1
|
Lee AH, Randhawa SK, Meisel M. Dietary Commensal Wrestles Iron from Tumor Microenvironment to Activate Antitumoral Macrophages. Cancer Res 2024; 84:2400-2402. [PMID: 38832925 PMCID: PMC11552448 DOI: 10.1158/0008-5472.can-24-1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
The microbiome dictates the response to cancer immunotherapy efficacy. However, the mechanisms of how the microbiota impacts therapy efficacy remain poorly understood. In a recent issue of Nature Immunology, Sharma and colleagues elucidate a multifaceted, macrophage-driven mechanism exerted by a specific strain of fermented food commensal plantarum strain IMB19, LpIMB19. LpIMB19 activates tumor macrophages, resulting in the enhancement of cytotoxic cluster differentiation 8 (CD8) T cells. LpIMB19 administration led to an expansion of tumor-infiltrating CD8 T cells and improved the efficacy of anti-PD-L1 therapy. Rhamnose-rich heteropolysaccharide, a strain-specific cell wall component, was identified as the primary effector molecule of LplMB19. Toll-like receptor 2 signaling and the ability of macrophages to sequester iron were both critical for rhamnose-rich heteropolysaccharide-mediated macrophage activation upstream of the CD8 T-cell effector response and contributed to tumor cell apoptosis through iron deprivation. These findings reveal a well-defined mechanism connecting diet and health outcomes, suggesting that diet-derived commensals may warrant further investigation. Additionally, this work emphasizes the importance of strain-specific differences in studying microbiome-cancer interactions and the concept of "nutritional immunity" to enhance microbe-triggered antitumor immunity.
Collapse
Affiliation(s)
- Amanda H. Lee
- Department of Immunology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simran K. Randhawa
- Department of Immunology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center; Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Sharma G, Sharma A, Kim I, Cha DG, Kim S, Park ES, Noh JG, Lee J, Ku JH, Choi YH, Kong J, Lee H, Ko H, Lee J, Notaro A, Hong SH, Rhee JH, Kim SG, De Castro C, Molinaro A, Shin K, Kim S, Kim JK, Rudra D, Im SH. A dietary commensal microbe enhances antitumor immunity by activating tumor macrophages to sequester iron. Nat Immunol 2024; 25:790-801. [PMID: 38664585 DOI: 10.1038/s41590-024-01816-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 05/04/2024]
Abstract
Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea
| | - Amit Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Innovation Research Center for Bio-future Technology (B-IRC), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Inhae Kim
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea
| | - Dong Gon Cha
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Eun Seo Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jae Gyun Noh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Juhee Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Ja Hyeon Ku
- Department of Urology, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - JungHo Kong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Haena Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Juhun Lee
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea
| | - Anna Notaro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126, Naples, Italy
| | - Seol Hee Hong
- Clinical Vaccine R&D Center and Combinatorial Tumor Immunotherapy MRC, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center and Combinatorial Tumor Immunotherapy MRC, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Seoul, Republic of Korea
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126, Naples, Italy
| | - Kunyoo Shin
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Dipayan Rudra
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Zhang X, Zhou J, Holbein BE, Lehmann C. Iron Chelation as a Potential Therapeutic Approach in Acute Lung Injury. Life (Basel) 2023; 13:1659. [PMID: 37629516 PMCID: PMC10455621 DOI: 10.3390/life13081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Acute lung injury (ALI) has been challenging health care systems since before the COVID-19 pandemic due to its morbidity, mortality, and length of hospital stay. In view of the complex pathogenesis of ALI, effective strategies for its prevention and treatment are still lacking. A growing body of evidence suggests that iron dysregulation is a common characteristic in many subtypes of ALI. On the one hand, iron is needed to produce reactive oxygen species (ROS) as part of the immune response to an infection; on the other hand, iron can accelerate the occurrence of ferroptosis and extend host cell damage. Iron chelation represents a novel therapeutic strategy for alleviating lung injury and improving the survival of patients with ALI. This article reviews the current knowledge of iron homeostasis, the role of iron in ALI development, and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiyang Zhang
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
| | - Bruce E. Holbein
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
4
|
Deng X, Wu Y, Hu Z, Wang S, Zhou S, Zhou C, Gao X, Huang Y. The mechanism of ferroptosis in early brain injury after subarachnoid hemorrhage. Front Immunol 2023; 14:1191826. [PMID: 37266433 PMCID: PMC10229825 DOI: 10.3389/fimmu.2023.1191826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a cerebrovascular accident with an acute onset, severe disease characteristics, and poor prognosis. Within 72 hours after the occurrence of SAH, a sequence of pathological changes occur in the body including blood-brain barrier breakdown, cerebral edema, and reduced cerebrovascular flow that are defined as early brain injury (EBI), and it has been demonstrated that EBI exhibits an obvious correlation with poor prognosis. Ferroptosis is a novel programmed cell death mode. Ferroptosis is induced by the iron-dependent accumulation of lipid peroxides and reactive oxygen species (ROS). Ferroptosis involves abnormal iron metabolism, glutathione depletion, and lipid peroxidation. Recent study revealed that ferroptosis is involved in EBI and is significantly correlated with poor prognosis. With the gradual realization of the importance of ferroptosis, an increasing number of studies have been conducted to examine this process. This review summarizes the latest work in this field and tracks current research progress. We focused on iron metabolism, lipid metabolism, reduction systems centered on the GSH/GPX4 system, other newly discovered GSH/GPX4-independent antioxidant systems, and their related targets in the context of early brain injury. Additionally, we examined certain ferroptosis regulatory mechanisms that have been studied in other fields but not in SAH. A link between death and oxidative stress has been described. Additionally, we highlight the future research direction of ferroptosis in EBI of SAH, and this provides new ideas for follow-up research.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, Zhejiang, China
| | - Shiyi Wang
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Kania B, Sotelo A, Ty D, Wisco JJ. The Prevention of Inflammation and the Maintenance of Iron and Hepcidin Homeostasis in the Gut, Liver, and Brain Pathologies. J Alzheimers Dis 2023; 92:769-789. [PMID: 36846996 PMCID: PMC10116142 DOI: 10.3233/jad-220224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The human gut microbiome consists of a variety of microorganisms that inhabit the intestinal tract. This flora has recently been shown to play an important role in human disease. The crosstalk between the gut and brain axis has been investigated through hepcidin, derived from both hepatocytes and dendritic cells. Hepcidin could potentially play an anti-inflammatory role in the process of gut dysbiosis through a means of either a localized approach of nutritional immunity, or a systemic approach. Like hepcidin, mBDNF and IL-6 are part of the gut-brain axis: gut microbiota affects their levels of expression, and this relationship is thought to play a role in cognitive function and decline, which could ultimately lead to a number of neurodegenerative diseases such as Alzheimer's disease. This review will focus on the interplay between gut dysbiosis and the crosstalk between the gut, liver, and brain and how this is mediated by hepcidin through different mechanisms including the vagus nerve and several different biomolecules. This overview will also focus on the gut microbiota-induced dysbiotic state on a systemic level, and how gut dysbiosis can contribute to beginnings and the progression of Alzheimer's disease and neuroinflammation.
Collapse
Affiliation(s)
- Barbara Kania
- Department of Anatomy and Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| | - Alexis Sotelo
- Department of Anatomy and Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| | - Darren Ty
- Department of Anatomy and Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| | - Jonathan J Wisco
- Department of Anatomy and Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Dixon S, Karrow NA, Borkowski E, Suarez-Vega A, Menzies PI, Kennedy D, Peregrine AS, Mallard BA, Cánovas Á. Identifying hepatic genes regulating the ovine response to gastrointestinal nematodes using RNA-Sequencing. Front Genet 2023; 14:1111426. [PMID: 36873933 PMCID: PMC9981634 DOI: 10.3389/fgene.2023.1111426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 02/19/2023] Open
Abstract
Gastrointestinal nematode (GIN) infections are considered the most important disease of grazing sheep and due to increasing anthelmintic resistance, chemical control alone is inadequate. Resistance to Gastrointestinal nematode infection is a heritable trait, and through natural selection many sheep breeds have higher resistance. Studying the transcriptome from GIN-exposed and GIN-unexposed sheep using RNA-Sequencing technology can provide measurements of transcript levels associated with the host response to Gastrointestinal nematode infection, and these transcripts may harbor genetic markers that can be used in selective breeding programs to enhance disease resistance. The objective of this study was to compare liver transcriptomes of sheep naturally exposed to Gastrointestinal nematode s, with either high or low parasite burdens, to GIN-unexposed control sheep in order to identify key regulator genes and biological processes associated with Gastrointestinal nematode infection. Differential gene expression analysis revealed no significant differentially expressed genes (DEG) between sheep with a high or low parasite burden (p-value ≤0.01; False Discovery Rate (FDR) ≤ 0.05; and Fold-Change (FC) of > ±2). However, when compared to the control group, low parasite burden sheep showed 146 differentially expressed genes (64 upregulated and 82 downregulated in the low parasite burden group relative to the control), and high parasite burden sheep showed 159 differentially expressed genes (57 upregulated and 102 downregulated in the low parasite burden group relative to the control) (p-value ≤0.01; FDR ≤0.05; and FC of > ±2). Among these two lists of significant differentially expressed genes, 86 differentially expressed genes (34 upregulated, 52 downregulated in the parasited group relative to the control) were found in common between the two parasite burden groups compared to the control (GIN-unexposed sheep). Functional analysis of these significant 86 differentially expressed genes found upregulated genes involved in immune response and downregulated genes involved in lipid metabolism. Results of this study offer insight into the liver transcriptome during natural Gastrointestinal nematode exposure that helps provide a better understanding of the key regulator genes involved in Gastrointestinal nematode infection in sheep.
