1
|
Makrinioti H, Fainardi V, Bonnelykke K, Custovic A, Cicutto L, Coleman C, Eiwegger T, Kuehni C, Moeller A, Pedersen E, Pijnenburg M, Pinnock H, Ranganathan S, Tonia T, Subbarao P, Saglani S. European Respiratory Society statement on preschool wheezing disorders: updated definitions, knowledge gaps and proposed future research directions. Eur Respir J 2024; 64:2400624. [PMID: 38843917 DOI: 10.1183/13993003.00624-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 07/28/2024]
Abstract
Since the publication of the European Respiratory Society (ERS) task force reports on the management of preschool wheezing in 2008 and 2014, a large body of evidence has accumulated suggesting that the clinical phenotypes that were proposed (episodic (viral) wheezing and multiple-trigger wheezing) do not relate to underlying airway pathology and may not help determine response to treatment. Specifically, using clinical phenotypes alone may no longer be appropriate, and new approaches that can be used to inform clinical care are needed for future research. This ERS task force reviewed the literature published after 2008 related to preschool wheezing and has suggested that the criteria used to define wheezing disorders in preschool children should include age of diagnosis (0 to <6 years), confirmation of wheezing on at least one occasion, and more than one episode of wheezing ever. Furthermore, diagnosis and management may be improved by identifying treatable traits, including inflammatory biomarkers (blood eosinophils, aeroallergen sensitisation) associated with type-2 immunity and differential response to inhaled corticosteroids, lung function parameters and airway infection. However, more comprehensive use of biomarkers/treatable traits in predicting the response to treatment requires prospective validation. There is evidence that specific genetic traits may help guide management, but these must be adequately tested. In addition, the task force identified an absence of caregiver-reported outcomes, caregiver/self-management options and features that should prompt specialist referral for this age group. Priorities for future research include a focus on identifying 1) mechanisms driving preschool wheezing; 2) biomarkers of treatable traits and efficacy of interventions in those without allergic sensitisation/eosinophilia; 3) the need to include both objective outcomes and caregiver-reported outcomes in clinical trials; 4) the need for a suitable action plan for children with preschool wheezing; and 5) a definition of severe/difficult-to-treat preschool wheezing.
Collapse
Affiliation(s)
- Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- H. Makrinioti and V. Fainardi contributed equally to the manuscript
| | - Valentina Fainardi
- Department of Medicine and Surgery, Paediatric Clinic, University of Parma, Parma, Italy
- H. Makrinioti and V. Fainardi contributed equally to the manuscript
| | - Klaus Bonnelykke
- Department of Pediatrics, University of Copenhagen, Copenhagen, Denmark
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, Imperial NIHR Biomedical Research Centre, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Lisa Cicutto
- Community Research Department, National Jewish Health, University of Colorado, Denver, CO, USA
| | - Courtney Coleman
- Patient Involvement and Engagement, European Lung Foundation, Sheffield, UK
| | - Thomas Eiwegger
- Department of Pediatric and Adolescent Medicine, University Hospital St Pölten, St Pölten, Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Claudia Kuehni
- Institute of Social and Preventive Medicine, Bern, Switzerland
| | - Alexander Moeller
- Department of Respiratory Medicine, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eva Pedersen
- Institute of Social and Preventive Medicine, Bern, Switzerland
| | - Marielle Pijnenburg
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Thomy Tonia
- Institute of Social and Preventive Medicine, Bern, Switzerland
| | - Padmaja Subbarao
- SickKids Research Institute, Toronto, ON, Canada
- S. Saglani and P. Subbarao contributed equally to the manuscript
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, Imperial NIHR Biomedical Research Centre, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
- S. Saglani and P. Subbarao contributed equally to the manuscript
| |
Collapse
|
2
|
Palacios C, Kostiuk LL, Cuthbert A, Weeks J. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev 2024; 7:CD008873. [PMID: 39077939 PMCID: PMC11287789 DOI: 10.1002/14651858.cd008873.pub5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
BACKGROUND Vitamin D supplementation during pregnancy may help improve maternal and neonatal health outcomes (such as fewer preterm birth and low birthweight babies) and reduce the risk of adverse pregnancy outcomes (such as severe postpartum haemorrhage). OBJECTIVES To examine whether vitamin D supplementation alone or in combination with calcium or other vitamins and minerals given to women during pregnancy can safely improve certain maternal and neonatal outcomes. SEARCH METHODS We searched the Cochrane Pregnancy and Childbirth Trials Register (which includes results of comprehensive searches of CENTRAL, MEDLINE, Embase, CINAHL, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, and relevant conference proceedings) (3 December 2022). We also searched the reference lists of retrieved studies. SELECTION CRITERIA Randomised and quasi-randomised trials evaluating the effect of supplementation with vitamin D alone or in combination with other micronutrients for women during pregnancy in comparison to placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently i) assessed the eligibility of studies against the inclusion criteria, ii) assessed trustworthiness based on pre-defined criteria of scientific integrity, iii) extracted data from included studies, and iv) assessed the risk of bias of the included studies. We assessed the certainty of the evidence using the GRADE approach. MAIN RESULTS The previous version of this review included 30 studies; in this update, we have removed 20 of these studies to 'awaiting classification' following assessments of trustworthiness, one study has been excluded, and one new study included. This current review has a total of 10 included studies, 117 excluded studies, 34 studies in awaiting assessment, and seven ongoing studies. We used the GRADE approach to assess the certainty of the evidence. This removal of the studies resulted in evidence that was downgraded to low-certainty or very