University of Frankfurt, Siesmayerstr. 70, 60323 Frankfurt, Germany
| | - Gisbert Schneider
- Institute of Organic Chemistry and Chemical Biology, University of Frankfurt, Siesmayerstr. 70, 60323 Frankfurt, Germany
| | - Olof Rådmark
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lidia Sautebin
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Oliver Werz
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
27
|
Lindner SC, Köhl U, Maier TJ, Steinhilber D, Sorg BL. TLR2 ligands augment cPLA2
α activity and lead to enhanced leukotriene release in human monocytes. J Leukoc Biol 2009; 86:389-99. [DOI: 10.1189/jlb.1008591] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
28
|
Expression of phospholipases A2 in primary human lung macrophages: role of cytosolic phospholipase A2-alpha in arachidonic acid release and platelet activating factor synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:92-102. [PMID: 19130898 DOI: 10.1016/j.bbalip.2008.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 11/24/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
Macrophages are a major source of lipid mediators in the human lung. Expression and contribution of cytosolic (cPLA(2)) and secreted phospholipases A(2) (sPLA(2)) to the generation of lipid mediators in human macrophages are unclear. We investigated the expression and role of different PLA(2)s in the production of lipid mediators in primary human lung macrophages. Macrophages express the alpha, but not the zeta isoform of group IV and group VIA cPLA(2) (iPLA(2)). Two structurally-divergent inhibitors of group IV cPLA(2) completely block arachidonic acid release by macrophages in response to non-physiological (Ca(2+) ionophores and phorbol esters) and physiological agonists (lipopolysaccharide and Mycobacterium protein derivative). These inhibitors also reduce by 70% the synthesis of platelet-activating factor by activated macrophages. Among the full set of human sPLA(2)s, macrophages express group IIA, IID, IIE, IIF, V, X and XIIA, but not group IB and III enzymes. Me-Indoxam, a potent and cell impermeable inhibitor of several sPLA(2)s, has no effect on arachidonate release or platelet-activating factor production. Agonist-induced exocytosis is not influenced by cPLA(2) inhibitors at concentrations that block arachidonic acid release. Our results indicate that human macrophages express cPLA(2)-alpha, iPLA(2) and several sPLA(2)s. Cytosolic PLA(2)-alpha is the major enzyme responsible for lipid mediator production in human macrophages.
Collapse
|
29
|
ERK-mediated regulation of leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc Natl Acad Sci U S A 2008; 105:19881-6. [PMID: 19064924 DOI: 10.1073/pnas.0809120105] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
5-Lipoxygenase initiates the biosynthesis of leukotrienes, lipid mediators involved in normal host defense and in inflammatory and allergic disorders. Despite an obvious gender bias in leukotriene-related diseases (e.g., asthma), gender aspects have been neglected in studies on leukotrienes and 5-lipoxygenase. Here, we show that leukotriene formation in stimulated whole blood or neutrophils from males is substantially lower compared with females, accompanied by changed 5-lipoxygenase trafficking. This is due to gender-specific differential activation of extracellular signal-regulated kinases (ERKs). The differences are directly related to variant male/female testosterone plus 5alpha-dihydrotestosterone levels, and addition of 5alpha-dihydrotestosterone to female blood or neutrophils reduced the high (female) LT biosynthesis capacity to low (male) levels. In conclusion, regulation of ERKs and leukotriene formation by androgens constitutes a molecular basis for gender differences in the inflammatory response, and in inflammatory diseases such as asthma.
Collapse
|
30
|
Maier TJ, Tausch L, Hoernig M, Coste O, Schmidt R, Angioni C, Metzner J, Groesch S, Pergola C, Steinhilber D, Werz O, Geisslinger G. Celecoxib inhibits 5-lipoxygenase. Biochem Pharmacol 2008; 76:862-72. [DOI: 10.1016/j.bcp.2008.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/09/2008] [Accepted: 07/10/2008] [Indexed: 10/21/2022]
|
31
|
Fischer L, Hornig M, Pergola C, Meindl N, Franke L, Tanrikulu Y, Dodt G, Schneider G, Steinhilber D, Werz O. The molecular mechanism of the inhibition by licofelone of the biosynthesis of 5-lipoxygenase products. Br J Pharmacol 2007; 152:471-80. [PMID: 17704828 PMCID: PMC2050828 DOI: 10.1038/sj.bjp.0707416] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Licofelone is a dual inhibitor of the cyclooxygenase and 5-lipoxygenase (5-LO) pathway, and has been developed for the treatment of inflammatory diseases. Here, we investigated the molecular mechanisms underlying the inhibition by licofelone of the formation of 5-LO products. EXPERIMENTAL APPROACH The efficacy of licofelone to inhibit the formation of 5-LO products was analysed in human isolated polymorphonuclear leukocytes (PMNL) or transfected HeLa cells, as well as in cell-free assays using respective cell homogenates or purified recombinant 5-LO. Moreover, the effects of licofelone on the subcellular redistribution of 5-LO were studied. KEY RESULTS Licofelone potently blocked synthesis of 5-LO products in Ca(2+)-ionophore-activated PMNL (IC(50)=1.7 microM) but was a weak inhibitor of 5-LO activity in cell-free assays (IC(50)>>10 microM). The structures of licofelone and MK-886, an inhibitor of the 5-LO-activating protein (FLAP), were superimposable. The potencies of both licofelone and MK-886 in ionophore-activated PMNL were impaired upon increasing the concentration of arachidonic acid, or under conditions where 5-LO product formation was evoked by genotoxic, oxidative or hyperosmotic stress. Furthermore, licofelone prevented nuclear redistribution of 5-LO in ionophore-activated PMNL, as had been observed for FLAP inhibitors. Finally, licofelone as well as MK-886 caused only moderate inhibition of the synthesis of 5-LO products in HeLa cells, unless FLAP was co-transfected. CONCLUSIONS AND IMPLICATIONS Our data suggest that the potent inhibition of the biosynthesis of 5-LO products by licofelone requires an intact cellular environment and appears to be due to interference with FLAP.