Collapse
Affiliation(s)
- Samantha Dixon
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Niel A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Emma Borkowski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Aroa Suarez-Vega
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Paula I Menzies
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Delma Kennedy
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, ON, Canada
| | - Andrew S Peregrine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Bonnie A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Chaib M, Hafeez BB, Mandil H, Daria D, Pingili AK, Kumari S, Sikander M, Kashyap VK, Chen GY, Anning E, Tripathi MK, Khan S, Behrman S, Yallapu MM, Jaggi M, Makowski L, Chauhan SC. Reprogramming of pancreatic adenocarcinoma immunosurveillance by a microbial probiotic siderophore. Commun Biol 2022; 5:1181. [PMID: 36333531 PMCID: PMC9636404 DOI: 10.1038/s42003-022-04102-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence suggesting the role of microbiome alterations in relation to pancreatic adenocarcinoma and tumor immune functionality. However, molecular mechanisms of the interplay between microbiome signatures and/or their metabolites in pancreatic tumor immunosurveillance are not well understood. We have identified that a probiotic strain (Lactobacillus casei) derived siderophore (ferrichrome) efficiently reprograms tumor-associated macrophages (TAMs) and increases CD8 + T cell infiltration into tumors that paralleled a marked reduction in tumor burden in a syngeneic mouse model of pancreatic cancer. Interestingly, this altered immune response improved anti-PD-L1 therapy that suggests promise of a novel combination (ferrichrome and immune checkpoint inhibitors) therapy for pancreatic cancer treatment. Mechanistically, ferrichrome induced TAMs polarization via activation of the TLR4 pathway that represses the expression of iron export protein ferroportin (FPN1) in macrophages. This study describes a novel probiotic based molecular mechanism that can effectively induce anti-tumor immunosurveillance and improve immune checkpoint inhibitors therapy response in pancreatic cancer.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Bilal B Hafeez
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| | - Hassan Mandil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Deidre Daria
- Department of Microbiology, Immunology and Biochemistry, Memphis, TN, 38163, USA
| | - Ajeeth K Pingili
- Division of Hematology Oncology, Department of Medicine, Memphis, TN, 38163, USA
| | - Sonam Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Mohammed Sikander
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Guo-Yun Chen
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, Memphis, TN, 38163, USA
| | - Emmanuel Anning
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Manish K Tripathi
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Sheema Khan
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | | | - Murali M Yallapu
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Liza Makowski
- Department of Medicine, Division of Hematology and Oncology and the UTHSC Center for Cancer Research, Memphis, TN, 38103, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| |
Collapse
|
8
|
Long HZ, Zhou ZW, Cheng Y, Luo HY, Li FJ, Xu SG, Gao LC. The Role of Microglia in Alzheimer’s Disease From the Perspective of Immune Inflammation and Iron Metabolism. Front Aging Neurosci 2022; 14:888989. [PMID: 35847685 PMCID: PMC9284275 DOI: 10.3389/fnagi.2022.888989] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD), the most common type of senile dementia, includes the complex pathogenesis of abnormal deposition of amyloid beta-protein (Aβ), phosphorylated tau (p-tau) and neuroimmune inflammatory. The neurodegenerative process of AD triggers microglial activation, and the overactivation of microglia produces a large number of neuroimmune inflammatory factors. Microglia dysfunction can lead to disturbances in iron metabolism and enhance iron-induced neuronal degeneration in AD, while elevated iron levels in brain areas affect microglia phenotype and function. In this manuscript, we firstly discuss the role of microglia in AD and then introduce the role of microglia in the immune-inflammatory pathology of AD. Their role in AD iron homeostasis is emphasized. Recent studies on microglia and ferroptosis in AD are also reviewed. It will help readers better understand the role of microglia in iron metabolism in AD, and provides a basis for better regulation of iron metabolism disorders in AD and the discovery of new potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Hui-Zhi Long
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Feng-Jiao Li
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
- *Correspondence: Li-Chen Gao,
| |
Collapse
|
9
|
de Oliveira J, Denadai MB, Costa DL. Crosstalk between Heme Oxygenase-1 and Iron Metabolism in Macrophages: Implications for the Modulation of Inflammation and Immunity. Antioxidants (Basel) 2022; 11:861. [PMID: 35624725 PMCID: PMC9137896 DOI: 10.3390/antiox11050861] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme that catalyzes the degradation of heme, releasing equimolar amounts of carbon monoxide (CO), biliverdin (BV), and iron. The anti-inflammatory and antioxidant properties of HO-1 activity are conferred in part by the release of CO and BV and are extensively characterized. However, iron constitutes an important product of HO-1 activity involved in the regulation of several cellular biological processes. The macrophage-mediated recycling of heme molecules, in particular those contained in hemoglobin, constitutes the major mechanism through which living organisms acquire iron. This process is finely regulated by the activities of HO-1 and of the iron exporter protein ferroportin. The expression of both proteins can be induced or suppressed in response to pro- and anti-inflammatory stimuli in macrophages from different tissues, which alters the intracellular iron concentrations of these cells. As we discuss in this review article, changes in intracellular iron levels play important roles in the regulation of cellular oxidation reactions as well as in the transcriptional and translational regulation of the expression of proteins related to inflammation and immune responses, and therefore, iron metabolism represents a potential target for the development of novel therapeutic strategies focused on the modulation of immunity and inflammation.
Collapse
Affiliation(s)
- Joseana de Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil; (J.d.O.); (M.B.D.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Marina B. Denadai
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil; (J.d.O.); (M.B.D.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil; (J.d.O.); (M.B.D.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
10
|
Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, Zhou Z. Role and Mechanism of Ferroptosis in Neurological Diseases. Mol Metab 2022; 61:101502. [PMID: 35447365 PMCID: PMC9170779 DOI: 10.1016/j.molmet.2022.101502] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background Ferroptosis, as a new form of cell death, is different from other cell deaths such as autophagy or senescence. Ferroptosis involves in the pathophysiological progress of several diseases, including cancers, cardiovascular diseases, nervous system diseases, and kidney damage. Since oxidative stress and iron deposition are the broad pathological features of neurological diseases, the role of ferroptosis in neurological diseases has been widely explored. Scope of review Ferroptosis is mainly characterized by changes in iron homeostasis, iron-dependent lipid peroxidation, and glutamate toxicity accumulation, of which can be specifically reversed by ferroptosis inducers or inhibitors. The ferroptosis is mainly regulated by the metabolism of iron, lipids and amino acids through System Xc−, voltage-dependent anion channels, p53, p62-Keap1-Nrf2, mevalonate and other pathways. This review also focus on the regulatory pathways of ferroptosis and its research progress in neurological diseases. Major conclusions The current researches of ferroptosis in neurological diseases mostly focus on the key pathways of ferroptosis. At the same time, ferroptosis was found playing a bidirectional regulation role in neurological diseases. Therefore, the specific regulatory mechanisms of ferroptosis in neurological diseases still need to be further explored to provide new perspectives for the application of ferroptosis in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Mengmeng Ou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Ying Jiang
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Yingying Ji
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Qin Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Zhiqiang Du
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Haohao Zhu
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Zhenhe Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
11
|
Yang S, Ouyang J, Lu Y, Harypursat V, Chen Y. A Dual Role of Heme Oxygenase-1 in Tuberculosis. Front Immunol 2022; 13:842858. [PMID: 35281042 PMCID: PMC8913507 DOI: 10.3389/fimmu.2022.842858] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Iron metabolism is vital for the survival of both humans and microorganisms. Heme oxygenase-1 (HO-1) is an essential stress-response enzyme highly expressed in the lungs, and catabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV)/bilirubin (BR), especially in pathological conditions which cause oxidative stress and inflammation. Ferrous iron (Fe2+) is an important raw material for the synthesis of hemoglobin in red blood cells, and patients with iron deficiency are often associated with decreased cellular immunity. CO and BR can inhibit oxidative stress and inflammation. Thus, HO-1 is regarded as a cytoprotective molecule during the infection process. However, recent study has unveiled new information regarding HO-1. Being a highly infectious pathogenic bacterium, Mycobacterium tuberculosis (MTB) infection causes acute oxidative stress, and increases the expression of HO-1, which may in turn facilitate MTB survival and growth due to increased iron availability. Moreover, in severe cases of MTB infection, excessive reactive oxygen species (ROS) and free iron (Fe2+) due to high levels of HO-1 can lead to lipid peroxidation and ferroptosis, which may promote further MTB dissemination from cells undergoing ferroptosis. Therefore, it is important to understand and illustrate the dual role of HO-1 in tuberculosis. Herein, we critically review the interplay among HO-1, tuberculosis, and the host, thus paving the way for development of potential strategies for modulating HO-1 and iron metabolism.
