1
|
Bagde PH, Kandpal M, Rani A, Kumar S, Mishra A, Jha HC. Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies. J Cell Biochem 2025; 126:e70000. [PMID: 39887732 DOI: 10.1002/jcb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Proteasomes are the catalytic complexes in eukaryotic cells that decide the fate of proteins involved in various cellular processes in an energy-dependent manner. The proteasomal system performs its function by selectively destroying the proteins labelled with the small protein ubiquitin. Dysfunctional proteasomal activity is allegedly involved in various clinical disorders such as cancer, neurodegenerative disorders, ageing, and so forth, making it an important therapeutic target. Notably, compared to healthy cells, cancer cells have a higher protein homeostasis requirement and a faster protein turnover rate. The ubiquitin-proteasome system (UPS) helps cancer cells increase rapidly and experience less apoptotic cell death. Therefore, understanding UPS is essential to design and discover some effective inhibitors for cancer therapy. Hereby, we have focused on the role of the 26S proteasome complex, mainly the UPS, in carcinogenesis and seeking potential therapeutic targets in treating numerous cancers.
Collapse
Affiliation(s)
- Pranit Hemant Bagde
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Sachin Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
2
|
Guo B, Shi X, Jiang Q, Pan Y, Yang Y, Liu Y, Chen S, Zhu W, Ren L, Liang R, Chen X, Xu H, Wei L, Lin Y, Wang J, Qiu C, Zhou H, Rao L, Wang L, Chen R, Chen S. Targeting Immunoproteasome in Polarized Macrophages Ameliorates Experimental Emphysema Via Activating NRF1/2-P62 Axis and Suppressing IRF4 Transcription. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405318. [PMID: 39356034 PMCID: PMC11600198 DOI: 10.1002/advs.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Indexed: 10/03/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) stands as the prevailing chronic airway ailment, characterized by chronic bronchitis and emphysema. Current medications fall short in treatment of these diseases, underscoring the urgent need for effective therapy. Prior research indicated immunoproteasome inhibition alleviated various inflammatory diseases by modulating immune cell functions. However, its therapeutic potential in COPD remains largely unexplored. Here, an elevated expression of immunoproteasome subunits LMP2 and LMP7 in the macrophages isolated from mouse with LPS/Elastase-induced emphysema and polarized macrophages in vitro is observed. Subsequently, intranasal administration of the immunoproteasome-specific inhibitor ONX-0914 significantly mitigated COPD-associated airway inflammation and improved lung function in mice by suppressing macrophage polarization. Additionally, ONX-0914 capsulated in PLGA nanoparticles exhibited more pronounced therapeutic effect on COPD than naked ONX-0914 by targeting immunoproteasome in polarized macrophages. Mechanistically, ONX-0914 activated autophagy and endoplasmic reticulum (ER) stress are not attribute to the ONX-0914 mediated suppression of macrophage polarization. Intriguingly, ONX-0914 inhibited M1 polarization through the nuclear factor erythroid 2-related factor-1 (NRF1) and NRF2-P62 axis, while the suppression of M2 polarization is regulated by inhibiting the transcription of interferon regulatory factor 4 (IRF4). In summary, the findings suggest that targeting immunoproteasome in macrophages holds promise as a therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Bingxin Guo
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Xing Shi
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Qiong Jiang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Yuanwei Pan
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Yuqiong Yang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory DiseaseFirst Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Yuanyuan Liu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Post‐doctoral Scientific Research Station of Basic Medicine, The Second Clinical Medical CollegeJinan UniversityGuangzhou510632China
| | - Shuyu Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Wenjiao Zhu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Laibin Ren
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Ruifang Liang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Post‐doctoral Scientific Research Station of Basic Medicine, The Second Clinical Medical CollegeJinan UniversityGuangzhou510632China
| | - Xue Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Haizhao Xu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Laiyou Wei
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Yongjian Lin
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Jinyong Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Chen Qiu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Haibo Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Lang Rao
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
3
|
Shiffer EM, Oyer JL, Copik AJ, Parks GD. Parainfluenza Virus 5 V Protein Blocks Interferon Gamma-Mediated Upregulation of NK Cell Inhibitory Ligands and Improves NK Cell Killing of Neuroblastoma Cells. Viruses 2024; 16:1270. [PMID: 39205244 PMCID: PMC11359056 DOI: 10.3390/v16081270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Natural killer (NK) cells can be effective immunotherapeutic anti-cancer agents due to their ability to selectively target and kill tumor cells. This activity is modulated by the interaction of NK cell receptors with inhibitory ligands on the surface of target cells. NK cell inhibitory ligands can be upregulated on tumor cell surfaces in response to interferon-gamma (IFN-γ), a cytokine which is produced by activated NK cells. We hypothesized that the resistance of tumor cells to NK cell killing could be overcome by expression of the parainfluenza virus 5 (PIV5) V protein, which has known roles in blocking IFN-γ signaling. This was tested with human PM21-NK cells produced through a previously developed particle-based method which yields superior NK cells for immunotherapeutic applications. Infection of human SK-N-SH neuroblastoma cells with PIV5 blocked IFN-γ-mediated upregulation of three NK cell inhibitory ligands and enhanced in vitro killing of these tumor cells by PM21-NK cells. SK-N-SH cells transduced to constitutively express the V protein alone were resistant to IFN-γ-mediated increases in cell surface expression of NK cell inhibitory ligands. Real-time in vitro cell viability assays demonstrated that V protein expression in SK-N-SH cells was sufficient to increase PM21-NK cell-mediated killing. Toward a potential therapeutic application, transient lentiviral delivery of the V gene also enhanced PM21-NK cell killing in vitro. Our results provide the foundation for novel therapeutic applications of V protein expression in combination with ex vivo NK cell therapy to effectively increase the killing of tumor cells.
Collapse
Affiliation(s)
| | | | | | - Griffith D. Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (E.M.S.); (J.L.O.); (A.J.C.)
| |
Collapse
|
4
|
Della Morte E, Giannasi C, Valenza A, Cadelano F, Aldegheri A, Zagra L, Niada S, Brini AT. Connexin 43 Modulation in Human Chondrocytes, Osteoblasts and Cartilage Explants: Implications for Inflammatory Joint Disorders. Int J Mol Sci 2024; 25:8547. [PMID: 39126115 PMCID: PMC11313680 DOI: 10.3390/ijms25158547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 ng/mL Tumor Necrosis Factor alpha (TNFα) and/or 1 ng/mL Interleukin-1 beta (IL-1β), in primary chondrocytes (CH) and osteoblasts (OB). Additionally, we explored the impact of synovial fluids from osteoarthritis patients in CH and cartilage explants, providing a more physio-pathological context. The effect of TNFα on Cx43 expression in cartilage explants was also assessed. TNFα downregulated Cx43 levels both in CH and OB (-73% and -32%, respectively), while IL-1β showed inconclusive effects. The reduction in Cx43 levels was associated with a significant downregulation of the coding gene GJA1 expression in OB only (-65%). The engagement of proteasome in TNFα-induced effects, already known in CH, was also observed in OB. TNFα treatment significantly decreased Cx43 expression also in cartilage explants. Of note, Cx43 expression was halved by synovial fluid in both CH and cartilage explants. This study unveils the regulation of Cx43 in diverse musculoskeletal cell types under various stimuli and in different contexts, providing insights into its modulation in inflammatory joint disorders.
Collapse
Affiliation(s)
- Elena Della Morte
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Chiara Giannasi
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| | - Alice Valenza
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Francesca Cadelano
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| | - Alessandro Aldegheri
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (A.A.); (L.Z.)
| | - Luigi Zagra
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (A.A.); (L.Z.)
| | - Stefania Niada
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Anna Teresa Brini
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| |
Collapse
|
5
|
Arai Y, Shitama H, Yamagishi M, Ono S, Kashima A, Hiraizumi M, Tsuda N, Katayama K, Tanaka K, Koda Y, Kato S, Sakata K, Nureki O, Miyazaki H. Optimization of α-amido boronic acids via cryo-electron microscopy analysis: Discovery of a novel highly selective immunoproteasome subunit LMP7 (β5i)/LMP2 (β1i) dual inhibitor. Bioorg Med Chem 2024; 109:117790. [PMID: 38906067 DOI: 10.1016/j.bmc.2024.117790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
The immunoproteasome subunit LMP7 (β5i)/LMP2 (β1i) dual blockade has been reported to suppress B cell differentiation and activation, suggesting that the dual inhibition of LMP7/LMP2 is a promising approach for treating autoimmune diseases. In contrast, the inhibition of the constitutive proteasome subunit β5c correlates with cytotoxicity against non-immune cells. Therefore, LMP7/LMP2 dual inhibitors with high selectivity over β5c may be desirable for treating autoimmune diseases. In this study, we present the optimization and discovery of α-amido boronic acids using cryo-electron microscopy (cryo-EM). The exploitation of structural differences between the proteasome subunits led to the identification of a highly selective LMP7/LMP2 dual inhibitor 19. Molecular dynamics simulation based on cryo-EM structures of the proteasome subunits complexed with 19 explained the inhibitory activity profile. In mice immunized with 4-hydroxy-3-nitrophenylacetyl conjugated to ovalbumin, results indicate that 19 is orally bioavailable and shows promise as potential treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Yuuki Arai
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan.
| | - Hiroaki Shitama
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahito Yamagishi
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Satoshi Ono
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Akiko Kashima
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahiro Hiraizumi
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Naoki Tsuda
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Koushirou Katayama
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kouji Tanaka
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Yuzo Koda
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Sayuka Kato
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kei Sakata
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Miyazaki
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan.
| |
Collapse
|
6
|
Ott C. Mapping the interplay of immunoproteasome and autophagy in different heart failure phenotypes. Free Radic Biol Med 2024; 218:149-165. [PMID: 38570171 DOI: 10.1016/j.freeradbiomed.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Proper protein degradation is required for cellular protein homeostasis and organ function. Particularly, in post-mitotic cells, such as cardiomyocytes, unbalanced proteolysis due to inflammatory stimuli and oxidative stress contributes to organ dysfunction. To ensure appropriate protein turnover, eukaryotic cells exert two main degradation systems, the ubiquitin-proteasome-system and the autophagy-lysosome-pathway. It has been shown that proteasome activity affects the development of cardiac dysfunction differently, depending on the type of heart failure. Studies analyzing the inducible subtype of the proteasome, the immunoproteasome (i20S), demonstrated that the i20S plays a double role in diseased hearts. While i20S subunits are increased in cardiac hypertrophy, atrial fibrillation and partly in myocarditis, the opposite applies to diabetic cardiomyopathy and ischemia/reperfusion injury. In addition, the i20S appears to play a role in autophagy modulation depending on heart failure phenotype. This review summarizes the current literature on the i20S in different heart failure phenotypes, emphasizing the two faces of i20S in injured hearts. A selection of established i20S inhibitors is introduced and signaling pathways linking the i20S to autophagy are highlighted. Mapping the interplay of the i20S and autophagy in different types of heart failure offers potential approaches for developing treatment strategies against heart failure.
