1
|
Lamme TD, Smit MJ, Schafer CT. Signal termination of the chemokine receptor CCR9 is governed by an arrestin-independent phosphorylation mechanism. J Biol Chem 2025; 301:108462. [PMID: 40154615 DOI: 10.1016/j.jbc.2025.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
The C-C chemokine receptor type 9 (CCR9) coordinates immune cell migration from the thymus to the small intestine along gradients of the chemokine CCL25. Receptor dysregulation is associated with a variety of inflammatory bowel diseases such as Crohn's and ulcerative colitis, whereas aberrant CCR9 overexpression correlates with tumor metastasis. Despite being an attractive therapeutic target, attempts to clinically antagonize CCR9 have been unsuccessful. This highlights the need for a deeper understanding of its specific regulatory mechanisms and signaling pathways. CCR9 is a G protein-coupled receptor (GPCR) and activates Gi and Gq pathways. Unexpectedly, live-cell bioluminescence resonance energy transfer assays reveal only limited G protein activation, and signaling is rapidly terminated. Truncating the receptor C terminus significantly enhanced G protein coupling, highlighting a regulatory role of this domain. Signal suppression was not because of canonical arrestin-coordinated desensitization. Rather, removal of GPCR kinase phosphorylation led to sustained and robust G protein activation by CCR9. Using site-directed mutagenesis, we identified specific phosphorylation motifs that attenuate G protein coupling. Receptor internalization did not correlate with G protein activation capabilities. Instead, CCR9 phosphorylation disrupted the interaction of G protein heterotrimers with the receptor. This interference may lead to rapid loss of productive coupling and downstream signaling as phosphorylation would effectively render the receptor incapable of G protein coupling. An arrestin-independent, phosphorylation-driven deactivation mechanism could complement arrestin-dependent regulation of other GPCRs and have consequences for therapeutically targeting these receptors.
Collapse
Affiliation(s)
- Thomas D Lamme
- Faculty of Science, Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martine J Smit
- Faculty of Science, Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christopher T Schafer
- Faculty of Science, Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Kobayashi H, Asano T, Suzuki H, Tanaka T, Yoshikawa T, Kaneko MK, Kato Y. Establishment of a Sensitive Monoclonal Antibody Against Mouse CCR9 (C 9Mab-24) for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2023; 42:15-21. [PMID: 36516144 DOI: 10.1089/mab.2022.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The CC chemokine receptor 9 (CCR9), also known as CD199, is one of chemokine receptors. The CC chemokine ligand 25 (CCL25) is known to be the only ligand for CCR9. The CCR9-CCL25 interaction plays important roles in chemotaxis of lymphocytes and tumor cell migration. Therefore, CCR9-CCL25 axis is a promising target for tumor therapy and diagnosis. In this study, we established a sensitive and specific monoclonal antibody (mAb) against mouse CCR9 (mCCR9) using N-terminal peptide immunization method. The established anti-mCCR9 mAb, C9Mab-24 (rat immunoglobulin [IgG]2a, kappa), reacted with mCCR9-overexpressed Chinese hamster ovary-K1 (CHO/mCCR9) and mCCR9-endogenously expressed cell line, RL2, through flow cytometry. Kinetic analyses using flow cytometry showed that the dissociation constants (KD) of C9Mab-24 for CHO/mCCR9 and RL2 cell lines were 6.0 × 10-9 M and 4.7 × 10-10 M, respectively. Results indicated that C9Mab-24 is useful for detecting mCCR9 through flow cytometry, thereby providing a possibility for targeting mCCR9-expressing cells in vivo experiments.
Collapse
Affiliation(s)
- Hiyori Kobayashi
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Nanamiya R, Takei J, Asano T, Tanaka T, Sano M, Nakamura T, Yanaka M, Hosono H, Kaneko MK, Kato Y. Development of Anti-Human CC Chemokine Receptor 9 Monoclonal Antibodies for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2021; 40:101-106. [PMID: 34161159 DOI: 10.1089/mab.2021.0007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CC chemokine receptor 9 (CCR9) belongs to the beta chemokine receptor family and is mainly distributed on the surface of immature T lymphocytes and enterocytes. This receptor is highly expressed in rheumatoid arthritis, colitis, type 2 diabetes, and various tumors. Therefore, more sensitive monoclonal antibodies (mAbs) need to be developed to predict the prognosis of many high CCR9 expression diseases. Because CCR9 is a structurally unstable G protein-coupled receptor, it has been difficult to develop anti-CCR9 mAbs using the traditional method. This study developed anti-human CCR9 (hCCR9) mAbs for flow cytometry using a Cell-Based Immunization and Screening (CBIS) method. Two mice were immunized with hCCR9-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/hCCR9), and hybridomas showing strong signals from CHO/hCCR9 and no signals from CHO-K1 cells were selected by flow cytometry. We established an anti-hCCR9 mAb, C9Mab-1 (IgG1, kappa), which detected hCCR9 in MOLT-4 leukemia T lymphoblast cells and CHO/hCCR9 cells by flow cytometry. Our study showed that an anti-hCCR9 mAb was developed more rapidly by the CBIS method than the previous method.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Xu B, Deng C, Wu X, Ji T, Zhao L, Han Y, Yang W, Qi Y, Wang Z, Yang Z, Yang Y. CCR9 and CCL25: A review of their roles in tumor promotion. J Cell Physiol 2020; 235:9121-9132. [PMID: 32401349 DOI: 10.1002/jcp.29782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
Abstract
Chemokines constitute a superfamily of small chemotactic cytokines with functions that are based on interactions with their corresponding receptors. It has been found that, among other functions, chemokines regulate the migratory and invasive abilities of cancer cells. Multiple studies have confirmed that chemokine receptor 9 (CCR9) and its exclusive ligand, chemokine 25 (CCL25), are overexpressed in a variety of malignant tumors and are closely associated with tumor proliferation, apoptosis, invasion, migration and drug resistance. This review evaluates recent advances in understanding the role of CCR9/CCL25 in cancer development. First, we outline the general background of chemokines in cancer and the structure and function of CCR9 and CCL25. Next, we describe the basic function of CCR9/CCL25 in the cancer process. Then, we introduce the role of CCR9/CCL25 and related signaling pathways in various cancers. Finally, future research directions are proposed. In general, this paper is intended to serve as a comprehensive repository of information on this topic and is expected to contribute to the design of other research projects and future efforts to develop treatment strategies for ameliorating the effects of CCR9/CCL25 in cancer.
Collapse
Affiliation(s)
- Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yating Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Zargari R, Mahdifar M, Mohammadi A, Vahidi Z, Hassanshahi G, Rafatpanah H. The Role of Chemokines in the Pathogenesis of HTLV-1. Front Microbiol 2020; 11:421. [PMID: 32231656 PMCID: PMC7083101 DOI: 10.3389/fmicb.2020.00421] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a human retrovirus that is associated with two main diseases: HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T cell leukemia/lymphoma (ATL). Chemokines are highly specialized groups of cytokines that play important roles in organizing, trafficking, homing, and in the migration of immune cells to the bone marrow, lymphoid organs and sites of infection and inflammation. Aberrant expression or function of chemokines, or their receptors, has been linked to the protection against or susceptibility to specific infectious diseases, as well as increased the risk of autoimmune diseases and malignancy. Chemokines and their receptors participate in pathogenesis of HTLV-1 associated diseases from inflammation in the central nervous system (CNS) which occurs in cases of HAM/TSP to T cell immortalization and tissue infiltration observed in ATL patients. Chemokines represent viable effective prognostic biomarkers for HTLV-1-associated diseases which provide the early identification of high-risk, treatment possibilities and high-yielding clinical trials. This review focuses on the emerging roles of these molecules in the outcome of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Razieh Zargari
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zohreh Vahidi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Wang C, Liu Z, Xu Z, Wu X, Zhang D, Zhang Z, Wei J. The role of chemokine receptor 9/chemokine ligand 25 signaling: From immune cells to cancer cells. Oncol Lett 2018; 16:2071-2077. [PMID: 30008902 PMCID: PMC6036326 DOI: 10.3892/ol.2018.8896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/15/2018] [Indexed: 02/05/2023] Open
Abstract
Chemokine ligand 25 (CCL25) and chemokine receptor 9 (CCR9) are important regulators of migration, proliferation and apoptosis in leukocytes and cancer cells. Blocking of the CCR9/CCL25 signal has been demonstrated to be a potential novel cancer therapy. Research into CCR9 and CCL25 has revealed their associated upstream and downstream signaling pathways; CCR9 is regulated by several immunological factors, including NOTCH, interleukin 2, interleukin 4 and retinoic acid. NOTCH in particular, has been revealed to be a crucial upstream regulator of CCR9. Furthermore, proteins including matrix metalloproteinases, P-glycoprotein, Ezrin/Radixin/Moesin and Livin are regulated via phosphatidylinositol-3 kinase/protein kinase B, which are in turn stimulated by CCR9/CCL25. This is a review of the current literature on the functions and signaling pathways of CCR9/CCL25.
Collapse
Affiliation(s)
- Cong Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001, P.R. China
| | - Zhenghuan Liu
- Department of Urology, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhihui Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Xian Wu
- Department of Ultrasound, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongyang Zhang
- Department of Ultrasound, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ziqi Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Jianqin Wei
- The University of Miami Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL 33136, USA
| |
Collapse
|
7
|
Deng X, Tu Z, Xiong M, Tembo K, Zhou L, Liu P, Pan S, Xiong J, Yang X, Leng J, Zhang Q, Xiao R, Zhang Q. Wnt5a and CCL25 promote adult T-cell acute lymphoblastic leukemia cell migration, invasion and metastasis. Oncotarget 2018; 8:39033-39047. [PMID: 28380463 PMCID: PMC5503593 DOI: 10.18632/oncotarget.16559] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/27/2017] [Indexed: 01/10/2023] Open
Abstract
Adult T-cell acute lymphoblastic leukemia (T-ALL) is a refractory leukemia. We previously showed that CCL25/CCR9 promotes T-ALL metastasis. In the present study, we assessed the effects of CCL25 on Wnt expression and the effects of Wnt5a and CCL25 on PI3K/Akt and RhoA activation. Transwell assays and mouse xenograft experiments were utilized to assess the effects of Wnt5a and CCL25 on MOLT4 cell invasion, migration and metastasis. The effects of Wnt5a on MOLT4 cell actin polarization and pseudopodium formation were examined using laser scanning confocal microscopy and scanning electron microscopy. CCL25 induced Wnt5a expression in MOLT4 cells by promoting protein kinase C (PKC) expression and activation. Wnt5a promoted MOLT4 cell migration, invasion, actin polarization, and lamellipodium and filopodia formation via PI3K/Akt-RhoA pathway activation. These effects were rescued by PI3K/Akt or RhoA knockdown or inhibition. Additionally, Wnt5a in cooperation with CCL25 promoted MOLT4 cell mouse liver metastasis and stimulated RhoA activation. These results show that CCL25/CCR9 upregulates Wnt5a by promoting PKC expression and activation in MOLT4 cells. This in turn promotes cell migration and invasion via PI3K/Akt-RhoA signaling, enhancing cell polarization and pseudopodium formation. These findings indicate that the PI3K/Akt-RhoA pathway is likely responsible for Wnt5a-induced adult T-ALL cell migration and invasion.