Collapse
Affiliation(s)
- L Fischer
- Institute of Pharmaceutical Chemistry, University of Frankfurt Frankfurt, Germany
| | - M Hornig
- Institute of Pharmaceutical Chemistry, University of Frankfurt Frankfurt, Germany
| | - C Pergola
- Department of Pharmaceutical Analytics, Institute of Pharmacy, Eberhard-Karls University Tuebingen, Auf der Morgenstelle 8 Tuebingen, Germany
| | - N Meindl
- Institute of Pharmaceutical Chemistry, University of Frankfurt Frankfurt, Germany
| | - L Franke
- Institute of Organic Chemistry, University of Frankfurt, Max-von-Laue-Str. 9 Frankfurt, Germany
| | - Y Tanrikulu
- Institute of Organic Chemistry, University of Frankfurt, Max-von-Laue-Str. 9 Frankfurt, Germany
| | - G Dodt
- Interfakultäres Institut für Biochemie, Eberhard-Karls University Tuebingen Tuebingen, Germany
| | - G Schneider
- Institute of Organic Chemistry, University of Frankfurt, Max-von-Laue-Str. 9 Frankfurt, Germany
| | - D Steinhilber
- Institute of Pharmaceutical Chemistry, University of Frankfurt Frankfurt, Germany
| | - O Werz
- Department of Pharmaceutical Analytics, Institute of Pharmacy, Eberhard-Karls University Tuebingen, Auf der Morgenstelle 8 Tuebingen, Germany
- Author for correspondence:
| |
Collapse
|
32
|
Rådmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem Sci 2007; 32:332-41. [PMID: 17576065 DOI: 10.1016/j.tibs.2007.06.002] [Citation(s) in RCA: 350] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/01/2007] [Accepted: 06/04/2007] [Indexed: 11/16/2022]
Abstract
5-Lipoxygenase (5-LO) catalyzes the first two steps in the biosynthesis of leukotrienes, a group of pro-inflammatory lipid mediators derived from arachidonic acid. Leukotriene antagonists are used in the treatment of asthma, and the potential role of leukotrienes in atherosclerosis, another chronic inflammatory disease, has recently received considerable attention. In addition, some possible effects of 5-LO metabolites in tumorigenesis have emerged. Thus, knowledge of the biochemistry of this enzyme has potential implications for the treatment of various diseases. Recent advances have expanded our understanding of the regulatory mechanisms underlying the expression and control of 5-LO activity. With regard to the control of enzyme activity, many of these findings focus on the N-terminal domain of 5-LO.
Collapse
Affiliation(s)
- Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
33
|
Rådmark O, Samuelsson B. 5-Lipoxygenase: Regulation and possible involvement in atherosclerosis. Prostaglandins Other Lipid Mediat 2007; 83:162-74. [PMID: 17481551 DOI: 10.1016/j.prostaglandins.2007.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review article focuses on two aspects regarding 5-lipoxygenase. First, mechanisms for activation of the enzyme. Second, the involvement of 5-lipoxygenase and leukotrienes in atherosclerosis.
Collapse
Affiliation(s)
- Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institute, S-17177 Stockholm, Sweden.