Collapse
Affiliation(s)
- Christiane Ott
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Ngai D, Sukka SR, Tabas I. Crosstalk between efferocytic myeloid cells and T-cells and its relevance to atherosclerosis. Front Immunol 2024; 15:1403150. [PMID: 38873597 PMCID: PMC11169609 DOI: 10.3389/fimmu.2024.1403150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
The interplay between myeloid cells and T-lymphocytes is critical to the regulation of host defense and inflammation resolution. Dysregulation of this interaction can contribute to the development of chronic inflammatory diseases. Important among these diseases is atherosclerosis, which refers to focal lesions in the arterial intima driven by elevated apolipoprotein B-containing lipoproteins, notably low-density lipoprotein (LDL), and characterized by the formation of a plaque composed of inflammatory immune cells, a collection of dead cells and lipids called the necrotic core, and a fibrous cap. As the disease progresses, the necrotic core expands, and the fibrous cap becomes thin, which increases the risk of plaque rupture or erosion. Plaque rupture leads to a rapid thrombotic response that can give rise to heart attack, stroke, or sudden death. With marked lowering of circulating LDL, however, plaques become more stable and cardiac risk is lowered-a process known as atherosclerosis regression. A critical aspect of both atherosclerosis progression and regression is the crosstalk between innate (myeloid cells) and adaptive (T-lymphocytes) immune cells. Myeloid cells are specialized at clearing apoptotic cells by a process called efferocytosis, which is necessary for inflammation resolution. In advanced disease, efferocytosis is impaired, leading to secondary necrosis of apoptotic cells, inflammation, and, most importantly, defective tissue resolution. In regression, efferocytosis is reawakened aiding in inflammation resolution and plaque stabilization. Here, we will explore how efferocytosing myeloid cells could affect T-cell function and vice versa through antigen presentation, secreted factors, and cell-cell contacts and how this cellular crosstalk may contribute to the progression or regression of atherosclerosis.
Collapse
Affiliation(s)
- David Ngai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Santosh R. Sukka
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Physiology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
8
|
Chi H, Qin Q, Hao X, Dalmo RA, Tang X, Xing J, Sheng X, Zhan W. Adjuvant effects of β-defensin on DNA vaccine OmpC against edwardsiellosis in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109502. [PMID: 38471627 DOI: 10.1016/j.fsi.2024.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
β-defensin of flounder plays an important role in immunomodulation by recruiting immune cells and has a potential vaccine adjuvant effect in addition to its bactericidal activity. In this study, adjuvant effects of β-defensin on DNA vaccine OmpC against edwardsiellosis in flounder (Paralichthys olivaceus) were investigated. The bicistronic eukaryotic expression plasmid pBudCE4.1 plasmid vector with two independent coding regions was selected to construct DNA vaccine of p-OmpC which express only the gene for the outer membrane protein of Edwardsiella tarda and the vaccine of p-OmpC-βdefensin which express both the outer membrane protein of the bacterium and β-defensin of flounder. In vitro and in vivo studies have shown that the constructed plasmids can be expressed in flounder embryonic cell lines and injection sites of muscles. After vaccination by intramuscular injection, both p-OmpC and p-OmpC-βdefensin groups showed significant upregulation of immune-response. Compared to the pBbudCE4.1 and the p-OmpC vaccinated groups, the p-OmpC-βdefensin vaccinated group showed significantly more cell aggregation at the injection site and intense immune response. The proportion of sIgM+ cells, as well as the CD4-1+ and CD4-2+ cells in both spleen and kidney was significantly higher in the p-OmpC-βdefensin vaccinated group at peak time point than in the control groups. The relative survival rate of the p-OmpC-βdefensin vaccine was 74.17%, which was significantly higher than that of the p-OmpC vaccinated group 48.33%. The results in this study determined that β-defensin enhances the responses in cellular and humoral immunity and evokes a high degree of protection against E. tarda, which is a promising candidate for vaccine adjuvant.
Collapse
Affiliation(s)
- Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Qingqing Qin
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaokai Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, The Arctic University of Norway, Tromsø, N-9037, Norway
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
9
|
Saito S, Okuno A, Peng Z, Cao DY, Tsuji NM. Probiotic lactic acid bacteria promote anti-tumor immunity through enhanced major histocompatibility complex class I-restricted antigen presentation machinery in dendritic cells. Front Immunol 2024; 15:1335975. [PMID: 38605963 PMCID: PMC11008462 DOI: 10.3389/fimmu.2024.1335975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
Lactic acid bacteria (LAB) possess the ability to argument T cell activity through functional modification of antigen presenting cells (APCs), such as dendritic cells (DCs) and macrophages. Nevertheless, the precise mechanism underlying LAB-induced enhancement of antigen presentation in APCs remains incompletely understood. To address this question, we investigated the detailed mechanism underlying the enhancement of major histocompatibility complex (MHC) class I-restricted antigen presentation in DCs using a probiotic strain known as Lactococcus lactis subsp. Cremoris C60. We found that Heat-killed-C60 (HK-C60) facilitated the processing and presentation of ovalbumin (OVA) peptide antigen OVA257-264 (SIINFEKL) via H-2Kb in bone marrow-derived dendritic cells (BMDCs), leading to increased generation of effector CD8+ T cells both in vitro and in vivo. We also revealed that HK-C60 stimulation augmented the activity of 20S immunoproteasome (20SI) in BMDCs, thereby enhancing the MHC class I-restricted antigen presentation machinery. Furthermore, we assessed the impact of HK-C60 on CD8+ T cell activation in an OVA-expressing B16-F10 murine melanoma model. Oral administration of HK-C60 significantly attenuated tumor growth compared to control treatment. Enhanced Ag processing and presentation machineries in DCs from both Peyer's Patches (PPs) and lymph nodes (LNs) resulted in an increased tumor antigen specific CD8+ T cells. These findings shed new light on the role of LAB in MHC class-I restricted antigen presentation and activation of CD8+ T cells through functional modification of DCs.
Collapse
Affiliation(s)
- Suguru Saito
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Division of Virology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alato Okuno
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Hirosaki, Aomori, Japan
| | - Zhenzi Peng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Noriko M. Tsuji
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Department of Food Science, Jumonji University, Niiza, Saitama, Japan
| |
Collapse
|
10
|
Hebbandi Nanjundappa R, Shao K, Krishnamurthy P, Gershwin ME, Leung PSC, Sokke Umeshappa C. Invariant natural killer T cells in autoimmune cholangiopathies: Mechanistic insights and therapeutic implications. Autoimmun Rev 2024; 23:103485. [PMID: 38040101 DOI: 10.1016/j.autrev.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) constitute a specialized subset of lymphocytes that bridges innate and adaptive immunity through a combination of traits characteristic of both conventional T cells and innate immune cells. iNKT cells are characterized by their invariant T cell receptors and discerning recognition of lipid antigens, which are presented by the non-classical MHC molecule, CD1d. Within the hepatic milieu, iNKT cells hold heightened prominence, contributing significantly to the orchestration of organ homeostasis. Their unique positioning to interact with diverse cellular entities, ranging from epithelial constituents like hepatocytes and cholangiocytes to immunocytes including Kupffer cells, B cells, T cells, and dendritic cells, imparts them with potent immunoregulatory abilities. Emergering knowledge of liver iNKT cells subsets enable to explore their therapeutic potential in autoimmne liver diseases. This comprehensive review navigates the landscape of iNKT cell investigations in immune-mediated cholangiopathies, with a particular focus on primary biliary cholangitis and primary sclerosing cholangitis, across murine models and human subjects to unravel the intricate involvements of iNKT cells in liver autoimmunity. Additionally, we also highlight the prospectives of iNKT cells as therapeutic targets in cholangiopathies. Modulation of the equilibrium between regulatory and proinflammatory iNKT subsets can be defining determinant in the dynamics of hepatic autoimmunity. This discernment not only enriches our foundational comprehension but also lays the groundwork for pioneering strategies to navigate the multifaceted landscape of liver autoimmunity.
Collapse
Affiliation(s)
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| |
Collapse
|
11
|
Schramm CA, Moon D, Peyton L, Lima NS, Wake C, Boswell KL, Henry AR, Laboune F, Ambrozak D, Darko SW, Teng IT, Foulds KE, Carfi A, Edwards DK, Kwong PD, Koup RA, Seder RA, Douek DC. Interaction dynamics between innate and adaptive immune cells responding to SARS-CoV-2 vaccination in non-human primates. Nat Commun 2023; 14:7961. [PMID: 38042809 PMCID: PMC10693617 DOI: 10.1038/s41467-023-43420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/08/2023] [Indexed: 12/04/2023] Open
Abstract
As SARS-CoV-2 variants continue evolving, testing updated vaccines in non-human primates remains important for guiding human clinical practice. To date, such studies have focused on antibody titers and antigen-specific B and T cell frequencies. Here, we extend our understanding by integrating innate and adaptive immune responses to mRNA-1273 vaccination in rhesus macaques. We sorted innate immune cells from a pre-vaccine time point, as well as innate immune cells and antigen-specific peripheral B and T cells two weeks after each of two vaccine doses and used single-cell sequencing to assess the transcriptomes and adaptive immune receptors of each cell. We show that a subset of S-specific T cells expresses cytokines critical for activating innate responses, with a concomitant increase in CCR5-expressing intermediate monocytes and a shift of natural killer cells to a more cytotoxic phenotype. The second vaccine dose, administered 4 weeks after the first, elicits an increase in circulating germinal center-like B cells 2 weeks later, which are more clonally expanded and enriched for epitopes in the receptor binding domain. Both doses stimulate inflammatory response genes associated with elevated antibody production. Overall, we provide a comprehensive picture of bidirectional signaling between innate and adaptive components of the immune system and suggest potential mechanisms for the enhanced response to secondary exposure.
