1
|
Beerepoot S, Verbeke JIML, Plantinga M, Nierkens S, Pouwels PJW, Wolf NI, Simons C, van der Knaap MS. Leukoencephalopathy with calcifications, developmental brain abnormalities and skeletal dysplasia due to homozygosity for a hypomorphic CSF1R variant: A report of three siblings. Am J Med Genet A 2024; 194:e63800. [PMID: 38934054 DOI: 10.1002/ajmg.a.63800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
We report three siblings homozygous for CSF1R variant c.1969 + 115_1969 + 116del to expand the phenotype of "brain abnormalities, neurodegeneration, and dysosteosclerosis" (BANDDOS) and discuss its link with "adult leukoencephalopathy with axonal spheroids and pigmented glia" (ALSP), caused by heterozygous CSF1R variants. We evaluated medical, radiological, and laboratory findings and reviewed the literature. Patients presented with developmental delay, therapy-resistant epilepsy, dysmorphic features, and skeletal abnormalities. Secondary neurological decline occurred from 23 years in sibling one and from 20 years in sibling two. Brain imaging revealed multifocal white matter abnormalities and calcifications during initial disease in siblings two and three. Developmental brain anomalies, seen in all three, were most severe in sibling two. During neurological decline in siblings one and two, the leukoencephalopathy was progressive and had the MRI appearance of ALSP. Skeletal survey revealed osteosclerosis, most severe in sibling three. Blood markers, monocytes, dendritic cell subsets, and T-cell proliferation capacity were normal. Literature review revealed variable initial disease and secondary neurological decline. BANDDOS presents with variable dysmorphic features, skeletal dysplasia, developmental delay, and epilepsy with on neuro-imaging developmental brain anomalies, multifocal white matter abnormalities, and calcifications. Secondary neurological decline occurs with a progressive leukoencephalopathy, in line with early onset ALSP. Despite the role of CSF1R signaling in myeloid development, immune deficiency is absent. Phenotype varies within families; skeletal and neurological manifestations may be disparate.
Collapse
Affiliation(s)
- Shanice Beerepoot
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jonathan I M L Verbeke
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Maud Plantinga
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Petra J W Pouwels
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Rana P, Hollingshead B, Mangipudy R. Rethinking the necessity of long-term toxicity studies for biotherapeutics using weight of evidence assessment. Regul Toxicol Pharmacol 2024; 153:105710. [PMID: 39332576 DOI: 10.1016/j.yrtph.2024.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
The registration of biotherapeutics for chronic indications requires 6-month toxicity studies. However, extensive experience has shown that the non-clinical safety profiles of biotherapeutics are generally predictable. This suggests that conducting multiple studies, especially a 6-month study may not be necessary. In a meta-analysis of biologics developed for non-oncology indications over last 25 years at Pfizer, we compared organ system findings between short-term (1-3 month) and long-term (6-month) animal studies. Our goal was to determine if there were differences in the safety profiles between the two study durations and their relevance to human risk assessment. Our analysis revealed that most clinically relevant toxicities could be detected in shorter-term studies (87%; 26/30 programs). This suggests either an undifferentiated safety profile between short-and long-term studies, or anticipated toxicities based on the modality, such as immunogenicity or exaggerated pharmacology. However, for 4 out of 30 programs (13%), long-term studies did identify either potential new toxicities or more severe manifestation of exaggerated pharmacology, leading to modifications in clinical trial designs and human risk assessment. Our experience suggests that 3-month toxicity studies may be sufficient to support late-stage clinical development for a majority of standard biotherapeutic programs. This pragmatic and science-based approach aligns with the goal of advancing 3R's initiatives in nonclinical safety assessment.
Collapse
Affiliation(s)
- Payal Rana
- Pfizer Inc., Drug Safety Research and Development, 445 Eastern Point Road, Groton, CT, 06340, USA.
| | - Brett Hollingshead
- Pfizer Inc., Drug Safety Research and Development, 1 Portland St, Cambridge, MA, 02139, USA
| | - Raja Mangipudy
- Pfizer Inc., Drug Safety Research and Development, 445 Eastern Point Road, Groton, CT, 06340, USA
| |
Collapse
|
3
|
Zhou L, Sun Q, Cao D. Cereblon mediates macrophage differentiation and microglial phagocytosis by regulating calpain protease activity. Biomed Pharmacother 2024; 180:117606. [PMID: 39454366 DOI: 10.1016/j.biopha.2024.117606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Autoimmune diseases encompass over 80 distinct types, affecting approximately 7.6-9.4 % of the population globally. The intricate interplay between genetic predispositions and environmental triggers complicates early diagnosis and intervention. Abnormal macrophage differentiation and proliferation have been identified as key contributors to the pathogenesis of these conditions, though the precise molecular pathways remain poorly understood. Recent studies suggest that cereblon (CRBN), a target for immunomodulatory drugs like thalidomide, lenalidomide, and pomalidomide, may offer therapeutic potential for autoimmune diseases such as systemic lupus erythematosus. In this study, quantitative proteomics revealed that CRBN downregulated the calpain regulatory subunit, calpain small subunit 1 (CAPNS1), in macrophages. Subsequent biochemical assays demonstrated that CRBN modulated calpain activity, impacting autophagy processes during macrophage differentiation and microglial phagocytosis. Histological evaluation of CRBN-deficient mice indicated a marked increase in microglial populations in the brain. These findings highlight potential therapeutic targets and present new avenues for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| | - Qing Sun
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Dan Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
4
|
Thierry GR, Baudon EM, Bijnen M, Bellomo A, Lagueyrie M, Mondor I, Simonnet L, Carrette F, Fenouil R, Keshvari S, Hume DA, Dombrowicz D, Bajenoff M. Non-classical monocytes scavenge the growth factor CSF1 from endothelial cells in the peripheral vascular tree to ensure survival and homeostasis. Immunity 2024; 57:2108-2121.e6. [PMID: 39089257 DOI: 10.1016/j.immuni.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
Unlike sessile macrophages that occupy specialized tissue niches, non-classical monocytes (NCMs)-circulating phagocytes that patrol and cleanse the luminal surface of the vascular tree-are characterized by constant movement. Here, we examined the nature of the NCM's nurturing niche. Expression of the growth factor CSF1 on endothelial cells was required for survival of NCMs in the bloodstream. Lack of endothelial-derived CSF1 did not affect blood CSF1 concentration, suggesting that NCMs rely on scavenging CSF1 present on endothelial cells. Deletion of the transmembrane chemokine and adhesion factor CX3CL1 on endothelial cells impaired NCM survival. Mechanistically, endothelial-derived CX3CL1 and integrin subunit alpha L (ITGAL) facilitated the uptake of CSF1 by NCMs. CSF1 was produced by all tissular endothelial cells, and deletion of Csf1 in all endothelial cells except bone marrow sinusoids impaired NCM survival, arguing for a model where the full vascular tree acts as a niche for NCMs and where survival and patrolling function are connected.
Collapse
Affiliation(s)
- Guilhem R Thierry
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Elisa M Baudon
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Mitchell Bijnen
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Alicia Bellomo
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Marine Lagueyrie
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Isabelle Mondor
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Louise Simonnet
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Florent Carrette
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Romain Fenouil
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Sahar Keshvari
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - David A Hume
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - David Dombrowicz
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Marc Bajenoff
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France.
| |
Collapse
|
5
|
Li G, Yang H, Zhang D, Zhang Y, Liu B, Wang Y, Zhou H, Xu ZX, Wang Y. The role of macrophages in fibrosis of chronic kidney disease. Biomed Pharmacother 2024; 177:117079. [PMID: 38968801 DOI: 10.1016/j.biopha.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
Macrophages are widely distributed throughout various tissues of the body, and mounting evidence suggests their involvement in regulating the tissue microenvironment, thereby influencing disease onset and progression through direct or indirect actions. In chronic kidney disease (CKD), disturbances in renal functional homeostasis lead to inflammatory cell infiltration, tubular expansion, glomerular atrophy, and subsequent renal fibrosis. Macrophages play a pivotal role in this pathological process. Therefore, understanding their role is imperative for investigating CKD progression, mitigating its advancement, and offering novel research perspectives for fibrosis treatment from an immunological standpoint. This review primarily delves into the intrinsic characteristics of macrophages, their origins, diverse subtypes, and their associations with renal fibrosis. Particular emphasis is placed on the transition between M1 and M2 phenotypes. In late-stage CKD, there is a shift from the M1 to the M2 phenotype, accompanied by an increased prevalence of M2 macrophages. This transition is governed by the activation of the TGF-β1/SMAD3 and JAK/STAT pathways, which facilitate macrophage-to-myofibroblast transition (MMT). The tyrosine kinase Src is involved in both signaling cascades. By thoroughly elucidating macrophage functions and comprehending the modes and molecular mechanisms of macrophage-fibroblast interaction in the kidney, novel, tailored therapeutic strategies for preventing or attenuating the progression of CKD can be developed.