low-certainty due to study design limitations, inconsistency between studies, and imprecision. Supplementation with vitamin D compared to no intervention or a placebo A total of eight studies involving 2313 pregnant women were included in this comparison. We assessed four studies as having a low risk of bias for most domains and four studies as having high risk or unclear risk of bias for most domains. The evidence is very uncertain about the effect of supplementation with vitamin D during pregnancy compared to placebo or no intervention on pre-eclampsia (risk ratio (RR) 0.53, 95% confidence interval (CI) 0.21 to 1.33; 1 study, 165 women), gestational diabetes (RR 0.53, 95% CI 0.03 to 8.28; 1 study, 165 women), preterm birth (< 37 weeks) (RR 0.76, 95% CI 0.25 to 2.33; 3 studies, 1368 women), nephritic syndrome (RR 0.17, 95% CI 0.01 to 4.06; 1 study, 135 women), or hypercalcaemia (1 study; no cases reported). Supplementation with vitamin D during pregnancy may reduce the risk of severe postpartum haemorrhage; however, only one study reported this outcome (RR 0.68, 95% CI 0.51 to 0.91; 1 study, 1134 women; low-certainty evidence) and may reduce the risk of low birthweight; however, the upper CI suggests that an increase in risk cannot be ruled out (RR 0.69, 95% CI 0.44 to 1.08; 3 studies, 371 infants; low-certainty evidence). Supplementation with vitamin D + calcium compared to no intervention or a placebo One study involving 84 pregnant women was included in this comparison. Overall, this study was at moderate to high risk of bias. Pre-eclampsia, gestational diabetes, and maternal adverse events were not reported. The evidence is very uncertain about the effect of supplementation with vitamin D and calcium on preterm birth (RR not estimable; very low-certainty evidence) or for low birthweight (RR 1.45, 95% CI 0.14 to 14.94; very low-certainty evidence) compared to women who received placebo or no intervention. Supplementation with vitamin D + calcium + other vitamins and minerals versus calcium + other vitamins and minerals (but no vitamin D) One study involving 1298 pregnant women was included in this comparison. We assessed this study as having a low risk of bias in all domains. Pre-eclampsia was not reported. The evidence is very uncertain about the effect of supplementation with vitamin D, calcium, and other vitamins and minerals during pregnancy compared to no vitamin D on gestational diabetes (RR 0.42, 95% CI 0.10 to 1.73; very low-certainty evidence), maternal adverse events (hypercalcaemia no events and hypercalciuria RR 0.25, 95% CI 0.02 to 3.97; very low-certainty evidence), preterm birth (RR 1.04, 95% CI 0.68 to 1.59; low-certainty evidence), or low birthweight (RR 1.12, 95% CI 0.82 to 1.51; low-certainty evidence). AUTHORS' CONCLUSIONS This updated review using the trustworthy assessment tool removed 21 studies from the previous update and added one new study for a total of 10 included studies. In this setting, supplementation with vitamin D alone compared to no intervention or a placebo resulted in very uncertain evidence on pre-eclampsia, gestational diabetes, preterm birth, or nephritic syndrome. It may reduce the risk of severe postpartum haemorrhage; however, only one study reported this outcome. It may also reduce the risk of low birthweight; however, the upper CI suggests that an increase in risk cannot be ruled out. Supplementation with vitamin D and calcium versus placebo or no intervention resulted in very uncertain evidence on preterm birth and low birthweight. Pre-eclampsia, gestational diabetes, and maternal adverse events were not reported in the only study included in this comparison. Supplementation with vitamin D + calcium + other vitamins and minerals versus calcium + other vitamins and minerals (but no vitamin D) resulted in very uncertain evidence on gestational diabetes and maternal adverse events (hypercalciuria) and uncertain evidence on preterm birth and low birthweight. Pre-eclampsia was not reported in the only study included in this comparison. All findings warrant further research. Additional rigorous, high-quality, and larger randomised trials are required to evaluate the effects of vitamin D supplementation in pregnancy, particularly in relation to the risk of maternal adverse events.
Collapse
Affiliation(s)
- Cristina Palacios
- Department of Dietetics and Nutrition, Florida International University, Miami, Florida, USA
| | - Lia L Kostiuk
- Clinical Safety, Daiichi Sankyo, Basking Ridge, New Jersey, USA
| | - Anna Cuthbert
- Cochrane Pregnancy and Childbirth Group, Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Jo Weeks
- Cochrane Pregnancy and Childbirth Group, Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Brustad N, Chawes B. Vitamin D Primary Prevention of Respiratory Infections and Asthma in Early Childhood: Evidence and Mechanisms. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1707-1714. [PMID: 38360214 DOI: 10.1016/j.jaip.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Respiratory infections are a leading cause of child morbidity worldwide, and asthma is the most common chronic disorder in childhood. Both conditions associate with high socioeconomic costs and are major reasons for medication prescriptions and hospitalizations in children. Vitamin D deficiency has concomitantly increased with asthma prevalence and is hypothesized to play a key role in the development. Current evidence suggests that high prenatal and early childhood vitamin D could be protective against respiratory infections and asthma in some studies where several mechanisms are proposed. However, other studies have reported no effects on these outcomes. Therefore, future large intervention studies on this topic are warranted. Mechanistic studies have shown that vitamin D holds antimicrobial properties by inducing production of several peptides through altered gene expression. Others have shown a complex interplay between asthma risk genotypes, the sphingolipid pathway, and prenatal vitamin D in early childhood asthma. Vitamin D has also been suggested to change both airway immune and microbiota profiles, which are directly related to asthma risk. Finally, systemic low-grade inflammation seems to be regulated by vitamin D exposure. This review presents the current literature of the primary preventive effect of vitamin D on early childhood asthma and respiratory infections. Mechanisms of actions are discussed, and gaps in knowledge are highlighted to facilitate planning of future intervention trials.