Collapse
Affiliation(s)
- Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Damee Moon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lowrey Peyton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Noemia S Lima
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christian Wake
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristin L Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel W Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Ngwaga T, Chauhan D, Salberg AG, Shames SR. Effector-mediated subversion of proteasome activator (PA)28αβ enhances host defense against Legionella pneumophila under inflammatory and oxidative stress conditions. PLoS Pathog 2023; 19:e1011473. [PMID: 37347796 PMCID: PMC10321654 DOI: 10.1371/journal.ppat.1011473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Legionella pneumophila is a natural pathogen of amoebae that causes Legionnaires' Disease in immunocompromised individuals via replication within macrophages. L. pneumophila virulence and intracellular replication hinges on hundreds of Dot/Icm-translocated effector proteins, which are essential for biogenesis of the replication-permissive Legionella-containing vacuole (LCV). However, effector activity can also enhance mammalian host defense via effector-triggered immunity. The L. pneumophila effector LegC4 is important for virulence in amoebae but enhances host defense against L. pneumophila in the mouse lung and, uniquely, within macrophages activated with either tumor necrosis factor (TNF) or interferon (IFN)-γ. The mechanism by which LegC4 potentiates cytokine-mediated host defense in macrophages is unknown. Here, we found that LegC4 enhances cytokine-mediated phagolysosomal fusion with Legionella-containing vacuole (LCV) and binds host proteasome activator (PA)28α, which forms a heterooligomer with PA28β to facilitate ubiquitin-independent proteasomal degradation of oxidant-damaged (carbonylated) proteins. We found that oxidative stress was sustained in the presence of LegC4 and that the LegC4 restriction phenotype was relieved in PA28αβ-deficient macrophages and in the lungs of mice in vivo. Our data also show that oxidative stress is sufficient for LegC4-mediated restriction in macrophages producing PA28αβ. PA28αβ has been traditionally associated with antigen presentation; however, our data support a novel mechanism whereby effector-mediated subversion of PA28αβ enhances cell-autonomous host defense against L. pneumophila under inflammatory and oxidative stress conditions. This work provides a solid foundation to evaluate induced proteasome regulators as mediators of innate immunity.
Collapse
Affiliation(s)
- Tshegofatso Ngwaga
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Abigail G. Salberg
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephanie R. Shames
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
13
|
Miyauchi S, Kim SS, Jones RN, Zhang L, Guram K, Sharma S, Schoenberger SP, Cohen EEW, Califano JA, Sharabi AB. Human papillomavirus E5 suppresses immunity via inhibition of the immunoproteasome and STING pathway. Cell Rep 2023; 42:112508. [PMID: 37171962 PMCID: PMC10789500 DOI: 10.1016/j.celrep.2023.112508] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/01/2023] [Accepted: 04/28/2023] [Indexed: 05/14/2023] Open
Abstract
The role that human papillomavirus (HPV) oncogenes play in suppressing responses to immunotherapy in cancer deserves further investigation. In particular, the effects of HPV E5 remain poorly understood relative to E6 and E7. Here, we demonstrate that HPV E5 is a negative regulator of anti-viral interferon (IFN) response pathways, antigen processing, and antigen presentation. Using head and neck cancer as a model, we identify that E5 decreases expression and function of the immunoproteasome and that the immunoproteasome, but not the constitutive proteasome, is associated with improved overall survival in patients. Moreover, immunopeptidome analysis reveals that HPV E5 restricts the repertoire of antigens presented on the cell surface, likely contributing to immune escape. Mechanistically, we discover a direct interaction between E5 and stimulator of interferon genes (STING), which suppresses downstream IFN signaling. Taken together, these findings identify a powerful molecular mechanism by which HPV E5 limits immune detection and mediates resistance to immunotherapy.
Collapse
Affiliation(s)
- Sayuri Miyauchi
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA 92037, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Sangwoo S Kim
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA 92037, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Riley N Jones
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA 92037, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Lin Zhang
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA 92037, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kripa Guram
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA 92037, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Sonia Sharma
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | - Ezra E W Cohen
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Joseph A Califano
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA 92037, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Teixeira VON, Bartikoski BJ, do Espirito Santo RC, Alabarse PVG, Ghannan K, Silva JMS, Filippin LI, Visioli F, Martinez-Gamboa L, Feist E, Xavier RM. The role of proteasome in muscle wasting of experimental arthritis. Adv Rheumatol 2023; 63:14. [PMID: 36949513 DOI: 10.1186/s42358-023-00292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/05/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis is an autoimmune inflammatory disease that often leads patients to muscle impairment and physical disability. This study aimed to evaluate changes in the activity of proteasome system in skeletal muscles of mice with collagen-induced arthritis (CIA) and treated with etanercept or methotrexate. METHODS Male DBA1/J mice were divided into four groups (n = 8 each): CIA-Vehicle (treated with saline), CIA-ETN (treated with etanercept, 5.5 mg/kg), CIA-MTX (treated with methotrexate, 35 mg/kg) and CO (healthy control group). Mice were treated two times a week for 6 weeks. Clinical score and hind paw edema were measured. Muscles were weighted after euthanasia and used to quantify proteasome activity, gene (MuRF-1, PMSα4, PSMβ5, PMSβ6, PSMβ7, PSMβ8, PSMβ9, and PSMβ10), and protein (PSMβ1, PSMβ5, PSMβ1i, PSMβ5i) expression of proteasome subunits. RESULTS Both treatments slowed disease development, but only CIA-ETN maintained muscle weight compared to CIA-MTX and CIA-Vehicle groups. Etanercept treatment showed caspase-like activity of 26S proteasome similar to CO group, while CIA-Vehicle and CIA-MTX had higher activity compared to CO group (p: 0.0057). MuRF-1 mRNA expression was decreased after etanercept administration compared to CIA-Vehicle and CO groups (p: 0.002, p: 0.007, respectively). PSMβ8 and PSMβ9 mRNA levels were increased in CIA-Vehicle and CIA-MTX compared to CO group, while CIA-ETN presented no difference from CO. PMSβ6 mRNA expression was higher in CIA-Vehicle and CIA-MTX groups than in CO group. Protein levels of the PSMβ5 subunit were increased in CO group compared to CIA-Vehicle; after both etanercept and methotrexate treatments, PSMβ5 expression was higher than in CIA-Vehicle group and did not differ from CO group expression (p: 0.0025, p: 0.001, respectively). The inflammation-induced subunit β1 (LMP2) was enhanced after methotrexate treatment compared to CO group (p: 0.043). CONCLUSIONS The results of CIA-Vehicle show that arthritis increases muscle proteasome activation by enhanced caspase-like activity of 26S proteasome and increased PSMβ8 and PSMβ9 mRNA levels. Etanercept treatment was able to maintain the muscle weight and to modulate proteasome so that its activity and gene expression were compared to CO after TNF inhibition. The protein expression of inflammation-induced proteasome subunit was increased in muscle of CIA-MTX group but not following etanercept treatment. Thus, anti-TNF treatment may be an interesting approach to attenuate the arthritis-related muscle wasting.
Collapse
Affiliation(s)
- Vivian Oliveira Nunes Teixeira
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
| | - Bárbara Jonson Bartikoski
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
| | - Rafaela Cavalheiro do Espirito Santo
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil.
| | - Paulo Vinícius Gil Alabarse
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
- University of California San Diego Medical Center Library, University of California San Diego School of Medicine, San Diego, USA
| | - Khetam Ghannan
- Schwerpunkt Rheumatologie und Klinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jordana Miranda Souza Silva
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
| | - Lidiane Isabel Filippin
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
- Health and Human Development Department, Universidade La Salle, Canoas, Brazil
| | - Fernanda Visioli
- Patology Department, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lorena Martinez-Gamboa
- Schwerpunkt Rheumatologie und Klinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eugen Feist
- Schwerpunkt Rheumatologie und Klinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ricardo Machado Xavier
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
| |
Collapse
|
15
|
Scalavino V, Piccinno E, Valentini AM, Mastronardi M, Armentano R, Giannelli G, Serino G. A Novel Mechanism of Immunoproteasome Regulation via miR-369-3p in Intestinal Inflammatory Response. Int J Mol Sci 2022; 23:ijms232213771. [PMID: 36430249 PMCID: PMC9691197 DOI: 10.3390/ijms232213771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The immunoproteasome is a multi-catalytic protein complex expressed in hematopoietic cells. Increased expression of immuno-subunits followed by increased proteasome activities is associated with the pathogenesis of IBD. Therefore, the identification of molecules that could inhibit the activities of this complex has been widely studied. microRNAs are small molecules of non-coding RNA that regulate the expression of target genes. Our purpose was to demonstrate that miR-369-3p is able to reduce the expression of the PSMB9 subunit and consequently modulate the catalytic activities of immunoproteasome. After bioinformatics prediction of the gene target of miR-369-3p, we validated its modulation on PSMB9 expression in the RAW264.7 cell line in vitro. We also found that miR-369-3p indirectly reduced the expression of other immunoproteasome subunits and that this regulation reduced the catalytic functions of the immunoproteasome. Increased levels of PSMB9 were observed in colon samples of acute IBD patients compared to the remission IBD group and control group. Our data suggest that miR-369-3p may be a future alternative therapeutic approach to several compounds currently used for the treatment of inflammatory disorders including IBD.
