1
|
Liu Q, Yang R, Wang D, Liu Q. Role of low-density cholesterol and Interleukin-17 interaction in breast cancer pathogenesis and treatment. Cell Biol Int 2025; 49:139-153. [PMID: 39318044 DOI: 10.1002/cbin.12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Breast cancer (BC) has become the most prevalent cancer worldwide, and further research is being conducted to deepen our understanding of its pathogenesis and treatment. Lipid metabolism disorder is a significant alteration in cancer cells, and the investigation into the role of Interleukin-17 (IL-17) in malignant tumors has emerged as a research focus in recent years. Thus, exploring changes in lipid metabolism and inflammatory factors in BC cells is crucial in identifying potential therapeutic targets. This article summarizes the progress made in the research on the main low-density cholesterol (LDL) transporter and IL-17 in lipid metabolism, and their potential involvement in the development of BC. The article aims to establish a theoretical foundation for the development of BC-related therapies.
Collapse
Affiliation(s)
- Qingqing Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| | - Rongyuan Yang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| | - Dawei Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
- The 1st Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangdong, 510405, China
| | - Qing Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, The 2nd Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, China
| |
Collapse
|
2
|
Liu Y, Zhang K, Cai X, Zhou J, Cai Y, Gu Y, Xia T, Ye J. The role of IL‑17, IFN‑γ, 4‑1BBL and tumour‑infiltrating lymphocytes in the occurrence, development and prognosis of pancreatic cancer. Oncol Lett 2025; 29:88. [PMID: 39677412 PMCID: PMC11638937 DOI: 10.3892/ol.2024.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Immunotherapy has made progress in the treatment of tumours; however, in patients with pancreatic cancer, immunotherapy has not achieved effective results. The present study investigated changes in the immune microenvironment during tumour development and progression, and the relationship between the immune microenvironment and prognosis, to clarify the mechanism of immune escape in pancreatic cancer. A total of 40 patients with pancreatic cancer (including 22 with stage I-II disease and 18 with stage III-IV disease) and 20 patients with chronic pancreatitis were included in the present study. The expression of CD3, CD4, CD8, CD56, IFN-γ, IL-17 and 4-1BBL was assessed by immunohistochemistry, and the mRNA expression levels were detected by reverse transcription-quantitative PCR (RT-qPCR). The clinicopathological characteristics and prognoses of patients with pancreatic cancer were analysed to further explore the role of IL-17, IFN-γ, 4-1BBL and tumour-infiltrating lymphocytes in pancreatic cancer. Notably, the expression levels of CD3, CD8, CD56, IFN-γ and 4-1BBL in patients with stages I-II and III-IV cancer were lower than those in patients with chronic pancreatitis (P<0.05), especially in patients with stage III-IV cancer (P<0.05). In addition, the expression of IL-17 in patients with stages I-II and III-IV cancer was greater than in patients with chronic pancreatitis (P<0.05), especially in patients with stage III-IV cancer (P<0.05). The RT-qPCR results regarding CD3, CD4, CD8, CD56, IFN-γ and IL-17 were almost the same as those obtained from immunohistochemical analysis; however, the mRNA expression levels of 4-1BBL were not significantly different between stages I-II and III-IV. Furthermore, patients with pancreatic cancer with higher expression levels of CD3, CD8, CD56, IFN-γ and 4-1BBL exhibited longer survival, whereas those with higher expression of IL-17 had a shorter survival time. The expression levels of CD3, CD8, CD56, cytokines IL-17 and IFN-γ, and costimulatory molecule 4-1BBL were revealed to be related to the degree of differentiation, Tumour-Node-Metastasis staging and the prognosis of pancreatic cancer, and may serve as novel immunological indicators for evaluating the condition and treatment effectiveness in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| | - Ke Zhang
- Department of Gastroenterology, Affiliated Changshu Hospital of Nantong University, Changshu, Jiangsu 215500, P.R. China
| | - Xiaodi Cai
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jikai Zhou
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yixuan Cai
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yujie Gu
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Tingting Xia
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianxin Ye
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
3
|
Yu CC, Lin HY, Chan MWY, Wu SF, Chiou WY, Lee MS, Chi CL, Lin RI, Hsu FC, Yang HJ, Chen LC, Chew CH, Hung SK. Olaparib enhancing radiosensitization and anti-metastatic effect of oral cancer by targeting IL-17A signal. Cancer Cell Int 2024; 24:373. [PMID: 39529064 PMCID: PMC11552144 DOI: 10.1186/s12935-024-03547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE We tested whether the PARP inhibitor, Olaparib, can effectively enhance radiosensitivity while inhibiting OSCC growth and metastasis in vitro and in vivo. Patient samples were used for survival validation. METHODS The present study investigated the effect of Olaparib and ionizing radiation (IR) on clonogenic, migratory, and invasive ability in human IR-sensitive (OML1) and IR-resistant (OML1-R) OSCC cell lines. We next explored the underlying mechanism with ELISA and a Western blotting assay. Two in vivo mouse models were established to investigate the efficacy of Olaparib combined with radiotherapy (RT) on local tumor growth and lung metastasis. IL-17 A expression was confirmed in tissue specimens of OSCC patients by immunohistochemistry. RESULTS We found that Olaparib, in combination with IR, substantially inhibited cell growth, migration, and invasion in vitro. Mechanistically, the Olaparib treatment significantly reduced the secretion of IL-17 A in irradiated OSCC cells by attenuating NF-κB and p38 activity. Consistently, Olaparib enhanced the radiosensitivity and, with RT, synergistically reduced both tumor growth and lung metastasis in mice. In addition, OSCC patients with high IL-17 A expression were substantially associated with an increased risk of lymph node involvement and worse survival. CONCLUSIONS This study has highlighted that Olaparib displays radiosensitizing and antimetastatic effects by inhibiting the IL-17 A-dependent signal. Remarkably, Olaparib could provide a remarkable anticancer efficacy to improve treatment response in OSCC patients with recurrent/metastatic disease after RT.
Collapse
Affiliation(s)
- Chih-Chia Yu
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualian, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan
- Epigenomics and Human Diseases Research Center, National Chung Cheng University, Min-Hsiung, Chiayi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Fen Wu
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualian, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualian, Taiwan
| | - Chen-Lin Chi
- Department of Pathology, Chiayi Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
| | - Hsuan-Ju Yang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualian, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualian, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, NO2. Min-Sheng Road, Dalin Town, Chia-Yi, Chia-Yi, 62247, Taiwan.
- School of Medicine, Tzu Chi University, Hualian, Taiwan.
| |
Collapse
|
4
|
Ding Z, Chen J, Li B, Ji X. Inflammatory factors and risk of lung adenocarcinoma: a Mendelian randomization study mediated by blood metabolites. Front Endocrinol (Lausanne) 2024; 15:1446863. [PMID: 39257908 PMCID: PMC11384989 DOI: 10.3389/fendo.2024.1446863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common type of lung cancer, and its pathogenesis remains not fully elucidated. Inflammation and metabolic dysregulation are considered to play crucial roles in LUAD development, but their causal relationships and specific mechanisms remain unclear. Methods This study employed a two-sample Mendelian randomization (MR) approach to systematically evaluate the causal associations between 91 circulating inflammatory factors, 1,400 serum metabolites, and LUAD. We utilized LUAD genome-wide association studies (GWAS) data from the FinnGen biobank and GWAS data of metabolites and inflammatory factors from the GWAS catalog to conduct two-sample MR analyses. For the identified key metabolites, we further used mediator MR to investigate their mediating effects in the influence of IL-17A on LUAD and explored potential mechanisms through protein-protein interaction and functional enrichment analyses. Results The MR analyses revealed that IL-17A (OR 0.78, 95%CI 0.62-0.99) was negatively associated with LUAD, while 71 metabolites were significantly associated with LUAD. Among them, ferulic acid 4-sulfate may play a crucial mediating role in the suppression of LUAD by IL-17A (OR 0.87, 95%CI 0.78-0.97). IL-17A may exert its anti-LUAD effects through extensive interactions with genes related to ferulic acid 4-sulfate metabolism (such as SULT1A1, CYP1A1, etc.), inhibiting oxidative stress and inflammatory responses, as well as downstream tumor-related pathways of ferulic acid 4-sulfate (such as MAPK, NF-κB, etc.). Conclusion This study discovered causal associations between IL-17A, multiple serum metabolites, and LUAD occurrence, revealing the key role of inflammatory and metabolic dysregulation in LUAD pathogenesis. Our findings provide new evidence-based medical support for specific inflammatory factors and metabolites as early predictive and risk assessment biomarkers for LUAD, offering important clues for subsequent mechanistic studies and precision medicine applications.
Collapse
Affiliation(s)
- Zheng Ding
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| | - Juan Chen
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| | - Bohan Li
- Department of Urinary Surgery, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| | - Xinyu Ji
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| |
Collapse
|
5
|
Wang Y, Li J, Nakahata S, Iha H. Complex Role of Regulatory T Cells (Tregs) in the Tumor Microenvironment: Their Molecular Mechanisms and Bidirectional Effects on Cancer Progression. Int J Mol Sci 2024; 25:7346. [PMID: 39000453 PMCID: PMC11242872 DOI: 10.3390/ijms25137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs) possess unique immunosuppressive activity among CD4-positive T cells. Tregs are ubiquitously present in mammals and function to calm excessive immune responses, thereby suppressing allergies or autoimmune diseases. On the other hand, due to their immunosuppressive function, Tregs are thought to promote cancer progression. The tumor microenvironment (TME) is a multicellular system composed of many cell types, including tumor cells, infiltrating immune cells, and cancer-associated fibroblasts (CAFs). Within this environment, Tregs are recruited by chemokines and metabolic factors and impede effective anti-tumor responses. However, in some cases, their presence can also improve patient's survival rates. Their functional consequences may vary across tumor types, locations, and stages. An in-depth understanding of the precise roles and mechanisms of actions of Treg is crucial for developing effective treatments, emphasizing the need for further investigation and validation. This review aims to provide a comprehensive overview of the complex and multifaceted roles of Tregs within the TME, elucidating cellular communications, signaling pathways, and their impacts on tumor progression and highlighting their potential anti-tumor mechanisms through interactions with functional molecules.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
| | - Jiazhou Li
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Japan
| |
Collapse
|
6
|
Huang H, Li X, Wu W, Liu C, Shao Y, Wu X, Fu J. Cordycepin Enhances the Therapeutic Efficacy of Doxorubicin in Treating Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:7077. [PMID: 39000182 PMCID: PMC11241178 DOI: 10.3390/ijms25137077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality and poor prognosis. Meanwhile, doxorubicin, a chemotherapeutic agent for triple-negative breast cancer, has poor sensitivity. The objective of this study was to examine the effect of cordycepin on doxorubicin sensitivity and efficacy in the TNBC xenograft model and explore the relevant molecular pathways. The combination of the drugs in nude mice carrying MDA-MB-231 xenografts significantly reduced the volume, size, and weight of xenografts and improved the tumor inhibition rate. The drug combination was significantly more effective than cordycepin or doxorubicin alone, reflecting the fact that cordycepin enhanced the anti-tumor effects of doxorubicin in MDA-MB-231 xenografts. At the same time, the monitoring of several biological parameters failed to detect any obvious side effects associated with this treatment. After predicting the importance of the TNF pathway in inhibiting tumor growth using network pharmacology methods, we verified the expression of TNF pathway targets via immunohistochemistry and quantitative PCR. Furthermore, a TNF-α inhibitor was able to abrogate the beneficial effects of cordycepin and doxorubicin treatment in MDA-MB-231 cells. This clearly indicates the role of TNF-α, or related molecules, in mediating the therapeutic benefits of the combined treatment in animals carrying TNBC xenografts. The observations reported here may present a new direction for the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Haichen Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenya Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengyi Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunhe Shao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoping Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junsheng Fu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Hu H, Zhang M. Correlation analysis between peripheral blood dendritic cell subsets and PD-1 in patients with peritoneal adenocarcinoma. Braz J Med Biol Res 2024; 57:e13192. [PMID: 38381884 PMCID: PMC10880883 DOI: 10.1590/1414-431x2023e13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024] Open
Abstract
The aim of this study was to explore the association between differential percentages of dendritic cell (DC) subsets in peripheral blood and malignancy (grade and lymph node metastasis) of peritoneal adenocarcinoma patients and the frequencies of dendritic cell subsets in the normal controls. The peripheral blood of 30 patients with peritoneal adenocarcinoma and 12 healthy controls were collected for multicolor flow cytometry analysis. Peritoneal adenocarcinoma patients were grouped according to the malignant degree (grade and lymph node metastasis). Percentages of myeloid DCs (mDCs) and its subsets MDC1 and MDC2 in DCs were lower in peripheral blood of patients with peritoneal adenocarcinoma than in normal controls. The percentages of plasmacytoid dendritic cells (pDCs) and CD16+mDCs in DCs were higher than in normal controls. Compared with poor differentiation grade, patients with well/moderate differentiation grade had an increased percentage of CD16+mDCs. Contrary to CD16+mDCs, the percentage of MDC1 was lower in the well/moderate differentiation grade group. In patients with no lymph node metastasis, pDCs and CD16+mDCs levels were higher compared with patients with lymph node metastasis. mDCs and MDC1 levels had opposite results. pDCs were positively correlated with CD16+mDCs in peripheral blood of peritoneal patients, as was mDCs and MDC1. CD16+mDCs were negatively correlated with MDC1. The percentages of pDCs and CD16+mDCs in DCs were positively correlated with CD3+CD8+T cells, and pDCs also positively correlated with CD8+PD-1+T cells. Our results revealed that DCs subsets correlated with peritoneal adenocarcinoma malignancy. Dendritic cells play an independent role in the immune function of peritoneal adenocarcinoma.