Collapse
Affiliation(s)
- Xinzhou Deng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhenbo Tu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Meng Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kingsley Tembo
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lu Zhou
- Department of Hematology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Pan Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiangyong Yang
- Department of Biochemical Engineering, Hubei University of Technology Engineering and Technology College, Wuhan, Hubei, China
| | - Jun Leng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qian Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ruijing Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, Hubei, China
| |
Collapse
|
8
|
Wang T, Xu H, Liu X, Chen S, Zhou Y, Zhang X. Identification of Key Genes in Colorectal Cancer Regulated by miR-34a. Med Sci Monit 2017; 23:5735-5743. [PMID: 29197895 PMCID: PMC5724350 DOI: 10.12659/msm.904937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to screen the molecular targets of miR-34a in colorectal cancer (CRC) and construct the regulatory network, to gain more insights to the pathogenesis of CRC. Material/Methods The microarray data of CRC samples and normal samples (GSE4988), as well as CRC samples transformed with miR-34a and non-transfected CRC samples (GSE7754), were downloaded from the Gene Expression Omnibus (GEO) database. The differently expressed genes (DEGs) were identified via the LIMMA package in R language. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to identify significant Gene Ontology (GO) terms and pathways in DEGs. The targets of miR-34a were obtained via the miRWalk database, and then the overlaps between them were selected out to construct the regulatory network of miR-34a in CRC using the Cytoscape software. Results A total of 392 DEGs were identified in CRC samples compared with normal samples, including 239 upregulated genes and 153 downregulated ones. These DEGs were enriched in 75 GO terms and one Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. At the same time, 332 DEGs (188 upregulated and 144 downregulated) were screened out between miR-34a transformed CRC and miR-34a non-transfected CRC samples and they were enriched in 20 GO terms and eight KEGG pathways. Six overlapped genes were identified in two DEGs groups. There were 1,668 targets of miR-34a obtained via the miRWalk database, among which 21 were identified differently expressed in miR-34a transformed CRC samples compared with miR-34a non-transfected CRC samples. Two regulatory networks of miR-34a in CRC within these two groups of overlapped genes were constructed respectively. Conclusions Pathways related to cell cycle, DNA replication, oocyte meiosis, and pyrimidine metabolism might play critical roles in the progression of CRC. Several genes such as SERPINE1, KLF4, SEMA4B, PPARG, CDC45, and KIAA0101 might be the targets of miR-34a and the potential therapeutic targets of CRC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin, China (mainland)
| | - Haihe Xu
- Department of General Surgery, Dagang Hospital, Tianjin, China (mainland)
| | - Xianglong Liu
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin, China (mainland)
| | - Shuo Chen
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin, China (mainland)
| | - Yi Zhou
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin, China (mainland)
| | - Xipeng Zhang
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin, China (mainland)
| |
Collapse
|
9
|
López-Cotarelo P, Gómez-Moreira C, Criado-García O, Sánchez L, Rodríguez-Fernández JL. Beyond Chemoattraction: Multifunctionality of Chemokine Receptors in Leukocytes. Trends Immunol 2017; 38:927-941. [PMID: 28935522 DOI: 10.1016/j.it.2017.08.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/05/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022]
Abstract
The word chemokine is a combination of the words chemotactic and cytokine, in other words cytokines that promote chemotaxis. Hence, the term chemokine receptor refers largely to the ability to regulate chemoattraction. However, these receptors can modulate additional leukocyte functions, as exemplified by the case of CCR7 which, apart from chemotaxis, regulates survival, migratory speed, endocytosis, differentiation and cytoarchitecture. We present evidence highlighting that multifunctionality is a common feature of chemokine receptors. Based on the activities that they regulate, we suggest that chemokine receptors can be classified into inflammatory (which control both inflammatory and homeostatic functions) and homeostatic families. The information accrued also suggests that the non-chemotactic functions controlled by chemokine receptors may contribute to optimizing leukocyte functioning under normal physiological conditions and during inflammation.
Collapse
Affiliation(s)
- Pilar López-Cotarelo
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Equal first authors
| | - Carolina Gómez-Moreira
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Equal first authors
| | - Olga Criado-García
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Equal first authors
| | - Lucas Sánchez
- Cellular and Molecular Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Luis Rodríguez-Fernández
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| |
Collapse
|
10
|
Xu Z, Mei F, Liu H, Sun C, Zheng Z. C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. J Am Heart Assoc 2016; 5:JAHA.116.003342. [PMID: 27146447 PMCID: PMC4889199 DOI: 10.1161/jaha.116.003342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Maladaptive cardiac hypertrophy is a major risk factor for heart failure, which is the leading cause of death worldwide. C‐C motif chemokine receptor 9 (CCR9), a subfamily of the G protein–coupled receptor supergene family, has been highlighted as an immunologic regulator in the development and homing of immune cells and in immune‐related diseases. Recently, CCR9 was found to be involved in the pathogenesis of other diseases such as cardiovascular diseases; however, the effects that CCR9 exerts in cardiac hypertrophy remain elusive. Methods and Results We observed significantly increased CCR9 protein levels in failing human hearts and in a mouse or cardiomyocyte hypertrophy model. In loss‐ and gain‐of‐function experiments, we found that pressure overload–induced hypertrophy was greatly attenuated by CCR9 deficiency in cardiac‐specific CCR9 knockout mice, whereas CCR9 overexpression in cardiac‐specific transgenic mice strikingly enhanced cardiac hypertrophy. The prohypertrophic effects of CCR9 were also tested in vitro, and a similar phenomenon was observed. Consequently, we identified a causal role for CCR9 in pathological cardiac hypertrophy. Mechanistically, we revealed a lack of difference in the expression levels of mitogen‐activated protein kinases between groups, whereas the phosphorylation of AKT/protein kinase B and downstream effectors significantly decreased in CCR9 knockout mice and increased in CCR9 transgenic mice after aortic binding surgery. Conclusions The prohypertrophic effects of CCR9 were not attributable to the mitogen‐activated protein kinase signaling pathway but rather to the AKT–mammalian target of rapamycin–glycogen synthase kinase 3β signaling cascade.
Collapse
Affiliation(s)
- Zhengxi Xu
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fanghua Mei
- Animal Experiment Center and Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Hanning Liu
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Cheng Sun
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhe Zheng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Zhang Z, Sun T, Chen Y, Gong S, Sun X, Zou F, Peng R. CCL25/CCR9 Signal Promotes Migration and Invasion in Hepatocellular and Breast Cancer Cell Lines. DNA Cell Biol 2016; 35:348-57. [PMID: 27008282 DOI: 10.1089/dna.2015.3104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cancer is one of the most lethal diseases worldwide, and metastasis is the most common cause of patients' deaths. Identification and inhibition of markers involved in metastasis process in cancer cells are promising works to block metastasis and improve prognoses of patients. Chemokines are a superfamily of small, chemotactic cytokines, whose functions are based on interaction with corresponding receptors. It has been found that one of the functions of chemokines is to regulate migration and invasion abilities of lymphocytes, as well as cancer cells. Chemokine receptor 9 (CCR9) regulates trafficking of lymphocytes and cancer cell lines when interacting with its exclusive ligand chemokine 25 (CCL25). However, the mechanisms of CCL25/CCR9 signal that regulates metastasis of cancer cells are not completely known yet. In this study, we stimulated or inhibited CCL25/CCR9 signal in breast cancer cell line (MDA-MB-231) and hepatocellular cancer cell lines (HepG2 and HUH7), and found that CCL25/CCR9 signal resulted in different promotion of migration and invasion in different cell lines. These phenomena could be explained by selective regulation of several markers of epithelial-mesenchymal transition (EMT). Our findings suggested that CCL25/CCR9 signal may provide cancer cells with chemotactic abilities through influencing several EMT markers.
Collapse
Affiliation(s)
- Ziqi Zhang
- 1 West China School of Medicine, Sichuan University , Chengdu, People's Republic of China .,2 Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University , Chengdu, People's Republic of China
| | - Tong Sun
- 1 West China School of Medicine, Sichuan University , Chengdu, People's Republic of China
| | - Yuxi Chen
- 1 West China School of Medicine, Sichuan University , Chengdu, People's Republic of China
| | - Shu Gong
- 2 Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University , Chengdu, People's Republic of China
| | - Xiye Sun
- 3 Chengdu Shude High School Guanghua Campus , Chengdu, People's Republic of China
| | - Fangdong Zou
- 2 Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University , Chengdu, People's Republic of China
| | - Rui Peng
- 2 Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University , Chengdu, People's Republic of China
| |
Collapse
|
12
|
Chen HJ, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, Joe DJ, Choi J, Gadamsetty P, Milsom J, Nandakumar G, Longman R, Zhou XK, Edwards R, Chen J, Chen KY, Bu P, Wang L, Xu Y, Munroe R, Abratte C, Miller AD, Gümüş ZH, Shuler M, Nishimura N, Edelmann W, Shen X, Lipkin SM. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol 2015; 33:656-60. [PMID: 26006007 PMCID: PMC4532544 DOI: 10.1038/nbt.3239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/15/2015] [Indexed: 11/09/2022]
Abstract
Current orthotopic xenograft models of human colorectal cancer (CRC) require surgery and do not robustly form metastases in the liver, the most common site clinically. CCR9 traffics lymphocytes to intestine and colorectum. We engineered use of the chemokine receptor CCR9 in CRC cell lines and patient-derived cells to create primary gastrointestinal (GI) tumors in immunodeficient mice by tail-vein injection rather than surgery. The tumors metastasize inducibly and robustly to the liver. Metastases have higher DKK4 and NOTCH signaling levels and are more chemoresistant than paired subcutaneous xenografts. Using this approach, we generated 17 chemokine-targeted mouse models (CTMMs) that recapitulate the majority of common human somatic CRC mutations. We also show that primary tumors can be modeled in immunocompetent mice by microinjecting CCR9-expressing cancer cell lines into early-stage mouse blastocysts, which induces central immune tolerance. We expect that CTMMs will facilitate investigation of the biology of CRC metastasis and drug screening.