Collapse
|
12
|
Shahandeh A, Bui BV, Finkelstein DI, Nguyen CTO. Effects of Excess Iron on the Retina: Insights From Clinical Cases and Animal Models of Iron Disorders. Front Neurosci 2022; 15:794809. [PMID: 35185447 PMCID: PMC8851357 DOI: 10.3389/fnins.2021.794809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 01/19/2023] Open
Abstract
Iron plays an important role in a wide range of metabolic pathways that are important for neuronal health. Excessive levels of iron, however, can promote toxicity and cell death. An example of an iron overload disorder is hemochromatosis (HH) which is a genetic disorder of iron metabolism in which the body’s ability to regulate iron absorption is altered, resulting in iron build-up and injury in several organs. The retina was traditionally assumed to be protected from high levels of systemic iron overload by the blood-retina barrier. However, recent data shows that expression of genes that are associated with HH can disrupt retinal iron metabolism. Thus, the effects of iron overload on the retina have become an area of research interest, as excessively high levels of iron are implicated in several retinal disorders, most notably age–related macular degeneration. This review is an effort to highlight risk factors for excessive levels of systemic iron build-up in the retina and its potential impact on the eye health. Information is integrated across clinical and preclinical animal studies to provide insights into the effects of systemic iron loading on the retina.
Collapse
Affiliation(s)
- Ali Shahandeh
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Christine T. O. Nguyen,
| |
Collapse
|
13
|
Moreira AC, Silva T, Mesquita G, Gomes AC, Bento CM, Neves JV, Rodrigues DF, Rodrigues PN, Almeida AA, Santambrogio P, Gomes MS. H-Ferritin Produced by Myeloid Cells Is Released to the Circulation and Plays a Major Role in Liver Iron Distribution during Infection. Int J Mol Sci 2021; 23:ijms23010269. [PMID: 35008695 PMCID: PMC8745395 DOI: 10.3390/ijms23010269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
During infections, the host redistributes iron in order to starve pathogens from this nutrient. Several proteins are involved in iron absorption, transport, and storage. Ferritin is the most important iron storage protein. It is composed of variable proportions of two peptides, the L- and H-ferritins (FTL and FTH). We previously showed that macrophages increase their expression of FTH1 when they are infected in vitro with Mycobacterium avium, without a significant increase in FTL. In this work, we investigated the role of macrophage FTH1 in M. avium infection in vivo. We found that mice deficient in FTH1 in myeloid cells are more resistant to M. avium infection, presenting lower bacterial loads and lower levels of proinflammatory cytokines than wild-type littermates, due to the lower levels of available iron in the tissues. Importantly, we also found that FTH1 produced by myeloid cells in response to infection may be found in circulation and that it plays a key role in iron redistribution. Specifically, in the absence of FTH1 in myeloid cells, increased expression of ferroportin is observed in liver granulomas and increased iron accumulation occurs in hepatocytes. These results highlight the importance of FTH1 expression in myeloid cells for iron redistribution during infection.
Collapse
Affiliation(s)
- Ana C. Moreira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Tânia Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Gonçalo Mesquita
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Ana Cordeiro Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Clara M. Bento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, 4200-135 Porto, Portugal
| | - João V. Neves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela F. Rodrigues
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Pedro N. Rodrigues
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Agostinho A. Almeida
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Paolo Santambrogio
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
14
|
Chaudhary S, Ashok A, Wise AS, Rana NA, McDonald D, Kritikos AE, Kong Q, Singh N. Upregulation of brain hepcidin in prion diseases. Prion 2021; 15:126-137. [PMID: 34224321 PMCID: PMC8259718 DOI: 10.1080/19336896.2021.1946377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Accumulation of redox-active iron in human sporadic Creutzfeldt-Jakob disease (sCJD) brain tissue and scrapie-infected mouse brains has been demonstrated previously. Here, we explored whether upregulation of local hepcidin secreted within the brain is the underlying cause of iron accumulation and associated toxicity. Using scrapie-infected mouse brains, we demonstrate transcriptional upregulation of hepcidin relative to controls. As a result, ferroportin (Fpn), the downstream effector of hepcidin and the only known iron export protein was downregulated, and ferritin, an iron storage protein was upregulated, suggesting increased intracellular iron. A similar transcriptional and translational upregulation of hepcidin, and decreased expression of Fpn and an increase in ferritin expression was observed in sCJD brain tissue. Further evaluation in human neuroblastoma cells (M17) exposed to synthetic mini-hepcidin showed downregulation of Fpn, upregulation of ferritin, and an increase in reactive oxygen species (ROS), resulting in cytotoxicity in a dose-dependent manner. Similar effects were noted in primary neurons isolated from mouse brain. As in M17 cells, primary neurons accumulated ferritin and ROS, and showed toxicity at five times lower concentration of mini-hepcidin. These observations suggest that upregulation of brain hepcidin plays a significant role in iron accumulation and associated neurotoxicity in human and animal prion disorders.
Collapse
Affiliation(s)
- Suman Chaudhary
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Aaron S. Wise
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Neil A. Rana
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dallas McDonald
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alexander E. Kritikos
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
|
16
|
Lévesque JP, Summers KM, Bisht K, Millard SM, Winkler IG, Pettit AR. Macrophages form erythropoietic niches and regulate iron homeostasis to adapt erythropoiesis in response to infections and inflammation. Exp Hematol 2021; 103:1-14. [PMID: 34500024 DOI: 10.1016/j.exphem.2021.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
It has recently emerged that tissue-resident macrophages are key regulators of several stem cell niches orchestrating tissue formation during development, as well as postnatally, when they also organize the repair and regeneration of many tissues including the hemopoietic tissue. The fact that macrophages are also master regulators and effectors of innate immunity and inflammation allows them to coordinate hematopoietic response to infections, injuries, and inflammation. After recently reviewing the roles of phagocytes and macrophages in regulating normal and pathologic hematopoietic stem cell niches, we now focus on the key roles of macrophages in regulating erythropoiesis and iron homeostasis. We review herein the recent advances in understanding how macrophages at the center of erythroblastic islands form an erythropoietic niche that controls the terminal differentiation and maturation of erythroblasts into reticulocytes; how red pulp macrophages in the spleen control iron recycling and homeostasis; how these macrophages coordinate emergency erythropoiesis in response to blood loss, infections, and inflammation; and how persistent infections or inflammation can lead to anemia of inflammation via macrophages. Finally, we discuss the technical challenges associated with the molecular characterization of erythroid island macrophages and red pulp macrophages.
Collapse
Affiliation(s)
- Jean-Pierre Lévesque
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia.
| | - Kim M Summers
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Kavita Bisht
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Susan M Millard
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Ingrid G Winkler
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Allison R Pettit
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
17
|
Mertens C, Marques O, Horvat NK, Simonetti M, Muckenthaler MU, Jung M. The Macrophage Iron Signature in Health and Disease. Int J Mol Sci 2021; 22:ijms22168457. [PMID: 34445160 PMCID: PMC8395084 DOI: 10.3390/ijms22168457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout life, macrophages are located in every tissue of the body, where their main roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they promote homeostasis through trophic, regulatory, and repair functions by responding to internal and external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in which they are located helps to maintain tissue homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Christina Mertens
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Natalie K. Horvat
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Collaboration for Joint PhD Degree between EMBL and the Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Manuela Simonetti
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, INF 366, 69120 Heidelberg, Germany;
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| |
Collapse
|
18
|
Rapid removal of phagosomal ferroportin in macrophages contributes to nutritional immunity. Blood Adv 2021; 5:459-474. [PMID: 33496744 DOI: 10.1182/bloodadvances.2020002833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nutrient sequestration is an essential facet of host innate immunity. Macrophages play a critical role in controlling iron availability through expression of the iron transport protein ferroportin (FPN), which extrudes iron from the cytoplasm to the extracellular milieu. During phagocytosis, the limiting phagosomal membrane, which derives from the plasmalemma, can be decorated with FPN and, if functional, will move iron from the cytosol into the phagosome lumen. This serves to feed iron to phagocytosed microbes and would be counterproductive to the many other known host mechanisms working to starve microbes of this essential metal. To understand how FPN is regulated during phagocytosis, we expressed FPN as a green fluorescent protein-fusion protein in macrophages and monitored its localization during uptake of various phagocytic targets, including Staphylococcus aureus, Salmonella enterica serovar Typhimurium, human erythrocytes, and immunoglobulin G opsonized latex beads. We find that FPN is rapidly removed, independently of Vps34 and PI(3)P, from early phagosomes and does not follow recycling pathways that regulate transferrin receptor recycling. Live-cell video microscopy showed that FPN movement on the phagosome is dynamic, with punctate and tubular structures forming before FPN is trafficked back to the plasmalemma. N-ethylmaleimide-sensitive factor, which disrupts soluble NSF attachment protein receptor (SNARE)-mediated membrane fusion and trafficking, prevented FPN removal from the phagosome. Our data support the hypothesis that removal of FPN from the limiting phagosomal membrane will, at the cellular level, ensure that iron cannot be pumped into phagosomes. We propose this as yet another mechanism of host nutritional immunity to subvert microbial growth.
Collapse
|
19
|
Alam Z, Devalaraja S, Li M, To TKJ, Folkert IW, Mitchell-Velasquez E, Dang MT, Young P, Wilbur CJ, Silverman MA, Li X, Chen YH, Hernandez PT, Bhattacharyya A, Bhattacharya M, Levine MH, Haldar M. Counter Regulation of Spic by NF-κB and STAT Signaling Controls Inflammation and Iron Metabolism in Macrophages. Cell Rep 2021; 31:107825. [PMID: 32610126 PMCID: PMC8944937 DOI: 10.1016/j.celrep.2020.107825] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/27/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Activated macrophages must carefully calibrate their inflammatory responses to balance efficient pathogen control with inflammation-mediated tissue damage, but the molecular underpinnings of this "balancing act" remain unclear. Using genetically engineered mouse models and primary macrophage cultures, we show that Toll-like receptor (TLR) signaling induces the expression of the transcription factor Spic selectively in patrolling monocytes and tissue macrophages by a nuclear factor κB (NF-κB)-dependent mechanism. Functionally, Spic downregulates pro-inflammatory cytokines and promotes iron efflux by regulating ferroportin expression in activated macrophages. Notably, interferon-gamma blocks Spic expression in a STAT1-dependent manner. High levels of interferon-gamma are indicative of ongoing infection, and in its absence, activated macrophages appear to engage a "default" Spic-dependent anti-inflammatory pathway. We also provide evidence for the engagement of this pathway in sterile inflammation. Taken together, our findings uncover a pathway wherein counter-regulation of Spic by NF-κB and STATs attune inflammatory responses and iron metabolism in macrophages.