Collapse
|
16
|
Avsec D, Škrlj Miklavčič M, Burnik T, Kandušer M, Bizjak M, Podgornik H, Mlinarič-Raščan I. Inhibition of p38 MAPK or immunoproteasome overcomes resistance of chronic lymphocytic leukemia cells to Bcl-2 antagonist venetoclax. Cell Death Dis 2022; 13:860. [PMID: 36209148 PMCID: PMC9547871 DOI: 10.1038/s41419-022-05287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 01/23/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a hematological neoplasm of CD19-positive mature-appearing B lymphocytes. Despite the clinical success of targeted therapies in CLL, the development of resistance diminishes their therapeutic activity. This is also true for the Bcl-2 antagonist venetoclax. We investigated the molecular mechanisms that drive venetoclax resistance in CLL, with a clear focus to provide new strategies to successfully combat it. Activation of CLL cells with IFNγ, PMA/ionomycin, and sCD40L diminished the cytotoxicity of venetoclax. We demonstrated that the metabolic activity of cells treated with 1 nM venetoclax alone was 48% of untreated cells, and was higher for cells co-treated with IFNγ (110%), PMA/ionomycin (78%), and sCD40L (62%). As of molecular mechanism, we showed that PMA/ionomycin and sCD40L triggered translocation of NFκB in primary CLL cells, while IFNγ activated p38 MAPK, suppressed spontaneous and venetoclax-induced apoptosis and induced formation of the immunoproteasome. Inhibition of immunoproteasome with ONX-0914 suppressed activity of immunoproteasome and synergized with venetoclax against primary CLL cells. On the other hand, inhibition of p38 MAPK abolished cytoprotective effects of IFNγ. We demonstrated that venetoclax-resistant (MEC-1 VER) cells overexpressed p38 MAPK and p-Bcl-2 (Ser70), and underexpressed Mcl-1, Bax, and Bak. Inhibition of p38 MAPK or immunoproteasome triggered apoptosis in CLL cells and overcame the resistance to venetoclax of MEC-1 VER cells and venetoclax-insensitive primary CLL cells. In conclusion, the p38 MAPK pathway and immunoproteasome represent novel targets to combat venetoclax resistance in CLL.
Collapse
Affiliation(s)
- Damjan Avsec
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Marja Škrlj Miklavčič
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Tilen Burnik
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Maša Kandušer
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Maruša Bizjak
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Helena Podgornik
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia ,grid.29524.380000 0004 0571 7705University Medical Centre Ljubljana, Department of Haematology, SI-1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Kuipery A, Sanchez Vasquez JD, Mehrotra A, Feld JJ, Janssen HLA, Gehring AJ. Immunomodulation and RNA interference alter hepatitis B virus-specific CD8 T-cell recognition of infected HepG2-NTCP. Hepatology 2022; 75:1539-1550. [PMID: 34743340 DOI: 10.1002/hep.32230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS CD8 T cells are essential in controlling HBV infection. Viral control is dependent on efficient recognition of HBV-infected hepatocytes by CD8 T cells, which can induce direct lysis of infected hepatocytes. In addition, CD8 T cells produce interferon (IFN)-γ, which mediates noncytopathic viral clearance. Innate immunomodulators and HBV-targeted RNA interference (RNAi) are being developed to treat chronic hepatitis B (CHB), but may modify HBV antigen presentation and impact CD8 T-cell recognition, in addition to their primary mechanisms of action. APPROACH AND RESULTS HBV-infected HepG2-NTCP cells were treated with tenofovir disoproxil fumarate (TDF), Toll-like receptor (TLR) 7/8 agonists, TLR7/8 conditioned media (CM) collected from immune cells, or RNAi using short interfering RNAs. The effect of these treatments on antigen presentation was measured through coculture with CD8 T cells recognizing human leukocyte antigen-A0201 restricted epitopes, HBc18-27 or HBs183-191. Cytokine profiles of TLR7/8 CM were measured using a cytometric bead array. TDF reduced viral replication, but not CD8 T-cell recognition, of infected cells. Direct exposure of infected HepG2-NTCP to TLR7/8 agonists had no impact on T-cell recognition. Exposure of infected HepG2-NTCP to TLR7/8 CM enhanced HBV-specific CD8 T-cell recognition through type 1 interferon (IFN) and IFN-γ-dependent mechanisms. RNAi rapidly suppressed HBV-DNA, HBcAg, and HBsAg expression, impairing recognition by HBV-specific CD8 T cells. CONCLUSIONS Immunomodulation and RNAi, but not nucleos(t)ide analogues, alter the recognition of infected HepG2-NTCP by HBV-specific CD8 T cells. Understanding these changes will inform combination treatments for CHB.
Collapse
Affiliation(s)
- Adrian Kuipery
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Juan Diego Sanchez Vasquez
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Aman Mehrotra
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Jordan J Feld
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Harry L A Janssen
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Adam J Gehring
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Toronto Center for Liver DiseaseToronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
18
|
Kapetanou M, Athanasopoulou S, Gonos ES. Transcriptional regulatory networks of the proteasome in mammalian systems. IUBMB Life 2021; 74:41-52. [PMID: 34958522 DOI: 10.1002/iub.2586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022]
Abstract
The tight regulation of proteostasis is essential for physiological cellular function. Mammalian cells possess a network of mechanisms that ensure proteome integrity under normal or stress conditions. The proteasome, being the major cellular proteolytic machinery, is central to proteostasis maintenance in response to distinct intracellular and extracellular conditions. The proteasomes are multisubunit protease complexes that selectively catalyze the degradation of short-lived regulatory proteins and damaged peptides. Different forms of the proteasome complexes comprising of different subunits and attached regulators directly affect the substrate selectivity and degradation. Thus, the proteasome participates in the turnover of a multitude of factors that control key processes that affect the cellular state, such as adaptation to environmental cues, growth, development, metabolism, signaling, senescence, pluripotency, differentiation, and immunity. Aberrations on its function are related to normal processes like aging and pathological conditions such as neurodegeneration and cancer. The past few years of research have highlighted that proteasome abundance, activity, assembly, and localization are subject to a dynamic transcriptional control that secures the continuous adaptation of the proteasome to internal or external stimuli. This review focuses on the factors and signaling pathways that are involved in the regulation of the mammalian proteasome at the transcriptional level. A comprehensive understanding of proteasome regulation has critical implications on disease prevention and treatment.
Collapse
Affiliation(s)
- Marianna Kapetanou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Sophia Athanasopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Efstathios S Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.,Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
19
|
Kollár L, Gobec M, Proj M, Smrdel L, Knez D, Imre T, Gömöry Á, Petri L, Ábrányi-Balogh P, Csányi D, Ferenczy GG, Gobec S, Sosič I, Keserű GM. Fragment-Sized and Bidentate (Immuno)Proteasome Inhibitors Derived from Cysteine and Threonine Targeting Warheads. Cells 2021; 10:3431. [PMID: 34943940 PMCID: PMC8700061 DOI: 10.3390/cells10123431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the β5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and β5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the β5, β5i, β1, and β1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either β5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.
Collapse
Affiliation(s)
- Levente Kollár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Lara Smrdel
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary;
| | - Ágnes Gömöry
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary;
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Dorottya Csányi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| |
Collapse
|
20
|
The Function of Immunoproteasomes-An Immunologists' Perspective. Cells 2021; 10:cells10123360. [PMID: 34943869 PMCID: PMC8699091 DOI: 10.3390/cells10123360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
Proteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome’ functions, they seem specially adapted for a role in MHC class I antigen processing and CD8+ T-cell activation. In this way, they may contribute to CD8+ T-cell-mediated control of intracellular infections, but also to the immunopathogenesis of autoimmune diseases. Starting at the discovery of its catalytic subunits in the genome, here, we review the observations shaping our current understanding of immunoproteasome function, and the consequential novel opportunities for immune intervention.
Collapse
|
21
|
Amoroso M, Langgartner D, Lowry CA, Reber SO. Rapidly Growing Mycobacterium Species: The Long and Winding Road from Tuberculosis Vaccines to Potent Stress-Resilience Agents. Int J Mol Sci 2021; 22:ijms222312938. [PMID: 34884743 PMCID: PMC8657684 DOI: 10.3390/ijms222312938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases and stressor-related psychiatric disorders, for which inflammation is a risk factor, are increasing in modern Western societies. Recent studies suggest that immunoregulatory approaches are a promising tool in reducing the risk of suffering from such disorders. Specifically, the environmental saprophyte Mycobacterium vaccae National Collection of Type Cultures (NCTC) 11659 has recently gained attention for the prevention and treatment of stress-related psychiatric disorders. However, effective use requires a sophisticated understanding of the effects of M. vaccae NCTC 11659 and related rapidly growing mycobacteria (RGMs) on microbiome–gut–immune–brain interactions. This historical narrative review is intended as a first step in exploring these mechanisms and provides an overview of preclinical and clinical studies on M. vaccae NCTC 11659 and related RGMs. The overall objective of this review article is to increase the comprehension of, and interest in, the mechanisms through which M. vaccae NCTC 11659 and related RGMs promote stress resilience, with the intention of fostering novel clinical strategies for the prevention and treatment of stressor-related disorders.
Collapse
Affiliation(s)
- Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Christopher A. Lowry
- Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA
- Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
- Correspondence:
| |
Collapse
|
22
|
Overexpression of immunoproteasome low-molecular-mass polypeptide 7 and inhibiting role of next-generation proteasome inhibitor ONX 0912 on cell growth in glioma. Neuroreport 2021; 30:1031-1038. [PMID: 31503210 DOI: 10.1097/wnr.0000000000001320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The aim of this study was to determine the expression level of immunoproteasome and its clinical significance in glioma preliminarily. Furthermore, we studied the function and molecular mechanism of proteasome inhibitor ONX 0912 on glioma cell. MATERIALS AND METHODS The expression of immunoproteasome in glioma and tumor-adjacent brain tissues was detected by western blot. Immunohistochemical technique was used to detect the expression of low-molecular-mass polypeptide 7 in 55 cases of glioma tissues and 6 cases of tumor-adjacent brain tissues. Chi-square test was used to analyze the relationship between the expression level of low-molecular-mass polypeptide 7 and clinical characteristics. Kaplan-Meier method and Cox regression analysis were applied to analyze the correlation between low-molecular-mass polypeptide 7 expression and prognosis of patients. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium) (MTS) proliferation assay was introduced to detect the impact of ONX 0912 on proliferation of glioma cells. Western blot was used to detect the apoptosis- and autophagy-related protein in glioma cell treated with ONX 0912. RESULTS Our results showed that only low-molecular-mass polypeptide 7 expression was notably upregulated in gliomas in comparison with tumor-adjacent brain tissues and further increased in malignant gliomas compared with benign gliomas (P < 0.01). In the multivariate Cox proportional regression analyses, it was evident that low-molecular-mass polypeptide 7 was an independent unfavorable prognostic factor (P < 0.05). The results of MTS assay showed that ONX 0912 could inhibit the proliferation of glioma cell. Besides, we found that ONX 0912 could prompt apoptosis and autophagosome accumulation, which may be responsible for inhibiting glioma cell proliferation. CONCLUSION In conclusion, our results indicated that low-molecular-mass polypeptide 7 might be a candidate prognostic biomarker, and proteasome inhibitor ONX 0912 might act as a potential treatment agent for glioma.