Collapse
Affiliation(s)
- Huanhuan Joyce Chen
- 1] Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA. [2] Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jian Sun
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Zhiliang Huang
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Harry Hou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Myra Arcilla
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Nikolai Rakhilin
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Daniel J Joe
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Jiahn Choi
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Poornima Gadamsetty
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Jeff Milsom
- Department of Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Govind Nandakumar
- Department of Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Randy Longman
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Xi Kathy Zhou
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, New York, USA
| | - Robert Edwards
- Department of Pathology, University of California, Irvine, Irvine, California, USA
| | - Jonlin Chen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | - Kai Yuan Chen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | - Pengcheng Bu
- 1] Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA. [2] School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | - Lihua Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Yitian Xu
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Robert Munroe
- College of Veterinary Medicine and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Christian Abratte
- College of Veterinary Medicine and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Andrew D Miller
- College of Veterinary Medicine and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Zeynep H Gümüş
- 1] Department of Medicine, Weill Cornell Medical College, New York, New York, USA. [2] Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Shuler
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Nozomi Nishimura
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Xiling Shen
- 1] Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA. [2] School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | - Steven M Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
13
|
Lee S, Heinrich EL, Li L, Lu J, Choi AH, Levy RA, Wagner JE, Yip MLR, Vaidehi N, Kim J. CCR9-mediated signaling through β-catenin and identification of a novel CCR9 antagonist. Mol Oncol 2015; 9:1599-611. [PMID: 26003048 DOI: 10.1016/j.molonc.2015.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/17/2022] Open
Abstract
Elevated levels of chemokine receptor CCR9 expression in solid tumors may contribute to poor patient prognosis. In this study, we characterized a novel CCR9-mediated pathway that promotes pancreatic cancer cell invasion and drug resistance, indicating that CCR9 may play a critical role in cancer progression through activation of β-catenin. We noted that the CCL25/CCR9 axis in pancreatic cancer cells induced the activation of β-catenin, which enhanced cell proliferation, invasion, and drug resistance. CCR9-mediated activation of β-catenin and the resulting downstream effects were effectively inhibited by blockade of the PI3K/AKT pathway, but not by antagonism of Wnt. Importantly, we discovered that CCR9/CCL25 increased the lethal dose of gemcitabine, suggesting decreased efficacy of anti-cancer drugs with CCR9 signaling. Through in silico computational modeling, we identified candidate CCR9 antagonists and tested their effects on CCR9/β-catenin regulation of cell signaling and drug sensitivity. When combined with gemcitabine, it resulted in synergistic cytotoxicity. Our results show that CCR9/β-catenin signaling enhances pancreatic cancer invasiveness and chemoresistance, and may be a highly novel therapeutic target.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Eileen L Heinrich
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Lily Li
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Jianming Lu
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Audrey H Choi
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Rachel A Levy
- Department of Immunology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Jeffrey E Wagner
- Department of Immunology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - M L Richard Yip
- HTS Lab, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Nagarajan Vaidehi
- Department of Immunology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Joseph Kim
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California, USA.
| |
Collapse
|
14
|
Li B, Wang Z, Zhong Y, Lan J, Li X, Lin H. CCR9-CCL25 interaction suppresses apoptosis of lung cancer cells by activating the PI3K/Akt pathway. Med Oncol 2015; 32:66. [PMID: 25691296 DOI: 10.1007/s12032-015-0531-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/13/2015] [Indexed: 12/16/2022]
Abstract
CC chemokine receptor-9 (CCR9) is highly expressed in non-small cell lung cancer (NSCLC) tissues and cell lines. However, the biological functions and the signals elicited by the interaction between CCR9 and its natural ligand CCL25 in NSCLC are unknown. Here, we selectively depleted CCR9 and inhibited CCR9-CCL25 interaction in NSCLC cells using small recombinant lentivirus-mediated miRNA, and investigated the tumorigenic effects in vitro and in vivo. Compromised CCR9-CCL25 interaction promoted apoptosis in NSCLC cells by activating phosphoinositide 3-kinase (PI3K)/Akt in vitro. In addition, we showed that CCR9-CCL25 interaction mediated the activation of the PI3K/Akt pathway in NSCLC cells, resulting in the up-regulation of anti-apoptotic proteins, as well as the down-regulation of apoptotic proteins in a PI3K-/Akt-dependent manner. These CCR9-CCL25-mediated effects were abrogated in the presence of a PI3K inhibitor (wortmannin 10 nM) or by inhibiting the CCR9-CCL25 interaction through CCR9 silencing, which also suggested that the biological function of CCR9-CCL25 was mainly regulated by PI3K. In vivo studies also demonstrated a significantly lower tumor burden in mice receiving CCR9-silence cells than those in mice receiving control cells. Together, these data suggested that CCR9-CCL25 interaction induced tumorigenesis of NSCLC cells and that this induction might be accomplished through the activation of the PI3K/Akt pathway. These findings may lead to a better understanding of the biological effects of CCR9-CCL25 interaction and provide clues for identifying novel therapeutic and preventive molecular markers for NSCLC.
Collapse
Affiliation(s)
- Baijun Li
- The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | | | | | | | | | | |
Collapse
|
15
|
Li MQ, Wang Y, Chang KK, Meng YH, Liu LB, Mei J, Wang Y, Wang XQ, Jin LP, Li DJ. CD4+Foxp3+ regulatory T cell differentiation mediated by endometrial stromal cell-derived TECK promotes the growth and invasion of endometriotic lesions. Cell Death Dis 2014; 5:e1436. [PMID: 25275597 PMCID: PMC4649519 DOI: 10.1038/cddis.2014.414] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/13/2014] [Accepted: 08/28/2014] [Indexed: 12/11/2022]
Abstract
Endometriosis is associated with an abnormal immune response to endometrial cells, which can facilitate the implantation and proliferation of ectopic endometrial tissue. The proportion of CD4(+)Foxp3(+) regulatory T cells (Tregs) is significantly increased in the peritoneal fluid of women with endometriosis. The thymus-expressed chemokine TECK/CCL25 directly promotes the invasiveness of endometrial stromal cells (ESCs). The aim of this study was to investigate the effects of ESC-derived TECK on the crosstalk between Tregs and ESCs in the progress of endometriosis. We determined that the percentage of Tregs and the concentration of TECK increased in the peritoneal fluid with the progression of endometriosis. The supernatant from co-cultured human ESCs and macrophages not only induced Treg differentiation and increased Treg expression of interleukin-10 (IL-10), transforming growth factor-β (TGF-β) and CD73 by activating the AKT/STAT3 signaling pathway but also repressed Treg apoptosis by downregulating Fas and FasL expression and enhanced the Treg-mediated suppression of CD4(+)CD25(-) T cells. In addition, in vitro and in vivo trials confirmed that these effects could be inhibited by anti-TECK neutralizing Abs. The secretion of IL-10 and TGF-β by Tregs increased MMP2 expression and decreased TIMP1 expression and further stimulated the proliferation and invasion of ESCs and the growth of ectopic lesions. These results indicate that TECK derived from ESCs and macrophages upregulates the number and function of Tregs in the ectopic milieu, which contributes to endometriotic immunotolerance and high levels of ESC proliferation and invasion, thereby facilitating the progression of endometriosis.
Collapse
Affiliation(s)
- M-Q Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Y Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital Affiliated Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - K-K Chang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Y-H Meng
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - L-B Liu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Department of Obstetrics and Gynecology, The Fourth Hospital of Soochow University, WuXi, China
| | - J Mei
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Y Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - X-Q Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - L-P Jin
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - D-J Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
16
|
Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, Goerger JP, Sun J, Witherspoon M, Rakhilin N, Li J, Yang H, Milsom J, Lee S, Zipfel W, Jin MM, Gümüşcedil ZH, Lipkin SM, Shen X. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell 2013; 12:602-15. [PMID: 23642368 PMCID: PMC3646336 DOI: 10.1016/j.stem.2013.03.002] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 11/25/2012] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
microRNAs regulate developmental cell-fate decisions, tissue homeostasis, and oncogenesis in distinct ways relative to proteins. Here, we show that the tumor suppressor microRNA miR-34a is a cell-fate determinant in early-stage dividing colon cancer stem cells (CCSCs). In pair-cell assays, miR-34a distributes at high levels in differentiating progeny, whereas low levels of miR-34a demarcate self-renewing CCSCs. Moreover, miR-34a loss of function and gain of function alter the balance between self-renewal versus differentiation both in vitro and in vivo. Mechanistically, miR-34a sequesters Notch1 mRNA to generate a sharp threshold response where a bimodal Notch signal specifies the choice between self-renewal and differentiation. In contrast, the canonical cell-fate determinant Numb regulates Notch levels in a continuously graded manner. Altogether, our findings highlight a unique microRNA-regulated mechanism that converts noisy input into a toggle switch for robust cell-fate decisions in CCSCs.