Collapse
Affiliation(s)
- Zahidul Alam
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Samir Devalaraja
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Minghong Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Tsun Ki Jerrick To
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Ian W Folkert
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Erick Mitchell-Velasquez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Mai T Dang
- Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Patricia Young
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Christopher J Wilbur
- Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Michael A Silverman
- Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul T Hernandez
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Aritra Bhattacharyya
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mallar Bhattacharya
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew H Levine
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
20
|
Díaz R, Troncoso J, Jakob E, Skugor S. "Limiting access to iron decreases infection of Atlantic salmon SHK-1 cells with bacterium Piscirickettsia salmonis". BMC Vet Res 2021; 17:155. [PMID: 33849522 PMCID: PMC8043062 DOI: 10.1186/s12917-021-02853-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vertebrate hosts limit the availability of iron to microbial pathogens in order to nutritionally starve the invaders. The impact of iron deficiency induced by the iron chelator deferoxamine mesylate (DFO) was investigated in Atlantic salmon SHK-1 cells infected with the facultative intracellular bacterium Piscirickettsia salmonis. RESULTS Effects of the DFO treatment and P. salmonis on SHK-1 cells were gaged by assessing cytopathic effects, bacterial load and activity, and gene expression profiles of eight immune biomarkers at 4- and 7-days post infection (dpi) in the control group, groups receiving single treatments (DFO or P. salmonis) and their combination. The chelator appears to be well-tolerated by host cells, while it had a negative impact on the number of bacterial cells and associated cytotoxicity. DFO alone had minor effects on gene expression of SHK-1 cells, including an early activation of IL-1β at 4 dpi. In contrast to few moderate changes induced by single treatments (either infection or chelator), most genes had highest upregulation in the infected groups receiving DFO. The mildest induction of hepcidin-1 (antimicrobial peptide precursor and regulator of iron homeostasis) was observed in cells exposed to DFO alone, followed by P. salmonis infected cells while the addition of DFO to infected cells further increased the mRNA abundance of this gene. Transcripts encoding TNF-α (immune signaling) and iNOS (immune effector) showed sustained increase at both time points in this group while cathelicidin-1 (immune effector) and IL-8 (immune signaling) were upregulated at 7 dpi. The stimulation of protective gene responses seen in infected cultures supplemented with DFO coincided with the reduction of bacterial load and activity (judged by the expression of P. salmonis 16S rRNA), and damage to cultured host cells. CONCLUSION The absence of immune gene activation under normal iron conditions suggests modulation of host responses by P. salmonis. The negative effect of iron deficiency on bacteria likely allowed host cells to respond in a more protective manner to the infection, further decreasing its progression. Presented findings encourage in vivo exploration of iron chelators as a promising strategy against piscirickettsiosis.
Collapse
Affiliation(s)
- Rodrigo Díaz
- Cargill Innovation Centre, Camino a Pargua km 57, Colaco km 5, Calbuco, Puerto Montt, Chile
| | - José Troncoso
- Cargill Innovation Centre, Camino a Pargua km 57, Colaco km 5, Calbuco, Puerto Montt, Chile
| | - Eva Jakob
- Cargill Innovation Centre, Camino a Pargua km 57, Colaco km 5, Calbuco, Puerto Montt, Chile
| | - Stanko Skugor
- Cargill Innovation Centre, Dirdalsstranda 51, 4335, Dirdal, Norway.
| |
Collapse
|
21
|
Gammella E, Correnti M, Cairo G, Recalcati S. Iron Availability in Tissue Microenvironment: The Key Role of Ferroportin. Int J Mol Sci 2021; 22:ijms22062986. [PMID: 33804198 PMCID: PMC7999357 DOI: 10.3390/ijms22062986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Body iron levels are regulated by hepcidin, a liver-derived peptide that exerts its function by controlling the presence of ferroportin (FPN), the sole cellular iron exporter, on the cell surface. Hepcidin binding leads to FPN internalization and degradation, thereby inhibiting iron release, in particular from iron-absorbing duodenal cells and macrophages involved in iron recycling. Disruption in this regulatory mechanism results in a variety of disorders associated with iron-deficiency or overload. In recent years, increasing evidence has emerged to indicate that, in addition to its role in systemic iron metabolism, FPN may play an important function in local iron control, such that its dysregulation may lead to tissue damage despite unaltered systemic iron homeostasis. In this review, we focus on recent discoveries to discuss the role of FPN-mediated iron export in the microenvironment under both physiological and pathological conditions.
Collapse
|
22
|
The Role of Butyrylcholinesterase and Iron in the Regulation of Cholinergic Network and Cognitive Dysfunction in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22042033. [PMID: 33670778 PMCID: PMC7922581 DOI: 10.3390/ijms22042033] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), the most common form of dementia in elderly individuals, is marked by progressive neuron loss. Despite more than 100 years of research on AD, there is still no treatment to cure or prevent the disease. High levels of amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain are neuropathological hallmarks of AD. However, based on postmortem analyses, up to 44% of individuals have been shown to have high Aβ deposits with no clinical signs, due to having a “cognitive reserve”. The biochemical mechanism explaining the prevention of cognitive impairment in the presence of Aβ plaques is still unknown. It seems that in addition to protein aggregation, neuroinflammatory changes associated with aging are present in AD brains that are correlated with a higher level of brain iron and oxidative stress. It has been shown that iron accumulates around amyloid plaques in AD mouse models and postmortem brain tissues of AD patients. Iron is required for essential brain functions, including oxidative metabolism, myelination, and neurotransmitter synthesis. However, an imbalance in brain iron homeostasis caused by aging underlies many neurodegenerative diseases. It has been proposed that high iron levels trigger an avalanche of events that push the progress of the disease, accelerating cognitive decline. Patients with increased amyloid plaques and iron are highly likely to develop dementia. Our observations indicate that the butyrylcholinesterase (BChE) level seems to be iron-dependent, and reports show that BChE produced by reactive astrocytes can make cognitive functions worse by accelerating the decay of acetylcholine in aging brains. Why, even when there is a genetic risk, do symptoms of the disease appear after many years? Here, we discuss the relationship between genetic factors, age-dependent iron tissue accumulation, and inflammation, focusing on AD.
Collapse
|
23
|
Distinct Effects of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus Cell Wall Component-Induced Inflammation on the Iron Metabolism of THP-1 Cells. Int J Mol Sci 2021; 22:ijms22031497. [PMID: 33540888 PMCID: PMC7867333 DOI: 10.3390/ijms22031497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 01/03/2023] Open
Abstract
Macrophages are essential immune cells of the innate immune system. They participate in the development and regulation of inflammation. Macrophages play a fundamental role in fighting against bacterial infections by phagocytosis of bacteria, and they also have a specific role in immunomodulation by secreting pro-inflammatory cytokines. In bacterial infection, macrophages decrease the serum iron concentration by removing iron from the blood, acting as one of the most important regulatory cells of iron homeostasis. We examined whether the Gram-positive and Gram-negative cell wall components from various bacterial strains affect the cytokine production and iron transport, storage and utilization of THP-1 monocytes in different ways. We found that S. aureus lipoteichoic acid (LTA) was less effective in activating pro-inflammatory cytokine expression that may related to its effect on fractalkine production. LTA-treated cells increased iron uptake through divalent metal transporter-1, but did not elevate the expression of cytosolic and mitochondrial iron storage proteins, suggesting that the cells maintained iron efflux via the ferroportin iron exporter. E. coli and P. aeruginosa lipopolysaccharides (LPSs) acted similarly on THP-1 cells, but the rates of the alterations of the examined proteins were different. E. coli LPS was more effective in increasing the pro-inflammatory cytokine production, meanwhile it caused less dramatic alterations in iron metabolism. P. aeruginosa LPS-treated cells produced a smaller amount of pro-inflammatory cytokines, but caused remarkable elevation of both cytosolic and mitochondrial iron storage proteins and intracellular iron content compared to E. coli LPS. These results prove that LPS molecules from different bacterial sources alter diverse molecular mechanisms in macrophages that prepossess the outcome of the bacterial infection.