Collapse
Affiliation(s)
- Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Kloc M, Halasa M, Ghobrial RM. Macrophage niche imprinting as a determinant of macrophage identity and function. Cell Immunol 2024; 399-400:104825. [PMID: 38648700 DOI: 10.1016/j.cellimm.2024.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Macrophage niches are the anatomical locations within organs or tissues consisting of various cells, intercellular and extracellular matrix, transcription factors, and signaling molecules that interact to influence macrophage self-maintenance, phenotype, and behavior. The niche, besides physically supporting macrophages, imposes a tissue- and organ-specific identity on the residing and infiltrating monocytes and macrophages. In this review, we give examples of macrophage niches and the modes of communication between macrophages and surrounding cells. We also describe how macrophages, acting against their immune defensive nature, can create a hospitable niche for pathogens and cancer cells.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; University of Texas, MD Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| | - Rafik M Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| |
Collapse
|
7
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Schroth FN, Xu Y, Chen R, Rong S, Shushakova N, Gueler F, Haller H, Limbourg FP. Validation of CSF-1 receptor (CD115) staining for analysis of murine monocytes by flow cytometry. J Leukoc Biol 2024; 115:573-582. [PMID: 38038378 DOI: 10.1093/jleuko/qiad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
CD115, the receptor for colony stimulating factor 1, is essential for survival and differentiation of monocytes and macrophages and is therefore frequently used to define monocyte subsets and their progenitors in immunological assays. However, CD115 surface expression and detection by flow cytometry is greatly influenced by cell isolation and processing methods, organ source, and disease context. In a systematic analysis of murine monocytes, we define experimental conditions that preserve or limit CD115 surface expression and staining by flow cytometry. We also find that, independent of conditions, CD115 surface levels are consistently lower in Ly6Clo monocytes than in Ly6Chi monocytes, with the exception of Ly6Clo monocytes in the bone marrow. Furthermore, in contrast to IL-34, the presence of colony stimulating factor 1 impairs CD115 antibody staining in a dose-dependent manner, which, in a model of ischemic kidney injury with elevated levels of colony stimulating factor 1, influenced quantification of kidney monocytes. Thus, staining and experimental conditions affect quantitative and qualitative analysis of monocytes and may influence experimental conclusions.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Frauline Nicole Schroth
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Yuangao Xu
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Rongjun Chen
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
- Phenos GmbH, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| |
Collapse
|
8
|
Laudenberg N, Kinuthia UM, Langmann T. Microglia depletion/repopulation does not affect light-induced retinal degeneration in mice. Front Immunol 2024; 14:1345382. [PMID: 38288111 PMCID: PMC10822957 DOI: 10.3389/fimmu.2023.1345382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Reactive microglia are a hallmark of age-related retinal degenerative diseases including age-related macular degeneration (AMD). These cells are capable of secreting neurotoxic substances that may aggravate inflammation that leads to loss of photoreceptors and impaired vision. Despite their role in driving detrimental inflammation, microglia also play supporting roles in the retina as they are a crucial cellular component of the regulatory innate immune system. In this study, we used the colony stimulating factor 1 receptor (CSF1R)-antagonist PLX3397 to investigate the effects of microglia depletion and repopulation in a mouse model of acute retinal degeneration that mimics some aspects of dry AMD. Our main goal was to investigate whether microglia depletion and repopulation affects the outcome of light-induced retinal degeneration. We found that microglia depletion effectively decreased the expression of several key pro-inflammatory factors but was unable to influence the extent of retinal degeneration as determined by optical coherence tomography (OCT) and histology. Interestingly, we found prominent cell debris accumulation in the outer retina under conditions of microglia depletion, presumably due to the lack of efficient phagocytosis that could not be compensated by the retinal pigment epithelium. Moreover, our in vivo experiments showed that renewal of retinal microglia by repopulation did also not prevent rapid microglia activation or preserve photoreceptor death under conditions of light damage. We conclude that microglia ablation strongly reduces the expression of pro-inflammatory factors but cannot prevent photoreceptor loss in the light-damage paradigm of retinal degeneration.
Collapse
Affiliation(s)
- Nils Laudenberg
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Urbanus Muthai Kinuthia
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Babaeijandaghi F, Kajabadi N, Long R, Tung LW, Cheung CW, Ritso M, Chang CK, Cheng R, Huang T, Groppa E, Jiang JX, Rossi FMV. DPPIV + fibro-adipogenic progenitors form the niche of adult skeletal muscle self-renewing resident macrophages. Nat Commun 2023; 14:8273. [PMID: 38092736 PMCID: PMC10719395 DOI: 10.1038/s41467-023-43579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Adult tissue-resident macrophages (RMs) are either maintained by blood monocytes or through self-renewal. While the presence of a nurturing niche is likely crucial to support the survival and function of self-renewing RMs, evidence regarding its nature is limited. Here, we identify fibro-adipogenic progenitors (FAPs) as the main source of colony-stimulating factor 1 (CSF1) in resting skeletal muscle. Using parabiosis in combination with FAP-deficient transgenic mice (PdgfrαCreERT2 × DTA) or mice lacking FAP-derived CSF1 (PdgfrαCreERT2 × Csf1flox/null), we show that local CSF1 from FAPs is required for the survival of both TIM4- monocyte-derived and TIM4+ self-renewing RMs in adult skeletal muscle. The spatial distribution and number of TIM4+ RMs coincide with those of dipeptidyl peptidase IV (DPPIV)+ FAPs, suggesting their role as CSF1-producing niche cells for self-renewing RMs. This finding identifies opportunities to precisely manipulate the function of self-renewing RMs in situ to further unravel their role in health and disease.
Collapse
Affiliation(s)
- Farshad Babaeijandaghi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada.
- Altos Labs Inc, San Diego, CA, USA.
| | - Nasim Kajabadi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Reece Long
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Lin Wei Tung
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Chun Wai Cheung
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Morten Ritso
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Chih-Kai Chang
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Ryan Cheng
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Tiffany Huang
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Elena Groppa
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, TX, USA
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada.
| |
Collapse
|
10
|
McKendrick JG, Jones GR, Elder SS, Watson E, T'Jonck W, Mercer E, Magalhaes MS, Rocchi C, Hegarty LM, Johnson AL, Schneider C, Becher B, Pridans C, Mabbott N, Liu Z, Ginhoux F, Bajenoff M, Gentek R, Bain CC, Emmerson E. CSF1R-dependent macrophages in the salivary gland are essential for epithelial regeneration after radiation-induced injury. Sci Immunol 2023; 8:eadd4374. [PMID: 37922341 DOI: 10.1126/sciimmunol.add4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
The salivary glands often become damaged in individuals receiving radiotherapy for head and neck cancer, resulting in chronic dry mouth. This leads to detrimental effects on their health and quality of life, for which there is no regenerative therapy. Macrophages are the predominant immune cell in the salivary glands and are attractive therapeutic targets due to their unrivaled capacity to drive tissue repair. Yet, the nature and role of macrophages in salivary gland homeostasis and how they may contribute to tissue repair after injury are not well understood. Here, we show that at least two phenotypically and transcriptionally distinct CX3CR1+ macrophage populations are present in the adult salivary gland, which occupy anatomically distinct niches. CD11c+CD206-CD163- macrophages typically associate with gland epithelium, whereas CD11c-CD206+CD163+ macrophages associate with blood vessels and nerves. Using a suite of complementary fate mapping systems, we show that there are highly dynamic changes in the ontogeny and composition of salivary gland macrophages with age. Using an in vivo model of radiation-induced salivary gland injury combined with genetic or antibody-mediated depletion of macrophages, we demonstrate an essential role for macrophages in clearance of cells with DNA damage. Furthermore, we show that epithelial-associated macrophages are indispensable for effective tissue repair and gland function after radiation-induced injury, with their depletion resulting in reduced saliva production. Our data, therefore, provide a strong case for exploring the therapeutic potential of manipulating macrophages to promote tissue repair and thus minimize salivary gland dysfunction after radiotherapy.
Collapse
Affiliation(s)
- John G McKendrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sonia S Elder
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Erin Watson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Wouter T'Jonck
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Ella Mercer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Marlene S Magalhaes
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Cecilia Rocchi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Lizi M Hegarty
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Amanda L Johnson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Neil Mabbott
- Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Marc Bajenoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, Marseille 13288, France
| | - Rebecca Gentek
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
11
|
Stanley ER, Biundo F, Gökhan Ş, Chitu V. Differential regulation of microglial states by colony stimulating factors. Front Cell Neurosci 2023; 17:1275935. [PMID: 37964794 PMCID: PMC10642290 DOI: 10.3389/fncel.2023.1275935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Recent studies have emphasized the role of microglia in the progression of many neurodegenerative diseases. The colony stimulating factors, CSF-1 (M-CSF), granulocyte-macrophage CSF (GM-CSF) and granulocyte CSF (G-CSF) regulate microglia through different cognate receptors. While the receptors for GM-CSF (GM-CSFR) and G-CSF (G-CSFR) are specific for their ligands, CSF-1 shares its receptor, the CSF-1 receptor-tyrosine kinase (CSF-1R), with interleukin-34 (IL-34). All four cytokines are expressed locally in the CNS. Activation of the CSF-1R in macrophages is anti-inflammatory. In contrast, the actions of GM-CSF and G-CSF elicit different activated states. We here review the roles of each of these cytokines in the CNS and how they contribute to the development of disease in a mouse model of CSF-1R-related leukodystrophy. Understanding their roles in this model may illuminate their contribution to the development or exacerbation of other neurodegenerative diseases.
Collapse
Affiliation(s)
- E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Şölen Gökhan
- Department of Neurology, Albert Einstein College of Medicine, Institute for Brain Disorders and Neural Regeneration, Bronx, NY, United States
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
12
|
Gouife M, Ban Z, Yue X, Jiang J, Xie J. Molecular characterization, gene expression and functional analysis of goldfish ( Carassius auratus L.) macrophage colony stimulating factor 2. Front Immunol 2023; 14:1235370. [PMID: 37593738 PMCID: PMC10431942 DOI: 10.3389/fimmu.2023.1235370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Background Macrophage colony-stimulating factor 2 (MCSF-2) is an important cytokine that controls how cells of the monocyte/macrophage lineage proliferate, differentiate, and survive in vertebrates. Two isoforms of MCSF have been identified in fish, each exhibiting distinct gene organization and expression patterns. In this study, we investigated a goldfish MCSF-2 gene in terms of its immunomodulatory and functional properties. Methods In this study, goldfish were acclimated for 3 weeks and sedated with TMS prior to handling. Two groups of fish were used for infection experiments, and tissues from healthy goldfish were collected for RNA isolation. cDNA synthesis was performed, and primers were designed based on transcriptome database sequences. Analysis of gfMCSF-2 sequences, including nucleotide and amino acid analysis, molecular mass prediction, and signal peptide prediction, was conducted. Real-time quantitative PCR (qPCR) was used to analyze gene expression levels, while goldfish head kidney leukocytes (HKLs) were isolated using standard protocols. The expression of gfMCSF-2 in activated HKLs was investigated, and recombinant goldfish MCSF-2 was expressed and purified. Western blot analysis, cell proliferation assays, and flow cytometric analysis of HKLs were performed. Gene expression analysis of transcription factors and pro-inflammatory cytokines in goldfish head kidney leukocytes exposed to rgMCSF-2 was conducted. Statistical analysis using one-way ANOVA and Dunnett's post hoc test was applied. Results We performed a comparative analysis of MCSF-1 and MCSF-2 at the protein and nucleotide levels using the Needleman-Wunsch algorithm. The results revealed significant differences between the two sequences, supporting the notion that they represent distinct genes rather than isoforms of the same gene. Sequence alignment demonstrated high sequence identity with MCSF-2 homologs from fish species, particularly C. carpio, which was supported by phylogenetic analysis. Expression analysis in various goldfish tissues demonstrated differential expression levels, with the spleen exhibiting the highest expression. In goldfish head kidney leukocytes, gfMCSF-2 expression was modulated by chemical stimuli and bacterial infection, with upregulation observed in response to lipopolysaccharide (LPS) and live Aeromonas hydrophila. Recombinant gfMCSF-2 (rgMCSF-2) was successfully expressed and purified, showing the ability to stimulate cell proliferation in HKLs. Flow cytometric analysis revealed that rgMCSF-2 induced differentiation of sorted leukocytes at a specific concentration. Moreover, rgMCSF-2 treatment upregulated TNFα and IL-1β mRNA levels and influenced the expression of transcription factors, such as MafB, GATA2, and cMyb, in a time-dependent manner. Conclusion Collectively, by elucidating the effects of rgMCSF-2 on cell proliferation, differentiation, and the modulation of pro-inflammatory cytokines and transcription factors, our findings provided a comprehensive understanding of the potential mechanisms underlying gfMCSF-2-mediated immune regulation. These results contribute to the fundamental knowledge of MCSF-2 in teleosts and establish a foundation for further investigations on the role of gfMCSF-2 in fish immune responses.