Collapse
Affiliation(s)
- Huihui Hu
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Man Zhang
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
| |
Collapse
|
8
|
Mishchenko TA, Turubanova VD, Gorshkova EN, Krysko O, Vedunova MV, Krysko DV. Glioma: bridging the tumor microenvironment, patient immune profiles and novel personalized immunotherapy. Front Immunol 2024; 14:1299064. [PMID: 38274827 PMCID: PMC10809268 DOI: 10.3389/fimmu.2023.1299064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Glioma is the most common primary brain tumor, characterized by a consistently high patient mortality rate and a dismal prognosis affecting both survival and quality of life. Substantial evidence underscores the vital role of the immune system in eradicating tumors effectively and preventing metastasis, underscoring the importance of cancer immunotherapy which could potentially address the challenges in glioma therapy. Although glioma immunotherapies have shown promise in preclinical and early-phase clinical trials, they face specific limitations and challenges that have hindered their success in further phase III trials. Resistance to therapy has been a major challenge across many experimental approaches, and as of now, no immunotherapies have been approved. In addition, there are several other limitations facing glioma immunotherapy in clinical trials, such as high intra- and inter-tumoral heterogeneity, an inherently immunosuppressive microenvironment, the unique tissue-specific interactions between the central nervous system and the peripheral immune system, the existence of the blood-brain barrier, which is a physical barrier to drug delivery, and the immunosuppressive effects of standard therapy. Therefore, in this review, we delve into several challenges that need to be addressed to achieve boosted immunotherapy against gliomas. First, we discuss the hurdles posed by the glioma microenvironment, particularly its primary cellular inhabitants, in particular tumor-associated microglia and macrophages (TAMs), and myeloid cells, which represent a significant barrier to effective immunotherapy. Here we emphasize the impact of inducing immunogenic cell death (ICD) on the migration of Th17 cells into the tumor microenvironment, converting it into an immunologically "hot" environment and enhancing the effectiveness of ongoing immunotherapy. Next, we address the challenge associated with the accurate identification and characterization of the primary immune profiles of gliomas, and their implications for patient prognosis, which can facilitate the selection of personalized treatment regimens and predict the patient's response to immunotherapy. Finally, we explore a prospective approach to developing highly personalized vaccination strategies against gliomas, based on the search for patient-specific neoantigens. All the pertinent challenges discussed in this review will serve as a compass for future developments in immunotherapeutic strategies against gliomas, paving the way for upcoming preclinical and clinical research endeavors.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victoria D. Turubanova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Neuroscience Research Institute, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekaterina N. Gorshkova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
9
|
Rodriguez C, Araujo Furlan CL, Tosello Boari J, Bossio SN, Boccardo S, Fozzatti L, Canale FP, Beccaria CG, Nuñez NG, Ceschin DG, Piaggio E, Gruppi A, Montes CL, Acosta Rodríguez EV. Interleukin-17 signaling influences CD8 + T cell immunity and tumor progression according to the IL-17 receptor subunit expression pattern in cancer cells. Oncoimmunology 2023; 12:2261326. [PMID: 37808403 PMCID: PMC10557545 DOI: 10.1080/2162402x.2023.2261326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
IL-17 immune responses in cancer are controversial, with both tumor-promoting and tumor-repressing effects observed. To clarify the role of IL-17 signaling in cancer progression, we used syngeneic tumor models from different tissue origins. We found that deficiencies in host IL-17RA or IL-17A/F expression had varying effects on the in vivo growth of different solid tumors including melanoma, sarcoma, lymphoma, and leukemia. In each tumor type, the absence of IL-17 led to changes in the expression of mediators associated with inflammation and metastasis in the tumor microenvironment. Furthermore, IL-17 signaling deficiencies in the hosts resulted in decreased anti-tumor CD8+ T cell immunity and caused tumor-specific changes in several lymphoid cell populations. Our findings were associated with distinct patterns of IL-17A/F cytokine and receptor subunit expression in the injected tumor cell lines. These patterns affected tumor cell responsiveness to IL-17 and downstream intracellular signaling, leading to divergent effects on cancer progression. Additionally, we identified IL-17RC as a critical determinant of the IL-17-mediated response in tumor cells and a potential biomarker for IL-17 signaling effects in tumor progression. Our study offers insight into the molecular mechanisms underlying IL-17 activities in cancer and lays the groundwork for developing personalized immunotherapies.
Collapse
Affiliation(s)
- Constanza Rodriguez
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cintia L. Araujo Furlan
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Jimena Tosello Boari
- INSERM U932, Immunity and Cancer, Paris, France
- Department of Translational Research, PSL Research University, Paris, France
| | - Sabrina N. Bossio
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Santiago Boccardo
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Fernando P. Canale
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cristian G. Beccaria
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Nicolás G. Nuñez
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Danilo G. Ceschin
- Centro de Investigación en Medicina Traslacional “Severo R. Amuchástegui” (CIMETSA), Vinculado al Instituto de Investigación Médica Mercedes y Martín Ferreyra (CONICET-UNC), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Eliane Piaggio
- INSERM U932, Immunity and Cancer, Paris, France
- Department of Translational Research, PSL Research University, Paris, France
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| |
Collapse
|
10
|
Niu T, Li Z, Huang Y, Ye Y, Liu Y, Ye Z, Jiang L, He X, Wang L, Li J. LFA-1 knockout inhibited the tumor growth and is correlated with treg cells. Cell Commun Signal 2023; 21:233. [PMID: 37723552 PMCID: PMC10506322 DOI: 10.1186/s12964-023-01238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/19/2023] [Indexed: 09/20/2023] Open
Abstract
Cancer immunotherapy has been proven to be clinically effective in multiple types of cancers. Lymphocyte function-associated antigen 1 (LFA-1), a member of the integrin family of adhesion molecules, is expressed mainly on αβ T cells. LFA-1 is associated with tumor immune responses, but its exact mechanism remains unknown. Here, two kinds of mice tumor model of LFA-1 knockout (LFA-1-/-) mice bearing subcutaneous tumor and Apc Min/+;LFA-1-/- mice were used to confirm that LFA-1 knockout resulted in inhibition of tumor growth. Furthermore, it also demonstrated that the numbers of regulatory T cells (Treg cells) in the spleen, blood, mesenteric lymph nodes were decreased in LFA-1-/- mice, and the numbers of Treg cells in mesenteric lymph nodes were also decreased in Apc Min/+;LFA-1-/- mice compared with Apc Min/+ mice. LFA-1 inhibitor (BIRT377) was administered to subcutaneous tumor-bearing LFA-1+/+ mice, and the results showed that the tumor growth was inhibited and the number of Treg cells was reduced. The analysis of TIMER tumor database indicated that LFA-1 expression is positively associated with Treg cells and TNM stage. Conclusively, this suggests that LFA-1 knockout would inhibit tumor growth and is correlated with Treg cells. LFA-1 may be one potential target for cancer immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Ting Niu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Zhengyang Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Yiting Huang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Yuxiang Ye
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Yilong Liu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Zhijin Ye
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Lingbi Jiang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Xiaodong He
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China.
| | - Jiangchao Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China.
| |
Collapse
|
11
|
Chen L, Wang Y, Hu Q, Liu Y, Qi X, Tang Z, Hu H, Lin N, Zeng S, Yu L. Unveiling tumor immune evasion mechanisms: abnormal expression of transporters on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1225948. [PMID: 37545500 PMCID: PMC10401443 DOI: 10.3389/fimmu.2023.1225948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
The tumor microenvironment (TME) is a crucial driving factor for tumor progression and it can hinder the body's immune response by altering the metabolic activity of immune cells. Both tumor and immune cells maintain their proliferative characteristics and physiological functions through transporter-mediated regulation of nutrient acquisition and metabolite efflux. Transporters also play an important role in modulating immune responses in the TME. In this review, we outline the metabolic characteristics of the TME and systematically elaborate on the effects of abundant metabolites on immune cell function and transporter expression. We also discuss the mechanism of tumor immune escape due to transporter dysfunction. Finally, we introduce some transporter-targeted antitumor therapeutic strategies, with the aim of providing new insights into the development of antitumor drugs and rational drug usage for clinical cancer therapy.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Gu Y, Yang J, He C, Zhao T, Lu R, Liu J, Mo X, Wen F, Shi H. Incorporation of a Toll-like receptor 2/6 agonist potentiates mRNA vaccines against cancer and infectious diseases. Signal Transduct Target Ther 2023; 8:273. [PMID: 37455272 DOI: 10.1038/s41392-023-01479-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
mRNA vaccines have emerged rapidly in recent years as a prophylactic and therapeutic agent against various diseases including cancer and infectious diseases. Improvements of mRNA vaccines have been underway, among which boosting of efficacy is of great importance. Pam2Cys, a simple synthetic metabolizable lipoamino acid that signals through Toll-like receptor (TLR) 2/6 pathway, eliciting both humoral and cellular adaptive immune responses, is an interesting candidate adjuvant. To investigate the enhancement of the efficacies of mRNA vaccines by Pam2Cys, the adjuvant was incorporated into mRNA-lipid nanoparticles (LNPs) to achieve co-delivery with mRNA. Immunization with the resulting mRNA-LNPs (Pam2Cys) shaped up the immune milieu in the draining lymph nodes (dLNs) through the induction of IL-12 and IL-17, among other cytokines. Antigen presentation was carried out mainly by migratory and dLN-resident conventional type 2 DCs (cDC2s) and significantly more potent antitumor responses were triggered in both prophylactic and therapeutic tumor models in a CD4+ and CD8+ T cell-dependent fashion. Accompanying memory antitumor immunity was also established. Moreover, the vaccine also stimulated much more robust humoral and cellular immunity in a surrogate COVID-19 prophylactic model. Last but not the least, the new vaccines exhibited good preliminary safety profiles in murine models. These facts warrant future development of Pam2Cys-incorporated mRNA vaccines or relevant mRNA therapeutics for clinical application.