| | | |
Collapse
|
34
|
Zhu XY, Liu YJ, Diao F, Fan J, Lu J, Xu RB. Role of glucocorticoids and glucocorticoid receptor in priming of macrophages caused by glucocorticoid receptor blockade. Endocrine 2007; 31:130-7. [PMID: 17873323 DOI: 10.1007/s12020-007-0019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 11/29/2022]
Abstract
We previously reported that glucocorticoid receptor (GR) blockade (injected with GR antagonist RU486) primed the host responses to lipopolysaccharide. Since decrease of GR and elevated glucocorticoids (GCs) have been always reported as parallel responses, we hypothesize that both GCs and GR play important roles in GR blockade induced priming. We first confirm that the production of nitric oxide (NO), superoxide (O2-), and PKCalpha expression are all increased in peritoneal macrophages from GR blockade rats, indicating that macrophages are primed by GR blockade. Furthermore, using unilateral adrenalectomy rats, we find that the elevated GCs caused by a feedback mechanism following GR blockade may be involved in the process of priming. In vitro experiments in RAW264.7 cells show the inhibitory effect of GCs on NO production, which can be thoroughly blocked by RU486, indicating the increase of NO production in GR blockade rats is due to the elimination of GCs's anti-inflammatory function. In contrast, 10(-7) M corticosterone induces significant increases in O2- release, PKCalpha expression and phosphorylation, which cannot be reversed by RU486, demonstrating a previously unrecognized pro-inflammatory role of GCs in enhancing PM activation through a GR-independent pathway. The effect of GCs on PKCalpha expression even exists in GR deficient COS-7 cells as well as in GR knock-down RAW264.7 cells. In conclusion, both GR impairment and elevation of GCs are involved in the priming of macrophages caused by GR blockade. The findings of the divergent roles of GCs in modulation of inflammation may change therapeutic strategy for inflammatory diseases with GCs.
Collapse
Affiliation(s)
- Xiao-Yan Zhu
- Department of Physiology, Second Millitary Medical University, 800 Xiang Yin Road, Shanghai, 200433, PR China.
| | | | | | | | | | | |
Collapse
|
35
|
Zhou Y, Wei EQ, Fang SH, Chu LS, Wang ML, Zhang WP, Yu GL, Ye YL, Lin SC, Chen Z. Spatio-temporal properties of 5-lipoxygenase expression and activation in the brain after focal cerebral ischemia in rats. Life Sci 2006; 79:1645-56. [PMID: 16824548 DOI: 10.1016/j.lfs.2006.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/13/2006] [Accepted: 05/23/2006] [Indexed: 12/29/2022]
Abstract
The role of 5-lipoxygenase (5-LOX) in brain injury after cerebral ischemia has been reported; however, the spatio-temporal properties of 5-LOX expression and the enzymatic activation are unclear. To determine these properties, we observed post-ischemic 5-LOX changes from 3 h to 14 days after reperfusion in rats with transient focal cerebral ischemia induced by 30 min of middle cerebral artery occlusion. We found that the expression of 5-LOX, both mRNA and protein, was increased in the ischemic core 12-24 h after reperfusion, and in the boundary zone adjacent to the ischemic core 7-14 days after reperfusion. The increased 5-LOX was primarily localized in the neurons in the ischemic core at 24 h, but in the proliferated astrocytes in the boundary zone 14 days after reperfusion. As 5-LOX metabolites, the level of cysteinyl-leukotrienes in the ischemic brain was substantially increased 3 h to 24 h, near control at 3 days, and moderately increased again 7 days after reperfusion; whereas the level of LTB(4) was increased mildly 3 h but substantially 7-14 days after reperfusion. Thus, we conclude that 5-LOX expression and the enzymatic activity are increased after focal cerebral ischemia, and spatio-temporally involved in neuron injury in the acute phase and astrocyte proliferation in the late phase.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pharmacology, School of Medicine, Zhejiang University, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rakonjac M, Fischer L, Provost P, Werz O, Steinhilber D, Samuelsson B, Rådmark O. Coactosin-like protein supports 5-lipoxygenase enzyme activity and up-regulates leukotriene A4 production. Proc Natl Acad Sci U S A 2006; 103:13150-5. [PMID: 16924104 PMCID: PMC1559768 DOI: 10.1073/pnas.0605150103] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Regulation of 5-lipoxygenase (5LO) activity is a key determinant for the biosynthesis of proinflammatory leukotrienes. Coactosin-like protein (CLP) is an F-actin-binding protein that can also bind 5LO. Here, we report that CLP can up-regulate and modulate 5LO activity [formation of 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HPETE)], 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HETE), and 5(S)-trans-5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid (LTA(4)) in vitro. Three findings are presented. First, CLP up-regulates Ca(2+)-induced 5LO activity, in the absence of phosphatidylcholine (membrane). Apparently, CLP can function as a scaffold for 5LO, similar to membranes. Second, CLP gives a considerable (3-fold) increase in the amount of LTA(4) formed by 5LO, when present together with phosphatidylcholine. Third, CLP increases the ratio of 5-HETE/5-HPETE. These effects require protein interaction by Trp residues in ligand-binding loops of the 5LO beta-sandwich; both binding and stimulatory effects of CLP were abolished for the mutant 5LO-W13/75/102A. In polymorphonuclear leukocytes stimulated with Ca(2+) ionophore, both CLP and 5LO associated with the nucleus, whereas in resting cells, CLP and 5LO were cytosolic. These findings establish CLP as a factor relevant for 5LO product formation. Functioning as a 5LO scaffold, CLP may provide a basis for the formation of 5-HETE in the cytosol of different cell types. Furthermore, in stimulated cells, CLP appears to function in a complex together with 5LO and membranes, increasing the capacity of 5LO for leukotriene biosynthesis.