Collapse
Affiliation(s)
- Nicklas Brustad
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Prince N, Begum S, Mendez KM, Ramirez LG, Chen Y, Chen Q, Chu SH, Kachroo P, Levy O, Diray-Arce J, Palma P, Litonjua AA, Weiss ST, Kelly RS, Lasky-Su JA. Network Analysis Reveals Protein Modules Associated with Childhood Respiratory Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599044. [PMID: 38948790 PMCID: PMC11212915 DOI: 10.1101/2024.06.14.599044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background The first year of life is a period of rapid immune development that can impact health trajectories and the risk of developing respiratory-related diseases, such as asthma, recurrent infections, and eczema. However, the biology underlying subsequent disease development remains unknown. Methods Using weighted gene correlation network analysis (WGCNA), we derived modules of highly correlated immune-related proteins in plasma samples from children at age 1 year (N=294) from the Vitamin D Antenatal Asthma Reduction Trial (VDAART). We applied regression analyses to assess relationships between protein modules and development of childhood respiratory diseases up to age 6 years. We then characterized genomic, environmental, and metabolomic factors associated with modules. Results WGCNA identified four protein modules at age 1 year associated with incidence of childhood asthma and/or recurrent wheeze (Padj range: 0.02-0.03), respiratory infections (Padj range: 6.3×10-9-2.9×10-6), and eczema (Padj=0.01) by age 6 years; three modules were associated with at least one environmental exposure (Padj range: 2.8×10-10-0.03) and disrupted metabolomic pathway(s) (Padj range: 2.8×10-6-0.04). No genome-wide SNPs were identified as significant genetic risk factors for any protein module. Relationships between protein modules with clinical, environmental, and 'omic factors were temporally sensitive and could not be recapitulated in protein profiles at age 6 years. Conclusion These findings suggested protein profiles as early as age 1 year predicted development of respiratory-related diseases through age 6 and were associated with changes in pathways related to amino acid and energy metabolism. These may inform new strategies to identify vulnerable individuals based on immune protein profiling.
Collapse
Affiliation(s)
- Nicole Prince
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sofina Begum
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kevin M Mendez
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Lourdes G Ramirez
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yulu Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Su H Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Joann Diray-Arce
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at Strong, University of Rochester Medical Center, Rochester, United States
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Kilic A, Halu A, De Marzio M, Maiorino E, Duvall MG, Bruggemann TR, Rojas Quintero JJ, Chase R, Mirzakhani H, Sungur AÖ, Koepke J, Nakano T, Peh HY, Krishnamoorthy N, Abdulnour RE, Georgopoulos K, Litonjua AA, Demay M, Renz H, Levy BD, Weiss ST. Vitamin D constrains inflammation by modulating the expression of key genes on Chr17q12-21.1. eLife 2024; 12:RP89270. [PMID: 38567749 PMCID: PMC10990493 DOI: 10.7554/elife.89270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Vitamin D possesses immunomodulatory functions and vitamin D deficiency has been associated with the rise in chronic inflammatory diseases, including asthma (Litonjua and Weiss, 2007). Vitamin D supplementation studies do not provide insight into the molecular genetic mechanisms of vitamin D-mediated immunoregulation. Here, we provide evidence for vitamin D regulation of two human chromosomal loci, Chr17q12-21.1 and Chr17q21.2, reliably associated with autoimmune and chronic inflammatory diseases. We demonstrate increased vitamin D receptor (Vdr) expression in mouse lung CD4+ Th2 cells, differential expression of Chr17q12-21.1 and Chr17q21.2 genes in Th2 cells based on vitamin D status and identify the IL-2/Stat5 pathway as a target of vitamin D signaling. Vitamin D deficiency caused severe lung inflammation after allergen challenge in mice that was prevented by long-term prenatal vitamin D supplementation. Mechanistically, vitamin D induced the expression of the Ikzf3-encoded protein Aiolos to suppress IL-2 signaling and ameliorate cytokine production in Th2 cells. These translational findings demonstrate mechanisms for the immune protective effect of vitamin D in allergic lung inflammation with a strong molecular genetic link to the regulation of both Chr17q12-21.1 and Chr17q21.2 genes and suggest further functional studies and interventional strategies for long-term prevention of asthma and other autoimmune disorders.
Collapse
Affiliation(s)
- Ayse Kilic
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Arda Halu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Margherita De Marzio
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Environmental Health, Harvard TH Chan School of Public HealthBostonUnited States
| | - Enrico Maiorino
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Melody G Duvall
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Thayse Regina Bruggemann
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Joselyn J Rojas Quintero
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Robert Chase
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Ayse Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-UniversityMarburgGermany
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus Liebig University GiessenGiessenGermany
| | - Janine Koepke
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus Liebig University GiessenGiessenGermany
| | - Taiji Nakano
- Department of Pediatrics, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Nandini Krishnamoorthy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Raja-Elie Abdulnour
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital at Strong, University of Rochester Medical CenterRochesterUnited States
| | - Marie Demay
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg and German Center for Lung Research (DZL)MarburgGermany
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology Sechenov UniversityMoscowRussian Federation
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
6
|
Makrinioti H, Zhu Z, Saglani S, Camargo CA, Hasegawa K. Infant Bronchiolitis Endotypes and the Risk of Developing Childhood Asthma: Lessons From Cohort Studies. Arch Bronconeumol 2024; 60:215-225. [PMID: 38569771 DOI: 10.1016/j.arbres.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
Severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) during infancy is a heterogeneous condition associated with a high risk of developing childhood asthma. Yet, the exact mechanisms underlying the bronchiolitis-asthma link remain uncertain. Birth cohort studies have reported this association at the population level, including only small groups of patients with a history of bronchiolitis, and have attempted to identify the underlying biological mechanisms. Although this evidence has provided valuable insights, there are still unanswered questions regarding severe bronchiolitis-asthma pathogenesis. Recently, a few bronchiolitis cohort studies have attempted to answer these questions by applying unbiased analytical approaches to biological data. These cohort studies have identified novel bronchiolitis subtypes (i.e., endotypes) at high risk for asthma development, representing essential and enlightening evidence. For example, one distinct severe respiratory syncytial virus (RSV) bronchiolitis endotype is characterized by the presence of Moraxella catarrhalis and Streptococcus pneumoniae, higher levels of type I/II IFN expression, and changes in carbohydrate metabolism in nasal airway samples, and is associated with a high risk for childhood asthma development. Although these findings hold significance for the design of future studies that focus on childhood asthma prevention, they require validation. However, this scoping review puts the above findings into clinical context and emphasizes the significance of future research in this area aiming to offer new bronchiolitis treatments and contribute to asthma prevention.
