1
|
Wu K, Xu X, Wei W, Wen J, Hu H. c-JUN interacts with HDAC1 as a potential combinatorial therapeutic target in acute myeloid leukemia. Int Immunopharmacol 2025; 146:113927. [PMID: 39721452 DOI: 10.1016/j.intimp.2024.113927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Acute myeloid leukemia (AML) is a biologically heterogeneous disease originating from the clonal expansion of hematopoietic stem cells (HSCs). Clonal expansion of hematopoietic stem cell progenitors (HSC-Prog), along with a block in differentiation, are hallmark features of AML. The disease is characterized by poor clinical outcomes, highlighting the urgent need for effective therapeutic strategies and suitable drug targets. We conducted multi-omics analyses, including single-cell RNA sequencing (scRNA-seq), Mendelian randomization (MR), and bulk RNA-seq, to investigate HDAC1's oncogenic role in AML. We identified specific gene signatures at the single-cell level. MR with eQTL data established causal links, and TCGA-LAML RNA-seq provided prognostic insights. Analysis of cellular communication and transcription factors revealed high c-JUN activity in HSC-Prog. We confirmed the association of c-JUN with HDAC1 through Western blotting and Co-immunoprecipitation (Co-IP). Functional validation of c-JUN in AML cells was performed via flow cytometry in vitro. The effectiveness of drugs targeting c-JUN and HDAC1 was assessed in mouse models using live imaging methods like in vivo imaging system (IVIS) and iSMAART. We identified the activity of c-JUN is specifically enhanced in HSC-Prog in AML patients. We suggest a potential regulatory relationship between c-JUN and HDAC1 in AML tumor cells. Inhibition of c-JUN can suppress cell proliferation and CD33 expression in AML, enhancing susceptibility to natural killer (NK) cell-mediated cytotoxicity. The combination of agents targeting c-JUN (Ailanthone) and HDAC1 (Panobinostat) showed robust efficacy in treating AML in xenograft mouse models, outperforming monotherapy. We also observed that the combination of Ailanthone and Panobinostat therapy displayed a safe pharmacological profile without dose-dependent toxicity, suggesting its potential as a therapeutic strategy.
Collapse
Affiliation(s)
- Ke Wu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaoyu Xu
- Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei Wei
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Jie Wen
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Haixi Hu
- Department of Scientific Research, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
2
|
Ma J, Zhu W, Wang Y, Du H, Ma L, Liu L, Niu C, Li S, Zhang K, Yuan E. Comprehensive multi-omics analysis identifies NUSAP1 as a potential prognostic and immunotherapeutic marker for lung adenocarcinoma. Int J Med Sci 2025; 22:328-340. [PMID: 39781524 PMCID: PMC11704694 DOI: 10.7150/ijms.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 01/12/2025] Open
Abstract
While NUSAP1's association with various tumors is established, its predictive value for prognosis and immunotherapy in lung adenocarcinoma (LUAD) remains unconfirmed. We analyzed Nucleolar Spindle-Associated Protein 1 (NUSAP1) gene expression in TCGA and GTEx datasets and validated it in clinicopathological tissues using qRT-PCR and immunohistochemistry. Additionally, we investigated NUSAP1's relationship with patient prognosis across TCGA and five GEO cohorts. The IMvigor210 cohort was utilized to explore NUSAP1's association with immunotherapy efficacy. Furthermore, single-cell RNA-sequencing data was used to examine the correlation between NUSAP1 and immune cell infiltration. Finally, we analyzed the relationship between NUSAP1 and m6A methylation. NUSAP1 expression was significantly elevated in tumor tissues, correlating with poorer prognosis in LUAD patients. It exhibited a significant correlation with immune cell infiltration in the tumor microenvironment, predominantly expressed in Tprolif cells. LUAD patients with heightened NUSAP1 expression may derive greater benefit from anti-PD-L1 treatment. Additionally, NUSAP1 was tightly linked with m6A methylation. Enrichment analysis revealed its association with key biological functions, including lipid metabolism and cell cycle regulation. Our comprehensive analysis underscores NUSAP1's potential as a prognostic and immunotherapeutic biomarker for LUAD, warranting further investigation.
Collapse
Affiliation(s)
- Jun Ma
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Wenjing Zhu
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Yuan Wang
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Hongmei Du
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Ling Ma
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Lisha Liu
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Chao Niu
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Songlei Li
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Kai Zhang
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory for In vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Shi X, Feng M, Nakada D. Metabolic dependencies of acute myeloid leukemia stem cells. Int J Hematol 2024; 120:427-438. [PMID: 38750343 DOI: 10.1007/s12185-024-03789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy primarily driven by an immature population of AML cells termed leukemia stem cells (LSCs) that are implicated in AML development, chemoresistance, and relapse. An emerging area of research in AML focuses on identifying and targeting the aberrant metabolism in LSCs. Dysregulated metabolism is involved in sustaining functional properties of LSCs, impeding myeloid differentiation, and evading programmed cell death, both in the process of leukemogenesis and in response to chemotherapy. This review discusses recent discoveries regarding the aberrant metabolic processes of AML LSCs that have begun to change the therapeutic landscape of AML.
Collapse
Affiliation(s)
- Xiangguo Shi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Mengdie Feng
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daisuke Nakada
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Sharma P, Puduvalli VK. Protocol for real-time assessment of mitochondrial and glycolytic ATP production in patient-derived glioma stem-like cells. STAR Protoc 2024; 5:103159. [PMID: 38941182 PMCID: PMC11261133 DOI: 10.1016/j.xpro.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 06/30/2024] Open
Abstract
Glioma cells switch between energetic pathways to adapt and resist therapies. We present a protocol for measuring mitochondrial and glycolytic ATP rates in patient-derived glioma stem-like cells using a Seahorse XF ATP rate assay. We describe steps for growing 3D glioma stem-like cells, attaching cells to the assay plate, preparing drugs, and running the ATP rate assay. We also detail procedures for imaging viable cell numbers and normalization, with tips to overcome pitfalls in Agilent Seahorse assays.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Ozgencil F, Gunindi HB, Eren G. Dual-targeted NAMPT inhibitors as a progressive strategy for cancer therapy. Bioorg Chem 2024; 149:107509. [PMID: 38824699 DOI: 10.1016/j.bioorg.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the nicotinamide adenine dinucleotide (NAD+) synthesis pathway catalyzing the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-pyrophosphate (PRPP) to produce nicotinamide mononucleotide (NMN). Given the pivotal role of NAD+ in a range of cellular functions, including DNA synthesis, redox reactions, cytokine generation, metabolism, and aging, NAMPT has become a promising target for many diseases, notably cancer. Therefore, various NAMPT inhibitors have been reported and classified as first and second-generation based on their chemical structures and design strategies, dual-targeted being one. However, most NAMPT inhibitors suffer from several limitations, such as dose-dependent toxicity and poor pharmacokinetic properties. Consequently, there is no clinically approved NAMPT inhibitor. Hence, research on discovering more effective and less toxic dual-targeted NAMPT inhibitors with desirable pharmacokinetic properties has drawn attention recently. This review summarizes the previously reported dual-targeted NAMPT inhibitors, focusing on their design strategies and advantages over the single-targeted therapies.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
6
|
McLinden GP, Avery AC, Gardner HL, Hughes K, Rodday AM, Liang K, London CA. Safety and biologic activity of a canine anti-CD20 monoclonal antibody in dogs with diffuse large B-cell lymphoma. J Vet Intern Med 2024; 38:1666-1674. [PMID: 38662527 PMCID: PMC11099711 DOI: 10.1111/jvim.17080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND To explore the safety and utility of combining low dose single-agent doxorubicin with a canine specific anti-CD20 monoclonal antibody (1E4-cIgGB) in client owned dogs with untreated B-cell lymphoma. ANIMALS Forty-two client-owned dogs with untreated B-cell lymphoma. METHODS A prospective, single arm, open label clinical trial of dogs with B-cell lymphoma were enrolled to receive 1E4-cIgGB and doxorubicin in addition to 1 of 3 immunomodulatory regimens. B-cell depletion was monitored by flow cytometry performed on peripheral blood samples at each visit. RESULTS Dogs demonstrated a statistically significant depletion in CD21+ B-cells 7 days following the first antibody infusion (median fraction of baseline at 7 days = 0.04, P < .01) that persisted throughout treatment (median fraction of baseline at 21 days = 0.01, P < .01) whereas CD5+ T-cells remained unchanged (median fraction of baseline at 7 days = 1.05, P = .88; median fraction of baselie at 7 days = 0.79, P = .42; Figure 1; Supplemental Table 3). Recovery of B-cells was delayed, with at Day 196, only 6/17 dogs (35%) remaining on the study had CD21+ counts >0.5 of baseline, indicating sustained B cell depletion at 4+ months after the final treatment. 1E4-cIgGB was well tolerated with only 1 dog exhibiting a hypersensitivity event within minutes of the last antibody infusion. CONCLUSIONS The canine 1E4-cIgGB anti-CD20 monoclonal antibody is apparently safe when administered with doxorubicin and effectively depletes B-cells in dogs with DLBCL.