Collapse
Affiliation(s)
- Pengcheng Bu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kai-Yuan Chen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Joyce Huan Chen
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lihua Wang
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jewell Walters
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Yong Jun Shin
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Julian P. Goerger
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jian Sun
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
| | - Mavee Witherspoon
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Nikolai Rakhilin
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jiahe Li
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Herman Yang
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jeff Milsom
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Sang Lee
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Warren Zipfel
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Moonsoo M. Jin
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zeynep H. Gümüşcedil
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and Cancer Center, Weill Cornell Medical College, New York, NY 10021, USA
| | - Steven M. Lipkin
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Xiling Shen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Anti-CCL25 antibody prolongs skin allograft survival by blocking CCR9 expression and impairing splenic T-cell function. Arch Immunol Ther Exp (Warsz) 2013; 61:237-44. [PMID: 23456208 DOI: 10.1007/s00005-013-0223-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 02/22/2013] [Indexed: 12/31/2022]
Abstract
Chemokines, by virtue of their ability to recruit immune cells into allografts, play critical roles in acute transplantation rejection. CCR9 and its ligand, CCL25, is one of the key regulators of thymocyte migration and maturation in normal and inflammatory conditions. Moreover, several studies have revealed that high expression of CCR9 and CCL25 participated in many kinds of diseases. However, the role of CCR9 in allograft rejection is still unclear. In this study, we established a murine skin transplantation model of acute rejection. Our findings showed that the proportion of CCR9-expressing T cells was significantly increased in the spleen of allotransplanted mice compared with syngeneic transplantation. Furthermore, expression of CCL25 in allograft was similarly increased. Neutralization of CCL25 by intravenous injection of anti-CCL25 monoclonal antibody significantly prolonged skin allograft survival, decreased the number of infiltrating cells, and simultaneously suppressed the chemotactic ability and the proliferation of the splenic T cells in response to allogeneic antigens. Finally, blockade of CCL25 also diminished the secretion of IFN-γ by splenic T cells. These studies indicated that CCR9/CCL25 was involved in acute transplantation rejection and anti-CCL25 strategies might be useful in preventing acute rejection.
Collapse
|
18
|
Chen HJ, Edwards R, Tucci S, Bu P, Milsom J, Lee S, Edelmann W, Gümüs ZH, Shen X, Lipkin S. Chemokine 25-induced signaling suppresses colon cancer invasion and metastasis. J Clin Invest 2012; 122:3184-96. [PMID: 22863617 DOI: 10.1172/jci62110] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 06/14/2012] [Indexed: 02/06/2023] Open
Abstract
Chemotactic cytokines (chemokines) can help regulate tumor cell invasion and metastasis. Here, we show that chemokine 25 (CCL25) and its cognate receptor chemokine receptor 9 (CCR9) inhibit colorectal cancer (CRC) invasion and metastasis. We found that CCR9 protein expression levels were highest in colon adenomas and progressively decreased in invasive and metastatic CRCs. CCR9 was expressed in both primary tumor cell cultures and colon-cancer-initiating cell (CCIC) lines derived from early-stage CRCs but not from metastatic CRC. CCL25 stimulated cell proliferation by activating AKT signaling. In vivo, systemically injected CCR9+ early-stage CCICs led to the formation of orthotopic gastrointestinal xenograft tumors. Blocking CCR9 signaling inhibited CRC tumor formation in the native gastrointestinal CCL25+ microenvironment, while increasing extraintestinal tumor incidence. NOTCH signaling, which promotes CRC metastasis, increased extraintestinal tumor frequency by stimulating CCR9 proteasomal degradation. Overall, these data indicate that CCL25 and CCR9 regulate CRC progression and invasion and further demonstrate an appropriate in vivo experimental system to study CRC progression in the native colon microenvironment.
Collapse
Affiliation(s)
- Huanhuan Joyce Chen
- Department of Medicine, Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cassani B, Villablanca EJ, Quintana FJ, Love PE, Lacy-Hulbert A, Blaner WS, Sparwasser T, Snapper SB, Weiner HL, Mora JR. Gut-tropic T cells that express integrin α4β7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology 2011; 141:2109-18. [PMID: 21925467 PMCID: PMC3222333 DOI: 10.1053/j.gastro.2011.09.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/18/2011] [Accepted: 09/01/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Induction of oral immune tolerance (OT) blocks proinflammatory responses to orally administered antigens and might be used to treat autoimmune conditions. We investigated whether gut-tropic T cells that express the integrin α4β7 and the chemokine receptor CCR9 are required for OT. METHODS Skin delayed-type hypersensitivity and experimental autoimmune encephalomyelitis were used to monitor OT in mice. To assess the role of receptors that mediate localization of lymphocytes to the gut (gut-homing receptors) in induction of OT, we studied CCR9(-/-) and β7(-/-) mice and also blocked the α4β7 ligand MAdCAM-1 in wild-type mice. We used DEREG and Scurfy mice to assess the role of Foxp3(+) regulatory T cells (Treg) and IL-10(-/-) and IL-10Rβ(-/-) mice to examine the role of interleukin (IL)-10 in induction of OT. RESULTS OT could not be induced in CCR9(-/-) or β7(-/-) mice, or when MAdCAM-1 was blocked in wild-type mice, indicating that gut-homing receptors are required for oral tolerization. Consistent with the role of all-trans retinoic acid in inducing gut-homing T cells, OT could not be induced in mice depleted of vitamin A. OT was rescued in CCR9(-/-) mice following adoptive transfer of wild-type T cells, but not CCR9(-/-) or β7(-/-) T cells. Gut-homing T cells are therefore necessary and sufficient to induce OT. Wild-type Treg and IL-10 were required to restore OT to CCR9(-/-) mice, indicating that homing and functional differentiation of IL-10-producing Treg in the gut is required for OT. Conversely, transfer of CCR9(-/-) or β7(-/-) T cells to wild-type mice partially inhibited OT. CONCLUSIONS Expression of CCR9 and α4β7 on T cells and their subsequent localization to the gut is required for induction of OT in mice. Therapies designed to block gut-homing receptors might, under some conditions, interfere with normal tolerogenic mechanisms in the intestinal mucosa.
Collapse
Affiliation(s)
- Barbara Cassani
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Eduardo J. Villablanca
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Francisco J. Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Paul E. Love
- Eunice Kennedy Schriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Adam Lacy-Hulbert
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | | | - Tim Sparwasser
- Institute of Infection Immunology, Centre for Experimental and Clinical Infection Research, Twincore, 30625 Hannover, Germany
| | - Scott B. Snapper
- Gastrointestinal Unit, Children's Hospital & Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Howard L. Weiner
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - J. Rodrigo Mora
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Correspondence and requests for materials should be addressed to J. Rodrigo Mora ()
| |
Collapse
|
20
|
Batista A, Barata JT, Raderschall E, Sallan SE, Carlesso N, Nadler LM, Cardoso AA. Targeting of active mTOR inhibits primary leukemia T cells and synergizes with cytotoxic drugs and signaling inhibitors. Exp Hematol 2011; 39:457-472.e3. [PMID: 21277936 DOI: 10.1016/j.exphem.2011.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 12/22/2010] [Accepted: 01/05/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Rationally designed therapies aim at the specific disruption of critical signaling pathways activated by malignant transformation or signals from the tumor microenvironment. Because mammalian target of rapamycin (mTOR) is an important signal integrator and a key translational regulator, we evaluated its potential involvement in T-cell acute lymphoblastic leukemia (T-ALL) and whether mTOR blockade synergizes with chemotherapeutic agents or other signaling antagonists to inhibit primary leukemia T cells. MATERIALS AND METHODS mTOR signaling status was assessed using biochemical, immunostaining, and molecular regulation studies and functional assays performed to assess the impact of mTOR blockade on T-ALL proliferation, survival, and cell cycle. RESULTS We observed that mTOR signaling is highly activated in all T-ALL patients tested, with phosphorylation of its downstream substrates eIF4G and S6 ribosomal protein. mTOR activation was detected in vivo and was further increased in vitro by stimulation with interleukin-7, a potentially leukemogenic cytokine normally produced by the bone marrow microenvironment. In T-ALL cells, mTOR blockade was associated with accumulation of the cyclin-dependent kinase inhibitor p27(kip1), which preferentially adopted a nuclear localization. Functional studies using rapamycin or CCI-779 showed a dominant inhibitory effect of mTOR blockade on interleukin-7-induced proliferation, survival, and cell-cycle progression of T-ALL cells. Furthermore, mTOR blockade markedly potentiated the antileukemia effects of dexamethasone and doxorubicin, and showed highly synergistic interactions in combination with specific inhibitors of phosphatidylinositol 3-kinase/Akt and Janus kinase 3 signaling. CONCLUSIONS This study shows activation of mTOR signaling in primary T-ALL cells evolving in the leukemic bone marrow, and supports the inclusion of mTOR antagonists in current therapeutic regimens for this cancer.
Collapse
Affiliation(s)
- Ana Batista
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass., USA
| | | | | | | | | | | | | |
Collapse
|
21
|
CCR9 interactions support ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a PI3K-dependent and FAK-independent fashion. J Ovarian Res 2010; 3:15. [PMID: 20565782 PMCID: PMC2914045 DOI: 10.1186/1757-2215-3-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/17/2010] [Indexed: 02/01/2023] Open
Abstract
Background Cisplatin is more often used to treat ovarian cancer (OvCa), which provides modest survival advantage primarily due to chemo-resistance and up regulated anti-apoptotic machineries in OvCa cells. Therefore, targeting the mechanisms responsible for cisplatin resistance in OvCa cell may improve therapeutic outcomes. We have shown that ovarian cancer cells express CC chemokine receptor-9 (CCR9). Others have also shown that CCL25, the only natural ligand for CCR9, up regulates anti-apoptotic proteins in immature T lymphocytes. Hence, it is plausible that CCR9-mediated cell signals might be involved in OvCa cell survival and inhibition of cisplatin-induced apoptosis. In this study, we investigated the potential role and molecular mechanisms of CCR9-mediated inhibition of cisplatin-induced apoptosis in OvCa cells. Methods Cell proliferation, vibrant apoptosis, and TUNEL assays were performed with or without cisplatin treatment in presence or absence of CCL25 to determine the role of the CCR9-CCL25 axis in cisplatin resistance. In situ Fast Activated cell-based ELISA (FACE) assays were performed to determine anti-apoptotic signaling molecules responsible for CCL25-CCR9 mediated survival. Results Our results show interactions between CCR9 and CCL25 increased anti-apoptotic signaling cascades in OvCa cells, which rescued cells from cisplatin-induced cell death. Specifically, CCL25-CCR9 interactions mediated Akt, activation as well as GSK-3β and FKHR phosphorylation in a PI3K-dependent and FAK-independent fashion. Conclusions Our results suggest the CCR9-CCL25 axis plays an important role in reducing cisplatin-induced apoptosis of OvCa cells.