Collapse
Affiliation(s)
- Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Weiss ST, Mirzakhani H, Carey VJ, O'Connor GT, Zeiger RS, Bacharier LB, Stokes J, Litonjua AA. Prenatal vitamin D supplementation to prevent childhood asthma: 15-year results from the Vitamin D Antenatal Asthma Reduction Trial (VDAART). J Allergy Clin Immunol 2024; 153:378-388. [PMID: 37852328 DOI: 10.1016/j.jaci.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
This article provides an overview of the findings obtained from the Vitamin D Antenatal Asthma Reduction Trial (VDAART) spanning a period of 15 years. The review covers various aspects, including the trial's rationale, study design, and initial intent-to-treat analyses, as well as an explanation of why those analyses did not achieve statistical significance. Additionally, the article delves into the post hoc results obtained from stratified intent-to-treat analyses based on maternal vitamin D baseline levels and genotype-stratified analyses. These results demonstrate a statistically significant reduction in asthma among offspring aged 3 and 6 years when comparing vitamin D supplementation (4400 IU/d) to the standard prenatal multivitamin with vitamin D (400 IU/d). Furthermore, these post hoc analyses found that vitamin D supplementation led to a decrease in total serum IgE levels and improved lung function in children compared to those whose mothers received a placebo alongside the standard prenatal multivitamin with vitamin D. Last, the article concludes with recommendations regarding the optimal dosing of vitamin D for pregnant women to prevent childhood asthma as well as suggestions for future trials in this field.
Collapse
Affiliation(s)
- Scott T Weiss
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.
| | - Hooman Mirzakhani
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Vincent J Carey
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - George T O'Connor
- Department of Medicine, Pulmonary Centre, Boston Medical Centre, Boston University, Boston, Mass
| | - Robert S Zeiger
- Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, Calif
| | - Leonard B Bacharier
- Department of Pediatrics, Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tenn
| | - Jeffrey Stokes
- Department of Pediatrics, Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Washington University, St Louis, Mo
| | - Augusto A Litonjua
- Department of Pediatrics Golisano Children's Hospital, Pediatric Pulmonary Division, University of Rochester Medical School, Rochester, NY
| |
Collapse
|
8
|
Chen Y, Checa A, Zhang P, Huang M, Kelly RS, Kim M, Chen YCS, Lee-Sarwar KA, Prince N, Mendez KM, Begum S, Kachroo P, Chu SH, Stokholm J, Bønnelykke K, Litonjua AA, Bisgaard H, Weiss ST, Chawes BL, Wheelock CE, Lasky-Su JA. Sphingolipid classes and the interrelationship with pediatric asthma and asthma risk factors. Allergy 2024; 79:404-418. [PMID: 38014461 PMCID: PMC11175620 DOI: 10.1111/all.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND While dysregulated sphingolipid metabolism has been associated with risk of childhood asthma, the specific sphingolipid classes and/or mechanisms driving this relationship remain unclear. We aimed to understand the multifaceted role between sphingolipids and other established asthma risk factors that complicate this relationship. METHODS We performed targeted LC-MS/MS-based quantification of 77 sphingolipids in plasma from 997 children aged 6 years from two independent cohorts (VDAART and COPSAC2010 ). We examined associations of circulatory sphingolipids with childhood asthma, lung function, and three asthma risk factors: functional SNPs in ORMDL3, low vitamin D levels, and reduced gut microbial maturity. Given racial differences between these cohorts, association analyses were performed separately and then meta-analyzed together. RESULTS We observed elevations in circulatory sphingolipids with asthma phenotypes and risk factors; however, there were differential associations of sphingolipid classes with clinical outcomes and/or risk factors. While elevations from metabolites involved in ceramide recycling and catabolic pathways were associated with asthma and worse lung function [meta p-value range: 1.863E-04 to 2.24E-3], increased ceramide levels were associated with asthma risk factors [meta p-value range: 7.75E-5 to .013], but not asthma. Further investigation identified that some ceramides acted as mediators while some interacted with risk factors in the associations with asthma outcomes. CONCLUSION This study demonstrates the differential role that sphingolipid subclasses may play in asthma and its risk factors. While overall elevations in sphingolipids appeared to be deleterious overall; elevations in ceramides were uniquely associated with increases in asthma risk factors only; while elevations in asthma phenotypes were associated with recycling sphingolipids. Modification of asthma risk factors may play an important role in regulating sphingolipid homeostasis via ceramides to affect asthma. Further function work may validate the observed associations.