Collapse
|
23
|
Haberecht-Müller S, Krüger E, Fielitz J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021; 11:biom11091327. [PMID: 34572540 PMCID: PMC8468834 DOI: 10.3390/biom11091327] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Collapse
Affiliation(s)
- Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (E.K.); (J.F.)
| | - Jens Fielitz
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (E.K.); (J.F.)
| |
Collapse
|
24
|
Sanderson MP, Friese-Hamim M, Walter-Bausch G, Busch M, Gaus S, Musil D, Rohdich F, Zanelli U, Downey-Kopyscinski SL, Mitsiades CS, Schadt O, Klein M, Esdar C. M3258 Is a Selective Inhibitor of the Immunoproteasome Subunit LMP7 (β5i) Delivering Efficacy in Multiple Myeloma Models. Mol Cancer Ther 2021; 20:1378-1387. [PMID: 34045234 PMCID: PMC9398180 DOI: 10.1158/1535-7163.mct-21-0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 01/07/2023]
Abstract
Large multifunctional peptidase 7 (LMP7/β5i/PSMB8) is a proteolytic subunit of the immunoproteasome, which is predominantly expressed in normal and malignant hematolymphoid cells, including multiple myeloma, and contributes to the degradation of ubiquitinated proteins. Described herein for the first time is the preclinical profile of M3258; an orally bioavailable, potent, reversible and highly selective LMP7 inhibitor. M3258 demonstrated strong antitumor efficacy in multiple myeloma xenograft models, including a novel model of the human bone niche of multiple myeloma. M3258 treatment led to a significant and prolonged suppression of tumor LMP7 activity and ubiquitinated protein turnover and the induction of apoptosis in multiple myeloma cells both in vitro and in vivo Furthermore, M3258 showed superior antitumor efficacy in selected multiple myeloma and mantle cell lymphoma xenograft models compared with the approved nonselective proteasome inhibitors bortezomib and ixazomib. The differentiated preclinical profile of M3258 supported the initiation of a phase I study in patients with multiple myeloma (NCT04075721).
Collapse
Affiliation(s)
- Michael P. Sanderson
- Merck KGaA, Darmstadt, Germany.,Corresponding Author: Michael P. Sanderson, Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany. Phone: 49-615-1725-6970; Fax: 49-61-517-2914-9106; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Klein M, Busch M, Friese-Hamim M, Crosignani S, Fuchss T, Musil D, Rohdich F, Sanderson MP, Seenisamy J, Walter-Bausch G, Zanelli U, Hewitt P, Esdar C, Schadt O. Structure-Based Optimization and Discovery of M3258, a Specific Inhibitor of the Immunoproteasome Subunit LMP7 (β5i). J Med Chem 2021; 64:10230-10245. [PMID: 34228444 DOI: 10.1021/acs.jmedchem.1c00604] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteasomes are broadly expressed key components of the ubiquitin-dependent protein degradation pathway containing catalytically active subunits (β1, β2, and β5). LMP7 (β5i) is a subunit of the immunoproteasome, an inducible isoform that is predominantly expressed in hematopoietic cells. Clinically effective pan-proteasome inhibitors for the treatment of multiple myeloma (MM) nonselectively target LMP7 and other subunits of the constitutive proteasome and immunoproteasome with comparable potency, which can limit the therapeutic applicability of these drugs. Here, we describe the discovery and structure-based hit optimization of novel amido boronic acids, which selectively inhibit LMP7 while sparing all other subunits. The exploitation of structural differences between the proteasome subunits culminated in the identification of the highly potent, exquisitely selective, and orally available LMP7 inhibitor 50 (M3258). Based on the strong antitumor activity observed with M3258 in MM models and a favorable preclinical data package, a phase I clinical trial was initiated in relapsed/refractory MM patients.
Collapse
Affiliation(s)
- Markus Klein
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Michael Busch
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | | | - Thomas Fuchss
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Djordje Musil
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Felix Rohdich
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | | | | | - Ugo Zanelli
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Philip Hewitt
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | - Oliver Schadt
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| |
Collapse
|
26
|
Dass SA, Selva Rajan R, Tye GJ, Balakrishnan V. The potential applications of T cell receptor (TCR)-like antibody in cervical cancer immunotherapy. Hum Vaccin Immunother 2021; 17:2981-2994. [PMID: 33989511 DOI: 10.1080/21645515.2021.1913960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer is ranked as the fourth most common cancer in women worldwide. Monoclonal antibody has created a new dimension in the immunotherapy of many diseases, including cervical cancer. The antibody's ability to target various aspects of cervical cancer (oncoviruses, oncoproteins, and signaling pathways) delivers a promising future for efficient immunotherapy. Besides, technologies such as hybridoma and phage display provide a fundamental platform for monoclonal antibody generation and create the opportunity to generate novel antibody classes including, T cell receptor (TCR)-like antibody. In this review, the current immunotherapy strategies for cervical cancer are presented. We have also proposed a novel concept of T cell receptor (TCR)-like antibody and its potential applications for enhancing cervical cancer therapeutics. Finally, the possible challenges in TCR-like antibody application for cervical cancer therapeutics have been addressed, and strategies to overcome the challenges have been highlighted to maximize the therapeutic benefits.
Collapse
Affiliation(s)
- Sylvia Annabel Dass
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, George Town, Malaysia
| | - Rehasri Selva Rajan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, George Town, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, George Town, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, George Town, Malaysia
| |
Collapse
|
27
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
28
|
Proteostasis Disturbances and Inflammation in Neurodegenerative Diseases. Cells 2020; 9:cells9102183. [PMID: 32998318 PMCID: PMC7601929 DOI: 10.3390/cells9102183] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) disturbances and inflammation are evident in normal aging and some age-related neurodegenerative diseases. While the proteostasis network maintains the integrity of intracellular and extracellular functional proteins, inflammation is a biological response to harmful stimuli. Cellular stress conditions can cause protein damage, thus exacerbating protein misfolding and leading to an eventual overload of the degradation system. The regulation of proteostasis network is particularly important in postmitotic neurons due to their limited regenerative capacity. Therefore, maintaining balanced protein synthesis, handling unfolding, refolding, and degrading misfolded proteins are essential to preserve all cellular functions in the central nervous sysytem. Failing proteostasis may trigger inflammatory responses in glial cells, and the consequent release of inflammatory mediators may lead to disturbances in proteostasis. Here, we review the mechanisms of proteostasis and inflammatory response, emphasizing their role in the pathological hallmarks of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Furthermore, we discuss the interplay between proteostatic stress and excessive immune response that activates inflammation and leads to dysfunctional proteostasis.
Collapse
|
29
|
Trash Talk: Mammalian Proteasome Regulation at the Transcriptional Level. Trends Genet 2020; 37:160-173. [PMID: 32988635 DOI: 10.1016/j.tig.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022]
Abstract
The key to a healthy mammalian cell lies in properly functioning proteolytic machineries called proteasomes. The proteasomes are multisubunit complexes that catalyze the degradation of unwanted proteins and also control half-lives of key cellular regulatory factors. Aberrant proteasome activity is often associated with human diseases such as cancer and neurodegeneration, and so an in-depth understanding of how it is regulated has implications for potential disease interventions. Transcriptional regulation of the proteasome can dictate its abundance and also influence its function, assembly, and location. This ensures proper proteasomal activity in response to developmental cues and to physiological conditions such as starvation and oxidative stress. In this review, we highlight and discuss the roles of the transcription factors that are involved in the regulation of the mammalian proteasome.
Collapse
|
30
|
Immunoproteasome Genes Are Modulated in CD34 + JAK2 V617F Mutated Cells from Primary Myelofibrosis Patients. Int J Mol Sci 2020; 21:ijms21082926. [PMID: 32331228 PMCID: PMC7216198 DOI: 10.3390/ijms21082926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by stem-cell-derived clonal over-proliferation of mature myeloid lineages, bone marrow fibrosis, osteosclerosis, defective erythropoiesis, and pro-inflammatory cytokine over-expression. The aim of the present study was to highlight possible differences in the transcriptome among CD34+ cells from peripheral blood (PB) of PMF patients. Therefore, we merged two microarray datasets of healthy control subjects and PMF (34 JAK2V617F MUTATED and 28 JAK2 wild-type). The GO analysis of upregulated genes revealed enrichment for JAK2/STAT1 pathway gene set in PB CD34+ cells of PMF patients with and without the JAK2V617F mutation comparing to the healthy control subjects, and in particular a significant upregulation of immunoproteasome (IP)-belonging genes as PSMB8, PSMB9, and PSMB10. A more detailed investigation of the IFN-gamma (IFNG) pathway also revealed that IFNG, IRF1, and IFNGR2 were significantly upregulated in PB CD34+ cells of PMF patients carrying the mutation for JAK2V617F compared to JAK2 wild-type PMF patients. Finally, we showed an upregulation of HLA-class I genes in PB CD34+ cells from PMF JAK2V617F mutated patients compared to JAK2 wild-type and healthy controls. In conclusion, our results demonstrate that IPs and IFNG pathways could be involved in PMF disease and in particular in patients carrying the JAK2V617F mutation.