Collapse
MESH Headings
- Animals
- Dogs
- Dog Diseases/drug therapy
- Dog Diseases/immunology
- Doxorubicin/therapeutic use
- Doxorubicin/pharmacology
- Doxorubicin/administration & dosage
- Female
- Male
- Lymphoma, Large B-Cell, Diffuse/veterinary
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/adverse effects
- Prospective Studies
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Antigens, CD20/immunology
Collapse
Affiliation(s)
- Gretchen P. McLinden
- Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachusettsUSA
| | - Anne C. Avery
- College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Heather L. Gardner
- Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachusettsUSA
| | - Kelley Hughes
- College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Angie M. Rodday
- Clinical Translational Science InstituteTufts UniversityNorth GraftonMassachusettsUSA
| | - Kexuan Liang
- Clinical Translational Science InstituteTufts UniversityNorth GraftonMassachusettsUSA
| | - Cheryl A. London
- Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachusettsUSA
| |
Collapse
|
7
|
Messana VG, Fascì A, Vitale N, Micillo M, Rovere M, Pesce NA, Martines C, Efremov DG, Vaisitti T, Deaglio S. A molecular circuit linking the BCR to the NAD biosynthetic enzyme NAMPT is an actionable target in Richter syndrome. Blood Adv 2024; 8:1920-1933. [PMID: 38359376 PMCID: PMC11021907 DOI: 10.1182/bloodadvances.2023011690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
ABSTRACT This works defines, to the best of our knowledge, for the first time a molecular circuit connecting nicotinamide mononucleoside phosphoribosyl transferase (NAMPT) activity to the B-cell receptor (BCR) pathway. Using 4 distinct xenograft models derived from patients with Richter syndrome (RS-PDX), we show that BCR cross-linking results in transcriptional activation of the nicotinamide adenine dinucleotide (NAD) biosynthetic enzyme NAMPT, with increased protein expression, in turn, positively affecting global cellular NAD levels and sirtuins activity. NAMPT blockade, by using the novel OT-82 inhibitor in combination with either BTK or PI3K inhibitors (BTKi or PI3Ki), induces rapid and potent apoptotic responses in all 4 models, independently of their mutational profile and the expression of the other NAD biosynthetic enzymes, including nicotinate phosphoribosyltransferase. The connecting link in the circuit is represented by AKT that is both tyrosine- and serine-phosphorylated by PI3K and deacetylated by sirtuin 1 and 2 to obtain full kinase activation. Acetylation (ie, inhibition) of AKT after OT-82 administration was shown by 2-dimensional gel electrophoresis and immunoprecipitation. Consistently, pharmacological inhibition or silencing of sirtuin 1 and 2 impairs AKT activation and induces apoptosis of RS cells in combination with PI3Ki or BTKi. Lastly, treatment of RS-PDX mice with the combination of PI3Ki and OT-82 results in significant inhibition of tumor growth, with evidence of in vivo activation of apoptosis. Collectively, these data highlight a novel application for NAMPT inhibitors in combination with BTKi or PI3Ki in aggressive lymphomas.
Collapse
Affiliation(s)
- Vincenzo G. Messana
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Amelia Fascì
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnologies and Health Science, University of Turin, Turin, Italy
| | - Matilde Micillo
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Matteo Rovere
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Noemi A. Pesce
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Claudio Martines
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Dimitar G. Efremov
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Tiziana Vaisitti
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Eldfors S, Saad J, Ikonen N, Malani D, Vähä-Koskela M, Gjertsen BT, Kontro M, Porkka K, Heckman CA. Monosomy 7/del(7q) cause sensitivity to inhibitors of nicotinamide phosphoribosyltransferase in acute myeloid leukemia. Blood Adv 2024; 8:1621-1633. [PMID: 38197948 PMCID: PMC10987804 DOI: 10.1182/bloodadvances.2023010435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Monosomy 7 and del(7q) (-7/-7q) are frequent chromosomal abnormalities detected in up to 10% of patients with acute myeloid leukemia (AML). Despite unfavorable treatment outcomes, no approved targeted therapies exist for patients with -7/-7q. Therefore, we aimed to identify novel vulnerabilities. Through an analysis of data from ex vivo drug screens of 114 primary AML samples, we discovered that -7/-7q AML cells are highly sensitive to the inhibition of nicotinamide phosphoribosyltransferase (NAMPT). NAMPT is the rate-limiting enzyme in the nicotinamide adenine dinucleotide salvage pathway. Mechanistically, the NAMPT gene is located at 7q22.3, and deletion of 1 copy due to -7/-7q results in NAMPT haploinsufficiency, leading to reduced expression and a therapeutically targetable vulnerability to the inhibition of NAMPT. Our results show that in -7/-7q AML, differentiated CD34+CD38+ myeloblasts are more sensitive to the inhibition of NAMPT than less differentiated CD34+CD38- myeloblasts. Furthermore, the combination of the BCL2 inhibitor venetoclax and the NAMPT inhibitor KPT-9274 resulted in the death of significantly more leukemic blasts in AML samples with -7/-7q than the NAMPT inhibitor alone. In conclusion, our findings demonstrate that AML with -7/-7q is highly sensitive to NAMPT inhibition, suggesting that NAMPT inhibitors have the potential to be an effective targeted therapy for patients with monosomy 7 or del(7q).
Collapse
Affiliation(s)
- Samuli Eldfors
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Internal Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Joseph Saad
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Nemo Ikonen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Disha Malani
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Bjørn T. Gjertsen
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Mika Kontro
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Kimmo Porkka
- Department of Internal Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
9
|
Mogol AN, Kaminsky AZ, Dutton DJ, Madak Erdogan Z. Targeting NAD+ Metabolism: Preclinical Insights into Potential Cancer Therapy Strategies. Endocrinology 2024; 165:bqae043. [PMID: 38565429 DOI: 10.1210/endocr/bqae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
NAD+ is one of the most important metabolites for cellular activities, and its biosynthesis mainly occurs through the salvage pathway using the nicotinamide phosphoribosyl transferase (NAMPT) enzyme. The main nicotinamide adenine dinucleotide (NAD) consumers, poly-ADP-ribose-polymerases and sirtuins enzymes, are heavily involved in DNA repair and chromatin remodeling. Since cancer cells shift their energy production pathway, NAD levels are significantly affected. NAD's roles in cell survival led to the use of NAD depletion in cancer therapies. NAMPT inhibition (alone or in combination with other cancer therapies, including endocrine therapy and chemotherapy) results in decreased cell viability and tumor burden for many cancer types. Many NAMPT inhibitors (NAMPTi) tested before were discontinued due to toxicity; however, a novel NAMPTi, KPT-9274, is a promising, low-toxicity option currently in clinical trials.
Collapse
Affiliation(s)
- Ayça N Mogol
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Alanna Z Kaminsky
- Food Science and Human Nutrition Department, University of Illinois Urbana-Champaign, Champaign, IL 6180161801, USA
| | - David J Dutton
- Molecular Cell Biology Department, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Zeynep Madak Erdogan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
- Food Science and Human Nutrition Department, University of Illinois Urbana-Champaign, Champaign, IL 6180161801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| |
Collapse
|
10
|
Yong J, Cai S, Zeng Z. Targeting NAD + metabolism: dual roles in cancer treatment. Front Immunol 2023; 14:1269896. [PMID: 38116009 PMCID: PMC10728650 DOI: 10.3389/fimmu.2023.1269896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is indispensable for various oxidation-reduction reactions in mammalian cells, particularly during energy production. Malignant cells increase the expression levels of NAD+ biosynthesis enzymes for rapid proliferation and biomass production. Furthermore, mounting proof has indicated that NAD-degrading enzymes (NADases) play a role in creating the immunosuppressive tumor microenvironment (TME). Interestingly, both inhibiting NAD+ synthesis and targeting NADase have positive implications for cancer treatment. Here we summarize the detrimental outcomes of increased NAD+ production, the functions of NAD+ metabolic enzymes in creating an immunosuppressive TME, and discuss the progress and clinical translational potential of inhibitors for NAD+ synthesis and therapies targeting NADase.
Collapse
Affiliation(s)
- Jiaxin Yong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Songqing Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhaolei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
11
|
McKay-Corkum GB, Collins VJ, Yeung C, Ito T, Issaq SH, Holland D, Vulikh K, Zhang Y, Lee U, Lei H, Mendoza A, Shern JF, Yohe ME, Yamamoto K, Wilson K, Ji J, Karim BO, Thomas CJ, Krishna MC, Neckers LM, Heske CM. Inhibition of NAD+-Dependent Metabolic Processes Induces Cellular Necrosis and Tumor Regression in Rhabdomyosarcoma Models. Clin Cancer Res 2023; 29:4479-4491. [PMID: 37616468 PMCID: PMC10841338 DOI: 10.1158/1078-0432.ccr-23-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/23/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE Deregulated metabolism in cancer cells represents a vulnerability that may be therapeutically exploited to benefit patients. One such target is nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage pathway. NAMPT is necessary for efficient NAD+ production and may be exploited in cells with increased metabolic demands. We have identified NAMPT as a dependency in rhabdomyosarcoma (RMS), a malignancy for which novel therapies are critically needed. Here we describe the effect of NAMPT inhibition on RMS proliferation and metabolism in vitro and in vivo. EXPERIMENTAL DESIGN Assays of proliferation and cell death were used to determine the effects of pharmacologic NAMPT inhibition in a panel of ten molecularly diverse RMS cell lines. Mechanism of the clinical NAMPTi OT-82 was determined using measures of NAD+ and downstream NAD+-dependent functions, including energy metabolism. We used orthotopic xenograft models to examine tolerability, efficacy, and drug mechanism in vivo. RESULTS Across all ten RMS cell lines, OT-82 depleted NAD+ and inhibited cell growth at concentrations ≤1 nmol/L. Significant impairment of glycolysis was a universal finding, with some cell lines also exhibiting diminished oxidative phosphorylation. Most cell lines experienced profound depletion of ATP with subsequent irreversible necrotic cell death. Importantly, loss of NAD and glycolytic activity were confirmed in orthotopic in vivo models, which exhibited complete tumor regressions with OT-82 treatment delivered on the clinical schedule. CONCLUSIONS RMS is highly vulnerable to NAMPT inhibition. These findings underscore the need for further clinical study of this class of agents for this malignancy.