Collapse
|
24
|
Shen L, Zhou Y, He H, Chen W, Lenahan C, Li X, Deng Y, Shao A, Huang J. Crosstalk between Macrophages, T Cells, and Iron Metabolism in Tumor Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8865791. [PMID: 33628389 PMCID: PMC7889336 DOI: 10.1155/2021/8865791] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Leukocytes, including macrophages and T cells, represent key players in the human immune system, which plays a considerable role in the development and progression of tumors by immune surveillance or immune escape. Boosting the recruitment of leukocytes into the tumor microenvironment and promoting their antitumor responses have been hot areas of research in recent years. Although immunotherapy has manifested a certain level of success in some malignancies, the overall effectiveness is far from satisfactory. Iron is an essential trace element required in multiple, normal cellular processes, such as DNA synthesis and repair, cellular respiration, metabolism, and signaling, while dysregulated iron metabolism has been declared one of the metabolic hallmarks of malignant cancer cells. Furthermore, iron is implicated in the modulation of innate and adaptive immune responses, and elucidating the targeted regulation of iron metabolism may have the potential to benefit antitumor immunity and cancer treatment. In the present review, we briefly summarize the roles of leukocytes and iron metabolism in tumorigenesis, as well as their crosstalk in the tumor microenvironment. The combination of immunotherapy with targeted regulation of iron and iron-dependent regulated cell death (ferroptosis) may be a focus of future research.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Haifei He
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wuzhen Chen
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Xiaoyi Li
- Department of Nuclear Medicine and PET-CT Center, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian Huang
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
25
|
Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication. PLoS One 2020; 15:e0240949. [PMID: 33290416 PMCID: PMC7723272 DOI: 10.1371/journal.pone.0240949] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 01/20/2023] Open
Abstract
Salmonellosis and listeriosis together accounted for more than one third of foodborne illnesses in the United States and almost half the hospitalizations for gastrointestinal diseases in 2018 while tuberculosis afflicted over 10 million people worldwide causing almost 2 million deaths. Regardless of the intrinsic virulence differences among Listeria monocytogenes, Salmonella enterica and Mycobacterium tuberculosis, these intracellular pathogens share the ability to survive and persist inside the macrophage and other cells and thrive in iron rich environments. Interferon-gamma (IFN-γ) is a central cytokine in host defense against intracellular pathogens and has been shown to promote iron export in macrophages. We hypothesize that IFN-γ decreases iron availability to intracellular pathogens consequently limiting replication in these cells. In this study, we show that IFN-γ regulates the expression of iron-related proteins hepcidin, ferroportin, and ferritin to induce iron export from macrophages. Listeria monocytogenes, S. enterica, and M. tuberculosis infections significantly induce iron sequestration in human macrophages. In contrast, IFN-γ significantly reduces hepcidin secretion in S. enterica and M. tuberculosis infected macrophages. Similarly, IFN-γ-activated macrophages express higher ferroportin levels than untreated controls even after infection with L. monocytogenes bacilli; bacterial infection greatly down-regulates ferroportin expression. Collectively, IFN-γ significantly inhibits pathogen-associated intracellular iron sequestration in macrophages and consequently retards the growth of intracellular bacterial pathogens by decreasing iron availability.
Collapse
|
26
|
Yang Q, Liu W, Zhang S, Liu S. The cardinal roles of ferroportin and its partners in controlling cellular iron in and out. Life Sci 2020; 258:118135. [DOI: 10.1016/j.lfs.2020.118135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
|
27
|
Smith M, Lara OD, O'Cearbhaill R, Knisely A, McEachron J, Gabor L, Carr C, Blank S, Prasad-Hayes M, Frey M, Jee J, Fehniger J, Wang Y, Lee YC, Isani S, Wright JD, Pothuri B. Inflammatory markers in gynecologic oncology patients hospitalized with COVID-19 infection. Gynecol Oncol 2020; 159:618-622. [PMID: 33019984 PMCID: PMC7518173 DOI: 10.1016/j.ygyno.2020.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Objective Elevated inflammatory markers are predictive of COVID-19 infection severity and mortality. It is unclear if these markers are associated with severe infection in patients with cancer due to underlying tumor related inflammation. We sought to further understand the inflammatory response related to COVID-19 infection in patients with gynecologic cancer. Methods Patients with a history of gynecologic cancer hospitalized for COVID-19 infection with available laboratory data were identified. Admission laboratory values and clinical outcomes were abstracted from electronic medical records. Severe infection was defined as infection requiring ICU admission, mechanical ventilation, or resulting in death. Results 86 patients with gynecologic cancer were hospitalized with COVID-19 infection with a median age of 68.5 years (interquartile range (IQR), 59.0–74.8). Of the 86 patients, 29 (33.7%) patients required ICU admission and 25 (29.1%) patients died of COVID-19 complications. Fifty (58.1%) patients had active cancer and 36 (41.9%) were in remission. Patients with severe infection had significantly higher ferritin (median 1163.0 vs 624.0 ng/mL, p < 0.01), procalcitonin (median 0.8 vs 0.2 ng/mL, p < 0.01), and C-reactive protein (median 142.0 vs 62.3 mg/L, p = 0.02) levels compared to those with moderate infection. White blood cell count, lactate, and creatinine were also associated with severe infection. D-dimer levels were not significantly associated with severe infection (p = 0.20). Conclusions The inflammatory markers ferritin, procalcitonin, and CRP were associated with COVID-19 severity in gynecologic cancer patients and may be used as prognostic markers at the time of admission.
Collapse
Affiliation(s)
- Maria Smith
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY, United States of America
| | - Olivia D Lara
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY, United States of America
| | - Roisin O'Cearbhaill
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Weill Cornell Medical College, New York, NY, United States of America
| | - Anne Knisely
- Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Jennifer McEachron
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, Brooklyn, NY, United States of America
| | - Lisa Gabor
- Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Caitlin Carr
- Department of Obstetrics, Gynecologic and Reproductive Science, Division of Gynecologic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Stephanie Blank
- Department of Obstetrics, Gynecologic and Reproductive Science, Division of Gynecologic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Monica Prasad-Hayes
- Department of Obstetrics, Gynecologic and Reproductive Science, Division of Gynecologic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Melissa Frey
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States of America
| | - Justin Jee
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Julia Fehniger
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY, United States of America
| | - Yuyan Wang
- Department of Population Health, NYU Langone Health, New York, NY, United States of America
| | - Yi-Chun Lee
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, Brooklyn, NY, United States of America
| | - Sara Isani
- Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jason D Wright
- Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Bhavana Pothuri
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY, United States of America.
| |
Collapse
|
28
|
Addo OY, Locks LM, Jefferds ME, Nanama S, Albert B, Sandalinas F, Nanema A, Whitehead RD, Mei Z, Clayton HB, Garg A, Kupka R, Tripp K. Combined infant and young child feeding with small-quantity lipid-based nutrient supplementation is associated with a reduction in anemia but no changes in anthropometric status of young children from Katanga Province of the Democratic Republic of Congo: a quasi-experimental effectiveness study. Am J Clin Nutr 2020; 112:683-694. [PMID: 32710737 PMCID: PMC7458772 DOI: 10.1093/ajcn/nqaa170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/03/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Small-quantity lipid-based nutrient supplements (SQ-LNS) are efficacious in controlled settings; data are scarce on the effectiveness utilizing health care delivery platforms. OBJECTIVE We evaluated the impact of an infant young child feeding (IYCF)-SQ-LNS intervention on anemia and growth in children aged 6-18 mo in the Democratic Republic of Congo following a quasi-experimental effectiveness design. METHODS An intervention health zone (HZ) received enhanced IYCF including improved counseling on IYCF during pregnancy until 12 mo after birth and daily use of SQ-LNS for infants 6-12 mo; the control HZ received the standard IYCF package. We analyzed data from 2995 children, collected in repeated cross-sectional surveys. We used adjusted difference-in-difference analyses to calculate changes in anemia, iron and vitamin A deficiencies, stunting, wasting, and underweight. RESULTS Of mothers, 70.5% received SQ-LNS at least once in the intervention HZ, with 99.6% of their children consuming SQ-LNS at least once. The mean number of batches of SQ-LNS (28 sachets per batch, 6 batches total) received was 2.3 ± 0.8 (i.e., 64.4 ± 22.4 d of SQ-LNS). The enhanced program was associated with an 11.0% point (95% CI: -18.1, -3.8; P < 0.01) adjusted relative reduction in anemia prevalence and a mean +0.26-g/dL (95% CI: 0.04, 0.48; P = 0.02) increase in hemoglobin but no effect on anthropometry or iron or vitamin A deficiencies. At endline in the intervention HZ, children aged 8-13 mo who received ≥3 monthly SQ-LNS batch distributions had higher anthropometry z scores [length-for-age z score (LAZ): +0.40, P = 0.04; weight-for-age z score (WAZ): +0.37, P = 0.04] and hemoglobin (+0.65 g/dL, P = 0.007) and a lower adjusted prevalence difference of stunting (-16.7%, P = 0.03) compared with those who received none. CONCLUSIONS The enhanced IYCF-SQ-LNS intervention using the existing health care delivery platform was associated with a reduction in prevalence of anemia and improvement in mean hemoglobin. At endline among the subpopulation receiving ≥3 mo of SQ-LNS, their LAZ, WAZ, and hemoglobin improved. Future research could explore contextual tools to maximize coverage and intake adherence in programs using SQ-LNS.