Collapse
Affiliation(s)
- Marija Rakonjac
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Lutz Fischer
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany; and
| | - Patrick Provost
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Quebec, QC, Canada G1V 4G2
| | - Oliver Werz
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany; and
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany; and
| | - Bengt Samuelsson
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden
- To whom correspondence may be addressed. E-mail:
or
| | - Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
37
|
Luo M, Flamand N, Brock TG. Metabolism of arachidonic acid to eicosanoids within the nucleus. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:618-25. [PMID: 16574479 DOI: 10.1016/j.bbalip.2006.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/20/2006] [Accepted: 02/20/2006] [Indexed: 11/18/2022]
Abstract
The eicosanoids are a diverse family of molecules that have powerful effects on cell function. They are best known as intercellular messengers, having autocrine and paracrine effects following their secretion from the cells that synthesize them. Many of the eicosanoids are produced from one polyunsaturated fatty acid, arachidonic acid. The diversity of possible products that can be synthesized from arachidonic acid is due, in part to the variety of enzymes that can act on it. Over the past 15 years, studies have placed many, but not all, of these enzymes at or inside the nucleus. In some cases, the nuclear import or export of arachidonic acid-processing enzymes is highly regulated. Furthermore, nuclear receptors that are activated by specific eicosanoids are known to exist. Taken together, these findings indicate that the enzymatic conversion of arachidonic acid to specific signaling molecules can occur in the nucleus, that it is regulated, and that the synthesized products may act within the nucleus. The objectives of this commentary are to review what is known about the metabolism of arachidonic acid to eicosanoids within the nucleus and to point to important areas for future discovery.
Collapse
Affiliation(s)
- Ming Luo
- Department of Internal Medicine, University of Michigan Health System, 6301 MSRB III, Ann Arbor, MI 48109-0642, USA
| | | | | |
Collapse
|
38
|
Ge QF, Wei EQ, Zhang WP, Hu X, Huang XJ, Zhang L, Song Y, Ma ZQ, Chen Z, Luo JH. Activation of 5-lipoxygenase after oxygen-glucose deprivation is partly mediated via NMDA receptor in rat cortical neurons. J Neurochem 2006; 97:992-1004. [PMID: 16606359 DOI: 10.1111/j.1471-4159.2006.03828.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
5-Lipoxygenase (5-LOX) is the enzyme metabolizing arachidonic acid to produce pro-inflammatory leukotrienes. We have reported that 5-LOX is translocated to the nuclear envelope after ischemic-like injury in PC12 cells. In the present study, we determined whether 5-LOX is activated (translocation and production of leukotrienes) after oxygen-glucose deprivation (OGD) in primary rat cortical neurons; if so, whether this activation is mediated by NMDA receptor. After OGD, 5-LOX was translocated to the nuclear envelope as detected by immunoblotting, immunostaining and green fluorescent protein-5-LOX transfection. 5-LOX metabolites, cysteinyl-leukotrienes (CysLTs) but not leukotriene B4, in the culture media were increased 0.5-1.5 h after recovery. Similarly, NMDA (100 microm) also induced 5-LOX translocation, and increased the production of CysLTs during 0.5-1 h NMDA exposure. Both OGD and NMDA reduced neuron viability. NMDA receptor antagonist MK-801 inhibited almost all the responses to OGD and NMDA; whereas 5-LOX activating protein inhibitor MK-886 and 5-LOX inhibitor caffeic acid inhibited the reduction of neuron viability and the production of CysLTs, but did not affect 5-LOX translocation. From these results, we conclude that OGD can activate 5-LOX in primary rat cortical neurons, and that this activation may be partly mediated via activating NMDA receptor.
Collapse
Affiliation(s)
- Qiu-Fu Ge
- Department of Pharmacology, Zheijang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Murakawa M, Yamaoka K, Tanaka Y, Fukuda Y. Involvement of tumor necrosis factor (TNF)-α in phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin edema in mice. Biochem Pharmacol 2006; 71:1331-6. [PMID: 16487490 DOI: 10.1016/j.bcp.2006.01.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/12/2006] [Accepted: 01/13/2006] [Indexed: 11/27/2022]
Abstract
Topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA) to mouse ear induced a prolonged skin inflammation. Histological analysis revealed that the early stage (approximately 3 h) and later stage (6-24 h) of the skin reaction are characterized by dermal edema and cell accumulation, respectively. Topical application with TPA also induced increase in the level of TNF-alpha and prostagrandin E2 (PGE2) at the application site. The increase of TNF-alpha was transient with a peak at approximately 5 h, followed by a gradual elevation of PGE2 level in the skin. An in vitro study with human keratinocytes as well as immunohistochemical analysis suggested that TNF-alpha induction in the skin might be produced by epidermis treated with TPA. Administration of a cyclooxygenase inhibitor indomethacin inhibited the later stage of the TPA-induced edema. In contrast, TNF-alpha antagonist etanercept inhibited exclusively the early stage of the reaction. Taken together, these data demonstrate that the prolongation of the skin inflammation induced by TPA may be due to the sequential production of proinflammatory mediators such as eicosanoids and cytokines, and show for the first time the importance of TNF-alpha in the TPA-induced dermatitis especially at the stage where dermal edema is significant.