Collapse
Affiliation(s)
- Yangzhuo Gu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China.
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy and Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jingyun Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Cai He
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Tingmei Zhao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Ran Lu
- Laboratory of Stem Cell Biology and Department of Pediatric Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Jian Liu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology and Department of Pediatric Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy and Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
13
|
Babcock L, Singer SR, Carbiener P. Ovarian and Endometrial Endometrioid Carcinoma Following the Use of a Biologic IL-17 Inhibitor. Cureus 2023; 15:e42481. [PMID: 37637644 PMCID: PMC10452048 DOI: 10.7759/cureus.42481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Evidence suggests that IL-17, a pro-inflammatory cytokine, suppresses tumor carcinogenesis; therefore, the use of IL-17 inhibitors accelerates carcinoma growth. We present a case of a perimenopausal female who was diagnosed with synchronous primary ovarian and endometrial endometrioid carcinoma following the use of secukinumab, a monoclonal antibody against IL-17. After eight months of secukinumab, she developed progressive vaginal bleeding, left upper quadrant pain, and abdominal distention. CT imaging displayed a large abdominal mass, and biopsies produced the diagnosis. It is proposed that by inhibiting IL-17, carcinogenesis was expedited. This case highlights a relationship between secukinumab and accelerated carcinogenesis. Consequently, due to the incidence of endometrial carcinoma and the morbidity rate of ovarian carcinoma, individuals taking IL-17 inhibitors may need prophylactic screening and close monitoring.
Collapse
Affiliation(s)
- Luke Babcock
- Family Medicine, Halifax Health Medical Center, Daytona Beach, USA
| | - Samantha R Singer
- Obstetrics and Gynecology, Florida State University College of Medicine, Tallahassee, USA
| | - Pamela Carbiener
- Obstetrics and Gynecology, Halifax Health Medical Center, Daytona Beach, USA
| |
Collapse
|
14
|
Smith SD, Stratigos A, Augustin M, Carrascosa JM, Grond S, Riedl E, Xu W, Patel H, Lebwohl M. Integrated Safety Analysis on Skin Cancers among Patients with Psoriasis Receiving Ixekizumab in Clinical Trials. Dermatol Ther (Heidelb) 2023:10.1007/s13555-023-00966-4. [PMID: 37351831 PMCID: PMC10366039 DOI: 10.1007/s13555-023-00966-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
INTRODUCTION Limited data exist on skin cancer risk in patients with psoriasis using biologics. Here, we report treatment-emergent adverse events (TEAEs) of skin cancer in patients treated with ixekizumab from psoriasis clinical trials. METHODS Integrated safety databases from 17 clinical trials of adults with moderate-to-severe psoriasis treated with ≥ 1 dose of ixekizumab for ≤ 5 years were used to analyze exposure-adjusted incidence rates (IRs) per 100 patient-years of exposure (PYE) and clinically characterize dermatologist-adjudicated skin cancer TEAEs. RESULTS Of 6892 patients, 58 presented with ≥ 1 skin cancer TEAE (IR 0.3) with IRs remaining stable with longer ixekizumab exposure. Non-melanoma skin cancer (NMSC) was the most common event (IR 0.3) affecting 55 patients; of those, 44 had basal cell carcinoma (IR 0.2) and 16 had squamous cell carcinoma (IR 0.1). Two treatment-emergent melanoma events were identified; neither were classified as serious AEs. CONCLUSIONS Incidence of skin neoplasms in patients with psoriasis treated with ixekizumab for ≤ 5 years was low, and among those events, NMSC was most common. Limitations included that longer exposure may be required to confirm risk of skin cancer and that the study exclusion criteria of several studies, which excluded patients with skin cancer events within 5 years prior to baseline, might limit interpretation of skin cancer risk in this cohort. These findings support the safety profile of ixekizumab for patients requiring long-term psoriasis control.
Collapse
Affiliation(s)
- Saxon D Smith
- ANU Medical School, ANU College of Health and Medicine, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Alexandros Stratigos
- Department of Dermatology, University of Athens, School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Matthias Augustin
- Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jose Manuel Carrascosa
- Department of Dermatology, Hospital Universitari Germans Trias I Pujol, Badalona, Universidad Autónoma de Barcelona, IGTP, Badalona, Spain
| | | | - Elisabeth Riedl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wen Xu
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Mark Lebwohl
- Department of Dermatology, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
15
|
Zhao Z, Wang Y, Gao Y, Ju Y, Zhao Y, Wu Z, Gao S, Zhang B, Pang X, Zhang Y, Wang W. The PRAK-NRF2 axis promotes the differentiation of Th17 cells by mediating the redox homeostasis and glycolysis. Proc Natl Acad Sci U S A 2023; 120:e2212613120. [PMID: 37126714 PMCID: PMC10175746 DOI: 10.1073/pnas.2212613120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/14/2023] [Indexed: 05/03/2023] Open
Abstract
Oxidative stress is a key feature in both chronic inflammation and cancer. P38 regulated/activated protein kinase (PRAK) deficiency can cause functional disorders in neutrophils and macrophages under high oxidative stress, but the precise mechanisms by which PRAK regulates reactive oxygen species (ROS) elimination and its potential impact on CD4+ T helper subset function are unclear. The present study reveals that the PRAK-NF-E2-related factor 2(NRF2) axis is essential for maintaining the intracellular redox homeostasis of T helper 17(Th17) cells, thereby promoting Th17 cell differentiation and antitumor effects. Through mechanistic analysis, we identify NRF2 as a novel protein substrate of PRAK and find that PRAK enhances the stability of the NRF2 protein through phosphorylation NRF2 Serine(S) 558 independent of protein ubiquitination. High accumulation of cellular ROS caused by loss of PRAK disrupts both glycolysis and PKM2-dependent phosphorylation of STAT3, which subsequently impairs the differentiation of Th17 cells. As a result, Prak knockout (KO) mice display significant resistance to experimental autoimmune encephalomyelitis (EAE) but impaired antitumor immunity in a MC38 tumor model. This work reveals that the PRAK-NRF2-mediated antioxidant pathway is a metabolic checkpoint that controls Th17-cell glycolysis and differentiation. Targeting PRAK is a promising strategy for maintaining an active ROS scavenging system and may lead to potent Th17 cell antitumor immunity.
Collapse
Affiliation(s)
- Ziheng Zhao
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| | - Yan Wang
- First Clinical Medical College, Shanxi Medical University, Taiyuan030001, Shanxi, China
| | - Yuhan Gao
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
- Department of Blood Transfusion, Peking University of People’s Hospital, Beijing100044, China
| | - Yurong Ju
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| | - Ye Zhao
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| | - Zhaofei Wu
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| | - Shuaixin Gao
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing102206, China
| | - Boyang Zhang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
- Institute of Biological Sciences, Jinzhou Medical University, Liaoning121001, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission Key Laboratory of Medical Immunology, Peking University, Beijing100191, China
| |
Collapse
|
16
|
CD4 + T cells in cancer. NATURE CANCER 2023; 4:317-329. [PMID: 36894637 DOI: 10.1038/s43018-023-00521-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/20/2023] [Indexed: 03/11/2023]
Abstract
Cancer immunology and immunotherapy are driving forces of research and development in oncology, mostly focusing on CD8+ T cells and the tumor microenvironment. Recent progress highlights the importance of CD4+ T cells, corresponding to the long-known fact that CD4+ T cells are central players and coordinators of innate and antigen-specific immune responses. Moreover, they have now been recognized as anti-tumor effector cells in their own right. Here we review the current status of CD4+ T cells in cancer, which hold great promise for improving knowledge and therapies in cancer.
Collapse
|
17
|
Hamed AR, Yahya SMM, Nabih HK. Anti-drug resistance, anti-inflammation, and anti-proliferation activities mediated by melatonin in doxorubicin-resistant hepatocellular carcinoma: in vitro investigations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1117-1128. [PMID: 36651944 DOI: 10.1007/s00210-023-02385-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the major life-threatening primary liver malignancy in both sexes all over the world. Unfortunately, the majority of patients are diagnosed at later stages because HCC does not elicit obvious symptoms during its early incidence. Consequently, most individuals escape the first-line HCC treatments and are treated with chemotherapy. Regrettably, the therapeutic outcomes for those patients are usually poor because of the development of multidrug resistance phenomena. Furthermore, most anti-HCC therapies cause severe undesired side effects that notably interfere with the life quality of such patients. Accordingly, there is an important need to search for an alternative therapeutic drug or adjuvant which is more efficient with safe or even minimal side effects for HCC treatment. Melatonin was recently reported to exert intrinsic antitumor activity in different cancers. However, the regulatory pathways underlying the antitumor activity of melatonin are poorly understood in resistant liver cells. Furthermore, a limited number of studies have addressed the therapeutic role of melatonin in HCC cells resistant to doxorubicin chemotherapy. In this study, we investigated the antitumor effects of melatonin in doxorubicin-resistant HepG2 cells and explored the regulatory pivotal targets underlying these effects. To achieve our aim, an MTT assay was used to calculate the 50% inhibitory concentration of melatonin and evaluate its antiproliferative effect on resistant cells. Additionally, qRT-PCR was used to quantify genes having a role in drug resistance phenotype (ABCB1, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, and ABCG2); apoptosis (caspases-3, and -7, Bcl2, Bax, and p53); anti-oxidation (NRF2); expression of melatonin receptors (MT1, MT2, and MT3); besides, programmed death receptor PD-1 gene. The active form of the caspase-3 enzyme was estimated by ELISA. A human inflammatory antibody membrane array was employed to quantify forty inflammatory factors expressed in treated cells. We observed that melatonin inhibited the proliferation of doxorubicin-resistant HepG2 cells in a dose-dependent manner after 24-h incubation time with a calculated IC50 greater than 10 mM (13.4 mM), the expression levels of genes involved in drug resistance response (ABCB1, ABCC1, ABCC5, and ABCG2) were downregulated. Also, the expression of caspase-3, Caspase-7, NRF2, and p53 genes were expressed at higher levels as compared to control (DMSO-treated cells). An active form of caspase-3 was confirmed by ELISA. Moreover, the anti-inflammatory effect of melatonin was detected through the calculated fold change to control which was reduced for various mediators that have a role in the inflammation pathway. The current findings introduce melatonin as a promising anti-cancer treatment for human-resistant HCC which could be used in combination with current chemotherapeutic regimens to improve the outcome and reduce the developed multidrug resistance.
Collapse
Affiliation(s)
- Ahmed R Hamed
- Chemistry of Medicinal Plants Department, and Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt
| | - Shaymaa M M Yahya
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt
| | - Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
18
|
Mechanisms of Resistance and Strategies to Combat Resistance in PD-(L)1 Blockade. IMMUNO 2022. [DOI: 10.3390/immuno2040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Prolonged survival and durable responses in several late-stage cancers such as melanoma and lung cancer have been made possible with the use of immune checkpoint inhibitors targeting the programmed cell-death protein 1 (PD-1) or its ligand PD-L1. While it is prudent to focus on the unprecedented and durable clinical responses, there are subsets of cancer patients that do not respond to immunotherapies or respond early and then relapse later. Many pathways of resistance have been characterized, and more continue to be uncovered. To overcome the development of resistance, an in-depth investigation is necessary to identify alternative immune receptors and signals with the overarching goal of expanding treatment options for those with demonstrated resistance to PD1 checkpoint immunotherapy. In this mini-review, we will discuss the mechanisms by which tumors exhibit resistance to anti-PD-1/PD-L1 immunotherapy and explore strategies to overcome such resistances.