Collapse
Affiliation(s)
- O Yaw Addo
- Address correspondence to OYA (e-mail: )
| | - Lindsey M Locks
- Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- UNICEF Headquarters, New York, NY, USA
| | - Maria Elena Jefferds
- Centers for Disease Control and Prevention (CDC), Nutrition Branch, International Micronutrient Malnutrition Prevention and Control Program (IMMPaCt) Unit, Atlanta, GA, USA
| | - Simeon Nanama
- UNICEF, Kinshasa and Lubumbashi, Democratic Republic of Congo
| | - Bope Albert
- National Statistics Institute, Lubumbashi, Democratic Republic of Congo
| | | | - Ambroise Nanema
- UNICEF, Kinshasa and Lubumbashi, Democratic Republic of Congo
| | - R Donnie Whitehead
- Centers for Disease Control and Prevention (CDC), Nutrition Branch, International Micronutrient Malnutrition Prevention and Control Program (IMMPaCt) Unit, Atlanta, GA, USA
| | - Zuguo Mei
- Centers for Disease Control and Prevention (CDC), Nutrition Branch, International Micronutrient Malnutrition Prevention and Control Program (IMMPaCt) Unit, Atlanta, GA, USA
| | - Heather B Clayton
- Centers for Disease Control and Prevention (CDC), Nutrition Branch, International Micronutrient Malnutrition Prevention and Control Program (IMMPaCt) Unit, Atlanta, GA, USA
| | | | | | - Katie Tripp
- Present address for KT: Independent Consultant, Nutrition Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
29
|
Phan-Aram P, Mahasri G, Kayansamruaj P, Amparyup P, Srisapoome P. Immune Regulation, but Not Antibacterial Activity, Is a Crucial Function of Hepcidins in Resistance against Pathogenic Bacteria in Nile Tilapia ( Oreochromis niloticus Linn.). Biomolecules 2020; 10:biom10081132. [PMID: 32751990 PMCID: PMC7464455 DOI: 10.3390/biom10081132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, the functions of a recombinant propeptide (rProOn-Hep1) and the synthetic FITC-labelled mature peptides sMatOn-Hep1 and sMatOn-Hep2 were analyzed. Moreover, sMatOn-Hep1 and sMatOn-Hep2 were mildly detected in the lymphocytes of peripheral blood mononuclear cells (PBMCs) and strongly detected in head kidney macrophages. The in vitro binding and antibacterial activities of these peptides were slightly effective against several pathogenic bacteria. Immune regulation by sMatOn-Hep1 was also analyzed, and only sMatOn-Hep1 significantly enhanced the phagocytic index in vitro (p < 0.05). Interestingly, intraperitoneal injection of sMatOn-Hep1 (10 or 100 µg) significantly elevated the phagocytic activity, phagocytic index, and lysozyme activity and clearly decreased the iron ion levels in the livers of the treated fish (p < 0.05). Additionally, sMatOn-Hep1 enhanced the expression levels of CC and CXC chemokines, transferrin and both On-Hep genes in the liver, spleen and head kidney, for 1–96 h after injection, but did not properly protect the experimental fish from S. agalactiae infection after 7 days of treatment. However, the injection of S. agalactiae and On-Heps indicated that 100 μg of sMatOn-Hep1 was very effective, while 100 μg of rProOn-Hep1 and sMatOn-Hep2 demonstrated moderate protection. Therefore, On-Hep is a crucial iron-regulating molecule and a key immune regulator of disease resistance in Nile tilapia.
Collapse
Affiliation(s)
- Pagaporn Phan-Aram
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
| | - Gunanti Mahasri
- Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia;
| | - Pattanapon Kayansamruaj
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
- Correspondence:
| |
Collapse
|
30
|
Abreu R, Giri P, Quinn F. Host-Pathogen Interaction as a Novel Target for Host-Directed Therapies in Tuberculosis. Front Immunol 2020; 11:1553. [PMID: 32849525 PMCID: PMC7396704 DOI: 10.3389/fimmu.2020.01553] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) has been a transmittable human disease for many thousands of years, and M. tuberculosis is again the number one cause of death worldwide due to a single infectious agent. The intense 6- to 10-month process of multi-drug treatment, combined with the adverse side effects that can run the spectrum from gastrointestinal disturbances to liver toxicity or peripheral neuropathy are major obstacles to patient compliance and therapy completion. The consequent increase in multidrug resistant TB (MDR-TB) and extensively drug resistant TB (XDR-TB) cases requires that we increase our arsenal of effective drugs, particularly novel therapeutic approaches. Over the millennia, host and pathogen have evolved mechanisms and relationships that greatly influence the outcome of infection. Understanding these evolutionary interactions and their impact on bacterial clearance or host pathology will lead the way toward rational development of new therapeutics that favor enhancing a host protective response. These host-directed therapies have recently demonstrated promising results against M. tuberculosis, adding to the effectiveness of currently available anti-mycobacterial drugs that directly kill the organism or slow mycobacterial replication. Here we review the host-pathogen interactions during M. tuberculosis infection, describe how M. tuberculosis bacilli modulate and evade the host immune system, and discuss the currently available host-directed therapies that target these bacterial factors. Rather than provide an exhaustive description of M. tuberculosis virulence factors, which falls outside the scope of this review, we will instead focus on the host-pathogen interactions that lead to increased bacterial growth or host immune evasion, and that can be modulated by existing host-directed therapies.
Collapse
Affiliation(s)
| | | | - Fred Quinn
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
31
|
Moncunill G, Dobaño C, González R, Smolen KK, Manaca MN, Balcells R, Jairoce C, Cisteró P, Vala A, Sevene E, Rupérez M, Aponte JJ, Macete E, Menéndez C, Kollmann TR, Mayor A. Association of Maternal Factors and HIV Infection With Innate Cytokine Responses of Delivering Mothers and Newborns in Mozambique. Front Microbiol 2020; 11:1452. [PMID: 32765436 PMCID: PMC7381182 DOI: 10.3389/fmicb.2020.01452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Maternal factors and exposure to pathogens have an impact on infant health. For instance, HIV exposed but uninfected infants have higher morbidity and mortality than HIV unexposed infants. Innate responses are the first line of defense and orchestrate the subsequent adaptive immune response and are especially relevant in newborns. To determine the association of maternal HIV infection with maternal and newborn innate immunity we analyzed the cytokine responses upon pattern recognition receptor (PRR) stimulations in the triad of maternal peripheral and placental blood as well as in cord blood in a cohort of mother-infant pairs from southern Mozambique. A total of 48 women (35 HIV-uninfected and 13 HIV-infected) were included. Women and infant innate responses positively correlated with each other. Age, gravidity and sex of the fetus had some associations with spontaneous production of cytokines in the maternal peripheral blood. HIV-infected women not receiving antiretroviral therapy (ART) before pregnancy showed decreased IL-8 and IL-6 PRR responses in peripheral blood compared to those HIV-uninfected, and PRR hyporesponsiveness for IL-8 was also found in the corresponding infant’s cord blood. HIV infection had a greater impact on placental blood responses, with significantly increased pro-inflammatory, TH1 and TH17 PRR responses in HIV-infected women not receiving ART before pregnancy compared to HIV-uninfected women. In conclusion, innate response of the mother and her newborn was altered by HIV infection in the women who did not receive ART before pregnancy. As these responses could be related to birth outcomes, targeted innate immune modulation could improve maternal and newborn health.
Collapse
Affiliation(s)
- Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel González
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Kinga K Smolen
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Maria N Manaca
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Reyes Balcells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Anifa Vala
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Esperança Sevene
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Department of Physiological Science, Clinical Pharmacology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - María Rupérez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - John J Aponte
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Tobias R Kollmann
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Borodulina EA, Yakovleva EV. [Iron metabolism and indicators reflecting its changes in pulmonary tuberculosis (literature review).]. Klin Lab Diagn 2020; 65:149-154. [PMID: 32163688 DOI: 10.18821/0869-2084-2020-65-3-149-154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/28/2019] [Indexed: 11/17/2022]
Abstract
Iron is an essential element for human and bacteria, including mycobacterium tuberculosis. Over review includesthe literature on the problem of iron metabolism in patients with tuberculosis and with comorbid pathology HIV infection and tuberculosis. The literature was searched for when writing this review using the RSCI, CyberLeninka, Scopus, Web of Science, MedLine, PubMed databases using the following keywords: iron, ferritin, hepsidin, lactoferrin, tuberculosis, pneumonia, HIV infection. Iron compounds are involved in many redox reactions: oxygen transport, cellular respiration, the trichloroacetic acid cycle, DNA biosynthesis, and others. The ratio of intracellular and extracellular iron in the body is regulated by the low molecular weight hormone hepcidin, the mechanism of action of which is to block the function of ferroportin, an exporter of iron from cells, which leads to the accumulation of the intracellular iron pool and the prevention of the toxic effect of free iron. The role of iron in the interaction of the human body with ferro-dependent bacteria has been established. Iron is necessary for the growth and development of bacterial cells, and the methods for its production from the host are different. Information on the effect of iron metabolism on pulmonary tuberculosis is scarce and contradictory: some authors have identified a decrease in hemoglobin and transferrin in combination with elevated levels of ferritin in patients with tuberculosis; according to other sources, hyperferritinemia in tuberculosis cannot be predictive, but is a marker inflammation. At the same time, there are studies that indicate a significant increase in ferritin in patients with disseminated tuberculosis relative to other clinical forms. Currently, the incidence of tuberculosis in patients with HIV infection is increasing, while diagnostic tests are not very informative. The search for diagnostic markers in terms of iron metabolism may open up new possibilities for the diagnosis of pulmonary tuberculosis.