Collapse
Affiliation(s)
- Masao Murakawa
- Daiichi Asubio Pharma Co. Limited, Biomedical Research Laboratories, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8513, Japan
| | | | | | | |
Collapse
|
40
|
Song Y, Wei EQ, Zhang WP, Ge QF, Liu JR, Wang ML, Huang XJ, Hu X, Chen Z. Minocycline protects PC12 cells against NMDA-induced injury via inhibiting 5-lipoxygenase activation. Brain Res 2006; 1085:57-67. [PMID: 16574083 DOI: 10.1016/j.brainres.2006.02.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 02/02/2006] [Accepted: 02/07/2006] [Indexed: 11/24/2022]
Abstract
Recently, we have reported that minocycline, a semi-synthetic tetracycline with neuroprotective effects, inhibits the in vitro ischemic-like injury and 5-lipoxygenase (5-LOX) activation in PC12 cells. In the present study, we further determined whether minocycline protects PC12 cells from excitotoxicity via inhibiting 5-LOX activation. We used N-methyl-d-aspartate (NMDA, 200 microM) to induce early (exposure for 6 h) and delayed (exposure for 6 h followed by 24 h recovery) injuries. We found that NMDA receptor antagonist ketamine, 5-LOX inhibitor caffeic acid and minocycline concentration dependently attenuated NMDA-induced early and delayed cell injuries (viability reduction and cell death). However, only ketamine (1 microM) inhibited NMDA-evoked elevation of intracellular calcium. In addition, immunohistochemical analysis showed that NMDA induced 5-LOX translocation to the nuclear membrane after 1- to 6-h exposure which was confirmed by Western blotting, indicating that 5-LOX was activated. Ketamine, caffeic acid and minocycline (each at 1 microM) inhibited 5-LOX translocation after early injury. After delayed injury, PC12 cells were shrunk, and 5-LOX was translocated to the nuclei and nuclear membrane; ketamine, caffeic acid and minocycline inhibited both cell shrinking and 5-LOX translocation. As a control, 12-LOX inhibitor baicalein showed a weak effect on cell viability and death, but no effect on 5-LOX translocation. Therefore, we conclude that the protective effect of minocycline on NMDA-induced injury is partly mediated by inhibiting 5-LOX activation.
Collapse
Affiliation(s)
- Ying Song
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310031, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jozefowski S, Biedroń R, Bobek M, Marcinkiewicz J. Leukotrienes modulate cytokine release from dendritic cells. Immunology 2006; 116:418-28. [PMID: 16313356 PMCID: PMC1802435 DOI: 10.1111/j.1365-2567.2005.02241.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leukotriene B(4) (LTB(4)) and cysteinyl leukotrienes (CysLTs) are known as potent mediators of inflammation, whereas their role in the regulation of adaptive immunity remains poorly characterized. Dendritic cells (DCs) are specialized antigen-presenting cells, uniquely capable to initiate primary immune responses. We have found that zymosan, but not lipopolysaccharide (LPS) stimulates murine bone marrow-derived dendritic cells (BM-DCs) to produce large amounts of CysLTs and LTB(4) from endogenous substrates. A selective inhibitor of leukotriene synthesis MK886 as well as an antagonist of the high affinity LTB(4) receptor (BLT(1)) U-75302 slightly inhibited zymosan-, but not LPS-stimulated interleukin (IL)-10 release from BM-DCs. In contrast, U-75302 increased zymosan-stimulated release of IL-12 p40 by approximately 23%. Pre-treatment with transforming growth factor-beta1 enhanced both stimulated leukotriene synthesis and the inhibitory effect of U-75302 and MK886 on IL-10 release from DCs. Consistent with the effects of leukotriene antagonists, exogenous LTB(4) enhanced LPS-stimulated IL-10 release by approximately 39% and inhibited IL-12 p40 release by approximately 22%. Both effects were mediated by the BLT(1) receptor. Ligands of the high affinity CysLTs receptor (CysLT(1)), MK-571 and LTD(4) had little or no effect on cytokine release. Agonists of the nuclear LTB(4) receptor peroxisome proliferator-activated receptor-alpha, 8(S)-hydroxyeicosatetraenoic acid and 5,8,11,14-eicosatetraynoic acid, inhibited release of both IL-12 p40 and IL-10. Our results indicate that both autocrine and paracrine leukotrienes may modulate cytokine release from DCs, in a manner that is consistent with previously reported T helper 2-polarizing effects of leukotrienes.