Collapse
|
19
|
Mabrouk N, Tran T, Sam I, Pourmir I, Gruel N, Granier C, Pineau J, Gey A, Kobold S, Fabre E, Tartour E. CXCR6 expressing T cells: Functions and role in the control of tumors. Front Immunol 2022; 13:1022136. [PMID: 36311728 PMCID: PMC9597613 DOI: 10.3389/fimmu.2022.1022136] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
CXCR6 is a receptor for the chemokine CXCL16, which exists as a membrane or soluble form. CXCR6 is a marker for resident memory T (TRM) cells that plays a role in immunosurveillance through their interaction with epithelial cells. The interaction of CXCR6 with CXCL16 expressed at the membrane of certain subpopulations of intratumor dendritic cells (DC) called DC3, ideally positions these CXCR6+ T cells to receive a proliferation signal from IL-15 also presented by DC3. Mice deficient in cxcr6 or blocking the interaction of CXCR6 with its ligand, experience a poorer control of tumor proliferation by CD8+ T cells, but also by NKT cells especially in the liver. Intranasal vaccination induces CXCL16 production in the lungs and is associated with infiltration by TRM expressing CXCR6, which are then required for the efficacy of anti-tumor vaccination. Therapeutically, the addition of CXCR6 to specific CAR-T cells enhances their intratumoral accumulation and prolongs survival in animal models of pancreatic, ovarian and lung cancer. Finally, CXCR6 is part of immunological signatures that predict response to immunotherapy based on anti-PD-(L)1 in various cancers. In contrast, a protumoral role of CXCR6+T cells has also been reported mainly in Non-alcoholic steatohepatitis (NASH) due to a non-antigen specific mechanism. The targeting and amplification of antigen-specific TRM expressing CXCR6 and its potential use as a biomarker of response to immunotherapy opens new perspectives in cancer treatment.
Collapse
Affiliation(s)
| | - Thi Tran
- Université ParisCité, INSERM, PARCC, Paris, France
| | - Ikuan Sam
- Université ParisCité, INSERM, PARCC, Paris, France
| | - Ivan Pourmir
- Université ParisCité, INSERM, PARCC, Paris, France
| | - Nadège Gruel
- Institut Curie, PSL Research University, Department of Translational Research, Paris, France
- INSERM U830, Equipe labellisée LNCC, Siredo Oncology Centre, Institut Curie, Paris, France
| | - Clémence Granier
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
| | - Joséphine Pineau
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
| | - Alain Gey
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Elizabeth Fabre
- Université ParisCité, INSERM, PARCC, Paris, France
- Lung Oncology Unit, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - Eric Tartour
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
- *Correspondence: Eric Tartour,
| |
Collapse
|
20
|
Jarocki M, Karska J, Kowalski S, Kiełb P, Nowak Ł, Krajewski W, Saczko J, Kulbacka J, Szydełko T, Małkiewicz B. Interleukin 17 and Its Involvement in Renal Cell Carcinoma. J Clin Med 2022; 11:jcm11174973. [PMID: 36078902 PMCID: PMC9457171 DOI: 10.3390/jcm11174973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Nowadays, molecular and immunological research is essential for the better understanding of tumor cells pathophysiology. The increasing number of neoplasms has been taken under ‘the molecular magnifying glass’ and, therefore, it is possible to discover complex relationships between the cytophysiology and immune system action. An example could be renal cell carcinoma (RCC) which has deep interactions with immune mediators such as Interleukin 17 (IL-17)—an inflammatory cytokine reacting to tissue damage and external pathogens. RCC is one of the most fatal urological cancers because of its often late diagnosis and poor susceptibility to therapies. IL-17 and its relationship with tumors is extremely complex and constitutes a recent topic for numerous studies. What is worth highlighting is IL-17’s dual character in cancer development—it could be pro- as well as anti-tumorigenic. The aim of this review is to summarize the newest data considering multiple connections between IL-17 and RCC.
Collapse
Affiliation(s)
- Michał Jarocki
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Julia Karska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Szymon Kowalski
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Paweł Kiełb
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Łukasz Nowak
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Wojciech Krajewski
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Tomasz Szydełko
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Bartosz Małkiewicz
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence: ; Tel.: +48-506-158-136
| |
Collapse
|
21
|
Circulating IL-1β, IL-17, and IP-10 as Potential Predictors of Hepatitis B Virus Infection Prognosis. J Immunol Res 2022; 2022:5202898. [PMID: 35785033 PMCID: PMC9242762 DOI: 10.1155/2022/5202898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Circulating cytokines and chemokines play critical roles in hepatitis B virus (HBV) infection. Here, we explored the effects of proinflammatory and anti-inflammatory effector molecules on HBV progression, e antigen seroconversion, and liver function. Our results showed that circulating interleukin (IL)-17 may be helpful in HBV spontaneous clearance [odds ratio (OR) = 1.468, 95%confidence interval (CI) = 1.080–1.995, P = 0.014] and protective against HBV-related hepatoma development (OR = 0.933, 95%CI = 0.910–0.957, P < 0.001). IL-1β negatively affected HBV clearance (OR = 0.052, 95%CI = 0.005–0.534, P = 0.013). In patients with chronic hepatitis B, interferon-γ-inducible protein-10 (IP-10) levels significantly increased in the group of abnormal liver function (P = 0.006). Furthermore, positive correlations of IP-10 with alanine aminotransferase and aspartate aminotransferase levels were observed (rs = 0.546 and 0.644, respectively; P < 0.001). In conclusion, inflammatory cytokines and chemokines may be a “double-edged sword” for HBV clearance and progression. Further exploration of the roles of IL-17, IL-1β, and IP-10 in chronic HBV infection is needed.
Collapse
|
22
|
Harnessing Antitumor CD4 + T Cells for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14010260. [PMID: 35008422 PMCID: PMC8750687 DOI: 10.3390/cancers14010260] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Diverse evidence revealed that CD4+ T cells play an important role in antitumor immunity by promoting or suppressing cytotoxic T cell responses. This review outlines the role of CD4+ T subsets within the tumor microenvironment and summarizes the latest progress regarding their potentials in cancer immunotherapy and methods for improving outcomes in cancer strategies by modulating CD4+ T responses. Abstract Over the past decades, CD4+ T cells have been considered as a supporting actor in the fields of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the critical role of CD4+ T cells during antitumor immunity. CD4+ T cells can either suppress or promote the antitumor cytotoxic CD8+ T cell responses, either in secondary lymphoid organs or in the tumor. In this review, we provide an overview of the multifaceted role of different CD4+ T cell subsets in cancer immune response and their contribution during cancer therapies. Specifically, we focus on the latest progress regarding the impact of CD4+ T cell modulation on immunotherapies and other cancer therapies and discuss the prospect for harnessing CD4+ T cells to control tumor progression and prevent recurrence in patients.
Collapse
|
23
|
Multifaceted Roles of Chemokines and Chemokine Receptors in Tumor Immunity. Cancers (Basel) 2021; 13:cancers13236132. [PMID: 34885241 PMCID: PMC8656932 DOI: 10.3390/cancers13236132] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Various immune cells are involved in host immune responses to cancer. T-helper (Th) 1 cells, cytotoxic CD8+ T cells, and natural killer cells are the major effector cells in anti-tumor immunity, whereas cells such as regulatory T cells and myeloid-derived suppressor cells are negatively involved in anti-tumor immunity. Th2 cells and Th17 cells have been shown to have both pro-tumor and anti-tumor activities. The migratory properties of various immune cells are essential for their function and critically regulated by the chemokine superfamily. In this review, we summarize the roles of various immune cells in tumor immunity and their migratory regulation by the chemokine superfamily. We also assess the therapeutic possibilities of targeting chemokines and chemokine receptors in cancer immunotherapy. Abstract Various immune cells are involved in host tumor immune responses. In particular, there are many T cell subsets with different roles in tumor immunity. T-helper (Th) 1 cells are involved in cellular immunity and thus play the major role in host anti-tumor immunity by inducing and activating cytotoxic T lymphocytes (CTLs). On the other hand, Th2 cells are involved in humoral immunity and suppressive to Th1 responses. Regulatory T (Treg) cells negatively regulate immune responses and contribute to immune evasion of tumor cells. Th17 cells are involved in inflammatory responses and may play a role in tumor progression. However, recent studies have also shown that Th17 cells are capable of directly inducting CTLs and thus may promote anti-tumor immunity. Besides these T cell subsets, there are many other innate immune cells such as dendritic cells (DCs), natural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs) that are involved in host immune responses to cancer. The migratory properties of various immune cells are critical for their functions and largely regulated by the chemokine superfamily. Thus, chemokines and chemokine receptors play vital roles in the orchestration of host immune responses to cancer. In this review, we overview the various immune cells involved in host responses to cancer and their migratory properties regulated by the chemokine superfamily. Understanding the roles of chemokines and chemokine receptors in host immune responses to cancer may provide new therapeutic opportunities for cancer immunotherapy.
Collapse
|
24
|
Marques HS, de Brito BB, da Silva FAF, Santos MLC, de Souza JCB, Correia TML, Lopes LW, Neres NSDM, Dórea RSDM, Dantas ACS, Morbeck LLB, Lima IS, de Almeida AA, Dias MRDJ, de Melo FF. Relationship between Th17 immune response and cancer. World J Clin Oncol 2021; 12:845-867. [PMID: 34733609 PMCID: PMC8546660 DOI: 10.5306/wjco.v12.i10.845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/21/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second leading cause of death worldwide and epidemiological projections predict growing cancer mortality rates in the next decades. Cancer has a close relationship with the immune system and, although Th17 cells are known to play roles in the immune response against microorganisms and in autoimmunity, studies have emphasized their roles in cancer pathogenesis. The Th17 immune response profile is involved in several types of cancer including urogenital, respiratory, gastrointestinal, and skin cancers. This type of immune response exerts pro and antitumor functions through several mechanisms, depending on the context of each tumor, including the protumor angiogenesis and exhaustion of T cells and the antitumor recruitment of T cells and neutrophils to the tumor microenvironment. Among other factors, the paradoxical behavior of Th17 cells in this setting has been attributed to its plasticity potential, which makes possible their conversion into other types of T cells such as Th17/Treg and Th17/Th1 cells. Interleukin (IL)-17 stands out among Th17-related cytokines since it modulates pathways and interacts with other cell profiles in the tumor microenvironment, which allow Th17 cells to prevail in tumors. Moreover, the IL-17 is able to mediate pro and antitumor processes that influence the development and progression of various cancers, being associated with variable clinical outcomes. The understanding of the relationship between the Th17 immune response and cancer as well as the singularities of carcinogenic processes in each type of tumor is crucial for the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Júlio César Braga de Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Thiago Macêdo Lopes Correia
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Weber Lopes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Nayara Silva de Macêdo Neres
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Anna Carolina Saúde Dantas
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Lorena Lôbo Brito Morbeck
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Iasmin Souza Lima
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Amanda Alves de Almeida
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maiara Raulina de Jesus Dias
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
25
|
Chen Y, Li Y, Guo H, Zhang Z, Zhang J, Dong X, Liu Y, Zhuang Y, Zhao Y. The Effects of Adoptively Transferred IL-23/IL-18-Polarized Neutrophils on Tumor and Collagen-Induced Arthritis in Mice. J Inflamm Res 2021; 14:4669-4686. [PMID: 34557012 PMCID: PMC8453247 DOI: 10.2147/jir.s329528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/04/2021] [Indexed: 12/04/2022] Open
Abstract
Background Neutrophils present great diverse phenotypes in various microenvironments and play different immune regulatory functions. Neutrophils generally classified into inflammatory phenotype N1 and anti-informatory phenotype N2. Our recent studies showed that IL-23 alone stimulated neutrophils to express IL-17A, IL-17F and IL-22 and displayed a gene transcriptional profile similar to Th17 cells. In the present study, we tried to identify potential cytokines to promote IL-23-induced neutrophil polarization. Methods Mouse bone marrow-derived neutrophils and human peripheral blood neutrophils were treated with IL-23 (10 ng/mL) plus IL-18 (25 ng/mL) to induce Th17-like subset in vitro and detected by real-time PCR, flow cytometry, ELISA, immunofluorescence and RNA-seq assays. In vivo, collagen-induced arthritis (CIA) mouse model and EL4 tumor-bearing mouse model were used to characterize the potential roles of N(IL-23+IL-18) in inflammation and tumor. Results Real-time PCR, ELISA and flow cytometry assays showed that IL-18 could significantly enhance IL-23-induced IL-17A, IL-17F and IL-22 expressions in mouse and human neutrophils in a synergistic way, although IL-18 alone failed to induce these cytokines expression. RNA-seq and molecular studies showed that the polarization of N(IL-23+IL-18) is mainly mediated by the JNK/p38-STAT3-BATF signaling pathway. Adoptive transfer of the induced N(IL-23+IL-18) neutrophils significantly accelerated the tumor growth in EL4 tumor-bearing mice and enhanced disease progression in the CIA mouse model. IL-17A-deficient N(IL-23+IL-18) neutrophils failed to enhance the CIA pathogenesis in this model, suggesting that IL-17A may be involved in the N(IL-23+IL-18) neutrophils-promoted arthritis in mice. Conclusion The Th17-type subpopulation N(IL-23+IL-18) has pro-tumor and pro-inflammatory properties. Recognizing the different functional polarization of neutrophils would significantly help us to understand the distinctive protective/pathological roles of neutrophils in physiological and different pathological situations.