Collapse
Affiliation(s)
- Moussa Gouife
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ziqi Ban
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xinyuan Yue
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Jianhu Jiang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institule of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
Bautista CA, Srikumar A, Tichy ED, Qian G, Jiang X, Qin L, Mourkioti F, Dyment NA. CD206+ tendon resident macrophages and their potential crosstalk with fibroblasts and the ECM during tendon growth and maturation. Front Physiol 2023; 14:1122348. [PMID: 36909235 PMCID: PMC9992419 DOI: 10.3389/fphys.2023.1122348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
Resident macrophages exist in a variety of tissues, including tendon, and play context-specific roles in their tissue of residence. In this study, we define the spatiotemporal distribution and phenotypic profile of tendon resident macrophages and their crosstalk with neighboring tendon fibroblasts and the extracellular matrix (ECM) during murine tendon development, growth, and homeostasis. Fluorescent imaging of cryosections revealed that F4/80+ tendon resident macrophages reside adjacent to Col1a1-CFP+ Scx-GFP+ fibroblasts within the tendon fascicle from embryonic development (E15.5) into adulthood (P56). Through flow cytometry and qPCR, we found that these tendon resident macrophages express several well-known macrophage markers, including Adgre1 (F4/80), Mrc1 (CD206), Lyve1, and Folr2, but not Ly-6C, and express the Csf1r-EGFP ("MacGreen") reporter. The proportion of Csf1r-EGFP+ resident macrophages in relation to the total cell number increases markedly during early postnatal growth, while the density of macrophages per mm2 remains constant during this same time frame. Interestingly, proliferation of resident macrophages is higher than adjacent fibroblasts, which likely contributes to this increase in macrophage proportion. The expression profile of tendon resident macrophages also changes with age, with increased pro-inflammatory and anti-inflammatory cytokine expression in P56 compared to P14 macrophages. In addition, the expression profile of limb tendon resident macrophages diverges from that of tail tendon resident macrophages, suggesting differential phenotypes across anatomically and functionally different tendons. As macrophages are known to communicate with adjacent fibroblasts in other tissues, we conducted ligand-receptor analysis and found potential two-way signaling between tendon fibroblasts and resident macrophages. Tendon fibroblasts express high levels of Csf1, which encodes macrophage colony stimulating factor (M-CSF) that acts on the CSF1 receptor (CSF1R) on macrophages. Importantly, Csf1r-expressing resident macrophages preferentially localize to Csf1-expressing fibroblasts, supporting the "nurturing scaffold" model for tendon macrophage patterning. Lastly, we found that tendon resident macrophages express high levels of ECM-related genes, including Mrc1 (mannose receptor), Lyve1 (hyaluronan receptor), Lair1 (type I collagen receptor), Ctss (elastase), and Mmp13 (collagenase), and internalize DQ Collagen in explant cultures. Overall, our study provides insights into the potential roles of tendon resident macrophages in regulating fibroblast phenotype and the ECM during tendon growth.
Collapse
Affiliation(s)
- Catherine A. Bautista
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of PA, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of PA, Philadelphia, PA, United States
| | - Anjana Srikumar
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of PA, Philadelphia, PA, United States
| | - Elisia D. Tichy
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of PA, Philadelphia, PA, United States
| | - Grace Qian
- Department of Bioengineering, School of Engineering and Applied Science, University of PA, Philadelphia, PA, United States
| | - Xi Jiang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of PA, Philadelphia, PA, United States
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of PA, Philadelphia, PA, United States
| | - Foteini Mourkioti
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of PA, Philadelphia, PA, United States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of PA, Philadelphia, PA, United States
- Penn Institute for Regenerative Medicine, Musculoskeletal Program, Perelman School of Medicine, University of PA, Philadelphia, PA, United States
| | - Nathaniel A. Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of PA, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of PA, Philadelphia, PA, United States
| |
Collapse
|
14
|
Inoue K, Qin Y, Xia Y, Han J, Yuan R, Sun J, Xu R, Jiang JX, Greenblatt MB, Zhao B. Bone marrow Adipoq-lineage progenitors are a major cellular source of M-CSF that dominates bone marrow macrophage development, osteoclastogenesis, and bone mass. eLife 2023; 12:e82118. [PMID: 36779851 PMCID: PMC10005769 DOI: 10.7554/elife.82118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/12/2023] [Indexed: 02/14/2023] Open
Abstract
M-CSF is a critical growth factor for myeloid lineage cells, including monocytes, macrophages, and osteoclasts. Tissue-resident macrophages in most organs rely on local M-CSF. However, it is unclear what specific cells in the bone marrow produce M-CSF to maintain myeloid homeostasis. Here, we found that Adipoq-lineage progenitors but not mature adipocytes in bone marrow or in peripheral adipose tissue, are a major cellular source of M-CSF, with these Adipoq-lineage progenitors producing M-CSF at levels much higher than those produced by osteoblast lineage cells. The Adipoq-lineage progenitors with high CSF1 expression also exist in human bone marrow. Deficiency of M-CSF in bone marrow Adipoq-lineage progenitors drastically reduces the generation of bone marrow macrophages and osteoclasts, leading to severe osteopetrosis in mice. Furthermore, the osteoporosis in ovariectomized mice can be significantly alleviated by the absence of M-CSF in bone marrow Adipoq-lineage progenitors. Our findings identify bone marrow Adipoq-lineage progenitors as a major cellular source of M-CSF in bone marrow and reveal their crucial contribution to bone marrow macrophage development, osteoclastogenesis, bone homeostasis, and pathological bone loss.
Collapse
Affiliation(s)
- Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Yongli Qin
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Yuhan Xia
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Jie Han
- The first Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen UniversityXiamenChina
| | - Ruoxi Yuan
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Jun Sun
- Pathology and Laboratory Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Ren Xu
- The first Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen UniversityXiamenChina
| | - Jean X Jiang
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Matthew B Greenblatt
- Pathology and Laboratory Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Research Institute, Hospital for Special SurgeryNew YorkUnited States
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| |
Collapse
|
15
|
Hume DA, Batoon L, Sehgal A, Keshvari S, Irvine KM. CSF1R as a Therapeutic Target in Bone Diseases: Obvious but Not so Simple. Curr Osteoporos Rep 2022; 20:516-531. [PMID: 36197652 PMCID: PMC9718875 DOI: 10.1007/s11914-022-00757-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of the review is to summarize the expression and function of CSF1R and its ligands in bone homeostasis and constraints on therapeutic targeting of this axis. RECENT FINDINGS Bone development and homeostasis depends upon interactions between mesenchymal cells and cells of the mononuclear phagocyte lineage (MPS), macrophages, and osteoclasts (OCL). The homeostatic interaction is mediated in part by the systemic and local production of growth factors, macrophage colony-stimulating factor (CSF1), and interleukin 34 (IL34) that interact with a receptor (CSF1R) expressed exclusively by MPS cells and their progenitors. Loss-of-function mutations in CSF1 or CSF1R lead to loss of OCL and macrophages and dysregulation of postnatal bone development. MPS cells continuously degrade CSF1R ligands via receptor-mediated endocytosis. As a consequence, any local or systemic increase or decrease in macrophage or OCL abundance is rapidly reversible. In principle, both CSF1R agonists and antagonists have potential in bone regenerative medicine but their evaluation in disease models and therapeutic application needs to carefully consider the intrinsic feedback control of MPS biology.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| | - Lena Batoon
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
16
|
Yadav S, Priya A, Borade DR, Agrawal-Rajput R. Macrophage subsets and their role: co-relation with colony-stimulating factor-1 receptor and clinical relevance. Immunol Res 2022; 71:130-152. [PMID: 36266603 PMCID: PMC9589538 DOI: 10.1007/s12026-022-09330-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are one of the first innate immune cells to reach the site of infection or injury. Diverse functions from the uptake of pathogen or antigen, its killing, and presentation, the release of pro- or anti-inflammatory cytokines, activation of adaptive immune cells, clearing off tissue debris, tissue repair, and maintenance of tissue homeostasis have been attributed to macrophages. Besides tissue-resident macrophages, the circulating macrophages are recruited to different tissues to get activated. These are highly plastic cells, showing a spectrum of phenotypes depending on the stimulus received from their immediate environment. The macrophage differentiation requires colony-stimulating factor-1 (CSF-1) or macrophage colony-stimulating factor (M-CSF), colony-stimulating factor-2 (CSF-2), or granulocyte–macrophage colony-stimulating factor (GM-CSF) and different stimuli activate them to different phenotypes. The richness of tissue macrophages is precisely controlled via the CSF-1 and CSF-1R axis. In this review, we have given an overview of macrophage origin via hematopoiesis/myelopoiesis, different phenotypes associated with macrophages, their clinical significance, and how they are altered in various diseases. We have specifically focused on the function of CSF-1/CSF-1R signaling in deciding macrophage fate and the outcome of aberrant CSF-1R signaling in relation to macrophage phenotype in different diseases. We further extend the review to briefly discuss the possible strategies to manipulate CSF-1R and its signaling with the recent updates.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Astik Priya
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Diksha R Borade
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India.