Collapse
Affiliation(s)
- Grace B. McKay-Corkum
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Victor J. Collins
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Choh Yeung
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Takeshi Ito
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Sameer H. Issaq
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - David Holland
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health (NIH)
| | - Ksenia Vulikh
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Yiping Zhang
- National Clinical Target Validation Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Unsun Lee
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Marielle E. Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Kelli Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health (NIH)
| | - Jiuping Ji
- National Clinical Target Validation Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Baktiar O. Karim
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health (NIH)
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Leonard M. Neckers
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Christine M. Heske
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| |
Collapse
|
12
|
Feng L, Zhang PY, Gao W, Yu J, Robson SC. Targeting chemoresistance and mitochondria-dependent metabolic reprogramming in acute myeloid leukemia. Front Oncol 2023; 13:1244280. [PMID: 37746249 PMCID: PMC10513429 DOI: 10.3389/fonc.2023.1244280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Chemoresistance often complicates the management of cancer, as noted in the instance of acute myeloid leukemia (AML). Mitochondrial function is considered important for the viability of AML blasts and appears to also modulate chemoresistance. As mitochondrial metabolism is aberrant in AML, any distinct pathways could be directly targeted to impact both cell viability and chemoresistance. Therefore, identifying and targeting those precise rogue elements of mitochondrial metabolism could be a valid therapeutic strategy in leukemia. Here, we review the evidence for abnormalities in mitochondria metabolic processes in AML cells, that likely impact chemoresistance. We further address several therapeutic approaches targeting isocitrate dehydrogenase 2 (IDH2), CD39, nicotinamide phosphoribosyl transferase (NAMPT), electron transport chain (ETC) complex in AML and also consider the roles of mesenchymal stromal cells. We propose the term "mitotherapy" to collectively refer to such regimens that attempt to override mitochondria-mediated metabolic reprogramming, as used by cancer cells. Mounting evidence suggests that mitotherapy could provide a complementary strategy to overcome chemoresistance in liquid cancers, as well as in solid tumors.
Collapse
Affiliation(s)
- Lili Feng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Philip Y. Zhang
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Canton, MA, United States
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Li Y, Bie J, Zhao L, Song C, Zhang T, Li M, Yang C, Luo J. SLC25A51 promotes tumor growth through sustaining mitochondria acetylation homeostasis and proline biogenesis. Cell Death Differ 2023; 30:1916-1930. [PMID: 37419986 PMCID: PMC10406869 DOI: 10.1038/s41418-023-01185-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Solute carrier family 25 member 51 (SLC25A51) was recently identified as the mammalian mitochondrial NAD+ transporter essential for mitochondria functions. However, the role of SLC25A51 in human disease, such as cancer, remains undefined. Here, we report that SLC25A51 is upregulated in multiple cancers, which promotes cancer cells proliferation. Loss of SLC25A51 elevates the mitochondrial proteins acetylation levels due to SIRT3 dysfunctions, leading to the impairment of P5CS enzymatic activity, which is the key enzyme in proline biogenesis, and the reduction in proline contents. Notably, we find fludarabine phosphate, an FDA-approved drug, is able to bind with and inhibit SLC25A51 functions, causing mitochondrial NAD+ decrease and proteins hyperacetylation, which could further synergize with aspirin to reinforce the anti-tumor efficacy. Our study reveals that SLC25A51 is an attractive anti-cancer target, and provides a novel drug combination of fludarabine phosphate with aspirin as a potential cancer therapy strategy.
Collapse
Affiliation(s)
- Yutong Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Juntao Bie
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Long Zhao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Chen Song
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Tianzhuo Zhang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Meiting Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China.
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
14
|
Tang H, Wang L, Wang T, Yang J, Zheng S, Tong J, Jiang S, Zhang X, Zhang K. Recent advances of targeting nicotinamide phosphoribosyltransferase (NAMPT) for cancer drug discovery. Eur J Med Chem 2023; 258:115607. [PMID: 37413882 DOI: 10.1016/j.ejmech.2023.115607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for the biosynthesis of NAD+ in the salvage pathway. NAMPT is overexpressed in various cancers, associating with a poor prognosis and tumor progression. Beyond cancer metabolism, recent evidence unravels additional roles of NAMPT in cancer biology, including DNA repair machinery, crosstalk with oncogenic signaling pathways, cancer cell stemness, and immune responses. NAMPT is a promising therapeutic target for cancer. However, first-generation NAMPT inhibitors exhibited limited efficacy and dose-limiting toxicities in clinical trials. Multiple strategies are being exploited to improve their efficacy and minimize toxic-side effects. This review discusses the biomarkers predictive of response to NAMPT inhibitors, and summarizes the most significant advances in the evolution of structurally distinct NAMPT inhibitors, the manipulation of targeted delivery technologies via antibody-drug conjugates (ADCs), PhotoActivated ChemoTherapy (PACT) and the intratumoral delivery system, as well as the development and pharmacological outcomes of NAMPT degraders. Finally, a discussion of future perspectives and challenges in this area is also included.
Collapse
Affiliation(s)
- He Tang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamei Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Tong
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Chianese U, Papulino C, Megchelenbrink W, Tambaro FP, Ciardiello F, Benedetti R, Altucci L. Epigenomic machinery regulating pediatric AML: clonal expansion mechanisms, therapies, and future perspectives. Semin Cancer Biol 2023; 92:84-101. [PMID: 37003397 DOI: 10.1016/j.semcancer.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a genetic, epigenetic, and transcriptional etiology mainly presenting somatic and germline abnormalities. AML incidence rises with age but can also occur during childhood. Pediatric AML (pAML) accounts for 15-20% of all pediatric leukemias and differs considerably from adult AML. Next-generation sequencing technologies have enabled the research community to "paint" the genomic and epigenomic landscape in order to identify pathology-associated mutations and other prognostic biomarkers in pAML. Although current treatments have improved the prognosis for pAML, chemoresistance, recurrence, and refractory disease remain major challenges. In particular, pAML relapse is commonly caused by leukemia stem cells that resist therapy. Marked patient-to-patient heterogeneity is likely the primary reason why the same treatment is successful for some patients but, at best, only partially effective for others. Accumulating evidence indicates that patient-specific clonal composition impinges significantly on cellular processes, such as gene regulation and metabolism. Although our understanding of metabolism in pAML is still in its infancy, greater insights into these processes and their (epigenetic) modulation may pave the way toward novel treatment options. In this review, we summarize current knowledge on the function of genetic and epigenetic (mis)regulation in pAML, including metabolic features observed in the disease. Specifically, we describe how (epi)genetic machinery can affect chromatin status during hematopoiesis, leading to an altered metabolic profile, and focus on the potential value of targeting epigenetic abnormalities in precision and combination therapy for pAML. We also discuss the possibility of using alternative epidrug-based therapeutic approaches that are already in clinical practice, either alone as adjuvant treatments and/or in combination with other drugs.
Collapse
Affiliation(s)
- Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Princess Máxima Center, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| | - Francesco Paolo Tambaro
- Bone Marrow Transplant Unit, Pediatric Oncology Department AORN Santobono Pausilipon, 80129, Naples Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy; IEOS, Institute for Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131 Naples, Italy.
| |
Collapse
|
16
|
Fratta S, Biniecka P, Moreno-Vargas AJ, Carmona AT, Nahimana A, Duchosal MA, Piacente F, Bruzzone S, Caffa I, Nencioni A, Robina I. Synthesis and structure-activity relationship of new nicotinamide phosphoribosyltransferase inhibitors with antitumor activity on solid and haematological cancer. Eur J Med Chem 2023; 250:115170. [PMID: 36787658 DOI: 10.1016/j.ejmech.2023.115170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Cancer cells are highly dependent on Nicotinamide phosphoribosyltransferase (NAMPT) activity for proliferation, therefore NAMPT represents an interesting target for the development of anti-cancer drugs. Several compounds, such as FK866 and CHS828, were identified as potent NAMPT inhibitors with strong anti-cancer activity, although none of them reached the late stages of clinical trials. We present herein the preparation of three libraries of new inhibitors containing (pyridin-3-yl)triazole, (pyridin-3-yl)thiourea and (pyridin-3/4-yl)cyanoguanidine as cap/connecting unit and a furyl group at the tail position of the compound. Antiproliferative activity in vitro was evaluated on a panel of solid and haematological cancer cell lines and most of the synthesized compounds showed nanomolar or sub-nanomolar cytotoxic activity in MiaPaCa-2 (pancreatic cancer), ML2 (acute myeloid leukemia), JRKT (acute lymphobalistic leukemia), NMLW (Burkitt lymphoma), RPMI8226 (multiple myeloma) and NB4 (acute myeloid leukemia), with lower IC50 values than those reported for FK866. Notably, compounds 35a, 39a and 47 showed cytotoxic activity against ML2 with IC50 = 18, 46 and 49 pM, and IC50 towards MiaPaCa-2 of 0.005, 0.455 and 2.81 nM, respectively. Moreover, their role on the NAD+ synthetic pathway was demonstrated by the NAMPT inhibition assay. Finally, the intracellular NAD+ depletion was confirmed in vitro to induced ROS accumulation that cause a time-dependent mitochondrial membrane depolarization, leading to ATP loss and cell death.