Collapse
Affiliation(s)
| | - E V Yakovleva
- Samara State Medical University, 443099, Samara, Russia
| |
Collapse
|
33
|
Denecker T, Zhou Li Y, Fairhead C, Budin K, Camadro JM, Bolotin-Fukuhara M, Angoulvant A, Lelandais G. Functional networks of co-expressed genes to explore iron homeostasis processes in the pathogenic yeast Candida glabrata. NAR Genom Bioinform 2020; 2:lqaa027. [PMID: 33575583 PMCID: PMC7671338 DOI: 10.1093/nargab/lqaa027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/27/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Candida glabrata is a cause of life-threatening invasive infections especially in elderly and immunocompromised patients. Part of human digestive and urogenital microbiota, C. glabrata faces varying iron availability, low during infection or high in digestive and urogenital tracts. To maintain its homeostasis, C. glabrata must get enough iron for essential cellular processes and resist toxic iron excess. The response of this pathogen to both depletion and lethal excess of iron at 30°C have been described in the literature using different strains and iron sources. However, adaptation to iron variations at 37°C, the human body temperature and to gentle overload, is poorly known. In this study, we performed transcriptomic experiments at 30°C and 37°C with low and high but sub-lethal ferrous concentrations. We identified iron responsive genes and clarified the potential effect of temperature on iron homeostasis. Our exploration of the datasets was facilitated by the inference of functional networks of co-expressed genes, which can be accessed through a web interface. Relying on stringent selection and independently of existing knowledge, we characterized a list of 214 genes as key elements of C. glabrata iron homeostasis and interesting candidates for medical applications.
Collapse
Affiliation(s)
- Thomas Denecker
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91198, Gif-sur-Yvette, France
| | - Youfang Zhou Li
- Université Paris-Saclay, INRAE, CNRS, Génétique Quantitative et Évolution Le Moulon, 91400, Orsay, France
| | - Cécile Fairhead
- Université Paris-Saclay, INRAE, CNRS, Génétique Quantitative et Évolution Le Moulon, 91400, Orsay, France
| | - Karine Budin
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91198, Gif-sur-Yvette, France
| | - Jean-Michel Camadro
- Université de Paris, CNRS, Institut Jacques Monod (IJM), 75013, Paris, France
| | - Monique Bolotin-Fukuhara
- Université Paris-Saclay, INRAE, CNRS, Génétique Quantitative et Évolution Le Moulon, 91400, Orsay, France
| | - Adela Angoulvant
- Université Paris-Saclay, INRAE, CNRS, Génétique Quantitative et Évolution Le Moulon, 91400, Orsay, France.,Parasitology and Mycology Department, Bicêtre University Hospital, Univ. Paris-Sud/Univ. Paris Saclay, Le Kremlin-Bicêtre, France
| | - Gaëlle Lelandais
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
34
|
Moreira AC, Mesquita G, Gomes MS. Ferritin: An Inflammatory Player Keeping Iron at the Core of Pathogen-Host Interactions. Microorganisms 2020; 8:microorganisms8040589. [PMID: 32325688 PMCID: PMC7232436 DOI: 10.3390/microorganisms8040589] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential element for virtually all cell types due to its role in energy metabolism, nucleic acid synthesis and cell proliferation. Nevertheless, if free, iron induces cellular and organ damage through the formation of free radicals. Thus, iron levels must be firmly controlled. During infection, both host and microbe need to access iron and avoid its toxicity. Alterations in serum and cellular iron have been reported as important markers of pathology. In this regard, ferritin, first discovered as an iron storage protein, has emerged as a biomarker not only in iron-related disorders but also in inflammatory diseases, or diseases in which inflammation has a central role such as cancer, neurodegeneration or infection. The basic research on ferritin identification and functions, as well as its role in diseases with an inflammatory component and its potential as a target in host-directed therapies, are the main considerations of this review.
Collapse
Affiliation(s)
- Ana C. Moreira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.); (M.S.G.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Gonçalo Mesquita
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.); (M.S.G.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.); (M.S.G.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
35
|
H-Ferritin is essential for macrophages' capacity to store or detoxify exogenously added iron. Sci Rep 2020; 10:3061. [PMID: 32080266 PMCID: PMC7033252 DOI: 10.1038/s41598-020-59898-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/14/2020] [Indexed: 01/13/2023] Open
Abstract
Macrophages are central cells both in the immune response and in iron homeostasis. Iron is both essential and potentially toxic. Therefore, iron acquisition, transport, storage, and release are tightly regulated, by several important proteins. Cytosolic ferritin is an iron storage protein composed of 24 subunits of either the L- or the H-type chains. H-ferritin differs from L-ferritin in the capacity to oxidize Fe2+ to Fe3+. In this work, we investigated the role played by H-ferritin in the macrophages’ ability to respond to immune stimuli and to deal with exogenously added iron. We used mice with a conditional deletion of the H-ferritin gene in the myeloid lineage to obtain bone marrow-derived macrophages. These macrophages had normal viability and gene expression under basal culture conditions. However, when treated with interferon-gamma and lipopolysaccharide they had a lower activation of Nitric Oxide Synthase 2. Furthermore, H-ferritin-deficient macrophages had a higher sensitivity to iron-induced toxicity. This sensitivity was associated with a lower intracellular iron accumulation but a higher production of reactive oxygen species. These data indicate that H-ferritin modulates macrophage response to immune stimuli and that it plays an essential role in protection against iron-induced oxidative stress and cell death.
Collapse
|
36
|
Winn NC, Volk KM, Hasty AH. Regulation of tissue iron homeostasis: the macrophage "ferrostat". JCI Insight 2020; 5:132964. [PMID: 31996481 DOI: 10.1172/jci.insight.132964] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Iron is an essential element for multiple fundamental biological processes required for life; yet iron overload can be cytotoxic. Consequently, iron concentrations at the cellular and tissue level must be exquisitely governed by mechanisms that complement and fine-tune systemic control. It is well appreciated that macrophages are vital for systemic iron homeostasis, supplying or sequestering iron as needed for erythropoiesis or bacteriostasis, respectively. Indeed, recycling of iron through erythrophagocytosis by splenic macrophages is a major contributor to systemic iron homeostasis. However, accumulating evidence suggests that tissue-resident macrophages regulate local iron availability and modulate the tissue microenvironment, contributing to cellular and tissue function. Here, we summarize the significance of tissue-specific regulation of iron availability and highlight how resident macrophages are critical for this process. This tissue-dependent regulation has broad implications for understanding both resident macrophage function and tissue iron homeostasis in health and disease.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Katrina M Volk
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
37
|
Kato H, Igarashi K. To be red or white: lineage commitment and maintenance of the hematopoietic system by the "inner myeloid". Haematologica 2019; 104:1919-1927. [PMID: 31515352 PMCID: PMC6886412 DOI: 10.3324/haematol.2019.216861] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Differentiation of hematopoietic stem and progenitor cells is tightly regulated depending on environmental changes in order to maintain homeostasis. Transcription factors direct the development of hematopoietic cells, such as GATA-1 for erythropoiesis and PU.1 for myelopoiesis. However, recent findings obtained from single-cell analyses raise the question of whether these transcription factors are "initiators" or just "executors" of differentiation, leaving the initiation of hematopoietic stem and progenitor cell differentiation (i.e. lineage commitment) unclear. While a stochastic process is likely involved in commitment, it cannot fully explain the homeostasis of hematopoiesis nor "on-demand" hematopoiesis in response to environmental changes. Transcription factors BACH1 and BACH2 may regulate both commitment and on-demand hematopoiesis because they control erythroid-myeloid and lymphoid-myeloid differentiation by repressing the myeloid program, and their activities are repressed in response to infectious and inflammatory conditions. We summarize possible mechanisms of lineage commitment of hematopoietic stem and progenitor cells suggested by recent findings and discuss the erythroid and lymphoid commitment of hematopoietic stem and progenitor cells, focusing on the gene regulatory network composed of genes encoding key transcription factors. Surprising similarity exists between commitment to erythroid and lymphoid lineages, including repression of the myeloid program by BACH factors. The suggested gene regulatory network of BACH factors sheds light on the myeloid-based model of hematopoiesis. This model will help to understand the tuning of hematopoiesis in higher eukaryotes in the steady-state condition as well as in emergency conditions, the evolutional history of the system, aging and hematopoietic disorders.
Collapse
Affiliation(s)
- Hiroki Kato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Present address, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
38
|
Kolloli A, Singh P, Rodriguez GM, Subbian S. Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection. J Clin Med 2019; 8:jcm8081155. [PMID: 31382404 PMCID: PMC6722820 DOI: 10.3390/jcm8081155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
The human response to Mycobacterium tuberculosis (Mtb) infection is affected by the availability of iron (Fe), which is necessary for proper immune cell function and is essential for the growth and virulence of bacteria. Increase in host Fe levels promotes Mtb growth and tuberculosis (TB) pathogenesis, while Fe-supplementation to latently infected, asymptomatic individuals is a significant risk factor for disease reactivation. However, the effect of Fe-supplementation on the host immunity during latent Mtb infection remains unclear, due partly to the paucity in availability of animal models that recapitulate key pathophysiological features seen in humans. We have demonstrated that rabbits can develop non-progressive latency similar to infected humans. In this study, using this model we have evaluated the effect of Fe-supplementation on the bacterial growth, disease pathology, and immune response. Systemic and lung Fe parameters, gene expression profile, lung bacterial burden, and disease pathology were determined in the Mtb-infected/Fe- or placebo-supplemented rabbits. Results show that Fe-supplementation to Mtb-infected rabbits did not significantly change the hematocrit and Hb levels, although it elevated total Fe in the lungs. Expression of selected host iron- and immune-response genes in the blood and lungs was perturbed in Mtb-infected/Fe-supplemented rabbits. Iron-supplementation during acute or chronic stages of Mtb infection did not significantly affect the bacterial burden or disease pathology in the lungs. Data presented in this study is of significant relevance for current public health policies on Fe-supplementation therapy given to anemic patients with latent Mtb infection.