Collapse
Affiliation(s)
- Yifang Chen
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yang Li
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Han Guo
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhaoqi Zhang
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jiayu Zhang
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xue Dong
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi Liu
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yong Zhao
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, People's Republic of China
| |
Collapse
|
26
|
Awadasseid A, Wu Y, Zhang W. Advance investigation on synthetic small-molecule inhibitors targeting PD-1/PD-L1 signaling pathway. Life Sci 2021; 282:119813. [PMID: 34256042 DOI: 10.1016/j.lfs.2021.119813] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
Immune checkpoint blockade has displayed substantial anti-tumor resistance in a variety of forms of cancer, but the fundamental regulation role remains unclear, and several questions continue to be addressed. PD-1/PD-L1 has been recognized as an anti-cancer drug target for several years, and through targeting the PD-1/PD-L1 signaling pathway, many monoclonal antibodies have thus far produced promising results in cancer therapy. The discovery of small-molecule inhibitors focused on the PD-1/PD-L1 signaling pathway is steadily reviving over decades, owing to the intrinsic shortcomings of the antibodies. PD-1 function and its PD-L1 or PD-L2 ligands are essential for the activation, proliferation, and cytotoxic secretion of T-cells in cancer to degenerate anti-tumor immune response. The axis PD-1/PD-L1 is important for the immune escape of cancer which has an immense impact on cancer treatment. In this review, we summarize the function of PD-1 and PD-L1 in cancer and aiming to enhance cancer therapy.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China; Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid 51111, Sudan
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
27
|
Ma L, Shan W, Ding X, Yang P, Rozjan A, Yao Q. Intermittent hypoxia induces tumor immune escape in murine S180 solid tumors via the upregulation of TGF-β 1 in mice. Sleep Breath 2021; 25:719-726. [PMID: 32840731 DOI: 10.1007/s11325-020-02166-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Studies have shown that intermittent hypoxia (IH) alters host immune functions and promotes tumor growth. However, the relevant mechanisms of these effects have not been completely elucidated. We hypothesized that IH promotes the growth of tumors by changing cytokine levels in the tumor microenvironment and inducing immune escape. METHODS Sarcoma-180 (S180) solid tumor cells were injected into the right flank of Kunming mice. The mice were then randomly divided into the IH and room air (RA) groups. The mice were euthanized 2 weeks after IH exposure, and the weight of tumor tissues was measured. Next, IL-6, IL-17, IL-10, and TNF-α levels in tumor tissues were measured via enzyme linked immunosorbent assay (ELISA), and hypoxia inducible factor-1α (HIF-1α) and transforming growth factor β1 (TGF-β1) expressions were examined through Western blot analysis. RESULTS Two weeks of IH exposure significantly accelerated the growth of S180 solid tumors. Western blot analysis results showed that the expression levels of HIF-1α and TGF-β1 in S180 tumors in the IH group were significantly upregulated compared with those in the RA group. ELISA results showed that compared with the RA group, the IH group had significantly increased TNF-α and IL-10 (P < 0.05) and significantly decreased IL-17 (P < 0.05). CONCLUSION IH might promote the growth of S180 solid tumors by inhibiting the antitumor immune response and inducing tumor immune escape via the upregulation of TGF-β1.
Collapse
Affiliation(s)
- Lijuan Ma
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Weibi Shan
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Xinguo Ding
- Department of EENT, People's Hospital of Xinjiang Changji, Changji, 831100, Xinjiang, People's Republic of China
| | - Pan Yang
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Azmat Rozjan
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Qiaoling Yao
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830054, Xinjiang, People's Republic of China.
| |
Collapse
|
28
|
MAIT Cells: Partners or Enemies in Cancer Immunotherapy? Cancers (Basel) 2021; 13:cancers13071502. [PMID: 33805904 PMCID: PMC8037823 DOI: 10.3390/cancers13071502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Unconventional T cells have recently come under intense scrutiny because of their innate-like effector functions and unique antigen specificity, suggesting their potential importance in antitumor immunity. MAIT cells, one such population of unconventional T cell, have been shown to significantly influence bacterial infections, parasitic and fungal infections, viral infections, autoimmune and other inflammatory diseases, and, as discussed thoroughly in this review, various cancers. This review aims to merge accumulating evidence, tease apart the complexities of MAIT cell biology in different malignancies, and discuss how these may impact clinical outcomes. While it is clear that MAIT cells can impact the tumor microenvironment, the nature of these interactions varies depending on the type of cancer, subset of MAIT cell, patient demographic, microbiome composition, and the type of therapy administered. This review examines the impact of these variables on MAIT cells and discusses outstanding questions within the field. Abstract A recent boom in mucosal-associated invariant T (MAIT) cell research has identified relationships between MAIT cell abundance, function, and clinical outcomes in various malignancies. As they express a variety of immune checkpoint receptors and ligands, and possess strong cytotoxic functions, MAIT cells are an attractive new subject in the field of tumor immunology. MAIT cells are a class of innate-like T cells that express a semi-invariant T cell antigen receptor (TCR) that recognizes microbially derived non-peptide antigens presented by the non-polymorphic MHC class-1 like molecule, MR1. In this review, we outline the current (and often contradictory) evidence exploring MAIT cell biology and how MAIT cells impact clinical outcomes in different human cancers, as well as what role they may have in cancer immunotherapy.
Collapse
|
29
|
Guirnalda PD, Paterson Y. Vaccination with immunotherapeutic Listeria monocytogenes induces IL-17(+) γδ T cells in a murine model for HPV associated cancer. Oncoimmunology 2021; 1:822-828. [PMID: 23162749 PMCID: PMC3489737 DOI: 10.4161/onci.20491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interleukin 17 (IL-17) is produced during infection with Listeria monocytogenes and is also an important regulator of tumor development with both pro- and anti-tumorigenic effects. αβ T cells and γδ T cells are among the principle producers of IL-17 in response to infection and other proinflammatory conditions. Listeria-based cancer immunotherapies induce IFNγ directed Th1 dependent tumor regression; however, the role of IL-17 in Listeria based immunotherapy has not been addressed. Therefore, we investigated the ability of attenuated Listeria-based immunotherapy to induce IL-17 producing cells in a model of cervical cancer and the potential impact that these cells have on anti-tumor vaccine efficacy. Here we show that vaccination of tumor bearing mice with Listeria vaccines resulted in elevated levels of intratumoral IL-17 and increased IL-17 production by γδ TCR+ cells, exclusively. IL-17 producing cells were lacking in tumors of γδ T-cell-deficient mice; however, the absence of γδ T cells, including IL-17+ γδ T cells, did not alter tumor progression or abrogate the efficacy of the Listeria-based vaccine indicating that αβ T cells are key for clearance of the tumor. Th1 responses, known to be responsible for anti-tumor Listeria-based vaccine efficacy, appear to be sufficient for tumor regression in γδ T-cell-deficient mice. We conclude that the efficacy of Listeria-based vaccine does not rely on γδ T cells (or IL-17 produced by them) in a TC.1 tumor model; however, Listeria-based immunotherapy can be used to induce IL-17+ γδ T cells that are important for regression observed in alternative cancer models.
Collapse
Affiliation(s)
- Patrick D Guirnalda
- University of Pennsylvania; Perelman School of Medicine; Department of Microbiology; Philadelphia, PA USA
| | | |
Collapse
|
30
|
Guth AM, Hafeman SD, Dow SW. Depletion of phagocytic myeloid cells triggers spontaneous T cell- and NK cell-dependent antitumor activity. Oncoimmunology 2021; 1:1248-1257. [PMID: 23243588 PMCID: PMC3518497 DOI: 10.4161/onci.21317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Depletion of tumor associated macrophages and inhibition of tumor angiogenesis have been invoked as the principle mechanisms underlying the antitumor activity of liposomal clodronate (LC). However, previous studies have not examined the effects of LC on systemic antitumor immunity. Here, we used mouse tumor models to elucidate the role of T and NK cells in the antitumor activity elicited by the systemic administration of LC. Strikingly, we found that the antitumor activity of LC is completely abolished in immunodeficient Rag1−/− mice. Moreover, both Cd4−/− and Cd8−/− mice as well as mice depleted of NK cells manifested a significant impaired ability to control tumor growth following LC administration. Treatment with LC did not result in an overall increase in T- or NK-cell numbers in tumors or lymphoid organs, nor was tumor infiltration with T or NK cells altered. However, T and NK cells isolated from the spleen of LC-treated mice exhibited significant increased tumor-specific secretion of interferon γ and interleukin 17 and greater cytolytic activity. We concluded that the antitumor effects of LC are largely dependent on the generation of systemic T-cell and NK- cell activity, most likely owing to the depletion of immune suppressive myeloid cell populations in lymphoid tissues. These findings suggest that the systemic administration of LC may constitute an effective means for non-specifically augmenting the antitumor activity of T and NK cells.
Collapse
Affiliation(s)
- Amanda M Guth
- Animal Cancer Center; Dept of Clinical Sciences; Colorado State University; Ft. Collins, CO USA
| | | | | |
Collapse
|
31
|
Song Y, Zhu Y, Hu B, Liu Y, Lin D, Jin Z, Yin Z, Dong C, Wu D, Liu H. Donor γδT Cells Promote GVL Effect and Mitigate aGVHD in Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:558143. [PMID: 33178187 PMCID: PMC7596318 DOI: 10.3389/fimmu.2020.558143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/22/2020] [Indexed: 01/03/2023] Open
Abstract
Disease relapse and graft-versus-host disease (GVHD) are the major complications affecting the outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT). While the functions of αβT cells are extensively studied, the role of donor γδT cells in allo-HSCT is less well defined. Using TCRδ-/- donors lacking γδT cells, we demonstrated that donor γδT cells were critical in mediating graft-versus-leukemia (GVL) effect during allo-HSCT. In the absence of donor γδT cells, IFN-γ production by CD8+ T cells was severely impaired. Vγ4 subset was the major γδT cell subset mediating the GVL effect in vivo, which was partially dependent on IL-17A. Meanwhile, donor γδT cells could mitigate acute GVHD in a murine allo-HSCT model by suppressing CD4+ T cell activation and the major γδT cell subset that exerted this protective function was also Vγ4 γδT cells. Therefore, our findings provide evidence that donor γδT cells, especially Vγ4 subset, can enhance GVL effect and mitigate aGVHD during allo-HSCT.