Collapse
Affiliation(s)
- Simone Fratta
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Paulina Biniecka
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Ana T Carmona
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain.
| | - Aimable Nahimana
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Michel A Duchosal
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland; Service of Hematology, Oncology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, 16132, Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, 16132, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Inmaculada Robina
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain.
| |
Collapse
|
17
|
Anticancer Activities of Novel Nicotinamide Phosphoribosyltransferase Inhibitors in Hematological Malignancies. Molecules 2023; 28:molecules28041897. [PMID: 36838885 PMCID: PMC9967653 DOI: 10.3390/molecules28041897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Targeting cancer cells that are highly dependent on the nicotinamide adenine dinucleotide (NAD+) metabolite is a promising therapeutic strategy. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme catalyzing NAD+ production. Despite the high efficacy of several developed NAMPT inhibitors (i.e., FK866 (APO866)) in preclinical studies, their clinical activity was proven to be limited. Here, we report the synthesis of new NAMPT Inhibitors, JJ08, FEI191 and FEI199, which exhibit a broad anticancer activity in vitro. Results show that these compounds are potent NAMPT inhibitors that deplete NAD+ and NADP(H) after 24 h of drug treatment, followed by an increase in reactive oxygen species (ROS) accumulation. The latter event leads to ATP loss and mitochondrial depolarization with induction of apoptosis and necrosis. Supplementation with exogenous NAD+ precursors or catalase (ROS scavenger) abrogates the cell death induced by the new compounds. Finally, in vivo administration of the new NAMPT inhibitors in a mouse xenograft model of human Burkitt lymphoma delays tumor growth and significantly prolongs mouse survival. The most promising results are collected with JJ08, which completely eradicates tumor growth. Collectively, our findings demonstrate the efficient anticancer activity of the new NAMPT inhibitor JJ08 and highlight a strong interest for further evaluation of this compound in hematological malignancies.
Collapse
|
18
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
19
|
Bai JF, Majjigapu SR, Sordat B, Poty S, Vogel P, Elías-Rodríguez P, Moreno-Vargas AJ, Carmona AT, Caffa I, Ghanem M, Khalifa A, Monacelli F, Cea M, Robina I, Gajate C, Mollinedo F, Bellotti A, Nahimana A, Duchosal M, Nencioni A. Identification of new FK866 analogues with potent anticancer activity against pancreatic cancer. Eur J Med Chem 2022; 239:114504. [PMID: 35724566 DOI: 10.1016/j.ejmech.2022.114504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases for which chemotherapy has not been very successful yet. FK866 ((E)-N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) is a well-known NAMPT (nicotinamide phosphoribosyltransferase) inhibitor with anti-cancer activities, but it failed in phase II clinical trials. We found that FK866 shows anti-proliferative activity in three PDAC cell lines, as well as in Jurkat T-cell leukemia cells. More than 50 FK866 analogues were synthesized that introduce substituents on the phenyl ring of the piperidine benzamide group of FK866 and exchange its buta-1,4-diyl tether for 1-oxyprop-3-yl, (E)-but-2-en-1,4-diyl and 2- and 3-carbon tethers. The pyridin-3-yl moiety of FK866 was exchanged for chlorinated and fluorinated analogues and for pyrazin-2-yl and pyridazin-4-yl groups. Several compounds showed low nanomolar or sub-nanomolar cell growth inhibitory activity. Our best cell anti-proliferative compounds were the 2,4,6-trimethoxybenzamide analogue of FK866 ((E)-N-(4-(1-(2,4,6-trimethoxybenzoyl)piperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) (9), the 2,6-dimethoxybenzamide (8) and 2-methoxybenzamide (4), which exhibited an IC50 of 0.16 nM, 0.004 nM and 0.08 nM toward PDAC cells, respectively.
Collapse
Affiliation(s)
- Jian-Fei Bai
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Bernard Sordat
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Sophie Poty
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Pilar Elías-Rodríguez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Ana T Carmona
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy
| | - Moustafa Ghanem
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy
| | - Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Inmaculada Robina
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Axel Bellotti
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Aimable Nahimana
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Michel Duchosal
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland; Service of Hematology, Oncology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy.
| |
Collapse
|
20
|
Effects of silkworm pupa protein on apoptosis and energy metabolism in human colon cancer DLD-1 cells. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Li Y, Lu Q, Xie C, Yu Y, Zhang A. Recent advances on development of p21-activated kinase 4 inhibitors as anti-tumor agents. Front Pharmacol 2022; 13:956220. [PMID: 36105226 PMCID: PMC9465411 DOI: 10.3389/fphar.2022.956220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
The p21-activated kinase 4 (PAK4) is a member of the PAKs family. It is overexpressed in multiple tumor tissues. Pharmacological inhibition of PAK4 attenuates proliferation, migration, and invasion of cancer cells. Recent studies revealed that inhibition of PAK4 sensitizes immunotherapy which has been extensively exploited as a new strategy to treat cancer. In the past few years, a large number of PAK4 inhibitors have been reported. Of note, the allosteric inhibitor KPT-9274 has been tested in phase Ⅰ clinic trials. Herein, we provide an update on recent research progress on the PAK4 mediated signaling pathway and highlight the development of the PAK4 small molecular inhibitors in recent 5 years. Meanwhile, challenges, limitations, and future developmental directions will be discussed as well.
Collapse
Affiliation(s)
- Yang Li
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghu Xie
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Yu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Zhang
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Ao Zhang,
| |
Collapse
|
22
|
Xu Q, Liu X, Mohseni G, Hao X, Ren Y, Xu Y, Gao H, Wang Q, Wang Y. Mechanism research and treatment progress of NAD pathway related molecules in tumor immune microenvironment. Cancer Cell Int 2022; 22:242. [PMID: 35906622 PMCID: PMC9338646 DOI: 10.1186/s12935-022-02664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is the core of cellular energy metabolism. NAMPT, Sirtuins, PARP, CD38, and other molecules in this classic metabolic pathway affect many key cellular functions and are closely related to the occurrence and development of many diseases. In recent years, several studies have found that these molecules can regulate cell energy metabolism, promote the release of related cytokines, induce the expression of neoantigens, change the tumor immune microenvironment (TIME), and then play an anticancer role. Drugs targeting these molecules are under development or approved for clinical use. Although there are some side effects and drug resistance, the discovery of novel drugs, the development of combination therapies, and the application of new technologies provide solutions to these challenges and improve efficacy. This review presents the mechanisms of action of NAD pathway-related molecules in tumor immunity, advances in drug research, combination therapies, and some new technology-related therapies.
Collapse
Affiliation(s)
- QinChen Xu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yiwei Xu
- Marine College, Shandong University, 264209, Weihai, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Qin Wang
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China.
| |
Collapse
|
23
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
24
|
p21-Activated kinases as promising therapeutic targets in hematological malignancies. Leukemia 2022; 36:315-326. [PMID: 34697424 DOI: 10.1038/s41375-021-01451-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
The p21-Activated Kinases (PAKs) are a family of six serine/threonine kinases that were originally identified as downstream effectors of the Rho GTPases Cdc42 and Rac. Since the first PAK was discovered in 1994, studies have revealed their fundamental and biological importance in the development of physiological systems. Within the cell, PAKs also play significant roles in regulating essential cellular processes such as cytoskeletal dynamics, gene expression, cell survival, and cell cycle progression. These processes are often deregulated in numerous cancers when different PAKs are overexpressed or amplified at the chromosomal level. Furthermore, PAKs modulate multiple oncogenic signaling pathways which facilitate apoptosis escape, uncontrolled proliferation, and drug resistance. There is growing insight into the critical roles of PAKs in regulating steady-state hematopoiesis, including the properties of hematopoietic stem cells (HSC), and the initiation and progression of hematological malignancies. This review will focus on the most recent studies that provide experimental evidence showing how specific PAKs regulate the properties of leukemic stem cells (LSCs) and drug-resistant cells to initiate and maintain hematological malignancies. The current understanding of the molecular and cellular mechanisms by which the PAKs operate in specific human leukemia or lymphomas will be discussed. From a translational point of view, PAKs have been suggested to be critical therapeutic targets and potential prognosis markers; thus, this review will also discuss current therapeutic strategies against hematological malignancies using existing small-molecule PAK inhibitors, as well as promising combination treatments, to sensitize drug-resistant cells to conventional therapies. The challenges of toxicity and non-specific targeting associated with some PAK inhibitors, as well as how future approaches for PAK inhibition to overcome these limitations, will also be addressed.