| |
Collapse
|
17
|
Babaeijandaghi F, Cheng R, Kajabadi N, Soliman H, Chang CK, Smandych J, Tung LW, Long R, Ghassemi A, Rossi FMV. Metabolic reprogramming of skeletal muscle by resident macrophages points to CSF1R inhibitors as muscular dystrophy therapeutics. Sci Transl Med 2022; 14:eabg7504. [PMID: 35767650 DOI: 10.1126/scitranslmed.abg7504] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role of tissue-resident macrophages during tissue regeneration or fibrosis is not well understood, mainly due to the lack of a specific marker for their identification. Here, we identified three populations of skeletal muscle-resident myelomonocytic cells: a population of macrophages positive for lymphatic vessel endothelial receptor 1 (LYVE1) and T cell membrane protein 4 (TIM4 or TIMD4), a population of LYVE1-TIM4- macrophages, and a population of cells likely representing dendritic cells that were positive for CD11C and major histocompatibility complex class II (MHCII). Using a combination of parabiosis and lineage-tracing experiments, we found that, at steady state, TIM4- macrophages were replenished from the blood, whereas TIM4+ macrophages locally self-renewed [self-renewing resident macrophages (SRRMs)]. We further showed that Timd4 could be reliably used to distinguish SRRMs from damage-induced infiltrating macrophages. Using a colony-stimulating factor 1 receptor (CSF1R) inhibition/withdrawal approach to specifically deplete SRRMs, we found that SRRMs provided a nonredundant function in clearing damage-induced apoptotic cells early after extensive acute injury. In contrast, in chronic mild injury as seen in a mouse model of Duchenne muscular dystrophy, depletion of both TIM4-- and TIM4+-resident macrophage populations through long-term CSF1R inhibition changed muscle fiber composition from damage-sensitive glycolytic fibers toward damage-resistant glycolytic-oxidative fibers, thereby protecting muscle against contraction-induced injury both ex vivo and in vivo. This work reveals a previously unidentified role for resident macrophages in modulating tissue metabolism and may have therapeutic potential given the ongoing clinical testing of CSF1R inhibitors.
Collapse
Affiliation(s)
- Farshad Babaeijandaghi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ryan Cheng
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nasim Kajabadi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hesham Soliman
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.,Aspect Biosystems, 1781 W 75th Ave, Vancouver, BC V6P 6P2, Canada
| | - Chih-Kai Chang
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Josh Smandych
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lin Wei Tung
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Reece Long
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Amirhossein Ghassemi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
18
|
Unravelling the sex-specific diversity and functions of adrenal gland macrophages. Cell Rep 2022; 39:110949. [PMID: 35705045 PMCID: PMC9210345 DOI: 10.1016/j.celrep.2022.110949] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/10/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Despite the ubiquitous function of macrophages across the body, the diversity, origin, and function of adrenal gland macrophages remain largely unknown. We define the heterogeneity of adrenal gland immune cells using single-cell RNA sequencing and use genetic models to explore the developmental mechanisms yielding macrophage diversity. We define populations of monocyte-derived and embryonically seeded adrenal gland macrophages and identify a female-specific subset with low major histocompatibility complex (MHC) class II expression. In adulthood, monocyte recruitment dominates adrenal gland macrophage maintenance in female mice. Adrenal gland macrophage sub-tissular distribution follows a sex-dimorphic pattern, with MHC class IIlow macrophages located at the cortico-medullary junction. Macrophage sex dimorphism depends on the presence of the cortical X-zone. Adrenal gland macrophage depletion results in altered tissue homeostasis, modulated lipid metabolism, and decreased local aldosterone production during stress exposure. Overall, these data reveal the heterogeneity of adrenal gland macrophages and point toward sex-restricted distribution and functions of these cells. Adrenal glands contain multiple macrophage populations Macrophage sex dimorphism depends on the presence of the cortical X zone Embryonic and monocyte-derived macrophages co-exist in adrenal glands Adrenal gland macrophage depletion alters tissue lipid metabolism
Collapse
|
19
|
Colony stimulating factor-1 producing endothelial cells and mesenchymal stromal cells maintain monocytes within a perivascular bone marrow niche. Immunity 2022; 55:862-878.e8. [PMID: 35508166 DOI: 10.1016/j.immuni.2022.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/13/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022]
Abstract
Macrophage colony stimulating factor-1 (CSF-1) plays a critical role in maintaining myeloid lineage cells. However, congenital global deficiency of CSF-1 (Csf1op/op) causes severe musculoskeletal defects that may indirectly affect hematopoiesis. Indeed, we show here that osteolineage-derived Csf1 prevented developmental abnormalities but had no effect on monopoiesis in adulthood. However, ubiquitous deletion of Csf1 conditionally in adulthood decreased monocyte survival, differentiation, and migration, independent of its effects on bone development. Bone histology revealed that monocytes reside near sinusoidal endothelial cells (ECs) and leptin receptor (Lepr)-expressing perivascular mesenchymal stromal cells (MSCs). Targeted deletion of Csf1 from sinusoidal ECs selectively reduced Ly6C- monocytes, whereas combined depletion of Csf1 from ECs and MSCs further decreased Ly6Chi cells. Moreover, EC-derived CSF-1 facilitated recovery of Ly6C- monocytes and protected mice from weight loss following induction of polymicrobial sepsis. Thus, monocytes are supported by distinct cellular sources of CSF-1 within a perivascular BM niche.
Collapse
|
20
|
Differential expression of CD11c defines two types of tissue-resident macrophages with different origins in steady-state salivary glands. Sci Rep 2022; 12:931. [PMID: 35042931 PMCID: PMC8766464 DOI: 10.1038/s41598-022-04941-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Gland macrophages are primed for gland development and functions through interactions within their niche. However, the phenotype, ontogeny, and function of steady-state salivary gland (SG) macrophages remain unclear. We herein identified CD11c+ and CD11c- subsets among CD64+ macrophages in steady-state murine SGs. CD11c- macrophages were predominant in the SGs of embryonic and newborn mice and decreased with advancing age. CD11c+ macrophages were rarely detected in the embryonic period, but rapidly expanded after birth. CD11c+, but not CD11c-, macrophage numbers decreased in mice treated with a CCR2 antagonist, suggesting that CD11c+ macrophages accumulate from bone marrow-derived progenitors in a CCR2-dependent manner, whereas CD11c- macrophages were derived from embryonic progenitors in SGs. CD11c+ and CD11c- macrophages strongly expressed colony-stimulating factor (CSF)-1 receptor, the injection of an anti-CSF-1 receptor blocking antibody markedly reduced both subsets, and SGs strongly expressed CSF-1, indicating the dependency of SG resident macrophage development on CSF-1. The phagocytic activity of SG macrophages was extremely weak; however, the gene expression profile of SG macrophages indicated that SG macrophages regulate gland development and functions in SGs. These results suggest that SG CD11c+ and CD11c- macrophages are developed and instructed to perform SG-specific functions in steady-state SGs.
Collapse
|
21
|
McKendrick JG, Emmerson E. The role of salivary gland macrophages in infection, disease and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:1-34. [PMID: 35636925 DOI: 10.1016/bs.ircmb.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macrophages are mononuclear innate immune cells which have become of increasing interest in the fields of disease and regeneration, as their non-classical functions have been elucidated in addition to their classical inflammatory functions. Macrophages can regulate tissue remodeling, by both mounting and reducing inflammatory responses; and exhibit direct communication with other cells to drive tissue turnover and cell replacement. Furthermore, macrophages have recently become an attractive therapeutic target to drive tissue regeneration. The major salivary glands are glandular tissues that are exposed to pathogens through their close connection with the oral cavity. Moreover, there are a number of diseases that preferentially destroy the salivary glands, causing irreversible injury, highlighting the need for a regenerative strategy. However, characterization of macrophages in the mouse and human salivary glands is sparse and has been mostly determined from studies in infection or autoimmune pathologies. In this review, we describe the current literature around salivary gland macrophages, and speculate about the niches they inhabit and how their role in development, regeneration and cancer may inform future therapeutic advances.
Collapse
Affiliation(s)
- John G McKendrick
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine Emmerson
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
22
|
Haubruck P, Pinto MM, Moradi B, Little CB, Gentek R. Monocytes, Macrophages, and Their Potential Niches in Synovial Joints - Therapeutic Targets in Post-Traumatic Osteoarthritis? Front Immunol 2021; 12:763702. [PMID: 34804052 PMCID: PMC8600114 DOI: 10.3389/fimmu.2021.763702] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial joints are complex structures that enable normal locomotion. Following injury, they undergo a series of changes, including a prevalent inflammatory response. This increases the risk for development of osteoarthritis (OA), the most common joint disorder. In healthy joints, macrophages are the predominant immune cells. They regulate bone turnover, constantly scavenge debris from the joint cavity and, together with synovial fibroblasts, form a protective barrier. Macrophages thus work in concert with the non-hematopoietic stroma. In turn, the stroma provides a scaffold as well as molecular signals for macrophage survival and functional imprinting: “a macrophage niche”. These intricate cellular interactions are susceptible to perturbations like those induced by joint injury. With this review, we explore how the concepts of local tissue niches apply to synovial joints. We introduce the joint micro-anatomy and cellular players, and discuss their potential interactions in healthy joints, with an emphasis on molecular cues underlying their crosstalk and relevance to joint functionality. We then consider how these interactions are perturbed by joint injury and how they may contribute to OA pathogenesis. We conclude by discussing how understanding these changes might help identify novel therapeutic avenues with the potential of restoring joint function and reducing post-traumatic OA risk.