Collapse
|
22
|
Abstract
Chemokines constitute a large family of low-molecular-weight proteins ( approximately 10 kDa in size), recognized primarily for their role in directing leukocyte migration under both homeostatic and inflammatory settings. The chemokine CCL25 displays a unique and highly restricted expression pattern compared with other chemokine family members. In the steady state, CCL25 is expressed at high levels primarily in the thymus and small intestine, while its sole functional receptor, CCR9, is expressed on subsets of developing thymocytes and intestinal lymphocytes. Mice that are deficient in CCR9 show relatively normal thymocyte development; however, in competitive transfer experiments, CCR9(-/-) bone-marrow cells are severely disadvantaged in their ability to generate mature T cells compared with wildtype cells. Indeed, expression data and analysis of genetically modified mice suggest that CCL25/CCR9 may be involved in multiple stages of thymocyte development. Recent in vivo studies have demonstrated a role for CCL25/CCR9 in mediating lymphocyte recruitment to the small intestine and in the development of the small intestinal T-cell receptor-gammadelta T-cell compartment. Finally, CCL25 is expressed in the small intestine of Crohn's disease patients and, in certain inflammatory conditions, outside the small intestine. Together, these results suggest an important role for CCL25/CCR9 in T-cell development and small intestinal immunity and suggest that targeting the CCL25/CCR9 pathway may provide a means to modulate small intestinal immune responses.
Collapse
|
23
|
Ezrin is a key molecule in the metastasis of MOLT4 cells induced by CCL25/CCR9. Leuk Res 2010; 34:769-76. [DOI: 10.1016/j.leukres.2009.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 11/07/2009] [Accepted: 11/25/2009] [Indexed: 11/17/2022]
|
24
|
Abstract
IMPORTANCE OF THE FIELD The chemokine network, comprised of mediators of inflammation, has been implicated in the development of a number of human cancers. The eosinophil chemoattractant CCL11 was recently shown to play a role in the development of ovarian cancer. Here we review findings regarding CCL11 and discuss its use as a target in the treatment of ovarian cancer. AREAS COVERED IN THIS REVIEW We review published findings related to the physiological actions of CCL11, its tumourigenic effects, the chemokine network and inflammatory response present in ovarian cancer, and the current state of therapeutics targeting CCL11 and its receptors. Findings published within the last 10 years receive particular attention. WHAT THE READER WILL GAIN An overview of the emerging role of the chemokine network in malignancy and a review of the role of CCL11 in ovarian tumourigenesis. The reader will be presented with a description of the unique aspects of CCL11 action and the inflammatory environment in the setting of ovarian malignancy that make this chemokine an attractive target for intervention. TAKE HOME MESSAGE Targeting CCL11 and its receptors through the use of monoclonal antibodies and small-molecule inhibitors may represent a beneficial new avenue of ovarian cancer treatment.
Collapse
Affiliation(s)
- Brian M Nolen
- University of Pittsburgh, Cancer Institute, Hillman Cancer Center, Suite 1.19d, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
25
|
Levina V, Nolen BM, Marrangoni AM, Cheng P, Marks JR, Szczepanski MJ, Szajnik ME, Gorelik E, Lokshin AE. Role of eotaxin-1 signaling in ovarian cancer. Clin Cancer Res 2009; 15:2647-56. [PMID: 19351767 PMCID: PMC2669845 DOI: 10.1158/1078-0432.ccr-08-2024] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Tumor cell growth and migration can be directly regulated by chemokines. In the present study, the association of CCL11 with ovarian cancer has been investigated. EXPERIMENTAL DESIGN AND RESULTS Circulating levels of CCL11 in sera of patients with ovarian cancer were significantly lower than those in healthy women or women with breast, lung, liver, pancreatic, or colon cancer. Cultured ovarian carcinoma cells absorbed soluble CCL11, indicating that absorption by tumor cells could be responsible for the observed reduction of serum level of CCL11 in ovarian cancer. Postoperative CCL11 levels in women with ovarian cancer negatively correlated with relapse-free survival. Ovarian tumors overexpressed three known cognate receptors of CCL11, CC chemokine receptors (CCR) 2, 3, and 5. Strong positive correlation was observed between expression of individual receptors and tumor grade. CCL11 potently stimulated proliferation and migration/invasion of ovarian carcinoma cell lines, and these effects were inhibited by neutralizing antibodies against CCR2, CCR3, and CCR5. The growth-stimulatory effects of CCL11 were likely associated with activation of extracellular signal-regulated kinase 1/2, MEK1, and STAT3 phosphoproteins and with increased production of multiple cytokines, growth factors, and angiogenic factors. Inhibition of CCL11 signaling by the combination of neutralizing antibodies against the ligand and its receptors significantly increased sensitivity to cisplatin in ovarian carcinoma cells. CONCLUSION We conclude that CCL11 signaling plays an important role in proliferation and invasion of ovarian carcinoma cells and CCL11 pathway could be targeted for therapy in ovarian cancer. Furthermore, CCL11 could be used as a biomarker and a prognostic factor of relapse-free survival in ovarian cancer.
Collapse
Affiliation(s)
- Vera Levina
- University of Pittsburgh Cancer Institute, Department of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Qin S, Sui Y, Murphey-Corb MA, Reinhart TA. Association between decreased CXCL12 and CCL25 expression and increased apoptosis in lymphoid tissues of cynomolgus macaques during SIV infection. J Med Primatol 2009; 37 Suppl 2:46-54. [PMID: 19187430 DOI: 10.1111/j.1600-0684.2008.00327.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chemokines likely play multiple roles in HIV-1 and SIV pathogenesis. To examine potential associations between chemokine expression levels and apoptosis of cells in lymphoid tissues during SIV infection, we measured chemokine and cytokine mRNA levels in multiple lymphoid tissues compartments from uninfected and SIV-infected cynomolgus macaques (Macaca fascicularis). METHODS Real-time RT-PCR was used to measure host mRNA levels in macaque lymphoid tissues. Proliferating or apoptotic cells were identified in lymphoid tissues by immunohistochemistry. RESULTS We found that CXCL12 and CCL25 mRNAs in SIV-infected lymphoid tissues were decreased and their levels were negatively correlated with the numbers of proliferating and apoptotic cells. In vitro analyses revealed that CXCL12 and CCL25 were capable of reducing apoptosis induced by SIV infection. CONCLUSIONS These findings suggest that increased apoptosis in lymphoid tissues due to reduced levels of anti-apoptotic chemokines might be a mechanism that contributes to loss of immune function following pathogenic SIV infection.
Collapse
Affiliation(s)
- Shulin Qin
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Chemokines are small chemoattractant cytokines involved in homeostatic and inflammatory immune cell migration. These small proteins have multiple functional properties that extend beyond their most recognized role in controlling cellular migration. The complex immunobiology of chemokines, coupled with the use of subsets of chemokine receptors as HIV-1 and SIV entry co-receptors, suggests that these immunomodulators could play important roles in the pathogenesis associated with infection by HIV-1 or SIV. This review provides an overview of the effects of pathogenic infection on chemokine expression in the SIV/macaque model system, and outlines potential mechanisms by which changes in these expression profiles could contribute to development of disease. Key challenges faced in studying chemokine function in vivo and new opportunities for further study and development of therapeutic interventions are discussed. Continued growth in our understanding of the effects of pathogenic SIV infection on chemokine expression and function and the continuing development of chemokine receptor targeted therapeutics will provide the tools and the systems necessary for future studies of the roles of chemokines in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Todd A Reinhart
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA.
| | | | | |
Collapse
|
28
|
Liu HB, Kong CZ, Zeng Y, Liu XK, Bi JB, Jiang YJ, Han S. Livin may serve as a marker for prognosis of bladder cancer relapse and a target of bladder cancer treatment. Urol Oncol 2008; 27:277-83. [PMID: 18555709 DOI: 10.1016/j.urolonc.2008.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To evaluate the expression of Livin in bladder cancer, investigate its clinical and prognostic implications, and explore the effect of gene Livin transfection on the proliferation and apoptosis in bladder cancer cells. METHODS The expression of Livinalpha and beta was detected in 48 bladder cancer samples (G(1) in 23 cases, G(2) in 17 cases, and G(3) in 8 cases. Of the 48 cases, 17 developed relapse) and 15 non-tumor bladder tissues by Western blot and reverse transcription PCR (RT-PCR). Livinalpha-pcDNA3.1(+) was constructed and transfected into T24, BIU-87 and EJ bladder cancer cells. The clone activity of the transfected cells was detected by colony formation analysis. MTT was used to determine the cell proliferation assay. Flow cytometry and acridine orange staining were used to examine apoptosis. Caspase 3 activity assay was also measured. RESULTS Expression of Livinalpha, but not beta, was detected in 19 of the 48 bladder cancer samples; G(1) was 39.13%, G(2) and G(3) were 41.18% and 37.50%, respectively, which showed no significant (P > 0.05), but not in 15 non-tumor bladder tissues. The positive rate of Livinalpha was significant higher in relapse tumors (58.82%) than in primary tumors (29.03%) (P < 0.05). By the end of 2 years follow-up, the relapse rate in Livin positive patients was 68.42%, and 37.93% in Livin negative group. The difference between the two groups was significant (P < 0.05). Additionally, overexpression of Livinalpha clearly stimulated cell proliferation and inhibited chemical induced apoptosis in bladder cancer cells. CONCLUSIONS Livin may serve as a promising marker to identify the relapse risk in bladder cancer, and targeting Livin could offer a therapeutic benefit in apoptosis-inducing treatment.
Collapse
Affiliation(s)
- Hai-Bo Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang X, Yuling H, Yanping J, Xinti T, Yaofang Y, Feng Y, Ruijin X, Li W, Lang C, Jingyi L, Zhiqing T, Jingping O, Bing X, Li Q, Chang AE, Sun Z, Youxin J, Jinquan T. CCL19 and CXCL13 synergistically regulate interaction between B cell acute lymphocytic leukemia CD23+CD5+ B Cells and CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:2880-8. [PMID: 17709502 DOI: 10.4049/jimmunol.179.5.2880] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interacting with T cells, cytokine-producing B cells play a critical protective role in autoimmune diseases. However, the interaction between malignant B and T cells remains to be fully elucidated. In a previous study, we have reported that ligation of CCL19-CCR7 and CXCL13-CXCR5 activates paternally expressed gene 10 (PEG10), resulting in an enhancement of apoptotic resistance in B-cell acute lymphocytic leukemia (B-ALL) CD23+CD5+ B cells. Here, we report that B-ALL CD23+CD5+ B cells produce IL-10 at high level, which can be further elevated by costimulation with CCL19 and CXCL13. CCL19/CXCL13-activated B-ALL CD23+CD5+ B cells, in turn, increase IL-10 expression in syngeneic CD8+ T cells in a B cell-derived IL-10-dependent manner and requiring a cell-cell contact. IL-10 secreted from B-ALL CD23+CD5+ B cells in vitro impairs tumor-specific CTL responses of syngeneic CD8+ T cells. The impairment of cytotoxicity of syngeneic CD8+ T cells is escalated by means of CCL19/CXCL13-induced up-regulation of IL-10 from B-ALL CD23+CD5+ B cells. Moreover, using a short hairpin RNA to knockdown PEG10, we provide direct evidence that increased expression of PEG10 in B-ALL CD23+CD5+ B cells is involved in malignant B-T cell interaction, contributing to the up-regulation of IL-10 expression, as well as to the impairment of cytotoxicity of syngeneic CD8+ T cells. Thus, malignant B-ALL CD23+CD5+ B cells play an immunoregulatory role in controlling different inflammatory cytokine expressions. IL-10 may be one of the critical cellular factors conferring B-ALL CD23+CD5+ B cells to escape from host immune surveillance.