Collapse
|
25
|
Wang H, Song P, Gao Y, Shen L, Xu H, Wang J, Cheng M. Drug discovery targeting p21-activated kinase 4 (PAK4): a patent review. Expert Opin Ther Pat 2021; 31:977-987. [PMID: 34369844 DOI: 10.1080/13543776.2021.1944100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: The Ser/Thr protein kinase PAK4 is a downstream regulator of Cdc42, mediating cytoskeleton remodeling, and cell motility, and inhibiting apoptosis and transcriptional regulation. Nowadays, efforts in PAK4 inhibitor development are focusing on improving inhibitory selectivity, cellular potency, and in vivo pharmacokinetic properties, and identifying the feasibility of immunotherapy combination in oncology therapy.Areas covered: This review summarized the development of PAK4 inhibitors that reported on patents in the past two decades. According to their binding features, these inhibitors were classified into type I, type I 1/2, and PAMs. Their designing ideas and SAR were elucidated in this review. Moreover, synergistic therapy of PAK4 inhibitors with PD-1/PD-L1 or CAR-T were also summarized .Expert opinion: In the past years, preclinical and clinical studies of PAK4 inhibitors ended in failure due to poor selectivity, cellular activity, or pharmacokinetic issues. There are researchers questioning the reliability of PAK4 as a drug target, particularly PAK4-related therapy is concerned with the distinguishment of the non-kinase functions and catalytic functions triggered by PAK4 phosphorylation. Meanwhile, synergistic effects of PAK4 inhibitors with PD-1/PD-L1 and CAR-T immunotherapy shed light for the development of PAK4 inhibitors.
Collapse
Affiliation(s)
- Hanxun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Peilu Song
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinli Gao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Lanlan Shen
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanqin Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Maosheng Cheng
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
26
|
Sharma P, Xu J, Williams K, Easley M, Elder JB, Lonser R, Lang FF, Lapalombella R, Sampath D, Puduvalli VK. Inhibition of nicotinamide phosphoribosyltransferase, the rate-limiting enzyme of the nicotinamide adenine dinucleotide salvage pathway, to target glioma heterogeneity through mitochondrial oxidative stress. Neuro Oncol 2021; 24:229-244. [PMID: 34260721 PMCID: PMC8804900 DOI: 10.1093/neuonc/noab175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Tumor-specific metabolic processes essential for cell survival are promising targets to potentially circumvent intratumoral heterogeneity, a major resistance factor in gliomas. Tumor cells preferentially using nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage pathway for synthesis of NAD, a critical cofactor for diverse biological processes including cellular redox reactions, energy metabolism and biosynthesis. NAMPT is overexpressed in most malignancies, including gliomas, and can serve as a tumor-specific target. METHODS Effects of pharmacological inhibition of NAMPT on cellular oxygen consumption rate, extracellular acidification, mitochondrial respiration, cell proliferation, invasion and survival were assessed through in vitro and ex vivo studies on genetically heterogeneous glioma cell lines, glioma stem-like cells (GSCs) and mouse and human ex vivo organotypic glioma slice culture models. RESULTS Pharmacological inhibition of the NAD salvage biosynthesis pathway using a highly specific inhibitor, KPT-9274, resulted in reduction of NAD levels and related downstream metabolites, inhibited proliferation, and induced apoptosis in vitro in cell lines and ex vivo in human glioma tissue. These effects were mediated by mitochondrial dysfunction, DNA damage and increased oxidative stress leading to apoptosis in GSCs independent of genotype, IDH status or MGMT promoter methylation status. Conversely, NAMPT inhibition had minimal in vitro effects on normal human astrocytes (NHA) and no apparent in vivo toxicity in non-tumor-bearing mice. CONCLUSIONS Pharmacological NAMPT inhibition by KPT9274 potently targeted genetically heterogeneous gliomas by activating mitochondrial dysfunction. Our preclinical results provide a rationale for targeting the NAMPT-dependent alternative NAD biosynthesis pathway as a novel clinical strategy against gliomas.
Collapse
Affiliation(s)
- Pratibha Sharma
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jihong Xu
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katie Williams
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michelle Easley
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J Brad Elder
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Russell Lonser
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosa Lapalombella
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Deepa Sampath
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinay K Puduvalli
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Subedi A, Liu Q, Ayyathan DM, Sharon D, Cathelin S, Hosseini M, Xu C, Voisin V, Bader GD, D'Alessandro A, Lechman ER, Dick JE, Minden MD, Wang JCY, Chan SM. Nicotinamide phosphoribosyltransferase inhibitors selectively induce apoptosis of AML stem cells by disrupting lipid homeostasis. Cell Stem Cell 2021; 28:1851-1867.e8. [PMID: 34293334 DOI: 10.1016/j.stem.2021.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Current treatments for acute myeloid leukemia (AML) are often ineffective in eliminating leukemic stem cells (LSCs), which perpetuate the disease. Here, we performed a metabolic drug screen to identify LSC-specific vulnerabilities and found that nicotinamide phosphoribosyltransferase (NAMPT) inhibitors selectively killed LSCs, while sparing normal hematopoietic stem and progenitor cells. Treatment with KPT-9274, a NAMPT inhibitor, suppressed the conversion of saturated fatty acids to monounsaturated fatty acids, a reaction catalyzed by the stearoyl-CoA desaturase (SCD) enzyme, resulting in apoptosis of AML cells. Transcriptomic analysis of LSCs treated with KPT-9274 revealed an upregulation of sterol regulatory-element binding protein (SREBP)-regulated genes, including SCD, which conferred partial protection against NAMPT inhibitors. Inhibition of SREBP signaling with dipyridamole enhanced the cytotoxicity of KPT-9274 on LSCs in vivo. Our work demonstrates that altered lipid homeostasis plays a key role in NAMPT inhibitor-induced apoptosis and identifies NAMPT inhibition as a therapeutic strategy for targeting LSCs in AML.
Collapse
Affiliation(s)
- Amit Subedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Qiang Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dhanoop M Ayyathan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David Sharon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Severine Cathelin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mohsen Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Changjiang Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Veronique Voisin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada; Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada; Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Steven M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada; Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
28
|
Mitchell S, Zhang P, Cannon M, Beaver L, Lehman A, Harrington B, Sampath D, Byrd JC, Lapalombella R. Anti-tumor NAMPT inhibitor, KPT-9274, mediates gender-dependent murine anemia and nephrotoxicity by regulating SIRT3-mediated SOD deacetylation. J Hematol Oncol 2021; 14:101. [PMID: 34187548 PMCID: PMC8243474 DOI: 10.1186/s13045-021-01107-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
KPT-9274 is a phase 1 first-in-class dual PAK4/NAMPT inhibitor for solid tumor and non-Hodgkin's lymphoma. It demonstrates pre-clinical efficacy toward a broad spectrum of acute myeloid leukemia (AML) subtypes by inhibiting NAMPT-dependent NAD+ production. NAMPT is the rate-limiting enzyme in the salvage metabolic pathway leading to NAD+ generation. Tumor cells which are deficient in de novo pathway enzyme NAPRT1 are addicted to NAMPT. In clinical trials, treatment with NAMPT inhibitors resulted in dose-limiting toxicities. In order to dissect the mechanism of toxicity, mice were treated with KPT-9274 and resulting toxicities were characterized histopathologically and biochemically. KPT-9274 treatment caused gender-dependent stomach and kidney injuries and anemia. Female mice treated with KPT-9274 had EPO deficiency and associated impaired erythropoiesis. KPT-9274 treatment suppressed SIRT3 expression and concomitantly upregulated acetyl-manganese superoxide dismutase (MnSOD) in IMCD3 cells, providing a mechanistic basis for observed kidney toxicity. Importantly, niacin supplementation mitigated KPT-9274-caused kidney injury and EPO deficiency without affecting its efficacy. Altogether, our study delineated the mechanism of KPT-9274-mediated toxicity and sheds light onto developing strategies to improve the tolerability of this important anti-AML inhibitor.