Collapse
Affiliation(s)
- Yulu Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, 171 77, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Pei Zhang
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, 171 77, Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Mengna Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Min Kim
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Yih-Chieh S. Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathleen A. Lee-Sarwar
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole Prince
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin M. Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sofina Begum
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Su H. Chu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Golisano Children’s Hospital and University of Rochester Medical Center, Rochester, NY, USA
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Bo L. Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, 171 77, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Lejeune S, Kaushik A, Parsons ES, Chinthrajah S, Snyder M, Desai M, Manohar M, Prunicki M, Contrepois K, Gosset P, Deschildre A, Nadeau K. Untargeted metabolomic profiling in children identifies novel pathways in asthma and atopy. J Allergy Clin Immunol 2024; 153:418-434. [PMID: 38344970 DOI: 10.1016/j.jaci.2023.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Asthma and other atopic disorders can present with varying clinical phenotypes marked by differential metabolomic manifestations and enriched biological pathways. OBJECTIVE We sought to identify these unique metabolomic profiles in atopy and asthma. METHODS We analyzed baseline nonfasted plasma samples from a large multisite pediatric population of 470 children aged <13 years from 3 different sites in the United States and France. Atopy positivity (At+) was defined as skin prick test result of ≥3 mm and/or specific IgE ≥ 0.35 IU/mL and/or total IgE ≥ 173 IU/mL. Asthma positivity (As+) was based on physician diagnosis. The cohort was divided into 4 groups of varying combinations of asthma and atopy, and 6 pairwise analyses were conducted to best assess the differential metabolomic profiles between groups. RESULTS Two hundred ten children were classified as At-As-, 42 as At+As-, 74 as At-As+, and 144 as At+As+. Untargeted global metabolomic profiles were generated through ultra-high-performance liquid chromatography-tandem mass spectroscopy. We applied 2 independent machine learning classifiers and short-listed 362 metabolites as discriminant features. Our analysis showed the most diverse metabolomic profile in the At+As+/At-As- comparison, followed by the At-As+/At-As- comparison, indicating that asthma is the most discriminant condition associated with metabolomic changes. At+As+ metabolomic profiles were characterized by higher levels of bile acids, sphingolipids, and phospholipids, and lower levels of polyamine, tryptophan, and gamma-glutamyl amino acids. CONCLUSION The At+As+ phenotype displays a distinct metabolomic profile suggesting underlying mechanisms such as modulation of host-pathogen and gut microbiota interactions, epigenetic changes in T-cell differentiation, and lower antioxidant properties of the airway epithelium.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France.
| | - Abhinav Kaushik
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Ella S Parsons
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Manisha Desai
- Quantitative Science Unit, Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Monali Manohar
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Mary Prunicki
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Philippe Gosset
- University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Antoine Deschildre
- University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Kari Nadeau
- Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| |
Collapse
|
10
|
Kim M, Brustad N, Ali M, Gürdeniz G, Arendt M, Litonjua AA, Wheelock CE, Kelly RS, Chen Y, Prince N, Guo F, Zhou X, Stokholm J, Bønnelykke K, Weiss ST, Bisgaard H, Lasky-Su J, Chawes B. Maternal vitamin D-related metabolome and offspring risk of asthma outcomes. J Allergy Clin Immunol 2023; 152:1646-1657.e11. [PMID: 37558060 PMCID: PMC11147137 DOI: 10.1016/j.jaci.2023.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Gestational vitamin D deficiency is implicated in development of respiratory diseases in offspring, but the mechanism underlying this relationship is unknown. OBJECTIVE We sought to study the link between gestational vitamin D exposure and childhood asthma phenotypes using maternal blood metabolomics profiling. METHODS Untargeted blood metabolic profiles were acquired using liquid chromatography-mass spectrometry at 1 week postpartum from 672 women in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort and at pregnancy weeks 32 to 38 from 779 women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) mother-child cohort. In COPSAC2010, we employed multivariate models and pathway enrichment analysis to identify metabolites and pathways associated with gestational vitamin D blood levels and investigated their relationship with development of asthma phenotypes in early childhood. The findings were validated in VDAART and in cellular models. RESULTS In COPSAC2010, higher vitamin D blood levels at 1 week postpartum were associated with distinct maternal metabolome perturbations with significant enrichment of the sphingomyelin pathway (P < .01). This vitamin D-related maternal metabolic profile at 1 week postpartum containing 46 metabolites was associated with decreased risk of recurrent wheeze (hazard ratio [HR] = 0.92 [95% CI 0.86-0.98], P = .01) and wheeze exacerbations (HR = 0.90 [95% CI 0.84-0.97], P = .01) at ages 0 to 3 years. The same metabolic profile was similarly associated with decreased risk of asthma/wheeze at ages 0 to 3 in VDAART (odds ratio = 0.92 [95% CI 0.85-0.99], P = .04). Human bronchial epithelial cells treated with high-dose vitamin D3 showed an increased cytoplasmic sphingolipid level (P < .01). CONCLUSIONS This exploratory metabolomics study in 2 independent birth cohorts demonstrates that the beneficial effect of higher gestational vitamin D exposure on offspring respiratory health is characterized by specific maternal metabolic alterations during pregnancy, which involves the sphingomyelin pathway.