Collapse
Affiliation(s)
- Xingbing Wang
- Department of Hematology, Anhui Medical University Affiliated Provincial Hospital, Hefei, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nagakubo D, Jin Z, Hieshima K, Nakayama T, Shirakawa AK, Tanaka Y, Hasegawa H, Hayashi T, Tsukasaki K, Yamada Y, Yoshie O. Expression of CCR9 in HTLV-1+ T cells and ATL cells expressing Tax. Int J Cancer 2007; 120:1591-7. [PMID: 17205512 DOI: 10.1002/ijc.22483] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adult T-cell leukemia (ATL) is a highly aggressive mature CD4+ T-cell malignancy that is etiologically associated with human T-lymphotropic virus Type 1 (HTLV-1). ATL is characterized by frequent infiltration of lymph nodes, spleen, liver, skin and gut. Previously, we and others have shown that the majority of ATL cases are strongly positive for CCR4, which may explain the frequent skin invasion of ATL. Here, we examined whether ATL cells express CCR9, which is involved in T-cell homing to the gastrointestinal tract. Human T cell lines carrying HTLV-1 consistently expressed CCR9 together with the HTLV-1-encoded transcriptional activator Tax. Although ATL cells freshly isolated from peripheral blood hardly expressed CCR9, ATL cells cultured for 1 day consistently expressed CCR9 in parallel with the upregulation of Tax. Induction of Tax by Cd2+ in JPX-9, a subline of Jurkat human T cell line carrying Tax under the control of metallothionein promoter, led to upregulation of CCR9. A luciferase reporter gene under the control of the CCR9 promoter was expressed by cotransfection of an expression vector for Tax or in Cd2+-treated JPX-9 cells. Furthermore, immunohistochemical staining demonstrated that ATL cells infiltrating gastrointestinal tract were frequently positive for CCR9. Collectively, CCR9 is inducible in ATL cells expressing Tax and may play a role in the gastrointestinal involvement of ATL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cell Line, Transformed/metabolism
- Cell Line, Transformed/pathology
- Cell Line, Transformed/virology
- Female
- Gastrointestinal Neoplasms/metabolism
- Gastrointestinal Neoplasms/pathology
- Gene Expression Regulation
- Gene Products, tax/genetics
- Gene Products, tax/metabolism
- Human T-lymphotropic virus 1/genetics
- Humans
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Luciferases/metabolism
- Male
- Middle Aged
- Promoter Regions, Genetic/genetics
- Receptors, CCR
- Receptors, CCR4
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- T-Lymphocytes/virology
- Transcription, Genetic
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Tumor Cells, Cultured/virology
Collapse
Affiliation(s)
- Daisuke Nagakubo
- Department of Microbiology and SORST, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chunsong H, Yuling H, Li W, Jie X, Gang Z, Qiuping Z, Qingping G, Kejian Z, Li Q, Chang AE, Youxin J, Jinquan T. CXC Chemokine Ligand 13 and CC Chemokine Ligand 19 Cooperatively Render Resistance to Apoptosis in B Cell Lineage Acute and Chronic Lymphocytic Leukemia CD23+CD5+B Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:6713-22. [PMID: 17082584 DOI: 10.4049/jimmunol.177.10.6713] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CXCL13/CXCR5 and CCL19/CCR7 play a quite important role in normal physiological conditions, but the functions of both chemokine/receptor pairs in pathophysiological events are not well-investigated. We have investigated expression and functions of CXCL13/CXCR5 and CCL19/CCR7 in CD23+CD5+ and CD23+CD5- B cells from cord blood (CB) and patients with B cell lineage acute or chronic lymphocytic leukemia (B-ALL or B-CLL). CXCR5 and CCR7 are selectively expressed on B-ALL, B-CLL, and CB CD23+CD5+ B cells at high frequency, but not on CD23+CD5- B cells. Although no significant chemotactic responsiveness was observed, CXCL13 and CCL19 cooperatively induce significant resistance to TNF-alpha-mediated apoptosis in B-ALL and B-CLL CD23+CD5+ B cells, but not in the cells from CB. B-ALL and B-CLL CD23+CD5+ B cells express elevated levels of paternally expressed gene 10 (PEG10). CXCL13 and CCL19 together significantly up-regulate PEG10 expression in the same cells. We have found that CXCL13 and CCL19 together by means of activation of CXCR5 and CCR7 up-regulate PEG10 expression and function, subsequently stabilize caspase-3 and caspase-8 in B-ALL and B-CLL CD23+CD5+ B cells, and further rescue the cells from TNF-alpha-mediated apoptosis. Therefore, we suggest that normal lymphocytes, especially naive B and T cells, use CXCL13/CXCR5 and CCL19/CCR7 for migration, homing, maturation, and cell homeostasis as well as secondary lymphoid tissues organogenesis. In addition, certain malignant cells take advantages of CXCL13/CXCR5 and CCL19/CCR7 for infiltration, resistance to apoptosis, and inappropriate proliferation.
Collapse
MESH Headings
- Apoptosis/immunology
- Apoptosis Regulatory Proteins
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/pathology
- CD5 Antigens/biosynthesis
- Cell Lineage/immunology
- Chemokine CCL19
- Chemokine CXCL13
- Chemokines, CC/physiology
- Chemokines, CXC/physiology
- DNA-Binding Proteins
- Fetal Blood/cytology
- Fetal Blood/immunology
- Fetal Blood/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Count
- Proteins/metabolism
- Proteins/physiology
- RNA-Binding Proteins
- Receptors, CCR7
- Receptors, CXCR5
- Receptors, Chemokine/biosynthesis
- Receptors, IgE/biosynthesis
Collapse
Affiliation(s)
- Hu Chunsong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hanson JC, Bostick MK, Campe CB, Kodali P, Lee G, Yan J, Maher JJ. Transgenic overexpression of interleukin-8 in mouse liver protects against galactosamine/endotoxin toxicity. J Hepatol 2006; 44:359-67. [PMID: 16168518 DOI: 10.1016/j.jhep.2005.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 06/08/2005] [Accepted: 06/08/2005] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIMS CXC chemokines function as survival factors for several types of cells. In this study, we investigated whether CXC chemokines promote survival of liver cells following an apoptotic stimulus in vivo. METHODS Apoptosis was induced in mouse liver by treatment with galactosamine and endotoxin (Gal/ET). The influence of CXC chemokines was investigated by comparing Gal/ET responses in wild-type (WT) mice to those in mice with a transgene encoding the CXC chemokine interleukin-8 (IL-8 TG). RESULTS IL-8 TG mice displayed less apoptosis and better survival after Gal/ET treatment than did WT mice (60% fewer TUNEL-positive cells at 6 h; 36% better survival at 24 h). Gal/ET toxicity was also preventable in WT mice by pre-treatment with IL-8. Notably, IL-8 was not protective against hepatic apoptosis due to anti-Fas or concanavalin A. In Gal/ET-treated mice, IL-8 promoted liver cell survival by interfering with the mitochondrial pathway of apoptosis. Survival was not attributable to activation of NF-kappaB or up-regulation of anti-apoptotic proteins, but coincided instead with activation of Akt and phosphorylation of the pro-apoptotic protein Bad. CONCLUSIONS IL-8 protects liver cells from Gal/ET-mediated apoptosis by signaling through phosphatidylinositol-3 kinase (PI-3K). This is in keeping with the reported mechanism of chemokine-related survival in other tissues.
Collapse
Affiliation(s)
- Jennifer C Hanson
- Liver Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
FLIP is an antiapoptotic protein that has been demonstrated to play an important role in inflammation, cancer, and autoimmune diseases. However, it is not known whether increased expression of FLIP (FLICE inhibitory protein) in thyrocytes would alter the development of the thyroid and/or pathogenesis of thyroiditis. To examine the effects of overexpression of this antiapoptotic molecule on the thyroid, we have developed transgenic mouse lines that specifically express FLIP in thyrocytes. A DNA construct designed with an in-frame coding sequence for the E8 protein, a viral FLIP, was put under the control of the thyroglobulin (Tg) promoter (the Tg-FLIP transgene). In 8 of 12 resultant transgenic mouse lines, FLIP expression in thyrocytes driven by the Tg promoter was documented, and confirmed at RNA and protein levels. These Tg-FLIP transgenic mice were monitored for 1 year. Throughout the entire observation period, the transgenic mice remained alive and healthy without evidence of thyroid dysfunction. Adult mice were able to breed. Histologic examination of thyroids obtained at various time points did not reveal significant differences between transgenic mice and their control littermates. Therefore, transgenic mice with thyrocyte-specific expression of FLIP have normal thyroid development with no significant changes in thyroid cell death or proliferation.