Collapse
Affiliation(s)
- Szczepan Jozefowski
- Department of Immunology, Jagiellonian University School of Medicine, Kraków, Poland.
| | | | | | | |
Collapse
|
42
|
Rådmark O, Samuelsson B. Regulation of 5-lipoxygenase enzyme activity. Biochem Biophys Res Commun 2005; 338:102-10. [PMID: 16122704 DOI: 10.1016/j.bbrc.2005.08.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/04/2005] [Indexed: 11/27/2022]
Abstract
In this article, regulation of human 5-lipoxygenase enzyme activity is reviewed. First, structural properties and enzyme activities are described. This is followed by the activating factors: Ca2+, membranes, ATP, and lipid hydroperoxide. Also, studies on phosphorylation of 5-lipoxygenase and nuclear localization sequences are reviewed.
Collapse
Affiliation(s)
- Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | |
Collapse
|
43
|
Flamand N, Lefebvre J, Surette ME, Picard S, Borgeat P. Arachidonic acid regulates the translocation of 5-lipoxygenase to the nuclear membranes in human neutrophils. J Biol Chem 2005; 281:129-36. [PMID: 16275640 DOI: 10.1074/jbc.m506513200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevation of the intracellular cAMP concentration in agonist-activated human neutrophils (PMN) leads to the concomitant inhibitions of arachidonic acid (AA) release, 5-lipoxygenase (5-LO) translocation, and leukotriene (LT) biosynthesis. We report herein that exogenous AA completely prevents cAMP-dependent inhibition of 5-LO translocation and LT biosynthesis in agonist-activated PMN. Moreover, the group IVA phospholipase A2 inhibitor pyrrophenone and the MEK inhibitor U-0126 inhibited AA release and 5-LO translocation in activated PMN, and these effects were also prevented by exogenous AA, demonstrating a functional link between AA release and 5-LO translocation. Polyunsaturated fatty acids of the C18 and C20 series containing at least three double bonds located from carbon 9 (or closer to the carboxyl group) were equally effective as AA in restoring 5-LO translocation in pyrrophenone-treated agonist-activated PMN. Importantly, experiments with the 5-LO-activating protein inhibitor MK-0591 and the intracellular Ca2+ chelator BAPTA-AM demonstrated that the AA-regulated 5-LO translocation is FLAP- and Ca2+-dependent. Finally, the redox and competitive 5-LO inhibitors L-685,015, L-739,010, and L-702,539 (but not cyclooxygenase inhibitors) efficiently substituted for AA to reverse the pyrrophenone inhibition of 5-LO translocation, indicating that the site of regulation of 5-LO translocation by AA is at or in the vicinity of the catalytic site. This report demonstrates that AA regulates the translocation of 5-LO in human PMN and unravels a novel mechanism of the cAMP-mediated inhibition of LT biosynthesis.
Collapse
Affiliation(s)
- Nicolas Flamand
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
44
|
Fischer L, Poeckel D, Buerkert E, Steinhilber D, Werz O. Inhibitors of actin polymerisation stimulate arachidonic acid release and 5-lipoxygenase activation by upregulation of Ca2+ mobilisation in polymorphonuclear leukocytes involving Src family kinases. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1736:109-19. [PMID: 16126002 DOI: 10.1016/j.bbalip.2005.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/13/2005] [Accepted: 07/27/2005] [Indexed: 12/30/2022]
Abstract
Here, we show that actin polymerisation inhibitors such as latrunculin B (LB), and to a minor extent also cytochalasin D (Cyt D), enhance the release of arachidonic acid (AA) as well as nuclear translocation of 5-lipoxygenase (5-LO) and 5-LO product synthesis in human polymorphonuclear leukocytes (PMNL), challenged with thapsigargin (TG) or N-formyl-methionyl-leucyl-phenylalanine. The concentration-dependent effects of LB (EC50 approximately 200 nM) declined with prolonged preincubation (>3 min) prior TG and were barely detectable when PMNL were stimulated with Ca2+-ionophores. Investigation of the stimulatory mechanisms revealed that LB (or Cyt D) elicits Ca2+ mobilisation and potentiates stimulus-induced elevation of intracellular Ca2+, regardless of the nature of the stimulus. LB caused rapid but only moderate activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)2. The selective Src family kinase inhibitors PP2 and SU6656 blocked LB- or Cyt D-mediated Ca2+ mobilisation and suppressed the upregulatory effects on AA release and 5-LO product synthesis, without affecting AA metabolism evoked by ionophore alone. We conclude that in PMNL, inhibitors of actin polymerisation cause enhancement of intracellular Ca2+ levels through Src family kinase signaling, thereby facilitating stimulus-induced release of AA and 5-LO product formation.