Collapse
Affiliation(s)
- Yuan Song
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ying Zhu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Yonghao Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Ziqi Jin
- Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Pandey S, Gruenbaum A, Kanashova T, Mertins P, Cluzel P, Chevrier N. Pairwise Stimulations of Pathogen-Sensing Pathways Predict Immune Responses to Multi-adjuvant Combinations. Cell Syst 2020; 11:495-508.e10. [PMID: 33113356 DOI: 10.1016/j.cels.2020.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/29/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022]
Abstract
The immune system makes decisions in response to combinations of multiple microbial inputs. We do not understand the combinatorial logic governing how higher-order combinations of microbial signals shape immune responses. Here, using coculture experiments and statistical analyses, we discover a general property for the combinatorial sensing of microbial signals, whereby the effects of triplet combinations of microbial signals on immune responses can be predicted by combining the effects of single and pairs. Mechanistically, we find that singles and pairs dictate the information signaled by triplets in mouse and human DCs at the levels of transcription, chromatin, and protein secretion. We exploit this simplifying property to develop cell-based immunotherapies prepared with adjuvant combinations that trigger protective responses in mouse models of cancer. We conclude that the processing of multiple input signals by innate immune cells is governed by pairwise effects, which will inform the rationale combination of adjuvants to manipulate immunity.
Collapse
Affiliation(s)
- Surya Pandey
- Pritzker School of Molecular Engineering, the University of Chicago, Chicago, IL 60637, USA
| | - Adam Gruenbaum
- Pritzker School of Molecular Engineering, the University of Chicago, Chicago, IL 60637, USA
| | - Tamara Kanashova
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, and Berlin Institute of Health, 13125 Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, and Berlin Institute of Health, 13125 Berlin, Germany
| | - Philippe Cluzel
- School of Engineering and Applied Science & Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nicolas Chevrier
- Pritzker School of Molecular Engineering, the University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
33
|
Salivary IL-17A, IL-17F, and TNF- α Are Associated with Disease Advancement in Patients with Oral and Oropharyngeal Cancer. J Immunol Res 2020; 2020:3928504. [PMID: 32855976 PMCID: PMC7443019 DOI: 10.1155/2020/3928504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 02/05/2023] Open
Abstract
Delayed diagnosis of oral cavity and oropharyngeal cancer is associated with a poor prognosis. Despite progress in systemic therapy and radiotherapy, there has only been a slight improvement in the five-year survival rate. A non-invasive diagnostic method that consists of an assessment of specific proteins in saliva samples may significantly facilitate assessment of treatment results in patients diagnosed with oral and oropharyngeal cancer. The aim of this study was to assess the levels of IL-17 and TNF-α in the saliva of patients with oral and oropharyngeal cancer. The study was conducted prior to treatment in patients hospitalized in the Frederic Chopin Provincial Specialist Hospital No. 1 in Rzeszów, Poland. Saliva samples were collected from subjects on an empty stomach. Cytokine concentrations in the saliva were measured with ELISA and Luminex Multiplex Assays. The higher salivary concentrations of IL-17A, IL-17F, and TNF-α were significantly associated with disease advancement. Lower levels of IL-17A were associated with colonization of the oral cavity with aerobic bacteria. On the other hand, higher concentration of TNF-α was observed in patients with positive aerobic culture of oral swabs. Our results suggest that IL-17A, IL-17F, and TNF-α measured in the saliva may be a potential biomarker for cancer of the oral cavity and oropharynx.
Collapse
|
34
|
Vitiello GA, Miller G. Targeting the interleukin-17 immune axis for cancer immunotherapy. J Exp Med 2020; 217:jem.20190456. [PMID: 31727783 PMCID: PMC7037254 DOI: 10.1084/jem.20190456] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/23/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
IL-17 plays versatile roles during tumorigenesis. Here, Vitiello and Miller summarize current knowledge in harnessing IL-17–producing γδ and Th17 cells for successful cancer immunotherapy. The role of IL-17 in cancer remains controversial. Emerging evidence suggests that during early oncogenesis IL-17 supports tumor growth, whereas in established tumors IL-17 production by γδ and Th17 cells potentiates antitumor immunity. Consequently, γδ and Th17 cells are attractive targets for immunotherapy in the IL-17 immune axis. To optimize IL-17–based immunotherapy, a deeper understanding of the cytokines dictating IL-17 production and the polarity of γδ and Th17 cells is critical. Here, we delve into the dichotomous roles of IL-17 in cancer and provide insight into the tumor microenvironment conducive for successful IL-17–based γδ and Th17 cell immunotherapy.
Collapse
Affiliation(s)
- Gerardo A Vitiello
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY
| |
Collapse
|
35
|
Bou-Dargham MJ, Sha L, Sang QXA, Zhang J. Immune landscape of human prostate cancer: immune evasion mechanisms and biomarkers for personalized immunotherapy. BMC Cancer 2020; 20:572. [PMID: 32552802 PMCID: PMC7302357 DOI: 10.1186/s12885-020-07058-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/10/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Despite recent advances in cancer immunotherapy, the efficacy of these therapies for the treatment of human prostate cancer patients is low due to the complex immune evasion mechanisms (IEMs) of prostate cancer and the lack of predictive biomarkers for patient responses. METHODS To understand the IEMs in prostate cancer and apply such understanding to the design of personalized immunotherapies, we analyzed the RNA-seq data for prostate adenocarcinoma from The Cancer Genome Atlas (TCGA) using a combination of biclustering, differential expression analysis, immune cell typing, and machine learning methods. RESULTS The integrative analysis identified eight clusters with different IEM combinations and predictive biomarkers for each immune evasion cluster. Prostate tumors employ different combinations of IEMs. The majority of prostate cancer patients were identified with immunological ignorance (89.8%), upregulated cytotoxic T lymphocyte-associated protein 4 (CTLA4) (58.8%), and upregulated decoy receptor 3 (DcR3) (51.6%). Among patients with immunologic ignorance, 41.4% displayed upregulated DcR3 expression, 43.26% had upregulated CTLA4, and 11.4% had a combination of all three mechanisms. Since upregulated programmed cell death 1 (PD-1) and/or CTLA4 often co-occur with other IEMs, these results provide a plausible explanation for the failure of immune checkpoint inhibitor monotherapy for prostate cancer. CONCLUSION These findings indicate that human prostate cancer specimens are mostly immunologically cold tumors that do not respond well to mono-immunotherapy. With such identified biomarkers, more precise treatment strategies can be developed to improve therapeutic efficacy through a greater understanding of a patient's immune evasion mechanisms.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA.
| | - Linlin Sha
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA. .,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA.
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, Florida, USA.
| |
Collapse
|
36
|
Dadaglio G, Fayolle C, Oberkampf M, Tang A, Rudilla F, Couillin I, Torheim EA, Rosenbaum P, Leclerc C. IL-17 suppresses the therapeutic activity of cancer vaccines through the inhibition of CD8 + T-cell responses. Oncoimmunology 2020; 9:1758606. [PMID: 32923117 PMCID: PMC7458594 DOI: 10.1080/2162402x.2020.1758606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Antitumor immunity is mediated by Th1 CD4+ and CD8+ T lymphocytes, which induce tumor-specific cytolysis, whereas Th17 CD4+ T cells have been described to promote tumor growth. Here, we explored the influence of IL-17 on the ability of therapeutic vaccines to induce the rejection of tumors in mice using several adjuvants known to elicit either Th1 or Th17-type immunity. Immunization of mice with Th1-adjuvanted vaccine induced high levels of IFN-γ-producing T cells, whereas injection with Th17-promoting adjuvants triggered the stimulation of both IL-17 and IFN-γ-producing T cells. However, despite their capacity to induce strong Th1 responses, these Th17-promoting adjuvants failed to induce the eradication of tumors. In addition, the systemic administration of IL-17A strongly decreases the therapeutic effect of Th1-adjuvanted vaccines in two different tumor models. This suppressive effect correlated with the capacity of systemically delivered IL-17A to inhibit the induction of CD8+ T-cell responses. The suppressive effect of IL-17A on the induction of CD8+ T-cell responses was abolished in mice depleted of neutrophils, clearly demonstrating the role played by these cells in the inhibitory effect of IL-17A in the induction of antitumor responses. These results demonstrate that even though strong Th1-type responses favor tumor control, the simultaneous activation of Th17 cells may redirect or curtail tumor-specific immunity through a mechanism involving neutrophils. This study establishes that IL-17 plays a detrimental role in the development of an effective antitumor T cell response and thus could strongly affect the efficiency of immunotherapy through the inhibition of CTL responses.
Collapse
Affiliation(s)
- Gilles Dadaglio
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Catherine Fayolle
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Marine Oberkampf
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Alexandre Tang
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Francesc Rudilla
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Isabelle Couillin
- Molecular and Experimental Immunology and Neurogenetics, NEM, CNRS, UMR7355 INEM, CNRS and University of Orléans, Orléans, France
| | - Eirik A Torheim
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Pierre Rosenbaum
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| | - Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Inserm U1041, Paris, France
| |
Collapse
|
37
|
Pandey R, Prakash V. mRNA expression analysis of interleukins 17A and 17F in bronchial asthmatic patients from Northern Indian population. J Family Med Prim Care 2020; 9:2258-2263. [PMID: 32754484 PMCID: PMC7380788 DOI: 10.4103/jfmpc.jfmpc_35_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/12/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Asthma being a chronic inflammatory disease concerning to the airways involves genetic and environmental factors. It is known to develop a clinical condition of airway hyper-responsiveness, which induces frequent symptoms in patients such as breathlessness, chest congestion, coughing, and wheezing, particularly during night hours or during early morning hours. The cytokine, Interleukin 17F (IL17F), is important in mediating allergic reactions in the body and regulating the pathophysiology and pathogenesis of asthmatic attacks, as well as airway inflammation, respectively. The Interleukin 17A (IL17A) is involved in increasing the biosynthesis of interleukins IL-6 and IL11. In contrast, IL17F enhances the expression of interleukin IL11 and tumor growth factor, TGF-β. METHODOLOGY Standard procedures were followed for collection and processing of blood samples from the subjects (controls and patients, 104 each), isolation of mRNA and to determine the quantities of IgE, and the interlukins (IL17A and IL17F) in the serum. The Real-time PCR and ELISA techniques were employed for synthesis of cDNA and determination of interleukins, respectively, using standard protocols. Early diagnosis of asthma is still a challenge to meet. RESULTS The statistical analysis of the data reflected a positive correlation between each of the interleukins (IL-17A and IL17F) and IgE (p = 0.001 and r = 0.41), (p = 0.004 and r = 0.077). The results indicated the upregulation of expression of IL17A and IL17F genes in the patients suffering from asthma. CONCLUSIONS This study has indicated that the blood levels of IL-17A and IL17F could be utilized as viable clinical markers for early diagnosis, timely treatment, and proper management of asthma.
Collapse
Affiliation(s)
- Rashmi Pandey
- Department of Pulmonary and Critical Care Medicine, KGMU, Lucknow, Uttar Pradesh, India
| | - Ved Prakash
- Department of Pulmonary and Critical Care Medicine, KGMU, Lucknow, Uttar Pradesh, India
| |
Collapse
|
38
|
PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat Immunol 2020; 21:442-454. [PMID: 32152508 DOI: 10.1038/s41590-020-0620-x] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Programmed cell death protein 1 (PD-1) ligation delimits immunogenic responses in T cells. However, the consequences of programmed cell death 1 ligand 1 (PD-L1) ligation in T cells are uncertain. We found that T cell expression of PD-L1 in cancer was regulated by tumor antigen and sterile inflammatory cues. PD-L1+ T cells exerted tumor-promoting tolerance via three distinct mechanisms: (1) binding of PD-L1 induced STAT3-dependent 'back-signaling' in CD4+ T cells, which prevented activation, reduced TH1-polarization and directed TH17-differentiation. PD-L1 signaling also induced an anergic T-bet-IFN-γ- phenotype in CD8+ T cells and was equally suppressive compared to PD-1 signaling; (2) PD-L1+ T cells restrained effector T cells via the canonical PD-L1-PD-1 axis and were sufficient to accelerate tumorigenesis, even in the absence of endogenous PD-L1; (3) PD-L1+ T cells engaged PD-1+ macrophages, inducing an alternative M2-like program, which had crippling effects on adaptive antitumor immunity. Collectively, we demonstrate that PD-L1+ T cells have diverse tolerogenic effects on tumor immunity.