Collapse
Affiliation(s)
- Shaneice Mitchell
- grid.261331.40000 0001 2285 7943Division of Hematology, The Ohio State University, 455 OSUCCC, 410 West 12th Avenue, Columbus, OH 43210 USA ,grid.168010.e0000000419368956Department of Pathology, Stanford University, Palo Alto, CA USA
| | - Pu Zhang
- grid.261331.40000 0001 2285 7943Division of Hematology, The Ohio State University, 455 OSUCCC, 410 West 12th Avenue, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943College of Pharmacy, The Ohio State University, Columbus, OH USA
| | - Matthew Cannon
- grid.261331.40000 0001 2285 7943Division of Hematology, The Ohio State University, 455 OSUCCC, 410 West 12th Avenue, Columbus, OH 43210 USA
| | - Larry Beaver
- grid.261331.40000 0001 2285 7943Division of Hematology, The Ohio State University, 455 OSUCCC, 410 West 12th Avenue, Columbus, OH 43210 USA
| | - Amy Lehman
- grid.261331.40000 0001 2285 7943Center for Biostatistics, Department of Bioinformatics, The Ohio State University, Columbus, OH USA
| | - Bonnie Harrington
- grid.17088.360000 0001 2150 1785College of Veterinary Medicine, Michigan State University, Lansing, MI USA
| | - Deepa Sampath
- grid.261331.40000 0001 2285 7943Division of Hematology, The Ohio State University, 455 OSUCCC, 410 West 12th Avenue, Columbus, OH 43210 USA
| | - John C. Byrd
- grid.261331.40000 0001 2285 7943Division of Hematology, The Ohio State University, 455 OSUCCC, 410 West 12th Avenue, Columbus, OH 43210 USA
| | - Rosa Lapalombella
- Division of Hematology, The Ohio State University, 455 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
29
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
30
|
Moore AM, Zhou L, Cui J, Li L, Wu N, Yu A, Poddar S, Liang K, Abt ER, Kim S, Ghukasyan R, Khachatourian N, Pagano K, Elliott I, Dann AM, Riahi R, Le T, Dawson DW, Radu CG, Donahue TR. NAD + depletion by type I interferon signaling sensitizes pancreatic cancer cells to NAMPT inhibition. Proc Natl Acad Sci U S A 2021; 118:e2012469118. [PMID: 33597293 PMCID: PMC7923374 DOI: 10.1073/pnas.2012469118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that intratumoral interferon (IFN) signaling can trigger targetable vulnerabilities. A hallmark of pancreatic ductal adenocarcinoma (PDAC) is its extensively reprogrammed metabolic network, in which nicotinamide adenine dinucleotide (NAD) and its reduced form, NADH, are critical cofactors. Here, we show that IFN signaling, present in a subset of PDAC tumors, substantially lowers NAD(H) levels through up-regulating the expression of NAD-consuming enzymes PARP9, PARP10, and PARP14. Their individual contributions to this mechanism in PDAC have not been previously delineated. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD salvage pathway, a dominant source of NAD in cancer cells. We found that IFN-induced NAD consumption increased dependence upon NAMPT for its role in recycling NAM to salvage NAD pools, thus sensitizing PDAC cells to pharmacologic NAMPT inhibition. Their combination decreased PDAC cell proliferation and invasion in vitro and suppressed orthotopic tumor growth and liver metastases in vivo.
Collapse
Affiliation(s)
- Alexandra M Moore
- Department of Surgery, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Lei Zhou
- Department of Surgery, University of California, Los Angeles, CA 90095
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Jing Cui
- Department of Surgery, University of California, Los Angeles, CA 90095
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430022, China
| | - Luyi Li
- Department of Surgery, University of California, Los Angeles, CA 90095
| | - Nanping Wu
- Department of Surgery, University of California, Los Angeles, CA 90095
| | - Alice Yu
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Soumya Poddar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095
| | - Keke Liang
- Department of Surgery, University of California, Los Angeles, CA 90095
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Evan R Abt
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095
| | - Stephanie Kim
- Department of Surgery, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Razmik Ghukasyan
- Department of Surgery, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | | | - Kristina Pagano
- Department of Surgery, University of California, Los Angeles, CA 90095
| | - Irmina Elliott
- Department of Surgery, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Amanda M Dann
- Department of Surgery, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Rana Riahi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
| | - Thuc Le
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095
| | - David W Dawson
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| | - Caius G Radu
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| | - Timothy R Donahue
- Department of Surgery, University of California, Los Angeles, CA 90095;
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| |
Collapse
|
31
|
Kaiser LM, Harms M, Sauter D, Rawat VPS, Glitscher M, Hildt E, Tews D, Hunter Z, Münch J, Buske C. Targeting of CXCR4 by the Naturally Occurring CXCR4 Antagonist EPI-X4 in Waldenström's Macroglobulinemia. Cancers (Basel) 2021; 13:826. [PMID: 33669329 PMCID: PMC7920274 DOI: 10.3390/cancers13040826] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
CXCR4 expression and downstream signaling have been identified as key factors in malignant hematopoiesis. Thus, up to 40% of all patients with Waldenström's macroglobulinemia (WM) carry an activating mutation of CXCR4 that leads to a more aggressive clinical course and inferior outcome upon treatment with the Bruton's tyrosine kinase inhibitor ibrutinib. Nevertheless, little is known about physiological mechanisms counteracting CXCR4 signaling in hematopoietic neoplasms. Recently, the endogenous human peptide EPI-X4 was identified as a natural CXCR4 antagonist that effectively blocks CXCL12-mediated receptor internalization and suppresses the migration and invasion of cancer cells towards a CXCL12 gradient. Here, we demonstrate that EPI-X4 efficiently binds to CXCR4 of WM cells and decreases their migration towards CXCL12. The CXCR4 inhibitory activity of EPI-X4 is accompanied by reduced expression of genes involved in MAPK signaling and energy metabolism. Notably, the anti-WM activity of EPI-X4 could be further augmented by the rational design of EPI-X4 derivatives showing higher binding affinity to CXCR4. In summary, these data demonstrate that a naturally occurring anti-CXCR4 peptide is able to interfere with WM cell behaviour, and that optimized derivatives of EPI-X4 may represent a promising approach in suppressing growth promoting CXCR4 signaling in WM.
Collapse
Affiliation(s)
- Lisa Marie Kaiser
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, 89081 Ulm, Germany; (L.M.K.); (V.P.S.R.)
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.H.); (D.S.); (J.M.)
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.H.); (D.S.); (J.M.)
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Vijay P. S. Rawat
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, 89081 Ulm, Germany; (L.M.K.); (V.P.S.R.)
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, Delhi 110067, India
| | - Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institute, 63225 Langen, Germany; (M.G.); (E.H.)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, 63225 Langen, Germany; (M.G.); (E.H.)
| | - Daniel Tews
- Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Zachary Hunter
- Bing Center for Waldenström’s Macroglobulinemia, Boston, MA 02215, USA;
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.H.); (D.S.); (J.M.)
| | - Christian Buske
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, 89081 Ulm, Germany; (L.M.K.); (V.P.S.R.)
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
32
|
Zhang P, Brinton LT, Williams K, Sher S, Orwick S, Tzung-Huei L, Mims AS, Coss CC, Kulp SK, Youssef Y, Chan WK, Mitchell S, Mustonen A, Cannon M, Phillips H, Lehman AM, Kauffman T, Beaver L, Canfield D, Grieselhuber NR, Alinari L, Sampath D, Yan P, Byrd JC, Blachly JS, Lapalombella R. Targeting DNA Damage Repair Functions of Two Histone Deacetylases, HDAC8 and SIRT6, Sensitizes Acute Myeloid Leukemia to NAMPT Inhibition. Clin Cancer Res 2021; 27:2352-2366. [PMID: 33542077 DOI: 10.1158/1078-0432.ccr-20-3724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (NAMPTi) are currently in development, but may be limited as single-agent therapy due to compound-specific toxicity and cancer metabolic plasticity allowing resistance development. To potentially lower the doses of NAMPTis required for therapeutic benefit against acute myeloid leukemia (AML), we performed a genome-wide CRISPRi screen to identify rational disease-specific partners for a novel NAMPTi, KPT-9274. EXPERIMENTAL DESIGN Cell lines and primary cells were analyzed for cell viability, self-renewal, and responses at RNA and protein levels with loss-of-function approaches and pharmacologic treatments. In vivo efficacy of combination therapy was evaluated with a xenograft model. RESULTS We identified two histone deacetylases (HDAC), HDAC8 and SIRT6, whose knockout conferred synthetic lethality with KPT-9274 in AML. Furthermore, HDAC8-specific inhibitor, PCI-34051, or clinical class I HDAC inhibitor, AR-42, in combination with KPT-9274, synergistically decreased the survival of AML cells in a dose-dependent manner. AR-42/KPT-9274 cotreatment attenuated colony-forming potentials of patient cells while sparing healthy hematopoietic cells. Importantly, combined therapy demonstrated promising in vivo efficacy compared with KPT-9274 or AR-42 monotherapy. Mechanistically, genetic inhibition of SIRT6 potentiated the effect of KPT-9274 on PARP-1 suppression by abolishing mono-ADP ribosylation. AR-42/KPT-9274 cotreatment resulted in synergistic attenuation of homologous recombination and nonhomologous end joining pathways in cell lines and leukemia-initiating cells. CONCLUSIONS Our findings provide evidence that HDAC8 inhibition- or shSIRT6-induced DNA repair deficiencies are potently synergistic with NAMPT targeting, with minimal toxicity toward normal cells, providing a rationale for a novel-novel combination-based treatment for AML.