Collapse
Affiliation(s)
- Afsal Kolloli
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Pooja Singh
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - G Marcela Rodriguez
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| |
Collapse
|
39
|
Osorio C, Kanukuntla T, Diaz E, Jafri N, Cummings M, Sfera A. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci 2019; 11:143. [PMID: 31297054 PMCID: PMC6608545 DOI: 10.3389/fnagi.2019.00143] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid hypothesis, the assumption that beta-amyloid toxicity is the primary cause of neuronal and synaptic loss, has been the mainstream research concept in Alzheimer's disease for the past two decades. Currently, this model is quietly being replaced by a more holistic, “systemic disease” paradigm which, like the aging process, affects multiple body tissues and organs, including the gut microbiota. It is well-established that inflammation is a hallmark of cellular senescence; however, the infection-senescence link has been less explored. Microbiota-induced senescence is a gradually emerging concept promoted by the discovery of pathogens and their products in Alzheimer's disease brains associated with senescent neurons, glia, and endothelial cells. Infectious agents have previously been associated with Alzheimer's disease, but the cause vs. effect issue could not be resolved. A recent study may have settled this debate as it shows that gingipain, a Porphyromonas gingivalis toxin, can be detected not only in Alzheimer's disease but also in the brains of older individuals deceased prior to developing the illness. In this review, we take the position that gut and other microbes from the body periphery reach the brain by triggering intestinal and blood-brain barrier senescence and disruption. We also surmise that novel Alzheimer's disease findings, including neuronal somatic mosaicism, iron dyshomeostasis, aggressive glial phenotypes, and loss of aerobic glycolysis, can be explained by the infection-senescence model. In addition, we discuss potential cellular senescence targets and therapeutic strategies, including iron chelators, inflammasome inhibitors, senolytic antibiotics, mitophagy inducers, and epigenetic metabolic reprograming.
Collapse
Affiliation(s)
- Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Tulasi Kanukuntla
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Nyla Jafri
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
40
|
Abstract
Since its discovery in 2001, there have been a number of important discoveries and findings that have increased our knowledge about the functioning of hepcidin. Hepcidin, the master iron regulator has been shown to be regulated by a number of physiological stimuli and their associated signaling pathways. This chapter will summarize our current understanding of how these physiological stimuli and downstream signaling molecules are involved in hepcidin modulation and ultimately contribute to the regulation of systemic or local iron homeostasis. The signaling pathways and molecules described here have been shown to primarily affect hepcidin at a transcriptional level, but these transcriptional changes correlate with changes in systemic iron levels as well, supporting the functional effects of hepcidin regulation by these signaling pathways.
Collapse
Affiliation(s)
- Gautam Rishi
- The Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - V Nathan Subramaniam
- The Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
41
|
Sfera A, Gradini R, Cummings M, Diaz E, Price AI, Osorio C. Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease. Front Neurol 2018; 9:1062. [PMID: 30564191 PMCID: PMC6288235 DOI: 10.3389/fneur.2018.01062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease, the most common form of dementia, is marked by progressive cognitive and functional impairment believed to reflect synaptic and neuronal loss. Recent preclinical data suggests that lipopolysaccharide (LPS)-activated microglia may contribute to the elimination of viable neurons and synapses by promoting a neurotoxic astrocytic phenotype, defined as A1. The innate immune cells, including microglia and astrocytes, can either facilitate or inhibit neuroinflammation in response to peripherally applied inflammatory stimuli, such as LPS. Depending on previous antigen encounters, these cells can assume activated (trained) or silenced (tolerized) phenotypes, augmenting or lowering inflammation. Iron, reactive oxygen species (ROS), and LPS, the cell wall component of gram-negative bacteria, are microglial activators, but only the latter can trigger immune tolerization. In Alzheimer's disease, tolerization may be impaired as elevated LPS levels, reported in this condition, fail to lower neuroinflammation. Iron is closely linked to immunity as it plays a key role in immune cells proliferation and maturation, but it is also indispensable to pathogens and malignancies which compete for its capture. Danger signals, including LPS, induce intracellular iron sequestration in innate immune cells to withhold it from pathogens. However, excess cytosolic iron increases the risk of inflammasomes' activation, microglial training and neuroinflammation. Moreover, it was suggested that free iron can awaken the dormant central nervous system (CNS) LPS-shedding microbes, engendering prolonged neuroinflammation that may override immune tolerization, triggering autoimmunity. In this review, we focus on iron-related innate immune pathology in Alzheimer's disease and discuss potential immunotherapeutic agents for microglial de-escalation along with possible delivery vehicles for these compounds.
Collapse
Affiliation(s)
- Adonis Sfera
- Psychiatry, Loma Linda University, Loma Linda, CA, United States.,Patton State Hospital, San Bernardino, CA, United States
| | - Roberto Gradini
- Department of Pathology, La Sapienza University of Rome, Rome, Italy
| | | | - Eddie Diaz
- Patton State Hospital, San Bernardino, CA, United States
| | - Amy I Price
- Evidence Based Medicine, University of Oxford, Oxford, United Kingdom
| | - Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
42
|
Phelan JJ, Basdeo SA, Tazoll SC, McGivern S, Saborido JR, Keane J. Modulating Iron for Metabolic Support of TB Host Defense. Front Immunol 2018; 9:2296. [PMID: 30374347 PMCID: PMC6196273 DOI: 10.3389/fimmu.2018.02296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is the world's biggest infectious disease killer. The increasing prevalence of multidrug-resistant and extensively drug-resistant TB demonstrates that current treatments are inadequate and there is an urgent need for novel therapies. Research is now focused on the development of host-directed therapies (HDTs) which can be used in combination with existing antimicrobials, with a special focus on promoting host defense. Immunometabolic reprogramming is integral to TB host defense, therefore, understanding and supporting the immunometabolic pathways that are altered after infection will be important for the development of new HDTs. Moreover, TB pathophysiology is interconnected with iron metabolism. Iron is essential for the survival of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB disease. Mtb struggles to replicate and persist in low iron environments. Iron chelation has therefore been suggested as a HDT. In addition to its direct effects on iron availability, iron chelators modulate immunometabolism through the stabilization of HIF1α. This review examines immunometabolism in the context of Mtb and its links to iron metabolism. We suggest that iron chelation, and subsequent stabilization of HIF1α, will have multifaceted effects on immunometabolic function and holds potential to be utilized as a HDT to boost the host immune response to Mtb infection.
Collapse
Affiliation(s)
- James J Phelan
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Sharee A Basdeo
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Simone C Tazoll
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Sadhbh McGivern
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Judit R Saborido
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
43
|
Hepcidin-mediated hypoferremic response to acute inflammation requires a threshold of Bmp6/Hjv/Smad signaling. Blood 2018; 132:1829-1841. [PMID: 30213871 DOI: 10.1182/blood-2018-03-841197] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Systemic iron balance is controlled by hepcidin, a liver hormone that limits iron efflux to the bloodstream by promoting degradation of the iron exporter ferroportin in target cells. Iron-dependent hepcidin induction requires hemojuvelin (HJV), a bone morphogenetic protein (BMP) coreceptor that is disrupted in juvenile hemochromatosis, causing dramatic hepcidin deficiency and tissue iron overload. Hjv-/- mice recapitulate phenotypic hallmarks of hemochromatosis but exhibit blunted hepcidin induction following lipopolysaccharide (LPS) administration. We show that Hjv-/- mice fail to mount an appropriate hypoferremic response to acute inflammation caused by LPS, the lipopeptide FSL1, or Escherichia coli infection because residual hepcidin does not suffice to drastically decrease macrophage ferroportin levels. Hfe-/- mice, a model of milder hemochromatosis, exhibit almost wild-type inflammatory hepcidin expression and associated effects, whereas double Hjv-/-Hfe-/- mice phenocopy single Hjv-/- counterparts. In primary murine hepatocytes, Hjv deficiency does not affect interleukin-6 (IL-6)/Stat, and only slightly inhibits BMP2/Smad signaling to hepcidin; however, it severely impairs BMP6/Smad signaling and thereby abolishes synergism with the IL-6/Stat pathway. Inflammatory induction of hepcidin is suppressed in iron-deficient wild-type mice and recovers after the animals are provided overnight access to an iron-rich diet. We conclude that Hjv is required for inflammatory induction of hepcidin and controls the acute hypoferremic response by maintaining a threshold of Bmp6/Smad signaling. Our data highlight Hjv as a potential pharmacological target against anemia of inflammation.
Collapse
|
44
|
Gomes AC, Moreira AC, Mesquita G, Gomes MS. Modulation of Iron Metabolism in Response to Infection: Twists for All Tastes. Pharmaceuticals (Basel) 2018; 11:ph11030084. [PMID: 30200471 PMCID: PMC6161156 DOI: 10.3390/ph11030084] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential nutrient for almost all living organisms, but is not easily made available. Hosts and pathogens engage in a fight for the metal during an infection, leading to major alterations in the host’s iron metabolism. Important pathological consequences can emerge from the mentioned interaction, including anemia. Several recent reports have highlighted the alterations in iron metabolism caused by different types of infection, and several possible therapeutic strategies emerge, based on the targeting of the host’s iron metabolism. Here, we review the most recent literature on iron metabolism alterations that are induced by infection, the consequent development of anemia, and the potential therapeutic approaches to modulate iron metabolism in order to correct iron-related pathologies and control the ongoing infection.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana C Moreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Gonçalo Mesquita
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Salomé Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|