Collapse
Affiliation(s)
- Min Kim
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Faculty of Health and Biomedical Science, University of Surrey, Guildford, United Kingdom
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mina Ali
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Gözde Gürdeniz
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Morten Arendt
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden; Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Yulu Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Nicole Prince
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Chatziparasidis G, Bush A, Chatziparasidi MR, Kantar A. Airway epithelial development and function: A key player in asthma pathogenesis? Paediatr Respir Rev 2023; 47:51-61. [PMID: 37330410 DOI: 10.1016/j.prrv.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Though asthma is a common and relatively easy to diagnose disease, attempts at primary or secondary prevention, and cure, have been disappointing. The widespread use of inhaled steroids has dramatically improved asthma control but has offered nothing in terms of altering long-term outcomes or reversing airway remodeling and impairment in lung function. The inability to cure asthma is unsurprising given our limited understanding of the factors that contribute to disease initiation and persistence. New data have focused on the airway epithelium as a potentially key factor orchestrating the different stages of asthma. In this review we summarize for the clinician the current evidence on the central role of the airway epithelium in asthma pathogenesis and the factors that may alter epithelial integrity and functionality.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Paediatric Respiratory Unit, IASO Hospital, Larissa, Thessaly, Greece; Faculty of Nursing, Thessaly University, Greece.
| | - Andrew Bush
- National Heart and Lung Institute, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, University and Research Hospitals, Bergamo, Italy
| |
Collapse
|
12
|
Tibrewal C, Modi NS, Bajoria PS, Dave PA, Rohit RK, Patel P, Gandhi SK, Gutlapalli SD, Gottlieb P, Nfonoyim J. Therapeutic Potential of Vitamin D in Management of Asthma: A Literature Review. Cureus 2023; 15:e41956. [PMID: 37588324 PMCID: PMC10425698 DOI: 10.7759/cureus.41956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/16/2023] [Indexed: 08/18/2023] Open
Abstract
Asthma, a prevalent chronic respiratory illness, affects a substantial number of individuals worldwide, with an estimated occurrence of 358 million cases. Evidence for the benefits of vitamin D in treating asthma is ambiguous and contradictory. The goal of this review article is to emphasize the value of vitamin D supplementation for people with asthma. Medical subject headings (MeSH) terminology was used to search the PubMed Central, MEDLINE, and PubMed databases for articles on vitamin D supplementation in asthma patients. We selected a comprehensive range of academic writing examples published in English, encompassing various types of texts. The study included a total of 37 papers, of which 18 were randomized controlled trials (RCTs) and five were meta-analyses. The use of a corticosteroid, with or without the inclusion of an adrenergic receptor agonist, improves the disease's symptoms, but it is unable to halt the long-term decline in lung function. Over the past 20 years, vitamin D has developed into a potent immunomodulator, influencing both immunological and structural cells, most notably airway smooth muscle cells. Among adults with low 25-hydroxyvitamin D levels, the administration of vitamin D supplements was found to have positive effects in a reduction in the likelihood of asthma exacerbations requiring systemic corticosteroids. The provision of vitamin D supplements during pregnancy significantly reduces the risk of asthma in babies. Both children and adults with inadequate vitamin D levels who have been given vitamin D supplements have shown evident preventive effects against asthma. Therefore, we conclude there should be a lower threshold for prescribing vitamin D to patients with asthma who are vitamin D deficient.
Collapse
Affiliation(s)
- Charu Tibrewal
- Department of Internal Medicine, Civil Hospital Ahmedabad, Ahmedabad, IND
| | | | - Parth S Bajoria
- Department of Internal Medicine, GMERS Medical College Gandhinagar, Gandhinagar, IND
| | | | - Ralph Kingsford Rohit
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Priyansh Patel
- Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Department of Internal Medicine, Medical College Baroda, Vadodara, IND
| | - Siddharth Kamal Gandhi
- Department of Internal Medicine, Shri M.P. Shah Government Medical College, Jamnagar, IND
| | - Sai Dheeraj Gutlapalli
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, USA
- Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Peter Gottlieb
- Department of Pulmonary and Critical Care Medicine, Richmond University Medical Center, Staten Island, USA
| | - Jay Nfonoyim
- Department of Pulmonary and Critical Care Medicine, Richmond University Medical Center, Staten Island, USA
| |
Collapse
|
13
|
Chen YC, Chen Y, Lasky-Su J, Kelly RS, Stokholm J, Bisgaard H, Bønnelykke K, Pedersen CET, Chawes B, Laranjo N, Weiss ST, Litonjua AA, Lee-Sarwar K. Environmental and genetic associations with aberrant early-life gut microbial maturation in childhood asthma. J Allergy Clin Immunol 2023; 151:1494-1502.e14. [PMID: 36649759 PMCID: PMC10257760 DOI: 10.1016/j.jaci.2023.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Environmental, genetic, and microbial factors are independently associated with childhood asthma. OBJECTIVE We sought to determine the roles of environmental exposures and 17q12-21 locus genotype in the maturation of the early-life microbiome in childhood asthma. METHODS We analyzed fecal 16s rRNA sequencing at age 3 to 6 months and age 1 year to characterize microbial maturation of offspring of participants in the Vitamin D Antenatal Reduction Trial. We determined associations of microbial maturation and environmental exposures in the mediation of asthma risk at age 3 years. We examined 17q12-21 genotype and microbial maturation associations with asthma risk in Vitamin D Antenatal Reduction Trial and the replication cohort Copenhagen Prospective Studies on Childhood Asthma 2010. RESULTS Accelerated fecal microbial maturation at age 3 to 6 months and delayed maturation at age 1 year were associated with asthma (P < .001). Fecal Bacteroides was reduced at age 3 to 6 months in association with subsequent asthma (P = .006) and among subjects with lower microbial maturation at age 1 year (q = 0.009). Sixty-one percent of the association between breast-feeding and asthma was mediated by microbial maturation at age 3 to 6 months. Microbial maturation and 17q12-21 genotypes exhibited independent, additive effects on childhood asthma risk. CONCLUSIONS The intestinal microbiome and its maturation mediates associations between environmental exposures including breast-feeding and asthma. The intestinal microbiome and 17q12-21 genotype appear to exert additive and independent effects on childhood asthma risk.