Collapse
Affiliation(s)
- Pu Zhang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.,College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Lindsey T Brinton
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Katie Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Lai Tzung-Huei
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | | | - Samuel K Kulp
- College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Shaneice Mitchell
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Allison Mustonen
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew Cannon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Hannah Phillips
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Amy M Lehman
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Tierney Kauffman
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Larry Beaver
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Daniel Canfield
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Deepa Sampath
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Pearlly Yan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.,College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - James S Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
33
|
Dasgupta A, Sierra L, Tsang SV, Kurenbekova L, Patel T, Rajapakse K, Shuck RL, Rainusso N, Landesman Y, Unger T, Coarfa C, Yustein JT. Targeting PAK4 Inhibits Ras-Mediated Signaling and Multiple Oncogenic Pathways in High-Risk Rhabdomyosarcoma. Cancer Res 2021; 81:199-212. [PMID: 33168646 PMCID: PMC7878415 DOI: 10.1158/0008-5472.can-20-0854] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most prevalent pediatric soft-tissue sarcoma. Multimodal treatment, including surgery and traditional chemotherapy with radiotherapy, has contributed to improvements in overall survival rates. However, patients with recurrent or metastatic disease have 5-year survival rates of less than 30%. One reason for the lack of therapeutic advancement is identification and targeting of critical signaling nodes. p21-activated kinases (PAK) are a family of serine/threonine kinases downstream of multiple critical tumorigenic receptor tyrosine kinase receptors and oncogenic regulators, including IGFR and RAS signaling, that significantly contribute to aggressive malignant phenotypes. Here, we report that RMS cell lines and tumors exhibit enhanced PAK4 expression levels and activity, which are further activated by growth factors involved in RMS development. Molecular perturbation of PAK4 in multiple RMS models in vitro and in vivo resulted in inhibition of RMS development and progression. Fusion-positive and -negative RMS models were sensitive to two PAK4 small-molecule inhibitors, PF-3758309 and KPT-9274, which elicited significant antitumor and antimetastatic potential in several primary and metastatic in vivo models, including a relapsed RMS patient-derived xenograft model. Transcriptomic analysis of PAK4-targeted tumors revealed inhibition of the RAS-GTPase, Hedgehog, and Notch pathways, along with evidence of activation of antitumor immune response signatures. This PAK4-targeting gene signature showed prognostic significance for patients with sarcoma. Overall, our results show for the first time that PAK4 is a novel and viable therapeutic target for the treatment of high-risk RMS. SIGNIFICANCE: These data demonstrate a novel oncogenic role for PAK4 in rhabdomyosarcoma and show that targeting PAK4 activity is a promising viable therapeutic option for advanced rhabdomyosarcoma.
Collapse
Affiliation(s)
- Atreyi Dasgupta
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Laura Sierra
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Susan V Tsang
- Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, Texas
| | - Lyazat Kurenbekova
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Tajhal Patel
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakse
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| | - Ryan L Shuck
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Nino Rainusso
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | | | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas.
- Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
34
|
Navas LE, Carnero A. NAD + metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021; 6:2. [PMID: 33384409 PMCID: PMC7775471 DOI: 10.1038/s41392-020-00354-w] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
NAD+ was discovered during yeast fermentation, and since its discovery, its important roles in redox metabolism, aging, and longevity, the immune system and DNA repair have been highlighted. A deregulation of the NAD+ levels has been associated with metabolic diseases and aging-related diseases, including neurodegeneration, defective immune responses, and cancer. NAD+ acts as a cofactor through its interplay with NADH, playing an essential role in many enzymatic reactions of energy metabolism, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, and the TCA cycle. NAD+ also plays a role in deacetylation by sirtuins and ADP ribosylation during DNA damage/repair by PARP proteins. Finally, different NAD hydrolase proteins also consume NAD+ while converting it into ADP-ribose or its cyclic counterpart. Some of these proteins, such as CD38, seem to be extensively involved in the immune response. Since NAD cannot be taken directly from food, NAD metabolism is essential, and NAMPT is the key enzyme recovering NAD from nicotinamide and generating most of the NAD cellular pools. Because of the complex network of pathways in which NAD+ is essential, the important role of NAD+ and its key generating enzyme, NAMPT, in cancer is understandable. In the present work, we review the role of NAD+ and NAMPT in the ways that they may influence cancer metabolism, the immune system, stemness, aging, and cancer. Finally, we review some ongoing research on therapeutic approaches.
Collapse
Affiliation(s)
- Lola E Navas
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain. .,CIBER de Cancer, Sevilla, Spain.
| |
Collapse
|
35
|
Neggers JE, Jacquemyn M, Dierckx T, Kleinstiver BP, Thibaut HJ, Daelemans D. enAsCas12a Enables CRISPR-Directed Evolution to Screen for Functional Drug Resistance Mutations in Sequences Inaccessible to SpCas9. Mol Ther 2020; 29:208-224. [PMID: 33002419 PMCID: PMC7791016 DOI: 10.1016/j.ymthe.2020.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/25/2020] [Accepted: 09/15/2020] [Indexed: 12/26/2022] Open
Abstract
While drug resistance mutations provide the gold standard proof for drug target engagement, target deconvolution of inhibitors identified from a phenotypic screen remains challenging. Genetic screening for functional in-frame drug resistance mutations by tiling CRISPR-Cas nucleases across protein coding sequences is a method for identifying a drug's target and binding site. However, the applicability of this approach is constrained by the availability of nuclease target sites across genetic regions that mediate drug resistance upon mutation. In this study, we show that an enhanced AsCas12a variant (enAsCas12a), which harbors an expanded targeting range, facilitates screening for drug resistance mutations with increased activity and resolution in regions that are not accessible to other CRISPR nucleases, including the prototypical SpCas9. Utilizing enAsCas12a, we uncover new drug resistance mutations against inhibitors of NAMPT and KIF11. These findings demonstrate that enAsCas12a is a promising new addition to the CRISPR screening toolbox and allows targeting sites not readily accessible to SpCas9.
Collapse
Affiliation(s)
- Jasper Edgar Neggers
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Maarten Jacquemyn
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Tim Dierckx
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Benjamin Peter Kleinstiver
- Molecular Pathology Unit, Center for Cancer Research and Center for Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, 3000 Leuven, Belgium.
| |
Collapse
|
36
|
Jones CL, Stevens BM, Pollyea DA, Culp-Hill R, Reisz JA, Nemkov T, Gehrke S, Gamboni F, Krug A, Winters A, Pei S, Gustafson A, Ye H, Inguva A, Amaya M, Minhajuddin M, Abbott D, Becker MW, DeGregori J, Smith CA, D'Alessandro A, Jordan CT. Nicotinamide Metabolism Mediates Resistance to Venetoclax in Relapsed Acute Myeloid Leukemia Stem Cells. Cell Stem Cell 2020; 27:748-764.e4. [PMID: 32822582 DOI: 10.1016/j.stem.2020.07.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/28/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022]
Abstract
We previously demonstrated that leukemia stem cells (LSCs) in de novo acute myeloid leukemia (AML) patients are selectively reliant on amino acid metabolism and that treatment with the combination of venetoclax and azacitidine (ven/aza) inhibits amino acid metabolism, leading to cell death. In contrast, ven/aza fails to eradicate LSCs in relapsed/refractory (R/R) patients, suggesting altered metabolic properties. Detailed metabolomic analysis revealed elevated nicotinamide metabolism in relapsed LSCs, which activates both amino acid metabolism and fatty acid oxidation to drive OXPHOS, thereby providing a means for LSCs to circumvent the cytotoxic effects of ven/aza therapy. Genetic and pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in nicotinamide metabolism, demonstrated selective eradication of R/R LSCs while sparing normal hematopoietic stem/progenitor cells. Altogether, these findings demonstrate that elevated nicotinamide metabolism is both the mechanistic basis for ven/aza resistance and a metabolic vulnerability of R/R LSCs.
Collapse
Affiliation(s)
- Courtney L Jones
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Brett M Stevens
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Daniel A Pollyea
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Anna Krug
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Amanda Winters
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Shanshan Pei
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Annika Gustafson
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Haobin Ye
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Anagha Inguva
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Maria Amaya
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA
| | | | - Diana Abbott
- Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael W Becker
- Department of Medicine, Division of Hematology/Oncology, University of Rochester, Rochester, NY 14627, USA
| | - James DeGregori
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Clayton A Smith
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
37
|
Mpilla GB, Philip PA, El-Rayes B, Azmi AS. Pancreatic neuroendocrine tumors: Therapeutic challenges and research limitations. World J Gastroenterol 2020; 26:4036-4054. [PMID: 32821069 PMCID: PMC7403797 DOI: 10.3748/wjg.v26.i28.4036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are known to be the second most common epithelial malignancy of the pancreas. PNETs can be listed among the slowest growing as well as the fastest growing human cancers. The prevalence of PNETs is deceptively low; however, its incidence has significantly increased over the past decades. According to the American Cancer Society’s estimate, about 4032 (> 7% of all pancreatic malignancies) individuals will be diagnosed with PNETs in 2020. PNETs often cause severe morbidity due to excessive secretion of hormones (such as serotonin) and/or overall tumor mass. Patients can live for many years (except for those patients with poorly differentiated G3 neuroendocrine tumors); thus, the prevalence of the tumors that is the number of patients actually dealing with the disease at any given time is fairly high because the survival is much longer than pancreatic ductal adenocarcinoma. Due to significant heterogeneity, the management of PNETs is very complex and remains an unmet clinical challenge. In terms of research studies, modest improvements have been made over the past decades in the identification of potential oncogenic drivers in order to enhance the quality of life and increase survival for this growing population of patients. Unfortunately, the majority of systematic therapies approved for the management of advanced stage PNETs lack objective response or at most result in modest benefits in survival. In this review, we aim to discuss the broad challenges associated with the management and the study of PNETs.