Collapse
|
31
|
Evaluating the immunoproteasome as a potential therapeutic target in cisplatin-resistant small cell and non-small cell lung cancer. Cancer Chemother Pharmacol 2020; 85:843-853. [PMID: 32232513 DOI: 10.1007/s00280-020-04061-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE We evaluated the expression of proteasome subunits to assess whether the proteasome could be a therapeutic target in cisplatin-resistant lung cancer cells. METHODS Cisplatin-resistant (CR) variants were established from three non-small cell lung cancer (NSCLC) cell lines (A549, H1299, and H1975) and two small cell lung cancer (SCLC) cell lines (SBC3 and SBC5). The expression of proteasome subunits, the sensitivity to immunoproteasome inhibitors, and 20S proteasomal proteolytic activity were examined in the CR variants of the lung cancer cell lines. RESULTS All five CR cell lines highly expressed one or both of the immunoproteasome subunit genes, PSMB8 and PSMB9, while no clear trend was observed in the expression of constitutive proteasome subunits. The CR cells expressed significantly higher levels of PSMB8 and PSMB9 proteins, as well. The CR variants of the H1299 and SBC3 cell lines were more sensitive to immunoproteasome inhibitors, and had significantly more proteasomal proteolytic activity than their parental counterparts. CONCLUSIONS The immunoproteasome may be an effective therapeutic target in a subset of CR lung cancers. Proteasomal proteolytic activity may be a predictive marker for the efficacy of immunoproteasome inhibitors in cisplatin-resistant SCLC and NSCLC.
Collapse
|
32
|
Stubba D, Bensinger D, Steinbacher J, Proskurjakov L, Salcedo Gómez Á, Schmidt U, Roth S, Schmitz K, Schmidt B. Cell-Based Optimization of Covalent Reversible Ketoamide Inhibitors Bridging the Unprimed to the Primed Site of the Proteasome β5 Subunit. ChemMedChem 2019; 14:2005-2022. [PMID: 31675179 PMCID: PMC6916368 DOI: 10.1002/cmdc.201900472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/01/2019] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) is an established therapeutic target for approved drugs to treat selected hematologic malignancies. While drug discovery targeting the UPS focuses on irreversibly binding epoxyketones and slowly-reversibly binding boronates, optimization of novel covalent-reversibly binding warheads remains largely unattended. We previously reported α-ketoamides to be a promising reversible lead motif, yet the cytotoxic activity required further optimization. This work focuses on the lead optimization of phenoxy-substituted α-ketoamides combining the structure-activity relationships from the primed and the non-primed site of the proteasome β5 subunit. Our optimization strategy is accompanied by molecular modeling, suggesting occupation of P1' by a 3-phenoxy group to increase β5 inhibition and cytotoxic activity in leukemia cell lines. Key compounds were further profiled for time-dependent inhibition of cellular substrate conversion. Furthermore, the α-ketoamide lead structure 27 does not affect escape response behavior in Danio rerio embryos, in contrast to bortezomib, which suggests increased target specificity.
Collapse
Affiliation(s)
- Daniel Stubba
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Dennis Bensinger
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Janika Steinbacher
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Lilia Proskurjakov
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Álvaro Salcedo Gómez
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Uwe Schmidt
- Visual Inference Lab, Department of Computer ScienceTechnische Universität DarmstadtHuchschulstr. 1064289DarmstadtGermany
| | - Stefan Roth
- Visual Inference Lab, Department of Computer ScienceTechnische Universität DarmstadtHuchschulstr. 1064289DarmstadtGermany
| | - Katja Schmitz
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Boris Schmidt
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| |
Collapse
|
33
|
Zerfas BL, Maresh ME, Trader DJ. The Immunoproteasome: An Emerging Target in Cancer and Autoimmune and Neurological Disorders. J Med Chem 2019; 63:1841-1858. [PMID: 31670954 DOI: 10.1021/acs.jmedchem.9b01226] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunoproteasome (iCP) is an isoform of the 20S proteasome that is expressed when cells are stressed or receive an inflammatory signal. The primary role of the iCP is to hydrolyze proteins into peptides that are compatible with being loaded into a MHC-I complex. When the activity of the iCP is dysregulated or highly expressed, it can lead to unwanted cell death. Some cancer types express the iCP rather than the standard proteasome, and selective inhibitors have been developed to exploit this difference. Here, we describe diseases known to be influenced by iCP activity and the current status for targeting the iCP to elicit a therapeutic response. We also describe a variety of chemical tools that have been developed to monitor the activity of the iCP in cells. Finally, we present the future outlook for targeting the iCP in a variety of disease types and with mechanisms besides inhibition.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Marianne E Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
Liu Q, Wang HY, He XJ. Induction of immunoproteasomes in porcine kidney (PK)-15 cells by interferon-γ and tumor necrosis factor-α. J Vet Med Sci 2019; 81:1776-1782. [PMID: 31548474 PMCID: PMC6943335 DOI: 10.1292/jvms.19-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Immunoproteasome (i-proteasome) has both immune and non-immune functions and plays
important roles in controlling infections and combating illnesses. Our previous studies
suggest that interferon (IFN)-γ induces the expression of three immune-specific catalytic
subunits of the 20S proteasome that can replace their constitutive homologues to form the
i-proteasome in immune cells, such as porcine alveolar macrophages (AMs) in
vitro. However, i-proteasome levels and their modulation in non-immune cells
such as the epithelial cells in pigs remain unknown. Here, we investigated the expression
of i-proteasomes in non-immune cells (porcine kidney (PK)-15 cells) to determine
i-proteasome modulation upon stimulation of PK-15 cells with IFN-γ and tumor necrosis
factor (TNF)-α in vitro. The expression of i-proteasome subunits in PK-15
cells were regulated by IFN-γ and TNF-α. Remarkably, we found that the combination
treatment of IFN-γ and TNF-α increased the expression of i-proteasome subunits LMP2, LMP7,
and MECL-1 in PK-15 cells at transcriptional levels, but may decrease their expression at
translational level, compared to their expression levels induced by individual cytokine
treatments. These results provide critical insight into i-proteasome modulation in porcine
non-immune cells, contribute further to our understanding of i-proteasome function in
tissue pathogenesis and the development of antiviral adaptive immune responses against
intracellular infections.
Collapse
Affiliation(s)
- Qiang Liu
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong 637131, China
| | - Huai Yu Wang
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong 637131, China
| | - Xi-Jun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
35
|
Motosugi R, Murata S. Dynamic Regulation of Proteasome Expression. Front Mol Biosci 2019; 6:30. [PMID: 31119134 PMCID: PMC6504791 DOI: 10.3389/fmolb.2019.00030] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
The 26S proteasome is a multisubunit complex that catalyzes the degradation of ubiquitinated proteins. The proteasome comprises 33 distinct subunits, all of which are essential for its function and structure. Proteasomes are necessary for various biological processes in cells; therefore, precise regulation of proteasome expression and activity is essential for maintaining cellular health and function. Two decades of research revealed that transcription factors such as Rpn4 and Nrf1 control expression of proteasomes. In this review, we focus on the current understanding and recent findings on the mechanisms underlying the regulation of proteasome expression, as well as the translational regulation of proteasomes.
Collapse
Affiliation(s)
- Ryo Motosugi
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Limanaqi F, Biagioni F, Gaglione A, Busceti CL, Fornai F. A Sentinel in the Crosstalk Between the Nervous and Immune System: The (Immuno)-Proteasome. Front Immunol 2019; 10:628. [PMID: 30984192 PMCID: PMC6450179 DOI: 10.3389/fimmu.2019.00628] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
The wealth of recent evidence about a bi-directional communication between nerve- and immune- cells revolutionized the traditional concept about the brain as an “immune-privileged” organ while opening novel avenues in the pathophysiology of CNS disorders. In fact, altered communication between the immune and nervous system is emerging as a common hallmark in neuro-developmental, neurodegenerative, and neuro-immunological diseases. At molecular level, the ubiquitin proteasome machinery operates as a sentinel at the crossroad between the immune system and brain. In fact, the standard proteasome and its alternative/inducible counterpart, the immunoproteasome, operate dynamically and coordinately in both nerve- and immune- cells to modulate neurotransmission, oxidative/inflammatory stress response, and immunity. When dysregulations of the proteasome system occur, altered amounts of standard- vs. immune-proteasome subtypes translate into altered communication between neurons, glia, and immune cells. This contributes to neuro-inflammatory pathology in a variety of neurological disorders encompassing Parkinson's, Alzheimer's, and Huntingtin's diseases, brain trauma, epilepsy, and Multiple Sclerosis. In the present review, we analyze those proteasome-dependent molecular interactions which sustain communication between neurons, glia, and brain circulating T-lymphocytes both in baseline and pathological conditions. The evidence here discussed converges in that upregulation of immunoproteasome to the detriment of the standard proteasome, is commonly implicated in the inflammatory- and immune- biology of neurodegeneration. These concepts may foster additional studies investigating the role of immunoproteasome as a potential target in neurodegenerative and neuro-immunological disorders.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,I.R.C.C.S Neuromed, Pozzilli, Italy
| |
Collapse
|
37
|
Beling A, Kespohl M. Proteasomal Protein Degradation: Adaptation of Cellular Proteolysis With Impact on Virus-and Cytokine-Mediated Damage of Heart Tissue During Myocarditis. Front Immunol 2018; 9:2620. [PMID: 30546359 PMCID: PMC6279938 DOI: 10.3389/fimmu.2018.02620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022] Open
Abstract
Viral myocarditis is an inflammation of the heart muscle triggered by direct virus-induced cytolysis and immune response mechanisms with most severe consequences during early childhood. Acute and long-term manifestation of damaged heart tissue and disturbances of cardiac performance involve virus-triggered adverse activation of the immune response and both immunopathology, as well as, autoimmunity account for such immune-destructive processes. It is a matter of ongoing debate to what extent subclinical virus infection contributes to the debilitating sequela of the acute disease. In this review, we conceptualize the many functions of the proteasome in viral myocarditis and discuss the adaptation of this multi-catalytic protease complex together with its implications on the course of disease. Inhibition of proteasome function is already highly relevant as a strategy in treating various malignancies. However, cardiotoxicity and immune-related adverse effects have proven significant hurdles, representative of the target's wide-ranging functions. Thus, we further discuss the molecular details of proteasome-mediated activity of the immune response for virus-mediated inflammatory heart disease. We summarize how the spatiotemporal flexibility of the proteasome might be tackled for therapeutic purposes aiming to mitigate virus-mediated adverse activation of the immune response in the heart.