Collapse
Affiliation(s)
- Yih-Chieh Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston
| | - Yulu Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle, Gentofte
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle, Gentofte
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle, Gentofte
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle, Gentofte
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle, Gentofte
| | - Nancy Laranjo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at Strong, University of Rochester Medical Center, Rochester
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston.
| |
Collapse
|
14
|
Bisgaard H, Chawes B, Stokholm J, Mikkelsen M, Schoos AMM, Bønnelykke K. 25 Years of translational research in the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC). J Allergy Clin Immunol 2023; 151:619-633. [PMID: 36642652 DOI: 10.1016/j.jaci.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023]
Abstract
The Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) mother-child cohorts have provided a foundation of 25 years of research on the origins, prevention, and natural history of childhood asthma and related disorders. COPSAC's approach is characterized by clinical translational research with longitudinal deep phenotyping and exposure assessments from pregnancy, in combination with multi-omic data layers and embedded randomized controlled trials. One trial showed that fish oil supplementation during pregnancy prevented childhood asthma and identified pregnant women with the highest benefits from supplementation, thereby creating the potential for personalized prevention. COPSAC revealed that airway colonization with pathogenic bacteria in early life is associated with an increased risk of asthma. Further, airway bacteria were shown to be a trigger of acute asthma-like symptoms, with benefit from antibiotic treatment. COPSAC identified an immature gut microbiome in early life as a risk factor for asthma and allergy and further demonstrated that asthma can be predicted by infant lung function. At a molecular level, COPSAC has identified novel susceptibility genes, early immune deviations, and metabolomic alterations associated with childhood asthma. Thus, the COPSAC research program has enhanced our understanding of the processes causing childhood asthma and has suggested means of personalized prevention and treatment.
Collapse
Affiliation(s)
- Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Marianne Mikkelsen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie Malby Schoos
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Kelly RS, Cote MF, Begum S, Lasky-Su J. Pharmacometabolomics of Asthma as a Road Map to Precision Medicine. Handb Exp Pharmacol 2023; 277:247-273. [PMID: 36271166 PMCID: PMC10116407 DOI: 10.1007/164_2022_615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Pharmacometabolomics applies the principles of metabolomics to therapeutics in order to elucidate the biological mechanisms underlying the variation in responses to drugs between groups and individuals. Asthma is associated with broad systemic effects and heterogeneity in treatment response and as such is ideally suited to pharmacometabolomics. In this chapter, we discuss the state of the emerging field of asthma pharmacometabolomics, with a particular focus on studies of steroids, bronchodilators, and leukotriene inhibitors. We also consider those studies concerned with subtyping cases to better understand the pharmacology of those groups and those looking to leverage pharmacometabolomics for asthma prevention. We finish with a discussion of the challenges and opportunities of asthma pharmacometabolomics and reflect upon where this field must go next in order to realize its precision medicine potential.
Collapse
Affiliation(s)
- Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Margaret F Cote
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sofina Begum
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Schoettler N, Dissanayake E, Craven MW, Yee JS, Eliason J, Schauberger EM, Lemanske RF, Ober C, Gern JE. New Insights Relating Gasdermin B to the Onset of Childhood Asthma. Am J Respir Cell Mol Biol 2022; 67:430-437. [PMID: 35580164 PMCID: PMC9564923 DOI: 10.1165/rcmb.2022-0043ps] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Chromosome 17q12-q21 is the most replicated genetic locus for childhood-onset asthma. Polymorphisms in this locus containing ∼10 genes interact with a variety of environmental exposures in the home and outdoors to modify asthma risk. However, the functional basis for these associations and their linkages to the environment have remained enigmatic. Within this extended region, regulation of GSDMB (gasdermin B) expression in airway epithelial cells has emerged as the primary mechanism underlying the 17q12-q21 genome-wide association study signal. Asthma-associated SNPs influence the abundance of GSDMB transcripts as well as the functional properties of GSDMB protein in airway epithelial cells. GSDMB is a member of the gasdermin family of proteins, which regulate pyroptosis and inflammatory responses to microbial infections. The aims of this review are to synthesize recent studies on the relationship of 17q12-q21 SNPs to childhood asthma and the evidence pointing to GSDMB gene expression or protein function as the underlying mechanism and to explore the potential functions of GSDMB that may influence the risk of developing asthma during childhood.
Collapse
Affiliation(s)
| | | | - Mark W. Craven
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Jeremiah S. Yee
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Joshua Eliason
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | | | | | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Illinois; and
| | | |
Collapse
|
17
|
Knihtilä HM, Kelly RS, Brustad N, Huang M, Kachroo P, Chawes BL, Stokholm J, Bønnelykke K, Pedersen CET, Bisgaard H, Litonjua AA, Lasky-Su JA, Weiss ST. Maternal 17q21 genotype influences prenatal vitamin D effects on offspring asthma/recurrent wheeze. Eur Respir J 2021; 58:2002012. [PMID: 33653805 PMCID: PMC8410880 DOI: 10.1183/13993003.02012-2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/05/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prenatal vitamin D3 supplementation has been linked to reduced risk of early-life asthma/recurrent wheeze. This protective effect appears to be influenced by variations in the 17q21 functional single nucleotide polymorphism rs12936231 of the child, which regulates the expression of ORMDL3 (ORM1-like 3) and for which the high-risk CC genotype is associated with early-onset asthma. However, this does not fully explain the differential effects of supplementation. We investigated the influence of maternal rs12936231 genotype variation on the protective effect of prenatal vitamin D3 supplementation against offspring asthma/recurrent wheeze. METHODS We determined the rs12936231 genotype of mother-child pairs from two randomised controlled trials: the Vitamin D Antenatal Asthma Reduction Trial (VDAART, n=613) and the Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC2010, n=563), to examine the effect of maternal genotype variation on offspring asthma/recurrent wheeze at age 0-3 years between groups who received high-dose prenatal vitamin D3 supplementation versus placebo. RESULTS Offspring of mothers with the low-risk GG or GC genotype who received high-dose vitamin D3 supplementation had a significantly reduced risk of asthma/recurrent wheeze when compared with the placebo group (hazard ratio (HR) 0.54, 95% CI 0.37-0.77; p<0.001 for VDAART and HR 0.56, 95% CI 0.35-0.92; p=0.021 for COPSAC2010), whereas no difference was observed among the offspring of mothers with the high-risk CC genotype (HR 1.05, 95% CI 0.61-1.84; p=0.853 for VDAART and HR 1.11, 95% CI 0.54-2.28; p=0.785 for COPSAC2010). CONCLUSION Maternal 17q21 genotype has an important influence on the protective effects of prenatal vitamin D3 supplementation against offspring asthma/recurrent wheeze.