Collapse
Affiliation(s)
- Su He Wang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0648, USA
| | | | | | | |
Collapse
|
34
|
Ströbel P, Marino M, Feuchtenberger M, Rouzière AS, Tony HP, Wulbrand U, Förster R, Zettl A, Lee Harris N, Kreipe H, Laeng RH, Müller-Hermelink HK, Marx A. Micronodular thymoma: an epithelial tumour with abnormal chemokine expression setting the stage for lymphoma development. J Pathol 2005; 207:72-82. [PMID: 15965907 DOI: 10.1002/path.1808] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aetiology of primary B-cell lymphomas of the thymus is enigmatic. Although thymic follicular lymphoid hyperplasia (TFH) is commonly associated with myasthenia gravis (MG), lymphoma is not a complication of this condition. The present paper reports a high frequency of monoclonal B-cell populations (6 of 18 cases; 33%) in micronodular thymoma (MNT), a peculiar thymic epithelial neoplasm with a B-cell-rich stroma, while B cells were consistently polyclonal in TFH (25 cases) and other types of thymomas (15 cases) (p < 0.001). An intratumoural lymphoma could be identified in three of the six monoclonal MNTs. Sequencing of the monoclonal IgH chain revealed partially overlapping VDJ gene usage in MNT and thymic mucosa-associated lymphoid tissue (MALT) lymphomas. The neoplastic epithelium of MNTs, but not of TFH and other types of thymoma, expressed high levels of dendritic cell, T-cell, and B-cell chemoattractants, such as CCL18, CCR6, and CCL20. It is concluded that abnormal chemokine expression in an epithelial tumour, MNT, can promote the recruitment of MALT, the emergence of monoclonal B cells, and, eventually, the subsequent development of mediastinal lymphomas. More generally, the concept that expression of a 'high-risk' spectrum of chemokines due to local or genetic factors may interfere with B-cell homeostasis and may contribute to MALT lymphoma development in chronic inflammatory states is proposed.
Collapse
|
35
|
Murakami T, Cardones AR, Hwang ST. Chemokine receptors and melanoma metastasis. J Dermatol Sci 2005; 36:71-8. [PMID: 15519136 DOI: 10.1016/j.jdermsci.2004.03.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 03/02/2004] [Indexed: 01/17/2023]
Abstract
Cancer metastasis is the end result of a complex series of biologic events that leads to the formation of clinically significant secondary tumors at distant sites. The sites of distant metastasis are not random since certain tumors show a tendency to develop metastases in specific organs. Human melanoma, for example, demonstrates frequent metastasis to brain, lungs, lymph nodes, and skin. Herein, we review the evidence that suggests that a limited number of chemokine receptors may play critical roles in determining organ-selective metastasis in melanoma by regulating diverse processes such as chemoattraction, adhesion, and survival. In particular, we describe roles for CC chemokine receptor 7 (CCR7) in lymph node metastasis, CXC chemokine receptor 4 (CXCR4) in pulmonary metastasis, and CCR10 in skin metastasis, using a mouse model of melanoma. Preliminary evidence in this preclinical model suggests that inhibiting the function of these receptors may decrease the ability of cancer cells to disseminate to other sites and/or block their ability to survive and form tumors. Therefore, manipulation of the chemokine network could have therapeutic potential in human malignancies.
Collapse
Affiliation(s)
- Takashi Murakami
- Division of Organ Replacement Research, Center for Molecular Medicine, Jichi Medical School, Tochigi 329-0498, Japan
| | | | | |
Collapse
|
36
|
Qiuping Z, Jie X, Youxin J, Qun W, Wei J, Chun L, Jin W, Yan L, Chunsong H, Mingzhen Y, Qingping G, Qun L, Kejian Z, Zhimin S, Junyan L, Jinquan T. Selectively frequent expression of CXCR5 enhances resistance to apoptosis in CD8(+)CD34(+) T cells from patients with T-cell-lineage acute lymphocytic leukemia. Oncogene 2005; 24:573-84. [PMID: 15580304 DOI: 10.1038/sj.onc.1208184] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We investigated CD4(+)CD34(+), CD8(+)CD34(+), CD4(+)CD34(-), and CD8(+)CD34(-) T cells from cord blood and from typical patients with T-cell-lineage acute lymphocytic leukemia and T-cell-lineage chronic lymphocytic leukemia in terms of expression and functions of CXCR5/CXCL13. We found that CXCR5 was selectively frequently expressed on T-cell-lineage acute (chronic) lymphocytic leukemia (T-ALL) CD8(+)CD34(+) T cells, but not on T-ALL CD4(+)CD34(+), CD4(+)CD34(-), and CD8(+)CD34(-) T cells. CXCR5 was rarely expressed on all types of CD34(+) and CD34(-) CB or T-CLL T cells. CXCL13/B cells attracting chemokine 1 induced significant resistance to TNF-alpha-mediated apoptosis in T-ALL CD8(+)CD34(+) T cells, instead of induction of chemotactic and adhesive responsiveness. A proliferation-inducing ligand expression in T-ALL CD8(+)CD34(+) T cells was upregulated by CXCL13/BCA-1 (B-cell attracting chemokine 1). The CXCR5/CXCL13 pair by means of activation of APRIL (A proliferation-inducing ligand) induced resistance to apoptosis in T-ALL CD8(+)CD34(+) T cells in livin-dependent manner. In this process, cell-cell contact in culture was necessary. Based on our findings, we suggested that there were differential functions of CXCR5/CXCL13 in distinct types of cells. Normal lymphocytes, especially naive B and T cells, utilized CXCR5/CXCL13 for migration, homing, maturation, and cell homeostasis, as well as secondary lymphoid tissue organogenesis. Meanwhile, certain malignant cells took advantages of CXCR5/CXCL13 for infiltration, resistance to apoptosis, and inappropriate proliferation.
Collapse
Affiliation(s)
- Zhang Qiuping
- Department of Immunology, Institute of Allergy and Immune-related Diseases, Centre for Medical Research, Wuhan University School of Medicine, Wuhan University, Dong Hu Road 115, Wuchang, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Qiuping Z, Jei X, Youxin J, Wei J, Chun L, Jin W, Qun W, Yan L, Chunsong H, Mingzhen Y, Qingping G, Kejian Z, Zhimin S, Qun L, Junyan L, Jinquan T. CC Chemokine Ligand 25 Enhances Resistance to Apoptosis in CD4+ T Cells from Patients with T-Cell Lineage Acute and Chronic Lymphocytic Leukemia by Means of Livin Activation. Cancer Res 2004; 64:7579-87. [PMID: 15492285 DOI: 10.1158/0008-5472.can-04-0641] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated CD4 and CD8 double-positive thymocytes, CD4(+) T cells from typical patients with T-cell lineage acute lymphocytic leukemia (T-ALL) and T cell lineage chronic lymphocytic leukemia (T-CLL), and MOLT4 T cells in terms of CC chemokine ligand 25 (CCL25) functions of induction of resistance to tumor necrosis factor alpha (TNF-alpha)-mediated apoptosis. We found that CCL25 selectively enhanced resistance to TNF-alpha-mediated apoptosis in T-ALL and T-CLL CD4(+) T cells as well as in MOLT4 T cells, but CD4 and CD8 double-positive thymocytes did not. One member protein of the inhibitor of apoptosis protein (IAP) family, Livin, was selectively expressed in the malignant cells at higher levels, particularly in T-ALL CD4(+) T cells, in comparison with the expression in CD4 and CD8 double-positive thymocytes. After stimulation with CCL25 and apoptotic induction with TNF-alpha, the expression levels of Livin in these malignant cells were significantly increased. CCL25/thymus-expressed chemokine (TECK), by means of CC chemokine receptor 9 (CCR9) ligation, selectively activated Livin to enhance resistance to TNF-alpha-mediated apoptosis in c-jun-NH(2)-kinase 1 (JNK1) kinase-dependent manner. These findings suggested differential functions of CCR9/CCL25 in distinct types of cells. CD4 and CD8 double-positive thymocytes used CCR9/CCL25 for migration, homing, development, maturation, selection, cell homeostasis, whereas malignant cells, particularly T-ALL CD4(+) T cells, used CCR9/CCL25 for infiltration, resistance to apoptosis, and inappropriate proliferation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Apoptosis/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Division/immunology
- Chemokines, CC/immunology
- Humans
- Inhibitor of Apoptosis Proteins
- Leukemia, Prolymphocytic, T-Cell/immunology
- Leukemia, Prolymphocytic, T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Mitogen-Activated Protein Kinase 8/immunology
- Mitogen-Activated Protein Kinase 8/metabolism
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Receptors, CCR
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Zhang Qiuping
- Department of Immunology, and Laboratory of Allergy and Clinical Immunology, Institute of Allergy and Immune-related Diseases and Center for Medical Research, Wuhan University School of Medicine, Wuhan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schmitz I, Weyd H, Krueger A, Baumann S, Fas SC, Krammer PH, Kirchhoff S. Resistance of short term activated T cells to CD95-mediated apoptosis correlates with de novo protein synthesis of c-FLIPshort. THE JOURNAL OF IMMUNOLOGY 2004; 172:2194-200. [PMID: 14764686 DOI: 10.4049/jimmunol.172.4.2194] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the early phase of an immune response, T cells are activated and acquire effector functions. Whereas these short term activated T cells are resistant to CD95-mediated apoptosis, activated T cells in prolonged culture are readily sensitive, leading to activation-induced cell death and termination of the immune response. The translation inhibitor, cycloheximide, partially overcomes the apoptosis resistance of short term activated primary human T cells. Using this model we show in this study that sensitization of T cells to apoptosis occurs upstream of mitochondria. Neither death-inducing signaling complex formation nor expression of Bcl-2 proteins is altered in sensitized T cells. Although the caspase-8 inhibitor c-FLIP(long) was only slightly down-regulated in sensitized T cells, c-FLIP(short) became almost undetectable. This correlated with caspase-8 activation and apoptosis. These data suggest that c-FLIP(short), rather than c-FLIP(long), confers resistance of T cells to CD95-mediated apoptosis in the context of immune responses.
Collapse
Affiliation(s)
- Ingo Schmitz
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Underhill GH, Kolli KP, Kansas GS. Complexity within the plasma cell compartment of mice deficient in both E- and P-selectin: implications for plasma cell differentiation. Blood 2003; 102:4076-83. [PMID: 12881311 DOI: 10.1182/blood-2003-03-0947] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody-secreting plasma cells represent the critical end-stage effector cells of the humoral immune response. Here, we show that several distinct plasma cell subsets are concurrently present in the lymph nodes, spleen, and bone marrow of mice deficient in both E- and P-selectin. One of these subsets was a B220-negative immunoglobulin g (IgG) plasma cell population expressing low to negative surface levels of syndecan-1. Examination of the chemotactic responsiveness of IgG plasma cell subsets revealed that migration toward stromal cell-derived factor 1/CXC ligand 12 (SDF-1/CXCL12) was primarily limited to the B220-lo subset regardless of tissue source. Although B220-negative plasma cells did not migrate efficiently in response to CXCL12 or to other chemokines for which receptor mRNA was expressed, these cells expressed substantial surface CXC chemokine receptor-4 (CXCR4), and CXCL12 stimulation rapidly induced extracellular signal regulated kinase 1 (ERK1)/ERK2 phosphorylation, demonstrating that CXCR4 retained signaling capacity. Therefore, B220-negative plasma cells exhibit a selective uncoupling of chemokine receptor expression and signaling from migration. Taken together, our findings document the presence of significant heterogeneity within the plasma cell compartment, which suggests a complex step-wise scheme of plasma cell differentiation in which the degree of differentiation and tissue location can influence the chemotactic responsiveness of IgG plasma cells.