Collapse
Affiliation(s)
- Antje Beling
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Berlin, Berlin, Germany
| | - Meike Kespohl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
38
|
Ellwardt E, Pramanik G, Luchtman D, Novkovic T, Jubal ER, Vogt J, Arnoux I, Vogelaar CF, Mandal S, Schmalz M, Barger Z, Ruiz de Azua I, Kuhlmann T, Lutz B, Mittmann T, Bittner S, Zipp F, Stroh A. Maladaptive cortical hyperactivity upon recovery from experimental autoimmune encephalomyelitis. Nat Neurosci 2018; 21:1392-1403. [DOI: 10.1038/s41593-018-0193-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/17/2018] [Indexed: 12/14/2022]
|
39
|
Rashidi A, Weisdorf D. Association between single nucleotide polymorphisms of tumor necrosis factor gene and grade II-IV acute GvHD: a systematic review and meta-analysis. Bone Marrow Transplant 2017; 52:1423-1427. [PMID: 28692026 DOI: 10.1038/bmt.2017.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 11/09/2022]
Abstract
Acute GvHD (aGvHD) complicates up to 50% of allogeneic hematopoietic cell transplants and pre-transplant estimation of its risk can guide prophylaxis, monitoring and early intervention strategies. Inspired by the role of tumor necrosis factor alpha (TNFα) in the pathogenesis of aGvHD and the inconsistency of the association studies exploring single nucleotide polymorphisms (SNPs) of the TNF gene, we conducted a systematic review and meta-analysis of the available reports using PubMed and EMBASE. Original human studies reporting on the association between recipient TNF SNPs and grade II-IV aGvHD in a format convertible to effect size and confidence interval were included. One of the two most widely investigated SNPs (rs361525G>A) was marginally associated with increased risk of grade II-IV aGvHD in random-effects meta-analysis of six studies (627 patients in total, risk ratio=1.29, 95% confidence interval=0.99-1.69, P=0.06). If this result is validated in a large cohort with uniform conditioning and GvHD prophylaxis, TNF rs361525G>A may become a useful tool for aGvHD risk estimation before the transplant.
Collapse
Affiliation(s)
- A Rashidi
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - D Weisdorf
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
40
|
Chang AY, Dao T, Gejman RS, Jarvis CA, Scott A, Dubrovsky L, Mathias MD, Korontsvit T, Zakhaleva V, Curcio M, Hendrickson RC, Liu C, Scheinberg DA. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest 2017; 127:2705-2718. [PMID: 28628042 PMCID: PMC5490756 DOI: 10.1172/jci92335] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/27/2017] [Indexed: 12/18/2022] Open
Abstract
Preferentially expressed antigen in melanoma (PRAME) is a cancer-testis antigen that is expressed in many cancers and leukemias. In healthy tissue, PRAME expression is limited to the testes and ovaries, making it a highly attractive cancer target. PRAME is an intracellular protein that cannot currently be drugged. After proteasomal processing, the PRAME300-309 peptide ALYVDSLFFL (ALY) is presented in the context of human leukocyte antigen HLA-A*02:01 molecules for recognition by the T cell receptor (TCR) of cytotoxic T cells. Here, we have described Pr20, a TCR mimic (TCRm) human IgG1 antibody that recognizes the cell-surface ALY peptide/HLA-A2 complex. Pr20 is an immunological tool and potential therapeutic agent. Pr20 bound to PRAME+HLA-A2+ cancers. An afucosylated Fc form (Pr20M) directed antibody-dependent cellular cytotoxicity against PRAME+HLA-A2+ leukemia cells and was therapeutically effective against mouse xenograft models of human leukemia. In some tumors, Pr20 binding markedly increased upon IFN-γ treatment, mediated by induction of the immunoproteasome catalytic subunit β5i. The immunoproteasome reduced internal destructive cleavages within the ALY epitope compared with the constitutive proteasome. The data provide rationale for developing TCRm antibodies as therapeutic agents for cancer, offer mechanistic insight on proteasomal regulation of tumor-associated peptide/HLA antigen complexes, and yield possible therapeutic solutions to target antigens with ultra-low surface presentation.
Collapse
Affiliation(s)
- Aaron Y. Chang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Biochemistry Cell and Molecular Biology Program
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Ron S. Gejman
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Pharmacology Program, and
| | - Casey A. Jarvis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Andrew Scott
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Leonid Dubrovsky
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Melissa D. Mathias
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Victoriya Zakhaleva
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Michael Curcio
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Ronald C. Hendrickson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Cheng Liu
- Eureka Therapeutics, Emeryville, California, USA
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Pharmacology Program, and
| |
Collapse
|
41
|
Serena M, Parolini F, Biswas P, Sironi F, Blanco Miranda A, Zoratti E, Scupoli MT, Ziglio S, Valenzuela-Fernandez A, Gibellini D, Romanelli MG, Siccardi A, Malnati M, Beretta A, Zipeto D. HIV-1 Env associates with HLA-C free-chains at the cell membrane modulating viral infectivity. Sci Rep 2017; 7:40037. [PMID: 28051183 PMCID: PMC5209703 DOI: 10.1038/srep40037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
HLA-C has been demonstrated to associate with HIV-1 envelope glycoprotein (Env). Virions lacking HLA-C have reduced infectivity and increased susceptibility to neutralizing antibodies. Like all others MHC-I molecules, HLA-C requires β2-microglobulin (β2m) for appropriate folding and expression on the cell membrane but this association is weaker, thus generating HLA-C free-chains on the cell surface. In this study, we deepen the understanding of HLA-C and Env association by showing that HIV-1 specifically increases the amount of HLA-C free chains, not bound to β2m, on the membrane of infected cells. The association between Env and HLA-C takes place at the cell membrane requiring β2m to occur. We report that the enhanced infectivity conferred to HIV-1 by HLA-C specifically involves HLA-C free chain molecules that have been correctly assembled with β2m. HIV-1 Env-pseudotyped viruses produced in the absence of β2m are less infectious than those produced in the presence of β2m. We hypothesize that the conformation and surface expression of HLA-C molecules could be a discriminant for the association with Env. Binding stability to β2m may confer to HLA-C the ability to preferentially act either as a conventional immune-competent molecule or as an accessory molecule involved in HIV-1 infectivity.
Collapse
Affiliation(s)
- Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Francesca Parolini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Priscilla Biswas
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Francesca Sironi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Almudena Blanco Miranda
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Elisa Zoratti
- University Laboratory of Medical Research, Piazzale L. A. Scuro 10, 37134 Verona, Italy
| | - Maria Teresa Scupoli
- University Laboratory of Medical Research, Piazzale L. A. Scuro 10, 37134 Verona, Italy
| | - Serena Ziglio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.,Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, Tenerife, Spain
| | - Agustin Valenzuela-Fernandez
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, Tenerife, Spain
| | - Davide Gibellini
- Department of Diagnostics and Public Health, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Antonio Siccardi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Mauro Malnati
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Alberto Beretta
- IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| |
Collapse
|
42
|
Kammerl IE, Meiners S. Proteasome function shapes innate and adaptive immune responses. Am J Physiol Lung Cell Mol Physiol 2016; 311:L328-36. [PMID: 27343191 DOI: 10.1152/ajplung.00156.2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 11/22/2022] Open
Abstract
The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively.
Collapse
Affiliation(s)
- Ilona E Kammerl
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
43
|
Adisakwattana P, Suwandittakul N, Petmitr S, Wongkham S, Sangvanich P, Reamtong O. ALCAM is a Novel Cytoplasmic Membrane Protein in TNF-α Stimulated Invasive Cholangiocarcinoma Cells. Asian Pac J Cancer Prev 2016; 16:3849-56. [PMID: 25987048 DOI: 10.7314/apjcp.2015.16.9.3849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), or bile duct cancer, is incurable with a high mortality rate due to a lack of effective early diagnosis and treatment. Identifying cytoplasmic membrane proteins of invasive CCA that facilitate cancer progression would contribute toward the development of novel tumor markers and effective chemotherapy. MATERIALS AND METHODS An invasive CCA cell line (KKU-100) was stimulated using TNF-α and then biotinylated and purified for mass spectrometry analysis. Novel proteins expressed were selected and their mRNAs expression levels were determined by real-time RT-PCR. In addition, the expression of ALCAM was selected for further observation by Western blot analysis, immunofluorescent imaging, and antibody neutralization assay. RESULTS After comparing the proteomics profile of TNF-α induced invasive with non-treated control cells, over-expression of seven novel proteins was observed in the cytoplasmic membrane of TNF-α stimulated CCA cells. Among these, ALCAM is a novel candidate which showed significant higher mRNA- and protein levels. Immunofluorescent assay also supported that ALCAM was expressed on the cell membrane of the cancer, with increasing intensity associated with TNF-α. CONCLUSIONS This study indicated that ALCAM may be a novel protein candidate expressed on cytoplasmic membranes of invasive CCA cells that could be used as a biomarker for development of diagnosis, prognosis, and drug or antibody-based targeted therapies in the future.
Collapse
Affiliation(s)
- Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand E-mail :
| | | | | | | | | | | |
Collapse
|
44
|
Herrington FD, Carmody RJ, Goodyear CS. Modulation of NF-κB Signaling as a Therapeutic Target in Autoimmunity. ACTA ACUST UNITED AC 2015; 21:223-42. [PMID: 26597958 DOI: 10.1177/1087057115617456] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/26/2015] [Indexed: 01/04/2023]
Abstract
Autoimmune diseases arise from the loss of tolerance to endogenous self-antigens, resulting in a heterogeneous range of chronic conditions that cause considerable morbidity and mortality worldwide. In Western countries, over 5% of the population is affected by some form of autoimmune disease, with enhanced or inappropriate activation of nuclear factor (NF)-κB implicated in a number of these conditions. Although treatment strategies for autoimmunity have improved significantly in recent years, current therapeutics are still not capable of achieving satisfactory disease management in all patients, and as such, the therapeutic modulation of NF-κB is an attractive target in autoimmunity. To date, no NF-κB inhibitors have progressed to the clinic for the treatment of autoimmunity, but a variety of promising approaches targeting multiple stages of the NF-κB pathway are currently being explored. This review focuses on the current strategies being investigated for the inhibition of the NF-κB pathway in autoimmune diseases and considers potential future strategies for the therapeutic targeting of this crucial transcription factor.