Collapse
Affiliation(s)
- Patrick Haubruck
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Babak Moradi
- Clinic of Orthopaedics and Trauma Surgery, University Clinic of Schleswig-Holstein, Kiel, Germany
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol 2021; 54:101511. [PMID: 34743926 DOI: 10.1016/j.smim.2021.101511] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
24
|
Sehgal A, Irvine KM, Hume DA. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis, and tissue repair. Semin Immunol 2021; 54:101509. [PMID: 34742624 DOI: 10.1016/j.smim.2021.101509] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Macrophage colony-stimulating factor (CSF1) is the primary growth factor required for the control of monocyte and macrophage differentiation, survival, proliferation and renewal. Although the cDNAs encoding multiple isoforms of human CSF1 were cloned in the 1980s, and recombinant proteins were available for testing in humans, CSF1 has not yet found substantial clinical application. Here we present an overview of CSF1 biology, including evolution, regulation and functions of cell surface and secreted isoforms. CSF1 is widely-expressed, primarily by cells of mesenchymal lineages, in all mouse tissues. Cell-specific deletion of a floxed Csf1 allele in mice indicates that local CSF1 production contributes to the maintenance of tissue-specific macrophage populations but is not saturating. CSF1 in the circulation is controlled primarily by receptor-mediated clearance by macrophages in liver and spleen. Administration of recombinant CSF1 to humans or animals leads to monocytosis and expansion of tissue macrophage populations and growth of the liver and spleen. In a wide variety of tissue injury models, CSF1 administration promotes monocyte infiltration, clearance of damaged cells and repair. We suggest that CSF1 has therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
25
|
Hough K, Verschuur CA, Cunningham C, Newman TA. Macrophages in the cochlea; an immunological link between risk factors and progressive hearing loss. Glia 2021; 70:219-238. [PMID: 34536249 DOI: 10.1002/glia.24095] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023]
Abstract
Macrophages are abundant in the cochlea; however, their role in hearing loss is not well understood. Insults to the cochlea, such as noise or insertion of a cochlear implant, cause an inflammatory response, which includes activation of tissue-resident macrophages. Activation is characterized by changes in macrophage morphology, mediator expression, and distribution. Evidence from other organs shows activated macrophages can become primed, whereby subsequent insults cause an elevated inflammatory response. Primed macrophages in brain pathologies respond to circulating inflammatory mediators by disproportionate synthesis of inflammatory mediators. This signaling occurs behind an intact blood-brain barrier, similar to the blood-labyrinth barrier in the cochlea. Local tissue damage can occur as the result of mediator release by activated macrophages. Damage is typically localized; however, if it is to structures with limited ability to repair, such as neurons or hair cells within the cochlea, it is feasible that this contributes to the progressive loss of function seen in hearing loss. We propose that macrophages in the cochlea link risk factors and hearing loss. Injury to the cochlea causes local macrophage activation that typically resolves. However, in susceptible individuals, some macrophages enter a primed state. Once primed, these macrophages can be further activated, as a consequence of circulating inflammatory molecules associated with common co-morbidities. Hypothetically, this would lead to further cochlear damage and loss of hearing. We review the evidence for the role of tissue-resident macrophages in the cochlea and propose that cochlear macrophages contribute to the trajectory of hearing loss and warrant further study.
Collapse
Affiliation(s)
- Kate Hough
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Carl A Verschuur
- Faculty of Engineering and Physical Sciences, Auditory Implant Centre, University of Southampton, Southampton, UK
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience (TCIN), Dublin, Ireland
| | - Tracey A Newman
- Clinical and Experimental Sciences, Faculty of Medicine, IfLS, University of Southampton, Southampton, UK
| |
Collapse
|
26
|
Viola MF, Boeckxstaens G. Niche-specific functional heterogeneity of intestinal resident macrophages. Gut 2021; 70:1383-1395. [PMID: 33384336 PMCID: PMC8223647 DOI: 10.1136/gutjnl-2020-323121] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/22/2022]
Abstract
Intestinal resident macrophages are at the front line of host defence at the mucosal barrier within the gastrointestinal tract and have long been known to play a crucial role in the response to food antigens and bacteria that are able to penetrate the mucosal barrier. However, recent advances in single-cell RNA sequencing technology have revealed that resident macrophages throughout the gut are functionally specialised to carry out specific roles in the niche they occupy, leading to an unprecedented understanding of the heterogeneity and potential biological functions of these cells. This review aims to integrate these novel findings with long-standing knowledge, to provide an updated overview on our understanding of macrophage function in the gastrointestinal tract and to speculate on the role of specialised subsets in the context of homoeostasis and disease.
Collapse
Affiliation(s)
- Maria Francesca Viola
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (Chrometa), KU Leuven, Leuven, Flanders, Belgium
| | - Guy Boeckxstaens
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (Chrometa), KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
27
|
Lyadova I, Gerasimova T, Nenasheva T. Macrophages Derived From Human Induced Pluripotent Stem Cells: The Diversity of Protocols, Future Prospects, and Outstanding Questions. Front Cell Dev Biol 2021; 9:640703. [PMID: 34150747 PMCID: PMC8207294 DOI: 10.3389/fcell.2021.640703] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophages (Mφ) derived from induced pluripotent stem cells (iMphs) represent a novel and promising model for studying human Mφ function and differentiation and developing new therapeutic strategies based on or oriented at Mφs. iMphs have several advantages over the traditionally used human Mφ models, such as immortalized cell lines and monocyte-derived Mφs. The advantages include the possibility of obtaining genetically identical and editable cells in a potentially scalable way. Various applications of iMphs are being developed, and their number is rapidly growing. However, the protocols of iMph differentiation that are currently used vary substantially, which may lead to differences in iMph differentiation trajectories and properties. Standardization of the protocols and identification of minimum required conditions that would allow obtaining iMphs in a large-scale, inexpensive, and clinically suitable mode are needed for future iMph applications. As a first step in this direction, the current review discusses the fundamental basis for the generation of human iMphs, performs a detailed analysis of the generalities and the differences between iMph differentiation protocols currently employed, and discusses the prospects of iMph applications.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
28
|
Bellomo A, Gentek R, Golub R, Bajénoff M. Macrophage-fibroblast circuits in the spleen. Immunol Rev 2021; 302:104-125. [PMID: 34028841 DOI: 10.1111/imr.12979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Macrophages are an integral part of all organs in the body, where they contribute to immune surveillance, protection, and tissue-specific homeostatic functions. This is facilitated by so-called niches composed of macrophages and their surrounding stroma. These niches structurally anchor macrophages and provide them with survival factors and tissue-specific signals that imprint their functional identity. In turn, macrophages ensure appropriate functioning of the niches they reside in. Macrophages thus form reciprocal, mutually beneficial circuits with their cellular niches. In this review, we explore how this concept applies to the spleen, a large secondary lymphoid organ whose primary functions are to filter the blood and regulate immunity. We first outline the splenic micro-anatomy, the different populations of splenic fibroblasts and macrophages and their respective contribution to protection of and key physiological processes occurring in the spleen. We then discuss firmly established and potential cellular circuits formed by splenic macrophages and fibroblasts, with an emphasis on the molecular cues underlying their crosstalk and their relevance to splenic functionality. Lastly, we conclude by considering how these macrophage-fibroblast circuits might be impaired by aging, and how understanding these changes might help identify novel therapeutic avenues with the potential of restoring splenic functions in the elderly.
Collapse
Affiliation(s)
- Alicia Bellomo
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rachel Golub
- Inserm U1223, Institut Pasteur, Paris, France.,Lymphopoiesis Unit, Institut Pasteur, Paris, France
| | - Marc Bajénoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
29
|
Buechler MB, Fu W, Turley SJ. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 2021; 54:903-915. [PMID: 33979587 DOI: 10.1016/j.immuni.2021.04.021] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts and macrophages are present in all tissues, and mounting evidence supports that these cells engage in direct communication to influence the overall tissue microenvironment and affect disease outcomes. Here, we review the current understanding of the molecular mechanisms that underlie fibroblast-macrophage interactions in health, fibrosis, and cancer. We present an integrated view of fibroblast-macrophage interactions that is centered on the CSF1-CSF1R axis and discuss how additional molecular programs linking these cell types can underpin disease onset, progression, and resolution. These programs may be tissue and context dependent, affected also by macrophage and fibroblast origin and state, as seen most clearly in cancer. Continued efforts to understand these cells and the means by which they interact may provide therapeutic approaches for the treatment of fibrosis and cancer.
Collapse
Affiliation(s)
- Matthew B Buechler
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| | - Wenxian Fu
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
30
|
Patel AA, Ginhoux F, Yona S. Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology 2021; 163:250-261. [PMID: 33555612 DOI: 10.1111/imm.13320] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Phagocytes form a family of immune cells that play a crucial role in tissue maintenance and help orchestrate the immune response. This family of cells can be separated by their nuclear morphology into mononuclear and polymorphonuclear phagocytes. The generation of these cells in the bone marrow, to the blood and finally into tissues is a tightly regulated process. Ensuring the adequate production of these cells and their timely removal is key for both the initiation and resolution of inflammation. Insight into the kinetic profiles of innate myeloid cells during steady state and pathology will permit the rational development of therapies to boost the production of these cells in times of need or reduce them when detrimental.
Collapse
Affiliation(s)
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Simon Yona
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
31
|
Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021; 110:771-796. [PMID: 33600012 DOI: 10.1002/jlb.3ru1120-773r] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although IL-34 and CSF-1 share actions as key mediators of monocytes/macrophages survival and differentiation, they also display differences that should be identified to better define their respective roles in health and diseases. IL-34 displays low sequence homology with CSF-1 but has a similar general structure and they both bind to a common receptor CSF-1R, although binding and subsequent intracellular signaling shows differences. CSF-1R expression has been until now mainly described at a steady state in monocytes/macrophages and myeloid dendritic cells, as well as in some cancers. IL-34 has also 2 other receptors, protein-tyrosine phosphatase zeta (PTPζ) and CD138 (Syndecan-1), expressed in some epithelium, cells of the central nervous system (CNS), as well as in numerous cancers. While most, if not all, of CSF-1 actions are mediated through monocyte/macrophages, IL-34 has also other potential actions through PTPζ and CD138. Additionally, IL-34 and CSF-1 are produced by different cells in different tissues. This review describes and discusses similarities and differences between IL-34 and CSF-1 at steady state and in pathological situations and identifies possible ways to target IL-34, CSF-1, and its receptors.
Collapse
Affiliation(s)
- Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
32
|
Yang G, He Y, Yang H. The involvement of bioactive factors in the self-renewal and stemness maintenance of spermatogonial stem cells. Mol Cell Biochem 2021; 476:1813-1823. [PMID: 33459979 DOI: 10.1007/s11010-020-04028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Spermatogenesis is usually accompanied throughout mammalian lifetime, transmitting genetic information to the next generation, which is mainly dependent on the self-renewal and differentiation of spermatogonial stem cells (SSCs). With further investigation on profiles of SSCs, the previous prevailing orthodoxy that SSCs are unipotent stem cells to differentiate into spermatids only, has been challenged. More notably, accumulating evidence has demonstrated that SSCs are capable of giving rise to cell lineages of the three germ layers, highlighting potential important applications of SSCs for regenerative medicine. Nevertheless, it is unknown how the proliferation and stemness maintenance of SSCs are regulated intrinsically and strictly controlled in a special niche microenvironment in the seminiferous tubules. Based on the special niche microenvironment for SSCs, it is of vital interest to summarize the recent knowledge regarding several critical bioactive molecules in the self-renewal and stemness maintenance of SSCs. In this review, we discuss most recent findings about these critical bioactive factors and further address the new advances on the self-renewal and stemness maintenance of SSCs.