Collapse
Affiliation(s)
- Lutz Fischer
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie Strasse 9, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
45
|
Werz O, Steinhilber D. Development of 5-lipoxygenase inhibitors--lessons from cellular enzyme regulation. Biochem Pharmacol 2005; 70:327-33. [PMID: 15907806 DOI: 10.1016/j.bcp.2005.04.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/01/2005] [Accepted: 04/04/2005] [Indexed: 11/22/2022]
Abstract
5-Lipoxygenase (5-LO) catalyzes the first steps in the conversion of arachidonic acid (AA) into leukotrienes (LTs) that are mediators of inflammatory and allergic reactions. Recently, the 5-LO pathway has also been associated with atherosclerosis and osteoporosis. Thus, in addition to the classical applications including asthma and allergic disorders, LT synthesis inhibitors might be of interest for the treatment of cardiovascular diseases and osteoporosis. Recently, it has been shown that cellular 5-LO activity is regulated in a complex manner that can involve different signalling pathways. 5-LO can be activated by an increase in intracellular Ca2+ concentration, diacylglycerols, phosphorylation by MAPKAP kinase-2 and ERK. Previous work could demonstrate that cellular 5-LO activity is repressed in a protein kinase A-dependent manner and by glutathione peroxidases. This comment focuses on the impact of these stimulatory and inhibitory pathways on the efficacy of 5-LO inhibitors and suggests additional criteria for the development of this class of compounds.
Collapse
Affiliation(s)
- Oliver Werz
- Institute of Pharmaceutical Chemistry/ZAFES, University of Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt, Germany
| | | |
Collapse
|
46
|
Hörnig C, Albert D, Fischer L, Hörnig M, Rådmark O, Steinhilber D, Werz O. 1-Oleoyl-2-acetylglycerol stimulates 5-lipoxygenase activity via a putative (phospho)lipid binding site within the N-terminal C2-like domain. J Biol Chem 2005; 280:26913-21. [PMID: 15923196 DOI: 10.1074/jbc.m500068200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
5-Lipoxygenase (5-LO) catalysis is positively regulated by Ca2+ ions and phospholipids that both act via the N-terminal C2-like domain of 5-LO. Previously, we have shown that 1-oleoyl-2-acetylglycerol (OAG) functions as an agonist for human polymorphonuclear leukocytes (PMNL) in stimulating 5-LO product formation. Here we have demonstrated that OAG directly stimulates 5-LO catalysis in vitro. In the absence of Ca2+ (chelated using EDTA), OAG strongly and concentration-dependently stimulated crude 5-LO in 100,000 x g supernatants as well as purified 5-LO enzyme from PMNL. Also, the monoglyceride 1-O-oleyl-rac-glycerol and 1,2-dioctanoyl-sn-glycerol were effective, whereas various phospholipids did not stimulate 5-LO. However, in the presence of Ca2+, OAG caused no stimulation of 5-LO. Also, phospholipids or cellular membranes abolished the effects of OAG. As found previously for Ca2+, OAG renders 5-LO activity resistant against inhibition by glutathione peroxidase activity, and this effect of OAG is reversed by phospholipids. Intriguingly, a 5-LO mutant lacking tryptophan residues (Trp-13, -75, and -102) important for the binding of the 5-LO C2-like domain to phospholipids was not stimulated by OAG. We conclude that OAG directly stimulates 5-LO by acting at a phospholipid binding site located within the C2-like domain.
Collapse
Affiliation(s)
- Christina Hörnig
- Institute of Pharmaceutical Chemistry, ZAFES, University of Frankfurt, D-60439 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Luo M, Jones SM, Phare SM, Coffey MJ, Peters-Golden M, Brock TG. Protein Kinase A Inhibits Leukotriene Synthesis by Phosphorylation of 5-Lipoxygenase on Serine 523. J Biol Chem 2004; 279:41512-20. [PMID: 15280375 DOI: 10.1074/jbc.m312568200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukotrienes (LTs) are lipid messengers generated by leukocytes that drive inflammation and modulate neighboring cell function. The synthesis of LTs from arachidonic acid is initiated by the enzyme 5-lipoxygenase (5-LO). We report for the first time that LT synthesis is inhibited by the direct action of protein kinase A (PKA) on 5-LO. The catalytic subunit of PKA directly phosphorylated 5-LO in vivo and in vitro and inhibited activity in intact cells and in vitro. Mutation of Ser-523 on human 5-LO prevented phosphorylation by PKA and restored LT synthesis. Treatment with PKA activators inhibited LTB(4) synthesis in 3T3 cells expressing wild type 5-LO but not in cells expressing the S523A mutant of 5-LO. The mechanism of inhibition of LTB(4) synthesis did not involve either reduced membrane association of activated 5-LO or redistribution of 5-LO from the nucleus to the cytoplasm. Instead, PKA phosphorylation of recombinant 5-LO inhibited in vitro activity, as did co-transfection of cells with 5-LO plus the catalytic subunit of PKA. Also, substitution of Ser-523 with glutamic acid, mimicking phosphorylation, resulted in the total loss of 5-LO activity. These results indicate that PKA phosphorylates 5-LO on Ser-523, which inhibits the catalytic activity of 5-LO and reduces cellular LT generation. Thus, PKA activation, as can occur in response to adenosine, prostaglandin E(2), beta-adrenergic agonists, and other mediators, is a means of directly reducing 5-LO activity and LT synthesis that may be important in limiting inflammation and maintaining homeostasis.