Collapse
|
39
|
Avritscher R, Jo N, Polak U, Cortes AC, Nishiofuku H, Odisio BC, Takaki H, Tam AL, Melancon MP, Yevich S, Qayyum A, Kaseb A, Kichikawa K, Gupta S, Goldberg SN, Chang SH. Hepatic Arterial Bland Embolization Increases Th17 Cell Infiltration in a Syngeneic Rat Model of Hepatocellular Carcinoma. Cardiovasc Intervent Radiol 2020; 43:311-321. [PMID: 31591689 DOI: 10.1007/s00270-019-02343-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 02/03/2023]
Abstract
PURPOSE To determine the tumor immune cell landscape after transcatheter arterial bland embolization (TAE) in a clinically relevant rat hepatocellular carcinoma (HCC) model. MATERIALS AND METHODS Buffalo rats (n = 21) bearing syngeneic McArdle RH-7777 rat hepatoma cells implanted into the left hepatic lobe underwent TAE using 70-150 µm beads (n = 9) or hepatic artery saline infusion (n = 12). HCC nodules, peritumoral margin, adjacent non-cancerous liver, and splenic parenchyma were collected and disaggregated to generate single-cell suspensions for immunological characterization 14 d after treatment. Changes in tumor-infiltrating immune subsets including CD4 T cells (Th17 and Treg), CD8 cytotoxic T cells (IFNγ), and neutrophils were evaluated by multiparameter flow cytometry. Migration and colony formation assays were performed to examine the effect of IL-17, a signature cytokine of Th17 cells, on McArdle RH-7777 hepatoma cells under conditions simulating post-embolization environment (i.e., hypoxia and nutrient privation). Statistical significance was determined by the Student unpaired t test or one-way ANOVA. RESULTS TAE induces increased infiltration of Th17 cells in liver tumors when compared with controls 14 d after treatment (0.29 ± 0.01 vs. 0.19 ± 0.02; p = 0.02). A similar pattern was observed in the spleen (1.41 ± 0.13 vs. 0.57 ± 0.08; p < 0.001), indicating both local and systemic effect. No significant differences in the percentage of FoxP3 + Tregs, IFNγ-producing CD4 T cells, and CD8 T cells were observed between groups (p > 0.05). In vitro post-embolization assays demonstrated that IL-17 reduces McA-RH7777 cell migration at 24-48 h (p = 0.003 and p = 0.002, respectively). CONCLUSION Transcatheter hepatic arterial bland embolization induces local and systemic increased infiltration of Th17 cells and expression of their signature cytokine IL-17. In a simulated post-embolization environment, IL-17 significantly reduced McA-RH7777 cell migration.
Collapse
Affiliation(s)
- Rony Avritscher
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - NaHyun Jo
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Urszula Polak
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Andrea C Cortes
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Hideyuki Nishiofuku
- Department of Radiology, IVR Center, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
| | - Bruno C Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Haruyuki Takaki
- Department of Radiological Technology, Hyogo College of Medicine College Hospital, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Hyogo, Japan
| | - Alda L Tam
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Marites P Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Steven Yevich
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Aliya Qayyum
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ahmed Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kimihiko Kichikawa
- Department of Radiology, IVR Center, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
| | - Sanjay Gupta
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - S Nahum Goldberg
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Seon Hee Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| |
Collapse
|
40
|
Skrajnowska D, Bobrowska-Korczak B. Role of Zinc in Immune System and Anti-Cancer Defense Mechanisms. Nutrients 2019; 11:E2273. [PMID: 31546724 PMCID: PMC6835436 DOI: 10.3390/nu11102273] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
The human body cannot store zinc reserves, so a deficiency can arise relatively quickly, e.g., through an improper diet. Severe zinc deficiency is rare, but mild deficiencies are common around the world. Many epidemiological studies have shown a relationship between the zinc content in the diet and the risk of cancer. The anti-cancer effect of zinc is most often associated with its antioxidant properties. However, this is just one of many possibilities, including the influence of zinc on the immune system, transcription factors, cell differentiation and proliferation, DNA and RNA synthesis and repair, enzyme activation or inhibition, the regulation of cellular signaling, and the stabilization of the cell structure and membranes. This study presents selected issues regarding the current knowledge of anti-cancer mechanisms involving this element.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | | |
Collapse
|
41
|
Loyon R, Jary M, Salomé B, Gomez-Cadena A, Galaine J, Kroemer M, Romero P, Trabanelli S, Adotévi O, Borg C, Jandus C. Peripheral Innate Lymphoid Cells Are Increased in First Line Metastatic Colorectal Carcinoma Patients: A Negative Correlation With Th1 Immune Responses. Front Immunol 2019; 10:2121. [PMID: 31555301 PMCID: PMC6742701 DOI: 10.3389/fimmu.2019.02121] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/23/2019] [Indexed: 01/26/2023] Open
Abstract
Several distinct innate lymphoid cell (ILC) populations have been recently identified and shown to play a critical role in the immediate immune defense. In the context of tumors, there is evidence to support a dual role for ILCs with pro- or antitumor effects, depending on the ILC subset and the type of cancer. This ambivalent role has been particularly well-described in colorectal cancer models (CRC), but the presence and the evolution of ILCs in the peripheral blood of metastatic CRC (mCRC) patients have not yet been explored. Here, we investigated the distribution of ILC subsets in 96 mCRC patients who were prospectively included in the “Epitopes-CRC02” trial. Peripheral blood mononuclear cells (PBMCs) were analyzed by flow cytometry at metastatic diagnosis and after 3-months of treatment. The treatments consisted of Oxaliplatin-based chemotherapies for 76% of the patients or Folfiri (5FU, Irinotecan) chemotherapies for 14% of patients. Compared to healthy donors, the frequency of total ILCs was dramatically increased at metastatic diagnosis. CD56+ ILC1-like cells were expanded, whereas ILC2, NCR− ILCP and NCR+ ILCP subsets were decreased. Combined analysis with the systemic anti-telomerase hTERT Th1 CD4 response revealed that patients with low anti-TERT Th1 CD4 responses had the highest frequencies of total ILCs at diagnosis. Of those, 91% had synchronous metastases, and their median progression-free survival was 7.43 months (vs. 9.17 months for the other patients). In these patients, ILC1 and ILC2 were significantly decreased, whereas CD56+ ILC1-like cells were significantly increased compared to patients with low frequency of total ILCs and high anti-TERT responses. After treatment, the NCR+ ILCP were further decreased irrespective of the chemotherapy regimen, whereas the balance between ILC1 and CD56+ ILC1-like cells was modulated mainly by the Folfiri regimen in favor of ILC1. Altogether our results describe the effects of different chemotherapies on ILCs in mCRC patients. We also establish for the first time a link between frequency of ILCs and anti-tumor CD4 T cell responses in cancer patients. Thus, our study supports an interest in monitoring ILCs during cancer therapy to possibly identify predictive biomarkers in mCRC.
Collapse
Affiliation(s)
- Romain Loyon
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Marine Jary
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, University Hospital of Besançon, Besançon, France
| | - Bérengère Salomé
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Alejandra Gomez-Cadena
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Jeanne Galaine
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Marie Kroemer
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Pedro Romero
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Sara Trabanelli
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Olivier Adotévi
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Christophe Borg
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Camilla Jandus
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
42
|
Song L, Ma S, Chen L, Miao L, Tao M, Liu H. Long-term prognostic significance of interleukin-17-producing T cells in patients with non-small cell lung cancer. Cancer Sci 2019; 110:2100-2109. [PMID: 31100180 PMCID: PMC6609818 DOI: 10.1111/cas.14068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022] Open
Abstract
The presence of interleukin (IL)‐17‐producing T cells has recently been reported in non‐small cell lung cancer (NSCLC) patients. However, the long‐term prognostic significance of these populations in NSCLC patients remains unknown. In the present study, we collected peripheral blood from 82 NSCLC patients and 22 normal healthy donors (NC). Percentages of IL‐17‐producing CD4+T (Th17), CD8+T (Tc17) and γδT cells (γδT17) were measured to determine their association with clinical outcomes and overall survival (OS) in NSCLC. All NSCLC patients were followed up until July 2018. Median follow‐up time was 13.5 months (range 1‐87 months). The 3‐ and 5‐year survival rate was 27% and 19.6%, respectively. We found that Th17 cells and γδT17 cells were significantly increased, whereas Tc17 cells were markedly decreased in patients with NSCLC compared with those in NC. In addition, Th17 cells were significantly positively associated with T helper type 1 cells (Th1), whereas γδT17 cells were significantly negatively associated with γδT + interferon (IFN)‐γ+ cells. High percentages of peripheral Tc17 cells were significantly associated with favorable 5‐year OS (P = .025), especially in patients with early TNM stage (P = .016). Furthermore, high percentages of peripheral Th17 cells were positively associated with favorable 5‐year OS in patients with late TNM stage (P = .002). However, no significant association was observed between γδT17 cells and OS, regardless of the TNM stage. In conclusion, our findings suggest that enhanced Th17 and reduced Tc17 cells in the peripheral blood could be a significant predictor of a favorable prognosis for NSCLC patients.
Collapse
Affiliation(s)
- Li Song
- Department of Oncology, Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China.,College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shoubao Ma
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Longpei Chen
- Department of Oncology, Shanghai Changhai Hospital, Shanghai, China
| | - Liyan Miao
- Department of Oncology, Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore
| |
Collapse
|
43
|
Eiro N, Gonzalez LO, Fraile M, Cid S, Schneider J, Vizoso FJ. Breast Cancer Tumor Stroma: Cellular Components, Phenotypic Heterogeneity, Intercellular Communication, Prognostic Implications and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11050664. [PMID: 31086100 PMCID: PMC6562436 DOI: 10.3390/cancers11050664] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Although the mechanisms underlying the genesis and progression of breast cancer are better understood than ever, it is still the most frequent malignant tumor in women and one of the leading causes of cancer death. Therefore, we need to establish new approaches that lead us to better understand the prognosis of this heterogeneous systemic disease and to propose new therapeutic strategies. Cancer is not only a malignant transformation of the epithelial cells merely based on their autonomous or acquired proliferative capacity. Today, data support the concept of cancer as an ecosystem based on a cellular sociology, with diverse components and complex interactions between them. Among the different cell types that make up the stroma, which have a relevant role in the dynamics of tumor/stromal cell interactions, the main ones are cancer associated fibroblasts, endothelial cells, immune cells and mesenchymal stromal cells. Several factors expressed by the stroma of breast carcinomas are associated with the development of metastasis, such as matrix metalloproteases, their tissular inhibitors or some of their regulators like integrins, cytokines or toll-like receptors. Based on the expression of these factors, two types of breast cancer stroma can be proposed with significantly different influence on the prognosis of patients. In addition, there is evidence about the existence of bi-directional signals between cancer cells and tumor stroma cells with prognostic implications, suggesting new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Luis O Gonzalez
- Department of Anatomical Pathology, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - María Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Sandra Cid
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Jose Schneider
- Department of Obstetrics and Gynecology, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922, Alcorcón, Madrid, Spain.