Collapse
Affiliation(s)
- Guoqing Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yuqing He
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, Shaanxi, China. .,School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China. .,Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
33
|
Bijnen M, Bajénoff M. Gland Macrophages: Reciprocal Control and Function within Their Niche. Trends Immunol 2021; 42:120-136. [PMID: 33423933 DOI: 10.1016/j.it.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022]
Abstract
The human body contains dozens of endocrine and exocrine glands, which regulate physiological processes by secreting hormones and other factors. Glands can be subdivided into contiguous tissue modules, each consisting of an interdependent network of cells that together perform particular tissue functions. Among those cells are macrophages, a diverse type of immune cells endowed with trophic functions. In this review, we discuss recent findings on how resident macrophages support tissue modules within glands via the creation of mutually beneficial cell-cell circuits. A better comprehension of gland macrophage function and local control within their niche is essential to achieve a refined understanding of gland physiology in homeostasis and disease.
Collapse
Affiliation(s)
- Mitchell Bijnen
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Marc Bajénoff
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
34
|
Sinha SK, Miikeda A, Fouladian Z, Mehrabian M, Edillor C, Shih D, Zhou Z, Paul MK, Charugundla S, Davis RC, Rajavashisth TB, Lusis AJ. Local M-CSF (Macrophage Colony-Stimulating Factor) Expression Regulates Macrophage Proliferation and Apoptosis in Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:220-233. [PMID: 33086870 PMCID: PMC7769919 DOI: 10.1161/atvbaha.120.315255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Previous studies have shown that deficiency of M-CSF (macrophage colony-stimulating factor; or CSF1 [colony stimulating factor 1]) dramatically reduces atherosclerosis in hyperlipidemic mice. We characterize the underlying mechanism and investigate the relevant sources of CSF1 in lesions. Approach and Results: We quantitatively assessed the effects of CSF1 deficiency on macrophage proliferation and apoptosis in atherosclerotic lesions. Staining of aortic lesions with markers of proliferation, Ki-67 and bromodeoxyuridine, revealed around 40% reduction in CSF1 heterozygous (Csf1+/-) as compared with WT (wild type; Csf1+/+) mice. Similarly, staining with a marker of apoptosis, activated caspase-3, revealed a 3-fold increase in apoptotic cells in Csf1+/- mice. Next, we determined the cellular sources of CSF1 contributing to lesion development. Cell-specific deletions of Csf1 in smooth muscle cells using SM22α-Cre (smooth muscle protein 22-alpha-Cre) reduced lesions by about 40%, and in endothelial cells, deletions with Cdh5-Cre (VE-cadherin-Cre) reduced lesions by about 30%. Macrophage-specific deletion with LysM-Cre (lysozyme M-Cre), on the other hand, did not significantly reduce lesions size. Transplantation of Csf1 null (Csf1-/-) mice bone marrow into Csf1+/+ mice reduced lesions by about 35%, suggesting that CSF1 from hematopoietic cells other than macrophages contributes to atherosclerosis. None of the cell-specific knockouts affected circulating CSF1 levels, and only the smooth muscle cell deletions had any effect on the percentage monocytes in the circulation. Also, Csf1+/- mice did not exhibit significant differences in Ly6Chigh/Ly6Clow monocytes as compared with Csf1+/+. CONCLUSIONS CSF1 contributes to both macrophage proliferation and survival in lesions. Local CSF1 production by smooth muscle cell and endothelial cell rather than circulating CSF1 is the primary driver of macrophage expansion in atherosclerosis.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Aorta/metabolism
- Aorta/pathology
- Apoptosis
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cadherins/genetics
- Cadherins/metabolism
- Cell Proliferation
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- Macrophage Colony-Stimulating Factor/deficiency
- Macrophage Colony-Stimulating Factor/genetics
- Macrophage Colony-Stimulating Factor/metabolism
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
- Department of Internal Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059
| | - Aika Miikeda
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Zachary Fouladian
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Margarete Mehrabian
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Chantle Edillor
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Diana Shih
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Zhiqiang Zhou
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Manash K Paul
- Pulmonary and Critical Care Medicine, University of California, Los Angeles, CA 90095
| | - Sarada Charugundla
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Richard C. Davis
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Tripathi B. Rajavashisth
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
- Department of Internal Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Aldons J. Lusis
- Department of Microbiology, Immunology, & Molecular Genetics, Department of Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095
| |
Collapse
|
35
|
Intestinal Macrophages at the Crossroad between Diet, Inflammation, and Cancer. Int J Mol Sci 2020; 21:ijms21144825. [PMID: 32650452 PMCID: PMC7404402 DOI: 10.3390/ijms21144825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Intestinal macrophages are key players in the regulation of the oral tolerance, controlling gut homeostasis by discriminating innocuous antigens from harmful pathogens. Diet exerts a significant impact on human health, influencing the composition of gut microbiota and the developing of several non-communicable diseases, including cancer. Nutrients and microbiota are able to modify the profile of intestinal macrophages, shaping their key function in the maintenance of the gut homeostasis. Intestinal disease often occurs as a breakdown of this balance: defects in monocyte-macrophage differentiation, wrong dietary habits, alteration of microbiota composition, and impairment in the resolution of inflammation may contribute to the development of intestinal chronic inflammation and colorectal cancer. Accordingly, dietary interventions and macrophage-targeted therapies are emerging as innovative tools for the treatment of several intestinal pathologies. In this review, we will describe the delicate balance between diet, microbiota and intestinal macrophages in homeostasis and how the perturbation of this equilibrium may lead to the occurrence of inflammatory conditions in the gut. The understanding of the molecular pathways and dietary factors regulating the activity of intestinal macrophages might result in the identification of innovative targets for the treatments of intestinal pathologies.
Collapse
|
36
|
Rattanaburee T, Tipmanee V, Tedasen A, Thongpanchang T, Graidist P. Inhibition of CSF1R and AKT by (±)-kusunokinin hinders breast cancer cell proliferation. Biomed Pharmacother 2020; 129:110361. [PMID: 32535390 DOI: 10.1016/j.biopha.2020.110361] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 01/26/2023] Open
Abstract
Kusunokinin, a lignan compound, inhibits cancer cell proliferation and induces apoptosis; however, the role of kusunokinin is not fully understood. Here, we aimed to identify a target protein of (-)-kusunokinin and determine the protein levels of its downstream molecules. We found that (-)-kusunokinin bound 5 possible target proteins, including CSF1R, MMP-12, HSP90-α, CyclinB1 and MEK1 with ΔGbind less than -10.40 kcal/mol. MD simulation indicated (-)-kusunokinin and pexidartinib (P31, a specific CSF1R binding compound) shared some extents of functional similarity in which (-)-kusunokinin bound CSF1R at the juxtamembrane (JM) region with aromatic amino acids similar to pexidartinib using π-π interaction, as well as hydrogen bond. Both P31 and (-)-kusunokinin moved into the same CSF1R region and W7 was a mutual key residue. However, the P31 binding site differed from the (-)-kusunokinin binding site. For in vitro study, the synthetic (±)-kusunokinin exhibited stronger cytotoxicity than picropodophyllotoxin, silibinin and etoposide on MCF-7 cells and represented less toxicity than picropodophyllotoxin and doxorubicin on L-929 and MCF-12A cells. Knocking down CSF1R using a specific siRNA combination with (±)-kusunokinin demonstrated levels of cell proliferation proteins slightly higher than siRNA-CSF1R treatment. However, siRNA-CSF1R combination with P31 represented the number of cell viability and cell proliferation proteins, like in the control groups (Lipofectamine and siRNA-Luciferase). Moreover, (±)-kusunokinin suppressed CSF1R and its downstream proteins, including AKT, CyclinD1 and CDK1. Meanwhile, both P31 and siRNA-CSF1R dramatically suppressed CSF1R, MEK1, AKT, ERK, CyclinB1, CyclinD1 and CDK1. Our overall results indicate that the mechanism of (±)-kusunokinin differed fairly from P31. We have concluded that (±)-kusunokinin inhibited breast cancer cell proliferation partially through the binding and suppression of CSF1R, which consequently affected AKT and its downstream molecules.
Collapse
Affiliation(s)
- Thidarath Rattanaburee
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
| | - Aman Tedasen
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand; Medical Technology Program, School of Allied Health Sciences, Walailak University, Nakhonsithammarat, 80161, Thailand.
| | - Tienthong Thongpanchang
- Department of Chemistry, Faculty of Science and Center of Excellence for Innovation in Chemistry, Mahidol University, Bangkok, 10400, Thailand.
| | - Potchanapond Graidist
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand; The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Songkhla, 90110, Thailand.
| |
Collapse
|
37
|
RXRs control serous macrophage neonatal expansion and identity and contribute to ovarian cancer progression. Nat Commun 2020; 11:1655. [PMID: 32246014 PMCID: PMC7125161 DOI: 10.1038/s41467-020-15371-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/28/2020] [Indexed: 12/04/2022] Open
Abstract
Tissue-resident macrophages (TRMs) populate all tissues and play key roles in homeostasis, immunity and repair. TRMs express a molecular program that is mostly shaped by tissue cues. However, TRM identity and the mechanisms that maintain TRMs in tissues remain poorly understood. We recently found that serous-cavity TRMs (LPMs) are highly enriched in RXR transcripts and RXR-response elements. Here, we show that RXRs control mouse serous-macrophage identity by regulating chromatin accessibility and the transcriptional regulation of canonical macrophage genes. RXR deficiency impairs neonatal expansion of the LPM pool and reduces the survival of adult LPMs through excess lipid accumulation. We also find that peritoneal LPMs infiltrate early ovarian tumours and that RXR deletion diminishes LPM accumulation in tumours and strongly reduces ovarian tumour progression in mice. Our study reveals that RXR signalling controls the maintenance of the serous macrophage pool and that targeting peritoneal LPMs may improve ovarian cancer outcomes. Macrophages can differentiate to perform homeostatic tissue-specific functions. Here the authors show that RXR signalling is critical for large peritoneal macrophage (LPM) expansion during neonatal life and LPM lipid metabolism and survival during adult homeostasis, and that ovarian cancer growth relies on RXR-dependent LPMs.