Collapse
Affiliation(s)
- Ming Luo
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
48
|
Song Y, Wei EQ, Zhang WP, Zhang L, Liu JR, Chen Z. Minocycline protects PC12 cells from ischemic-like injury and inhibits 5-lipoxygenase activation. Neuroreport 2004; 15:2181-4. [PMID: 15371729 DOI: 10.1097/00001756-200410050-00007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Minocycline protects animals against cerebral ischemia by inhibiting inflammation. To determine whether minocycline protects PC12 cells from in vitro ischemic-like injury and affects pro-inflammatory 5-lipoxygenase activation, the cell viability and 5-lipoxygenase translocation to nuclear membrane were observed after oxygen-glucose deprivation (OGD). We found that OGD reduced cell viability, which was attenuated by minocycline and 5-lipoxygenase inhibitor caffeic acid. 5-Lipoxygenase protein was detected in PC12 cells by immunohistochemical and Western blot analyses. OGD induced 5-lipoxygenase translocation to nuclear membranes, which was abolished by minocycline and caffeic acid. Thus, minocycline can protect PC12 cells from in vitro ischemic-like injury, and this effect may be partly related to the inhibition of 5-lipoxygenase activation.
Collapse
Affiliation(s)
- Ying Song
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310031, China
| | | | | | | | | | | |
Collapse
|
49
|
Wang R, Stephens J, Lacy MJ. Characterization of monoclonal antibody HTA125 with specificity for human TLR4. ACTA ACUST UNITED AC 2004; 22:357-65. [PMID: 14683595 DOI: 10.1089/153685903771797057] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Binding of monoclonal antibody HTA125 to human toll-like receptor 4 (TLR4) was characterized by flow cytometry using MonoMac6 human monocytic cells. Data were obtained using direct binding to cell surface TLR4 by labeled HTA125, as well as inhibition of direct binding using purified reagents, and by two-step binding. HTA125 bound weakly to human TLR4, and could be inhibited by mouse Ig, mouse IgG Fc, and mouse IgG2a. In addition, purified human IgG Fc and purified human immunoglobulin of isotypes IgG1 and IgG4 could block binding of HTA125 to MonoMac6 cells. Furthermore, a mouse IgG1 monoclonal antibody possessing specificity for human CD64, which is a high affinity IgG Fc receptor, partially inhibited binding of HTA125 to MonoMac6 cells. Finally, co-stimulation via TLR4 and Fc receptor, resulted in cytokine production by MonoMac6 cells different than that induced via TLR4 alone. Therefore, the utility of HTA125 remains as a weak detector of human TLR4, and as an agent to block TLR4 ligands with an understanding that Fc receptor may be engaged also.
Collapse
Affiliation(s)
- Rong Wang
- Corixa Corporation-Montana, 553 Old Corvallis Road, Hamilton, MT 59840, USA.
| | | | | |
Collapse
|
50
|
Chase BI, Zhou Y, Xiang Y, Silverman RH, Zhou A. Proteasome-mediated degradation of RNase L in response to phorbol-12-myristate-13-acetate (PMA) treatment of mouse L929 cells. J Interferon Cytokine Res 2004; 23:565-73. [PMID: 14585196 DOI: 10.1089/107999003322485062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
2'-5' Oligoadenylate (2-5A)-dependent RNase L is one of the key enzymes involved in the molecular mechanisms of interferon (IFN) function. Although the regulation of RNase L by 2-5A has been studied extensively, relatively little is known about how RNase L is controlled by posttranslational processes. Here, we report that phorbol-12-myristate-13-acetate (PMA) treatment of mouse L929 fibroblasts caused rapid degradation of RNase L in a dose-dependent and time-dependent manner. RNase L levels were decreased to 40% of control levels after only 5 min exposure of cells to PMA, suggesting the involvement of protein kinase C (PKC). After PMA treatment for 1 h, RNase L levels decreased to 18% of the pretreatment levels. Decay of RNase L was measured by 2-5A binding assay, ribonuclease activity, and protein levels in Western blots probed with antibody to murine RNase L. PMA treatment caused decreases in the levels of RNase L in both cytoplasm and nucleus. To explore the mechanism of RNase L degradation, we treated cells with the selective proteasome inhibitors, ALLN, MG132, and PSI, prior to PMA treatment. These inhibitors completely blocked the degradation of RNase L caused by PMA. Our results show a novel regulatory pathway for RNase L that could have an impact on its antitumor and antiviral functions.
Collapse
Affiliation(s)
- Barbara I Chase
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | | | | | | | | |
Collapse
|