| | - Francisco J Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| |
Collapse
|
44
|
Liu X, Zawidzka EM, Li H, Lesch CA, Dunbar J, Bousley D, Zou W, Hu X, Carter LL. RORγ Agonists Enhance the Sustained Antitumor Activity through Intrinsic Tc17 Cytotoxicity and Tc1 Recruitment. Cancer Immunol Res 2019; 7:1054-1063. [PMID: 31064778 DOI: 10.1158/2326-6066.cir-18-0714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/06/2019] [Accepted: 05/02/2019] [Indexed: 11/16/2022]
Abstract
Activation of RORγ with synthetic small-molecule agonists has been shown to enhance type 17 effector (CD4+ Th17 and CD8+ Tc17 cells) cell functions and decrease immunosuppressive mechanisms, leading to improved antitumor efficacy in adoptive cell transfer and syngeneic murine tumor models. However, whether Tc17 cells possess intrinsic cytotoxicity and the mechanism they use to lyse target cells is controversial. We report here that Tc17 cells were lytic effectors dependent on perforin and granzyme A. In contrast to Tc1 cells, Tc17 cells resisted activation-induced cell death and maintained granzyme A levels, which conferred the ability to lyse target cells in serial encounters. Thus, although the acute lytic capacity of Tc17 cells could be inferior to Tc1 cells, comparable lysis was achieved over time. In addition to direct lytic activity, Tc17 cells infiltrated early into the tumor mass, recruited other CD8+ T cells to the tumor, and enhanced the survival and lytic capability of these cells during repeated target encounters. Synthetic RORγ agonists further augmented Tc17 survival and lytic activity in vitro and in vivo, controlling tumor growth not only through direct cytotoxicity, but also through recruitment and improved function of other effector cells in the tumor microenvironment, which suggests complementary and cooperate activities for effective immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weiping Zou
- University of Michigan Medical School, Ann Arbor, Michigan
| | - Xiao Hu
- Lycera Corp. Ann Arbor, Michigan
| | | |
Collapse
|
45
|
Razi S, Baradaran Noveiry B, Keshavarz-Fathi M, Rezaei N. IL-17 and colorectal cancer: From carcinogenesis to treatment. Cytokine 2019; 116:7-12. [PMID: 30684916 DOI: 10.1016/j.cyto.2018.12.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer in the world. Several factors contribute to the development of this cancer. Tumor formation in colon triggers immune responses such as immune cells proliferation, phenotype alteration, cytokine synthesis and release, which lead to IL-17 producing T cells, the differentiated CD4+ T cells i.e. T helper 17. IL-17 is a pro-inflammatory cytokine, which its level is up regulated in serum and tissues of CRC patients. Several studies have shown that IL-17 has an important role in metastasis and prognosis of CRC. The aim of this review is to summarize the role of this cytokine in tumorigenesis, angiogenesis and metastasis of CRC and discuss its value in diagnosis, prognosis and treatment of CRC.
Collapse
Affiliation(s)
- Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnoud Baradaran Noveiry
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Baltimore, MD, USA
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
46
|
Nicolini A, Ferrari P, Rossi G, Carpi A. Tumour growth and immune evasion as targets for a new strategy in advanced cancer. Endocr Relat Cancer 2018; 25:R577–R604. [PMID: 30306784 DOI: 10.1530/erc-18-0142] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has become clearer that advanced cancer, especially advanced breast cancer, is an entirely displayed pathological system that is much more complex than previously considered. However, the direct relationship between tumour growth and immune evasion can represent a general rule governing the pathological cancer system from the initial cancer cells to when the system is entirely displayed. Accordingly, a refined pathobiological model and a novel therapeutic strategy are proposed. The novel therapeutic strategy is based on therapeutically induced conditions (undetectable tumour burden and/or a prolonged tumour ‘resting state’), which enable an efficacious immune response in advanced breast and other types of solid cancers.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Rossi
- Unit of Epidemiology and Biostatistics, Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
47
|
Chen YS, Huang TH, Liu CL, Chen HS, Lee MH, Chen HW, Shen CR. Locally Targeting the IL-17/IL-17RA Axis Reduced Tumor Growth in a Murine B16F10 Melanoma Model. Hum Gene Ther 2018; 30:273-285. [PMID: 30079767 DOI: 10.1089/hum.2018.104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-17 and the cells that produce it within the tumor microenvironment appear to promote tumor development and are associated with survival in cancer patients. Here we investigated the role of the IL-17/IL-17 receptor A (IL-17RA) axis in regulating melanoma progression and evaluated the therapeutic potential of blocking the IL-17/IL-17RA pathway. First, recombinant mouse IL-17 (γmIL-17) treatment significantly increased proliferation of mouse B16F10 cells and human A375 and A2058 cells. Silencing IL-17RA by small hairpin RNA (shRNA) in B16F10 cells reduced the γmIL-17-elicited cell proliferation, migration, and invasion, and significantly reduced vascular endothelial growth factor and matrix metalloproteinase production. Remarkably, knockdown of IL-17RA led to a significantly decreased capability of B16F10 cells to form tumors in vivo, similar to that in IL-17-deficient mice. Finally, local application of an adenovirus delivering a shRNA against IL-17RA mRNA not only significantly suppressed tumor development, but also enhanced antitumor immunity by increasing the interferon γ-expressing T cells and not T regulatory cells. Our results highlight the critical role of the IL-17/IL-17RA pathway in tumor progression and imply that targeting IL-17RA represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Ya-Shan Chen
- 1 Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Tse-Hung Huang
- 3 School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,4 Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC
| | - Chao-Lin Liu
- 5 College of Engineering, Chang Gung University, Taoyuan, Taiwan, ROC.,6 Department of Chemical Engineering, Ming Chi University of Technology, New Taipei, Taiwan, ROC
| | - Hui-Shan Chen
- 1 Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Meng-Hua Lee
- 1 Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Hsin-Wei Chen
- 7 National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan, ROC.,8 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Chia-Rui Shen
- 1 Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,9 Department of Ophthalmology, Lin-Kou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC.,10 Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, ROC
| |
Collapse
|
48
|
Lazăr DC, Avram MF, Romoșan I, Cornianu M, Tăban S, Goldiș A. Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer. World J Gastroenterol 2018; 24:3583-3616. [PMID: 30166856 PMCID: PMC6113718 DOI: 10.3748/wjg.v24.i32.3583] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Despite a decrease in gastric cancer incidence, the development of novel biologic agents and combined therapeutic strategies, the prognosis of gastric cancer remains poor. Recently, the introduction of modern immunotherapy, especially using immune checkpoint inhibitors, led to an improved prognosis in many cancers. The use of immunotherapy was also associated with manageable adverse event profiles and promising results in the treatment of patients with gastric cancer, especially in heavily pretreated patients. These data have led to an accelerated approval of some checkpoint inhibitors in this setting. Understanding the complex relationship between the host immune microenvironment and tumor and the immune escape phenomenon leading to cancer occurrence and progression will subsequently lead to the identification of prognostic immune markers. Furthermore, this understanding will result in the discovery of both new mechanisms for blocking tumor immunosuppressive signals and pathways to stimulate the local immune response by targeting and modulating different subsets of immune cells. Due to the molecular heterogeneity of gastric cancers associated with different clinico-biologic parameters, immune markers expression and prognosis, novel immunotherapy algorithms should be personalized and addressed to selected subsets of gastric tumors, which have been proven to elicit the best clinical responses. Future perspectives in the treatment of gastric cancer include tailored dual immunotherapies or a combination of immunotherapy with other targeted agents with synergistic antitumor effects.
Collapse
Affiliation(s)
- Daniela Cornelia Lazăr
- Department of Internal Medicine I, University Medical Clinic, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Mihaela Flavia Avram
- Department of Surgery X, 1st Surgery Clinic, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Ioan Romoșan
- Department of Internal Medicine I, University Medical Clinic, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Mărioara Cornianu
- Department of Pathology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Sorina Tăban
- Department of Pathology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Adrian Goldiș
- Department of Gastroenterology and Hepatology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| |
Collapse
|
49
|
Colombo M, Mirandola L, Chiriva-Internati M, Basile A, Locati M, Lesma E, Chiaramonte R, Platonova N. Cancer Cells Exploit Notch Signaling to Redefine a Supportive Cytokine Milieu. Front Immunol 2018; 9:1823. [PMID: 30154786 PMCID: PMC6102368 DOI: 10.3389/fimmu.2018.01823] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Notch signaling is a well-known key player in the communication between adjacent cells during organ development, when it controls several processes involved in cell differentiation. Notch-mediated communication may occur through the interaction of Notch receptors with ligands on adjacent cells or by a paracrine/endocrine fashion, through soluble molecules that can mediate the communication between cells at distant sites. Dysregulation of Notch pathway causes a number of disorders, including cancer. Notch hyperactivation may be caused by mutations of Notch-related genes, dysregulated upstream pathways, or microenvironment signals. Cancer cells may exploit this aberrant signaling to "educate" the surrounding microenvironment cells toward a pro-tumoral behavior. This may occur because of key cytokines secreted by tumor cells or it may involve the microenvironment through the activation of Notch signaling in stromal cells, an event mediated by a direct cell-to-cell contact and resulting in the increased secretion of several pro-tumorigenic cytokines. Up to now, review articles were mainly focused on Notch contribution in a specific tumor context or immune cell populations. Here, we provide a comprehensive overview on the outcomes of Notch-mediated pathological interactions in different tumor settings and on the molecular and cellular mediators involved in this process. We describe how Notch dysregulation in cancer may alter the cytokine network and its outcomes on tumor progression and antitumor immune response.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Maurizio Chiriva-Internati
- Kiromic Biopharma Inc., Houston, TX, United States.,Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrea Basile
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
50
|
Elshazli RM, Salman DO, Kamel MM, Toraih EA, Fawzy MS. Genetic polymorphisms of IL-17A rs2275913, rs3748067 and IL-17F rs763780 in gastric cancer risk: evidence from 8124 cases and 9873 controls. Mol Biol Rep 2018; 45:1421-1444. [PMID: 29860554 DOI: 10.1007/s11033-018-4202-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022]
Abstract
Interleukin-17 (IL-17) is a critical cytokine involved in inflammation-associated cancers. Single nucleotide polymorphisms (SNPs) might promote carcinogenesis. In this current meta-analysis, we investigated the association of IL-17A and IL-17F gene polymorphisms with gastric cancer (GC) risk. Eligible genetic association studies were retrieved from PubMed, Web of Science and Scopus database sources. Two reviewers independently assessed methodological quality and extracted data from eligible articles. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Quantitative data synthesis was conducted using comprehensive meta-analysis v2. Subgroup analysis and heterogeneity analysis were performed. Begg's funnel plot and Egger's regression tests were used to judge publication bias. In silico data analysis was executed to analyze the functional and structural impact of the SNPs. A total of 21 case-control studies for rs2275913 c.-197G > A (7660 patients and 9409 controls), 9 studies for rs3748067 c.*1249C > T (3378 patients and 4120 controls), and 14 studies for rs763780 c.482A > G (4481 patients and 5354 controls) were included. The pooled estimate revealed an association between IL-17A rs2275913 polymorphism and the risk of GC under all genetic models (A vs. G, OR 1.187, 95% CI 1.086-1.297, P < 0.001; GA vs. GG, OR 1.108, 95% CI 1.008-1.218, P = 0.033; AA vs. GG, OR 1.484, 95% CI 1.236-1.781, P < 0.001), while no evidence of association was found with IL-17A rs3748067 or IL-17F rs763780 polymorphisms. Our results showed that IL-17A promoter rs2275913 variant might represent a potential risk factor for gastric cancer susceptibility.
Collapse
Affiliation(s)
- Rami M Elshazli
- Department of Biochemistry, Faculty of Physical Therapy, Horus University in Egypt (HUE), New Damietta, Egypt.
| | - Doaa O Salman
- Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Maha M Kamel
- Department of Biochemistry, Faculty of Pharmacy, Horus University of Egypt (HUE), New Damietta, Egypt
| | - Eman A Toraih
- Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|