Collapse
|
38
|
Wu Z, Harne R, Chintoan-Uta C, Hu TJ, Wallace R, MacCallum A, Stevens MP, Kaiser P, Balic A, Hume DA. Regulation and function of macrophage colony-stimulating factor (CSF1) in the chicken immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103586. [PMID: 31870792 PMCID: PMC6996135 DOI: 10.1016/j.dci.2019.103586] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 05/11/2023]
Abstract
Macrophage colony-stimulating factor (CSF1) is an essential growth factor to control the proliferation, differentiation and survival of cells of the macrophage lineage in vertebrates. We have previously produced a recombinant chicken CSF1-Fc fusion protein and administrated it to birds which produced a substantial expansion of tissue macrophage populations. To further study the biology of CSF1 in the chicken, here we generated anti-chicken CSF1 antibodies (ROS-AV181 and 183) using CSF1-Fc as an immunogen. The specific binding of each monoclonal antibody was confirmed by ELISA, Western blotting and immunohistochemistry on tissue sections. Using the anti-CSF1 antibodies, we show that chicken bone marrow derived macrophages (BMDM) express CSF1 on their surface, and that the level appears to be regulated further by exogenous CSF1. By capture ELISA circulating CSF1 levels increased transiently in both layer and broiler embryos around the day of hatch. The levels of CSF1 in broilers was higher than in layers during the first week after hatch. Antibody ROS-AV183 was able to block CSF1 biological activity in vitro and treatment of hatchlings using this neutralising antibody in vivo impacted on some tissue macrophage populations, but not blood monocytes. After anti-CSF1 treatment, CSF1R-transgene reporter expressing cells were reduced in the bursa of Fabricius and cecal tonsil and TIM4+ Kupffer cells in the liver were almost completely ablated. Anti-CSF1 treatment also produced a reduction in overall bone density, trabecular volume and TRAP+ osteoclasts. Our novel neutralising antibody provides a new tool to study the roles of CSF1 in birds.
Collapse
Affiliation(s)
- Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Rakhi Harne
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Cosmin Chintoan-Uta
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Tuan-Jun Hu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Robert Wallace
- The Department of Orthopedic Surgery, University of Edinburgh, Chancellor's Building, Edinburgh BioQuarter, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Amanda MacCallum
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Mark P Stevens
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Pete Kaiser
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Adam Balic
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4104, Australia.
| |
Collapse
|
39
|
Establishment and Maintenance of the Macrophage Niche. Immunity 2020; 52:434-451. [DOI: 10.1016/j.immuni.2020.02.015] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
|
40
|
Caetano-Lopes J, Henke K, Urso K, Duryea J, Charles JF, Warman ML, Harris MP. Unique and non-redundant function of csf1r paralogues in regulation and evolution of post-embryonic development of the zebrafish. Development 2020; 147:dev.181834. [PMID: 31932352 DOI: 10.1242/dev.181834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/19/2019] [Indexed: 01/26/2023]
Abstract
Evolution is replete with reuse of genes in different contexts, leading to multifunctional roles of signaling factors during development. Here, we explore osteoclast regulation during skeletal development through analysis of colony-stimulating factor 1 receptor (csf1r) function in the zebrafish. A primary role of Csf1r signaling is to regulate the proliferation, differentiation and function of myelomonocytic cells, including osteoclasts. We demonstrate the retention of two functional paralogues of csf1r in zebrafish. Mutant analysis indicates that the paralogues have shared, non-redundant roles in regulating osteoclast activity during the formation of the adult skeleton. csf1ra, however, has adopted unique roles in pigment cell patterning not seen in the second paralogue. We identify a unique noncoding element within csf1ra of fishes that is sufficient for controlling gene expression in pigment cells during development. As a role for Csf1r signaling in pigmentation is not observed in mammals or birds, it is likely that the overlapping roles of the two paralogues released functional constraints on csf1ra, allowing the signaling capacity of Csf1r to serve a novel function in the evolution of pigment pattern in fishes.
Collapse
Affiliation(s)
- Joana Caetano-Lopes
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Katrin Henke
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Katia Urso
- Departments of Orthopaedics and Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey Duryea
- Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Julia F Charles
- Departments of Orthopaedics and Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew P Harris
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Okano T, Kishimoto I. Csf1 Signaling Regulates Maintenance of Resident Macrophages and Bone Formation in the Mouse Cochlea. Front Neurol 2019; 10:1244. [PMID: 31824413 PMCID: PMC6881377 DOI: 10.3389/fneur.2019.01244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
In the mammalian cochlea, resident macrophages settle in the spiral ligament, spiral ganglion, and stria vascularis, even at the steady state. Resident macrophages in the cochlea are believed to maintain homeostasis in the inner ear and become active, as part of the front line defense, following inner ear damage. However, the exact roles of cochlear resident macrophages require further clarification. Colony stimulating factor-1 (Csf1) signaling regulates survival, proliferation, and differentiation of resident macrophages and appears to be essential for resident macrophages in the inner ear. To examine the roles of Csf1 signaling in auditory function, we examined the ossicles and inner ear of homozygous Csf1 mutant (Csf1 op/op ) mice. The ossicles including the incus and stapes of Csf1 op/op mice macroscopically demonstrated bone thickening, and the otic capsules of the inner ear were also thick and opaque. Histological analyses demonstrated that the otic capsules in Csf1 op/op mice were thickened and showed spongy bone degeneration. Measurements of the auditory brainstem response revealed significant elevation of thresholds in 4-week old Csf1 op/op mice compared with wild-type littermates, indicating that Csf1 op/op mice demonstrate hearing loss due to, at least in part, deformity of the ossicles and bone capsule of the inner ear. Furthermore, Csf1 op/op mice are deficient in the number of resident macrophages in the spiral ligament and stria vascularis, but not in the spiral ganglion. These data provide evidence that Csf1 signaling is important not only for bone formation in the inner ear, but also for the maintenance of resident macrophages in the spiral ligament and stria vascularis in the adult mouse cochlea.
Collapse
Affiliation(s)
- Takayuki Okano
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ippei Kishimoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Kishimoto I, Okano T, Nishimura K, Motohashi T, Omori K. Early Development of Resident Macrophages in the Mouse Cochlea Depends on Yolk Sac Hematopoiesis. Front Neurol 2019; 10:1115. [PMID: 31695671 PMCID: PMC6817595 DOI: 10.3389/fneur.2019.01115] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022] Open
Abstract
Resident macrophages reside in all tissues throughout the body and play a central role in both tissue homeostasis and inflammation. Although the inner ear was once believed to be "immune-privileged," recent studies have shown that macrophages are distributed in the cochlea and may play important roles in the immune system thereof. Resident macrophages have heterogeneous origins among tissues and throughout developmental stages. However, the origins of embryonic cochlear macrophages remain unknown. Here, we show that the early development of resident macrophages in the mouse cochlea depends on yolk sac hematopoiesis. Accordingly, our results found that macrophages emerging around the developing otocyst at E10.5 exhibited dynamic changes in distribution and in situ proliferative capacity during embryonic and neonatal stages. Cochlear examination in Csf1r-null mice revealed a substantial decrease in the number of Iba1-positive macrophages in the spiral ganglion and spiral ligament, whereas they were still observed in the cochlear mesenchyme or on the intraluminal surface of the perilymphatic space. Our results demonstrated that two subtypes of resident macrophages are present in the embryonic cochlea, one being Csf1r-dependent macrophages that originate from the yolk sac and the other being Csf1r-independent macrophages that appear to be derived from the fetal liver via systemic circulation. We consider the present study to be a starting point for elucidating the roles of embryonic cochlear resident macrophages. Furthermore, resident macrophages in the embryonic cochlea could be a novel target for the treatment of various inner ear disorders.
Collapse
Affiliation(s)
- Ippei Kishimoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Okano
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Nishimura
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Aikawa S, Deng W, Liang X, Yuan J, Bartos A, Sun X, Dey SK. Uterine deficiency of high-mobility group box-1 (HMGB1) protein causes implantation defects and adverse pregnancy outcomes. Cell Death Differ 2019; 27:1489-1504. [PMID: 31595043 DOI: 10.1038/s41418-019-0429-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
A reciprocal communication between the implantation-competent blastocyst and the receptive uterus is essential to successful implantation and pregnancy success. Progesterone (P4) signaling via nuclear progesterone receptor (PR) is absolutely critical for pregnancy initiation and its success in most eutherian mammals. Here we show that a nuclear protein high-mobility group box-1 (HMGB1) plays a critical role in implantation in mice by preserving P4-PR signaling. Conditional deletion of uterine Hmgb1 by a Pgr-Cre driver shows implantation defects accompanied by decreased stromal cell Hoxa10 expression and cell proliferation, two known signatures of inefficient responsiveness of stromal cells to PR signaling in implantation. These mice evoke inflammatory conditions with sustained macrophage accumulation in the stromal compartment on day 4 of pregnancy with elevated levels of macrophage attractants Csf1 and Ccl2. The results are consistent with the failure of exogenous P4 administration to rescue implantation deficiency in the mutant females. These early defects are propagated throughout the course of pregnancy and ultimately result in substantial subfertility. Collectively, the present study provides evidence that nuclear HMGB1 contributes to successful blastocyst implantation by sustaining P4-PR signaling and restricting macrophage accumulation to attenuate harmful inflammatory responses.