Collapse
Affiliation(s)
- Felicity D Herrington
- University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Ruaidhrí J Carmody
- University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Carl S Goodyear
- University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, UK GLAZgo Discovery Centre, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| |
Collapse
|
45
|
Ghosh S, Gupta P, Sen E. TNFα driven HIF-1α-hexokinase II axis regulates MHC-I cluster stability through actin cytoskeleton. Exp Cell Res 2015; 340:116-24. [PMID: 26597758 DOI: 10.1016/j.yexcr.2015.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/24/2022]
Abstract
Hypoxia-inducible Factor-1α (HIF-1α)-regulated expression of Hexokinase-II (HKII) remains a cornerstone in the maintenance of high metabolic demands subserving various pro-tumor functions including immune evasion in gliomas. Since inflammation-induced HIF-1α regulates Major Histocompatibility Complex class I (MHC-I) gene expression, and as cytoskeletal dynamics affect MHC-I membrane clusters, we investigated the involvement of HIF-1α-HKII axis in Tumor Necrosis Factor-α (TNFα)-mediated MHC-I membrane cluster stability in glioma cells and the involvement of actin cytoskeleton in the process. TNFα increased the clustering and colocalization of MHC-I with cortical actin in a HIF-1α dependent manner. siRNA mediated knockdown of HIF-1α as well as enzymatic inhibition of HK II by Lonidamine, delocalized mitochondrially bound HKII. This altered subcellular HKII localization affected TNFα-induced cofilin activation and actin turnover, as pharmacological inhibition of HKII by Lonidamine decreased Actin-related protein 2 (ARP2)/cofilin interaction. Photobleaching studies revealed destabilization of TNFα- induced stable MHC-I membrane clusters in the presence of Lonidamine and ARP2 inhibitor CK666. This work highlights how TNFα triggers a previously unknown function of metabolic protein HKII to influence an immune related outcome. Our study establishes the importance of inflammation induced HIF-1α in integrating two crucial components- the metabolic and immune, through reorganization of cytoskeleton.
Collapse
Affiliation(s)
- Sadashib Ghosh
- Molecular & Cellular Neuroscience Division, National Brain Research Centre, Manesar, Haryana 122051, India.
| | - Piyushi Gupta
- Molecular & Cellular Neuroscience Division, National Brain Research Centre, Manesar, Haryana 122051, India
| | - Ellora Sen
- Molecular & Cellular Neuroscience Division, National Brain Research Centre, Manesar, Haryana 122051, India
| |
Collapse
|
46
|
Zhang HM, Fu J, Hamilton R, Diaz V, Zhang Y. The mammalian target of rapamycin modulates the immunoproteasome system in the heart. J Mol Cell Cardiol 2015; 86:158-67. [PMID: 26239133 DOI: 10.1016/j.yjmcc.2015.07.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/11/2015] [Accepted: 07/28/2015] [Indexed: 12/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) plays an important role in cardiac development and function. Inhibition of mTOR by rapamycin has been shown to attenuate pathological cardiac hypertrophy and improve the function of aging heart, accompanied by an inhibition of the cardiac proteasome activity. The current study aimed to determine the potential mechanism(s) by which mTOR inhibition modulates cardiac proteasome. Inhibition of mTOR by rapamycin was found to reduce primarily the immunoproteasome in both H9c2 cells in vitro and mouse heart in vivo, without significant effect on the constitutive proteasome and protein ubiquitination. Concurrent with the reduction of the immunoproteasome, rapamycin reduced two important inflammatory response pathways, the NF-κB and Stat3 signaling. In addition, rapamycin attenuated the induction of the immunoproteasome in H9c2 cells by inflammatory cytokines, including INFγ and TNFα, by suppressing NF-κB signaling. These data indicate that rapamycin indirectly modulated immunoproteasome through the suppression of inflammatory response pathways. Lastly, the role of the immunoproteasome during the development of cardiac hypertrophy was investigated. Administration of a specific inhibitor of the immunoproteasome ONX 0914 attenuated isoproterenol-induced cardiac hypertrophy, suggesting that the immunoproteasome may be involved in the development of cardiac hypertrophy and therefore could be a therapeutic target. In conclusion, rapamycin inhibits the immunoproteasome through its effect on the inflammatory signaling pathways and the immunoproteasome could be a potential therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ryan Hamilton
- Barshop Institute, The University of Texas Health Science Center at San Antonio, TX 78249, United States
| | - Vivian Diaz
- Barshop Institute, The University of Texas Health Science Center at San Antonio, TX 78249, United States
| | - Yiqiang Zhang
- Barshop Institute, The University of Texas Health Science Center at San Antonio, TX 78249, United States; Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78249, United States
| |
Collapse
|
47
|
Tavares MCM, de Lima Júnior SF, Coelho AVC, Marques TRNM, de Araújo DHT, Heráclio SDA, Amorim MMR, de Souza PRE, Crovella S. Tumor necrosis factor (TNF) alpha and interleukin (IL) 18 genes polymorphisms are correlated with susceptibility to HPV infection in patients with and without cervical intraepithelial lesion. Ann Hum Biol 2015; 43:261-8. [DOI: 10.3109/03014460.2014.1001436] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | | | - Antonio V. C. Coelho
- Department of Genetics, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil,
| | | | | | | | - Melânia M. Ramos Amorim
- Maternal and Child Healthcare Departament, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, PE, Brazil, and
| | | | - Sergio Crovella
- Department of Genetics, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil,
| |
Collapse
|
48
|
Dubrovsky L, Dao T, Gejman RS, Brea EJ, Chang AY, Oh CY, Casey E, Pankov D, Scheinberg DA. T cell receptor mimic antibodies for cancer therapy. Oncoimmunology 2015; 5:e1049803. [PMID: 26942058 DOI: 10.1080/2162402x.2015.1049803] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/06/2015] [Indexed: 01/01/2023] Open
Abstract
The major hurdle to the creation of cancer-specific monoclonal antibodies (mAb) exhibiting limited cross-reactivity with healthy human cells is the paucity of known tumor-specific or mutated protein epitopes expressed on the cancer cell surface. Mutated and overexpressed oncoproteins are typically cytoplasmic or nuclear. Cells can present peptides from these distinguishing proteins on their cell surface in the context of human leukocyte antigen (HLA). T cell receptor mimic (TCRm) mAb can be discovered that react specifically to these complexes, allowing for selective targeting of cancer cells. The state-of-the-art for TCRm and the challenges and opportunities are discussed. Several such TCRm are moving toward clinical trials now.
Collapse
Affiliation(s)
| | - Tao Dao
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Ron S Gejman
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Elliott J Brea
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Aaron Y Chang
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Claire Y Oh
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Emily Casey
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Dmitry Pankov
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | | |
Collapse
|
49
|
McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol 2015; 6:21. [PMID: 25688236 PMCID: PMC4310299 DOI: 10.3389/fmicb.2015.00021] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
During viral infection, proper regulation of immune responses is necessary to ensure successful viral clearance with minimal host tissue damage. Proteasomes play a crucial role in the generation of antigenic peptides for presentation on MHC class I molecules, and thus activation of CD8 T cells, as well as activation of the NF-κB pathway. A specialized type of proteasome called the immunoproteasome is constitutively expressed in hematopoietic cells and induced in non-immune cells during viral infection by interferon signaling. The immunoproteasome regulates CD8 T cell responses to many viral epitopes during infection. Accumulating evidence suggests that the immunoproteasome may also contribute to regulation of proinflammatory cytokine production, activation of the NF-κB pathway, and management of oxidative stress. Many viruses have mechanisms of interfering with immunoproteasome function, including prevention of transcriptional upregulation of immunoproteasome components as well as direct interaction of viral proteins with immunoproteasome subunits. A better understanding of the role of the immunoproteasome in different cell types, tissues, and hosts has the potential to improve vaccine design and facilitate the development of effective treatment strategies for viral infections.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA ; Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
50
|
Tumor Necrosis Factor Alpha (-238 / -308) and TNFRII-VNTR (-322) Polymorphisms as Genetic Biomarkers of Susceptibility to Develop Cervical Cancer Among Tunisians. Pathol Oncol Res 2014; 21:339-45. [PMID: 25113639 DOI: 10.1007/s12253-014-9826-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
Host genetic factors may confer susceptibility to Cervical Cancer. TNF-α as pro-inflammatory cytokine participates in the maintenance of immune homeostasis. Allelic variation of immuno-modulatory genes is associated with alteration in immune function. This study investigated the associations between TNF-α-308G>A, -238G>A, and TNFRII - VNTR-322 and cervical cancer in Tunisian women. Genotypes of those polymorphisms were detected in 130 cases and 260 controls. The variant heterozygote -308 G/A was associated with a 41% decreased risk of cervical cancer (GG vs A/A; p = 0.002; OR = 0.41; 95% CI =0.23-0.76). Furthermore, compared with dominant variant G/G, the (G/A+A/A) genotypes was significantly associated with a decreased risk of CC (GG vs G/A+A/A; p = 0.026; OR = 0.62; 95% CI = 0.40-0.97). The FIGO stratified analysis showed that the minor variant A/A and combined G/A+A/A of TNFα-238 G>A and TNFα-308 G>A increased the risk of the tumor evolution, respectively, (P = 0.011; OR = 2.98; 95% CI = 1.16-7.72) (P = 0.008; OR = 2.76; 95% CI = 1.20-6.41), (P = 0.000; OR = 16.33; 95% CI = (5.10-55.23) (P = 0.000; OR = 7.54; 95% CI = 2.68-22.29). There was statistically significant relationship between the incidence of the TNF-α mutations and the clinical progression of cancer according to the FIGO classification. In our study, the haploview analysis revealed no LD between rs1800629 and rs361525. TNF-α and TNFRII polymorphisms might be genetic risk factors for cervical cancer in Tunisian population.
Collapse
|