Collapse
Affiliation(s)
- Gregory H Underhill
- Department of Microbiology-Immunology, Northwestern Medical School, 303 E Chicago Ave, Chicago, IL 60611, USA
| | | | | |
Collapse
|
40
|
Abstract
Chemokines play a central role in regulating leukocyte migration. The recently discovered CC chemokine ligand 27 (CCL27), through interaction with its cognate receptor, CC chemokine receptor 10 (CCR10), appears to be involved in attracting a subset of memory T cells to the skin during some cutaneous inflammatory responses. Strangely, CCL27 can also be produced as a non-secreted form, as a result of alternative splicing. This protein, termed PESKY, is targeted to the nucleus where it is able to modulate transcription and alter cell morphology. Specifically, PESKY induces a rearrangement of the actin cytoskeleton, manifest by the disruption of stress fibres. This consequently enhances cell motility. Surprisingly, secreted CCL27 can also reach the nucleus after CCR10-mediated internalisation, where it may also be capable of directly modulating transcription to alter cell behaviour. This review will discuss these unprecedented findings.
Collapse
Affiliation(s)
- Robert J B Nibbs
- The Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| | | |
Collapse
|
41
|
Spinetti G, Bernardini G, Camarda G, Mangoni A, Santoni A, Capogrossi MC, Napolitano M. The chemokine receptor CCR8 mediates rescue from dexamethasone-induced apoptosis via an ERK-dependent pathway. J Leukoc Biol 2003; 73:201-7. [PMID: 12525579 DOI: 10.1189/jlb.0302105] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Several chemokines have been shown to regulate cellular apoptosis following discrete stimuli. It was previously demonstrated that the CC chemokine CCL1 (I-309) rescues thymic lymphoma cells from apoptosis by unknown mechanisms. The aim of our study was to characterize the role of the CC chemokine receptor 8 (CCR8), the only described receptor for CCL1, in the rescue of murine thymic lymphoma cells and murine thymocytes from dexamethasone (dex)-induced apoptosis. We show here that the CCR8-restricted agonist Kaposi sarcoma-associated herpesvirus-encoded chemokine viral macrophage-inflammatory protein-1 (vMIP-1) rescues thymic lymphoma cells from dex-induced apoptosis, similar to CCL1, and that such rescue is extracellular-regulated kinase-dependent. Although it has been hypothesized that the rescuing effect of CCL1 from apoptosis could be CCR8-mediated, here, we formally demonstrate the role of such receptor as its selective antagonist encoded by the MC148 gene of molluscum contagiosum virus MC148/vMCC-I inhibits v-MIP-1- and CCL1-induced rescue activity. In addition, CCR8 ligands inhibit dex-induced apoptosis of murine thymocytes with potential implications for thymic selection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Monti di Creta 104, 00167 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Marsal J, Svensson M, Ericsson A, Iranpour AH, Carramolino L, Márquez G, Agace WW. Involvement of CCL25 (TECK) in the generation of the murine small-intestinal CD8alpha alpha+CD3+ intraepithelial lymphocyte compartment. Eur J Immunol 2002; 32:3488-97. [PMID: 12442331 DOI: 10.1002/1521-4141(200212)32:12<3488::aid-immu3488>3.0.co;2-e] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The CC chemokine CCL25 (TECK) is selectively expressed in the thymus and small intestine, indicating a potential role in T lymphocyte development. In the present study we examined the role of CCL25 in the generation of the small-intestinal CD8alpha alpha(+)CD3(+) intraepithelial lymphocyte (IEL) compartment. CCL25 mRNA expression in the murine small intestine increased at three weeks of age and corresponded with the appearance of CD8alpha alpha(+)CD3(+) lymphocytes in the small-intestinal epithelium. Administration of monoclonal neutralizing anti-CCL25 antibody to two-week-old mice led to a approximately 50% reduction in the total number of CD8alpha alpha(+)TCRgamma delta(+) and CD8alpha alpha(+)TCRalpha beta(+) IEL at four weeks of age. Freshly isolated murine CD8alpha alpha(+)CD3(+) IEL migrated in response to CCL25 and expressed the CCL25 receptor, CCR9. Analysis of CCR9 expression on putative IEL precursor populations demonstrated the presence of both CCR9(-) and CCR9(+) cells and indicated that up-regulation of this receptor occurred during IEL precursor differentiation. Finally, data from wild-type and RAG(-/-) mice suggested that the reduction in CD8alpha alpha(+)CD3(+) IEL in anti-CCL25 antibody treated mice resulted primarily from defective maintenance and/or development of IEL precursors rather than a direct effect on mature CD8alpha alpha(+)CD3(+) IEL.
Collapse
MESH Headings
- Animals
- CD3 Complex/metabolism
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Survival
- Chemokines, CC/antagonists & inhibitors
- Chemokines, CC/genetics
- Chemokines, CC/metabolism
- Chemotaxis, Leukocyte
- Epithelial Cells/cytology
- Epithelial Cells/immunology
- Genes, RAG-1
- Intestine, Small/cytology
- Intestine, Small/immunology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Jan Marsal
- Immunology Section, Department of Cell and Molecular Biology, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Li JH, Kluger MS, Madge LA, Zheng L, Bothwell ALM, Pober JS. Interferon-gamma augments CD95(APO-1/Fas) and pro-caspase-8 expression and sensitizes human vascular endothelial cells to CD95-mediated apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1485-95. [PMID: 12368221 PMCID: PMC1867313 DOI: 10.1016/s0002-9440(10)64424-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have examined the effects of interferon (IFN)-gamma on expression and function of CD95 (APO-1/Fas) and associated proteins in cultured human umbilical vein and dermal microvascular endothelial cells (HUVEC and HDMEC, respectively). Unstimulated cells express only low levels of CD95; IFN-gamma produces a time- and concentration-dependent increase of CD95 in both cell types at the mRNA and cell surface protein levels. IFN-gamma also produces an increase in expression of pro-caspase-8 (FLICE/MACH) but does not significantly change expression of either Fas-associated death domain (FADD) protein or cellular FLICE inhibitory protein (cFLIP), other proteins associated with the CD95 death-inducing signaling complex (DISC). Neither resting nor IFN-gamma-treated EC express detectable CD95L mRNA or protein. Untreated HUVEC and HDMEC show minimal apoptosis when transduced to express CD95L. Treatment of CD95L-transduced cells with IFN-gamma causes apoptosis within 24 to 36 hours that can be blocked by antagonistic anti-CD95 antibody or by the caspase-inhibitory peptide zVAD-FMK. The extent of apoptosis is increased by co-treatment with either the protein synthesis inhibitor cycloheximide or the phosphatidylinositol 3-kinase inhibitor LY294002. Untransduced HUVEC treated with IFN-gamma also undergo CD95-initiated apoptosis when mixed with CD95L-transduced HUVEC or when incubated with pharmacologically activated cytolytic T lymphocytes. Overexpression of CD95 in HUVEC confers sensitivity to CD95L in the absence of IFN-gamma-treatment. We conclude that IFN-gamma induces sensitivity of endothelium to CD95L-mediated apoptosis, and that this response may result from increased expression of CD95 and/or pro-caspase-8.
Collapse
Affiliation(s)
- Jie Hui Li
- Interdepartmental Program in Vascular Biology and Transplantation, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
44
|
Bauer B, Baier G. Protein kinase C and AKT/protein kinase B in CD4+ T-lymphocytes: new partners in TCR/CD28 signal integration. Mol Immunol 2002; 38:1087-99. [PMID: 12044776 DOI: 10.1016/s0161-5890(02)00011-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cell biological responses appear to involve the complex interaction of T-cell surface receptors, intracellular signaling molecules and the cytoskeleton. Both the serine/threonine protein kinase families protein kinase C (PKC) and protein kinase B or RAC-PK (AKT/PKB) have been implicated in signal transmission leading to activation, differentiation as well as cellular survival of T-lymphocytes. The PKC gene family consists of nine diverse isotypes (PKC alpha, beta, gamma, delta, epsilon, xi, eta, theta; and iota), the AKT/PKB gene family includes three kinases (AKT1/PKB alpha, AKT2/PKB beta, AKT3/PKB gamma). Here, we attempt to summarize the regulation as well as downstream signaling pathways of PKC and AKT/PKB isotypes, that may act additive in TCR/CD28 induced proliferation and survival of peripheral CD4+ T-lymphocytes.
Collapse
Affiliation(s)
- Birgit Bauer
- Institute for Medical Biology and Human Genetics, University of Innsbruck, Schoepfstr. 41, A-6020 Innsbruck, Austria
| | | |
Collapse
|
45
|
Friedrich EB, Sinha S, Li L, Dedhar S, Force T, Rosenzweig A, Gerszten RE. Role of integrin-linked kinase in leukocyte recruitment. J Biol Chem 2002; 277:16371-5. [PMID: 11856758 DOI: 10.1074/jbc.m201240200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemokines modulate leukocyte integrin avidity to coordinate adhesion and subsequent transendothelial migration, although the sequential signaling pathways involved remain poorly characterized. Here we show that integrin-linked kinase (ILK), a 59-kDa serine-threonine protein kinase that interacts principally with beta(1) integrins, is highly expressed in human mononuclear cells and is activated by exposure of leukocytes to the chemokine monocyte chemoattractant protein-1. Biochemical inhibitor studies show that chemokine-triggered activation of ILK is downstream of phosphoinositide 3-kinase. In functional assays under physiologically relevant flow conditions, overexpression of wild-type ILK in human monocytic cells diminishes beta(1) integrin/vascular cell adhesion molecule-1-dependent firm adhesion to human endothelial cells. These data implicate ILK in the dynamic signaling events involved in the regulation of leukocyte integrin avidity for endothelial substrates.
Collapse
Affiliation(s)
- Erik B Friedrich
- Center for Immunology and Inflammatory Diseases, Program in Cardiovascular Gene Therapy, Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
|