Collapse
Affiliation(s)
- Shizu Aikawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,College of Medicine, University of Cincinnati, 2600 Clifton Avenue, Cincinnati, OH, 45221, USA
| | - Wenbo Deng
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,College of Medicine, University of Cincinnati, 2600 Clifton Avenue, Cincinnati, OH, 45221, USA.,Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiaohuan Liang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Jia Yuan
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,College of Medicine, University of Cincinnati, 2600 Clifton Avenue, Cincinnati, OH, 45221, USA
| | - Amanda Bartos
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,College of Medicine, University of Cincinnati, 2600 Clifton Avenue, Cincinnati, OH, 45221, USA
| | - Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,College of Medicine, University of Cincinnati, 2600 Clifton Avenue, Cincinnati, OH, 45221, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,College of Medicine, University of Cincinnati, 2600 Clifton Avenue, Cincinnati, OH, 45221, USA.
| |
Collapse
|
44
|
Aponte PM, Gutierrez-Reinoso MA, Sanchez-Cepeda EG, Garcia-Herreros M. Differential role of r-met-hu G-CSF on male reproductive function and development in prepubertal domestic mammals. PLoS One 2019; 14:e0222871. [PMID: 31557198 PMCID: PMC6762091 DOI: 10.1371/journal.pone.0222871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
The understanding of mammalian spermatogenesis niche factors active during sexual development may be leveraged to impact reproduction in farm animals. The aim of this study was to evaluate the effects of r-met-hu/G-CSF (filgrastim) on prepubertal sexual development of guinea pigs (Cavia porcellus) and ram lambs (Ovis aries). Individuals of both species were administered r-met-hu/G-CSF daily for 4 days. During and after administration protocols, testicular function and development were assessed through hematological responses, hormonal profiles (gonadotropins, testosterone and cortisol) testicular morphometry and germ cell kinetics. As expected, r-met-hu/G-CSF acutely mobilized white-lineage blood cells in both species. LH was increased by r-met-hu/G-CSF in guinea pigs (P<0.01) but T remained unchanged. In ram lambs gonadotropins and T increased in dose-response fashion (P<0.01) while cortisol values were stable and similar in treated and control animals (P>0.05). In guinea pigs there were no differences in testicular weights and volumes 2-mo after r-met-hu/G-CSF application (P>0.05). However, ram lambs showed a dose-response effect regarding testis weight (P<0.05). 66.66% of ram lambs had initial testes not yet in meiosis or starting the first spermatogenic wave. After 60-days only 25% of control animals were pubertal while all treated animals (1140-μg) had reached puberty. We propose an integrated hypothesis that G-CSF can stimulate spermatogenesis through two possible ways. 1) r-met-hu/G-CSF may go through the brain blood barrier and once there it can stimulate GnRH-neurons to release GnRH with the subsequent release of gonadotrophins. 2) a local testicular effect through stimulation of steroidogenesis that enhances spermiogenesis via testosterone production and a direct stimulation over spermatogonial stem cells self-renewal. In conclusion, this study shows that r-met-hu/G-CSF differentially affects prepubertal sexual development in hystricomorpha and ovine species, a relevant fact to consider when designing methods to hasten sexual developmental in mammalian species.
Collapse
Affiliation(s)
- Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina “One-health”, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito, Ecuador
- * E-mail: (PMA); (MGH)
| | - Miguel A. Gutierrez-Reinoso
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga, Ecuador
| | | | - Manuel Garcia-Herreros
- National Secretariat of Higher Education, Science, Technology and Innovation (SENESCYT), Quito, Ecuador
- Instituto Nacional de Investigação Agrária e Veterinária, I. P. (INIAV, I.P.), Polo de Santarém, Santarém, Portugal
- * E-mail: (PMA); (MGH)
| |
Collapse
|
45
|
Ho J, Peters T, Dickson BC, Swanson D, Fernandez A, Frova‐Seguin A, Valentin M, Schramm U, Sultan M, Nielsen TO, Demicco EG. Detection ofCSF1rearrangements deleting the 3′ UTR in tenosynovial giant cell tumors. Genes Chromosomes Cancer 2019; 59:96-105. [DOI: 10.1002/gcc.22807] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Julie Ho
- Genetic Pathology Evaluation Centre, University of British Columbia Vancouver British Columbia Canada
| | - Thomas Peters
- Novartis Institute for Biomedical Research Basel Switzerland
| | - Brendan C. Dickson
- Department of Pathology and Laboratory MedicineMount Sinai Hospital Toronto Ontario Canada
| | - David Swanson
- Department of Pathology and Laboratory MedicineMount Sinai Hospital Toronto Ontario Canada
| | - Anita Fernandez
- Novartis Institute for Biomedical Research Basel Switzerland
| | | | | | - Ursula Schramm
- Novartis Institute for Biomedical Research Basel Switzerland
| | - Marc Sultan
- Novartis Institute for Biomedical Research Basel Switzerland
| | - Torsten O. Nielsen
- Genetic Pathology Evaluation Centre, University of British Columbia Vancouver British Columbia Canada
| | - Elizabeth G. Demicco
- Department of Pathology and Laboratory MedicineMount Sinai Hospital Toronto Ontario Canada
| |
Collapse
|
46
|
Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol 2019; 16:531-543. [PMID: 31312042 DOI: 10.1038/s41575-019-0172-4] [Citation(s) in RCA: 490] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Macrophages are the gatekeepers of intestinal immune homeostasis as they discriminate between innocuous antigens and potential pathogens to maintain oral tolerance. However, in individuals with a genetic and environmental predisposition, regulation of intestinal immunity is impaired, leading to chronic relapsing immune activation and pathologies of the gastrointestinal tract, such as IBD. As evidence suggests a causal link between defects in the resolution of intestinal inflammation and altered monocyte-macrophage differentiation in patients with IBD, macrophages have been considered as a novel potential target to develop new treatment approaches. This Review discusses the molecular and cellular mechanisms involved in the differentiation and function of intestinal macrophages in homeostasis and inflammation, and their role in resolving the inflammatory process. Understanding the molecular pathways involved in the specification of intestinal macrophages might lead to a new class of targets that promote remission in patients with IBD.
Collapse
Affiliation(s)
- Yi Rang Na
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University Medical College, Seoul, South Korea
| | - Michelle Stakenborg
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University Medical College, Seoul, South Korea.
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
47
|
Mesothelial cell CSF1 sustains peritoneal macrophage proliferation. Eur J Immunol 2019; 49:2012-2018. [DOI: 10.1002/eji.201948164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/07/2019] [Accepted: 06/26/2019] [Indexed: 12/26/2022]
|
48
|
Zhou R, Wu J, Liu B, Jiang Y, Chen W, Li J, He Q, He Z. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cell Mol Life Sci 2019; 76:2681-2695. [PMID: 30980107 PMCID: PMC11105226 DOI: 10.1007/s00018-019-03101-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Spermatogenesis is fundamental to the establishment and maintenance of male reproduction, whereas its abnormality results in male infertility. Somatic cells, including Leydig cells, myoid cells, and Sertoli cells, constitute the microenvironment or the niche of testis, which is essential for regulating normal spermatogenesis. Leydig cells are an important component of the testicular stroma, while peritubular myoid cells are one of the major cell types of seminiferous tubules. Here we addressed the roles and mechanisms of Leydig cells and myoid cells in the regulation of spermatogenesis. Specifically, we summarized the biological features of Leydig cells and peritubular myoid cells, and we introduced the process of testosterone production and its major regulation. We also discussed other hormones, cytokines, growth factors, transcription factors and receptors associated with Leydig cells and myoid cells in mediating spermatogenesis. Furthermore, we highlighted the issues that are worthy of further studies in the regulation of spermatogenesis by Leydig cells and peritubular myoid cells. This review would provide novel insights into molecular mechanisms of the somatic cells in controlling spermatogenesis, and it could offer new targets for developing therapeutic approaches of male infertility.
Collapse
Affiliation(s)
- Rui Zhou
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jingrouzi Wu
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bang Liu
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yiqun Jiang
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Chen
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jian Li
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Quanyuan He
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zuping He
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
49
|
Mindur JE, Swirski FK. Growth Factors as Immunotherapeutic Targets in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:1275-1287. [PMID: 31092009 DOI: 10.1161/atvbaha.119.311994] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth factors, such as CSFs (colony-stimulating factors), EGFs (epidermal growth factors), and FGFs (fibroblast growth factors), are signaling proteins that control a wide range of cellular functions. Although growth factor networks are critical for intercellular communication and tissue homeostasis, their abnormal production or regulation occurs in various pathologies. Clinical strategies that target growth factors or their receptors are used to treat a variety of conditions but have yet to be adopted for cardiovascular disease. In this review, we focus on M-CSF (macrophage-CSF), GM-CSF (granulocyte-M-CSF), IL (interleukin)-3, EGFR (epidermal growth factor receptor), and FGF21 (fibroblast growth factor 21). We first discuss the efficacy of targeting these growth factors in other disease contexts (ie, inflammatory/autoimmune diseases, cancer, or metabolic disorders) and then consider arguments for or against targeting them to treat cardiovascular disease. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- John E Mindur
- From the Graduate Program in Immunology (J.E.M.), Massachusetts General Hospital and Harvard Medical School, Boston.,Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
50
|
Kim MY, Lee K, Shin HI, Jeong D. Specific targeting of PKCδ suppresses osteoclast differentiation by accelerating proteolysis of membrane-bound macrophage colony-stimulating factor receptor. Sci Rep 2019; 9:7044. [PMID: 31065073 PMCID: PMC6504882 DOI: 10.1038/s41598-019-43501-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/25/2019] [Indexed: 01/12/2023] Open
Abstract
c-Fms is the macrophage colony-stimulating factor (M-CSF) receptor, and intracellular signalling via the M-CSF/c-Fms axis mediates both innate immunity and bone remodelling. M-CSF-induced transient proteolytic degradation of c-Fms modulates various biological functions, and protein kinase C (PKC) signalling is activated during this proteolytic process via an unknown mechanism. Notably, the role of specific PKC isoforms involved in c-Fms degradation during osteoclast differentiation is not known. Here, we observed that inactivation of PKCδ by the biochemical inhibitor rottlerin, a cell permeable peptide inhibitor, and short hairpin (sh) RNA suppresses osteoclast differentiation triggered by treatment with M-CSF and receptor activator of NF-κB ligand. Interestingly, inhibition of PKCδ by either inhibitor or gene silencing of PKCδ accelerated M-CSF-induced proteolytic degradation of membrane-bound c-Fms via both the lysosomal pathway and regulated intramembrane proteolysis (RIPping), but did not affect c-fms expression at the mRNA level. Degradation of c-Fms induced by PKCδ inactivation subsequently inhibited M-CSF-induced osteoclastogenic signals, such as extracellular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK), p38, and Akt. Furthermore, mice administered PKCδ inhibitors into the calvaria periosteum exhibited a decrease in both osteoclast formation on the calvarial bone surface and the calvarial bone marrow cavity, which reflects osteoclastic bone resorption activity. These data suggest that M-CSF-induced PKCδ activation maintains membrane-anchored c-Fms and allows the sequential cellular events of osteoclastogenic signalling, osteoclast formation, and osteoclastic bone resorption.
Collapse
Affiliation(s)
- Mi Yeong Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, 42415, Korea
| | - Kyunghee Lee
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, 42415, Korea
| | - Hong-In Shin
- IHBR, Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Daewon Jeong
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, 42415, Korea.
| |
Collapse
|