Collapse
Affiliation(s)
- Gabriel Benyomo Mpilla
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Philip Agop Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Bassel El-Rayes
- Department of Hematology Oncology, Emory Winship Institute, Atlanta, GA 30322, United States
| | - Asfar Sohail Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
38
|
Trott JF, Abu Aboud O, McLaughlin B, Anderson KL, Modiano JF, Kim K, Jen KY, Senapedis W, Chang H, Landesman Y, Baloglu E, Pili R, Weiss RH. Anti-Cancer Activity of PAK4/NAMPT Inhibitor and Programmed Cell Death Protein-1 Antibody in Kidney Cancer. KIDNEY360 2020; 1:376-388. [PMID: 35224510 PMCID: PMC8809296 DOI: 10.34067/kid.0000282019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/12/2020] [Indexed: 06/14/2023]
Abstract
BACKGROUND Kidney cancer (or renal cell carcinoma, RCC) is the sixth most common malignancy in the United States and is increasing in incidence. Despite new therapies, including targeted therapies and immunotherapies, most RCCs are resistant to treatment. Thus, several laboratories have been evaluating new approaches to therapy, both with single agents as well as combinations. Although we have previously shown efficacy of the dual PAK4/nicotinamide phosphoribosyltransferase (NAMPT) inhibitor KPT-9274, and the immune checkpoint inhibitors (CPI) have shown utility in the clinic, there has been no evaluation of this combination either clinically or in an immunocompetent animal model of kidney cancer. METHODS In this study, we use the renal cell adenocarcinoma (RENCA) model of spontaneous murine kidney cancer. Male BALB/cJ mice were injected subcutaneously with RENCA cells and, after tumors were palpable, they were treated with KPT-9274 and/or anti-programmed cell death 1 (PDCD1; PD1) antibody for 21 days. Tumors were measured and then removed at animal euthanasia for subsequent studies. RESULTS We demonstrate a significant decrease in allograft growth with the combination treatment of KPT-9274 and anti-PD1 antibody without significant weight loss by the animals. This is associated with decreased (MOUSE) Naprt expression, indicating dependence of these tumors on NAMPT in parallel to what we have observed in human RCC. Histology of the tumors showed substantial necrosis regardless of treatment condition, and flow cytometry of antibody-stained tumor cells revealed that the enhanced therapeutic effect of KPT-9274 and anti-PD1 antibody was not driven by infiltration of T cells into tumors. CONCLUSIONS This study highlights the potential of the RENCA model for evaluating immunologic responses to KPT-9274 and checkpoint inhibitor (CPI) and suggests that therapy with this combination could improve efficacy in RCC beyond what is achievable with CPI alone.
Collapse
Affiliation(s)
- Josephine F. Trott
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
| | - Omran Abu Aboud
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
| | - Bridget McLaughlin
- Comprehensive Cancer Center, University of California, Davis, California
| | - Katie L. Anderson
- Animal Cancer Care and Research Program, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California, Davis, California
| | - William Senapedis
- Research and Translational Development, Karyopharm Therapeutics Inc., Newton, Massachusetts
| | - Hua Chang
- Research and Translational Development, Karyopharm Therapeutics Inc., Newton, Massachusetts
| | - Yosef Landesman
- Research and Translational Development, Karyopharm Therapeutics Inc., Newton, Massachusetts
| | - Erkan Baloglu
- Research and Translational Development, Karyopharm Therapeutics Inc., Newton, Massachusetts
| | - Roberto Pili
- Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Robert H. Weiss
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
- Comprehensive Cancer Center, University of California, Davis, California
- Medical Service, Veterans Affairs Northern California Health Care System, Sacramento, California
| |
Collapse
|
39
|
Pramono AA, Rather GM, Herman H, Lestari K, Bertino JR. NAD- and NADPH-Contributing Enzymes as Therapeutic Targets in Cancer: An Overview. Biomolecules 2020; 10:biom10030358. [PMID: 32111066 PMCID: PMC7175141 DOI: 10.3390/biom10030358] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Actively proliferating cancer cells require sufficient amount of NADH and NADPH for biogenesis and to protect cells from the detrimental effect of reactive oxygen species. As both normal and cancer cells share the same NAD biosynthetic and metabolic pathways, selectively lowering levels of NAD(H) and NADPH would be a promising strategy for cancer treatment. Targeting nicotinamide phosphoribosyltransferase (NAMPT), a rate limiting enzyme of the NAD salvage pathway, affects the NAD and NADPH pool. Similarly, lowering NADPH by mutant isocitrate dehydrogenase 1/2 (IDH1/2) which produces D-2-hydroxyglutarate (D-2HG), an oncometabolite that downregulates nicotinate phosphoribosyltransferase (NAPRT) via hypermethylation on the promoter region, results in epigenetic regulation. NADPH is used to generate D-2HG, and is also needed to protect dihydrofolate reductase, the target for methotrexate, from degradation. NAD and NADPH pools in various cancer types are regulated by several metabolic enzymes, including methylenetetrahydrofolate dehydrogenase, serine hydroxymethyltransferase, and aldehyde dehydrogenase. Thus, targeting NAD and NADPH synthesis under special circumstances is a novel approach to treat some cancers. This article provides the rationale for targeting the key enzymes that maintain the NAD/NADPH pool, and reviews preclinical studies of targeting these enzymes in cancers.
Collapse
Affiliation(s)
- Alvinsyah Adhityo Pramono
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (A.A.P.); (G.M.R.)
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Gulam M. Rather
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (A.A.P.); (G.M.R.)
| | - Herry Herman
- Division of Oncology, Department of Orthopaedic Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia;
| | - Keri Lestari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Joseph R. Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (A.A.P.); (G.M.R.)
- Department of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence: ; Tel.: +1-(732)-235-8510
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW In an attempt to identify potential new therapeutic targets, efforts to describe the metabolic features unique to cancer cells are increasingly being reported. Although current standard of care regimens for several pediatric malignancies incorporate agents that target tumor metabolism, these drugs have been part of the therapeutic landscape for decades. More recent research has focused on the identification and targeting of new metabolic vulnerabilities in pediatric cancers. The purpose of this review is to describe the most recent translational findings in the metabolic targeting of pediatric malignancies. RECENT FINDINGS Across multiple pediatric cancer types, dependencies on a number of key metabolic pathways have emerged through study of patient tissue samples and preclinical modeling. Among the potentially targetable vulnerabilities are glucose metabolism via glycolysis, oxidative phosphorylation, amino acid and polyamine metabolism, and NAD metabolism. Although few agents have yet to move forward into clinical trials for pediatric cancer patients, the robust and promising preclinical data that have been generated suggest that future clinical trials should rationally test metabolically targeted agents for relevant disease populations. SUMMARY Recent advances in our understanding of the metabolic dependencies of pediatric cancers represent a source of potential new therapeutic opportunities for these diseases.
Collapse
|
41
|
Heske CM. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front Oncol 2020; 9:1514. [PMID: 32010616 PMCID: PMC6978772 DOI: 10.3389/fonc.2019.01514] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells have increased requirements for NAD+. Thus, many cancers exhibit an increased reliance on NAD+ production pathways. This dependence may be exploited therapeutically through pharmacological targeting of NAMPT, the rate-limiting enzyme in the NAD+ salvage pathway. Despite promising preclinical data using NAMPT inhibitors in cancer models, early NAMPT inhibitors showed limited efficacy in several early phase clinical trials, necessitating the identification of strategies, such as drug combinations, to enhance their efficacy. While the effect of NAMPT inhibitors on impairment of energy metabolism in cancer cells has been well-described, more recent insights have uncovered a number of additional targetable cellular processes that are impacted by inhibition of NAMPT. These include sirtuin function, DNA repair machinery, redox homeostasis, molecular signaling, cellular stemness, and immune processes. This review highlights the recent findings describing the effects of NAMPT inhibitors on the non-metabolic functions of malignant cells, with a focus on how this information can be leveraged clinically. Combining NAMPT inhibitors with other therapies that target NAD+-dependent processes or selecting tumors with specific vulnerabilities that can be co-targeted with NAMPT inhibitors may represent opportunities to exploit the multiple functions of this enzyme for greater therapeutic benefit.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
42
|
PAK4-NAMPT Dual Inhibition as a Novel Strategy for Therapy Resistant Pancreatic Neuroendocrine Tumors. Cancers (Basel) 2019; 11:cancers11121902. [PMID: 31795447 PMCID: PMC6966587 DOI: 10.3390/cancers11121902] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PNET) remain an unmet clinical need. In this study, we show that targeting both nicotinamide phosphoribosyltransferase (NAMPT) and p21-activated kinase 4 (PAK4) could become a synthetic lethal strategy for PNET. The expression of PAK4 and NAMPT was found to be higher in PNET tissue compared to normal cells. PAK4-NAMPT dual RNAi suppressed proliferation of PNET cell lines. Treatment with KPT-9274 (currently in a Phase I trial or analogs, PF3758309 (the PAK4 selective inhibitor) or FK866 (the NAMPT inhibitor)) suppressed the growth of PNET cell lines and synergized with the mammalian target of rapamycin (mTOR) inhibitors everolimus and INK-128. Molecular analysis of the combination treatment showed down-regulation of known everolimus resistance drivers. KPT-9274 suppressed NAD pool and ATP levels in PNET cell lines. Metabolomic profiling showed a statistically significant alteration in cellular energetic pathways. KPT-9274 given orally at 150 mg/kg 5 days/week for 4 weeks dramatically reduced PNET sub-cutaneous tumor growth. Residual tumor analysis demonstrated target engagement in vivo and recapitulated in vitro results. Our investigations demonstrate that PAK4 and NAMPT are two viable therapeutic targets in the difficult to treat PNET that warrant further clinical investigation.
Collapse
|