Collapse
Affiliation(s)
- Hanna M Knihtilä
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicklas Brustad
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Mengna Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bo L Chawes
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Jakob Stokholm
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Klaus Bønnelykke
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Casper-Emil T Pedersen
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Hans Bisgaard
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Vitamin D3 Enriches Ceramide Content in Exosomes Released by Embryonic Hippocampal Cells. Int J Mol Sci 2021; 22:ijms22179287. [PMID: 34502192 PMCID: PMC8430480 DOI: 10.3390/ijms22179287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
The release of exosomes can lead to cell–cell communication. Nutrients such as vitamin D3 and sphingolipids have important roles in many cellular functions, including proliferation, differentiation, senescence, and cancer. However, the specific composition of sphingolipids in exosomes and their changes induced by vitamin D3 treatment have not been elucidated. Here, we initially observed neutral sphingomyelinase and vitamin D receptors in exosomes released from HN9.10 embryonic hippocampal cells. Using ultrafast liquid chromatography tandem mass spectrometry, we showed that exosomes are rich in sphingomyelin species compared to whole cells. To interrogate the possible functions of vitamin D3, we established the optimal conditions of cell treatment and we analyzed exosome composition. Vitamin D3 was identified as responsible for the vitamin D receptor loss, for the increase in neutral sphingomyelinase content and sphingomyelin changes. As a consequence, the generation of ceramide upon vitamin D3 treatment was evident. Incubation of the cells with neutral sphingomyelinase, or the same concentration of ceramide produced in exosomes was necessary and sufficient to stimulate embryonic hippocampal cell differentiation, as vitamin D3. This is the first time that exosome ceramide is interrogated for mediate the effect of vitamin D3 in inducing cell differentiation.
Collapse
|
19
|
Sphingolipids in foodstuff: Compositions, distribution, digestion, metabolism and health effects - A comprehensive review. Food Res Int 2021; 147:110566. [PMID: 34399542 DOI: 10.1016/j.foodres.2021.110566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/26/2022]
Abstract
Sphingolipids (SLs) are common in all eukaryotes, prokaryotes, and viruses, and played a vital role in human health. They are involved in physiological processes, including intracellular transport, cell division, and signal transduction. However, there are limited reviews on dietary effects on endogenous SLs metabolism and further on human health. Various dietary conditions, including the SLs-enriched diet, high-fat diet, and vitamins, can change the level of endogenous SLs metabolites and even affect human health. This review systematically summarizes the main known SLs in foods concerning their variety and contents, as well as their isolation and identification approaches. Moreover, the present review discusses the role of dietary (particularly SLs-enriched diet, high-fat diet, and vitamins) in endogenous SLs metabolism, highlighting how exogenous SLs are digested and absorbed. The role of SLs family in the pathogenesis of diseases, including cancers, neurological disorders, infectious and inflammatory diseases, and cardiovascular diseases, and in recently coronavirus disease-19 outbreak was also discussed. In the post-epidemic era, we believe that the concern for health and the need for plant-based products will increase. Therefore, a need for research on the absorption and metabolism pathway of SLs (especially plant-derived SLs) and their bioavailability is necessary. Moreover, the effects of storage treatment and processing on the content and composition of SLs in food are worth exploring. Further studies should also be conducted on the dose-response of SLs on human health to support the development of SLs supplements. More importantly, new approaches, such as, making SLs based hydrogels can effectively achieve sustained release and targeted therapies.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To review recent evidence on the capacity of vitamin D to prevent atopic disease, focussing on food allergy and asthma, and potential underlying mechanisms. RECENT FINDINGS The incidence of allergic disease continues to increase worldwide. Vitamin D status is influenced by sun exposure and dietary intake. Vitamin D deficiency is linked to an increased incidence of allergic disease and asthma. These associations are generally strongest in early life. The capacity of vitamin D to enhance antimicrobial pathways, promote peripheral immunological tolerance and maintain mucosal barrier integrity may underlie these associations. Interventional studies have addressed the capacity of vitamin D supplementation in utero and early life to reduce the incidence of disease. Ancillary studies have provided insights into potential biological mechanisms linked to these effects. SUMMARY Observational studies show an inverse association between vitamin D levels and development of food allergy and asthma. Secondary analyses of two recent interventional studies suggest that achieving vitamin D sufficiency throughout pregnancy reduces the incidence of asthma/recurrent wheeze at 3 years. Longitudinal studies of vitamin D requirements in utero and postnatally, better understanding of factors that influence bioavailability of vitamin D and mechanistic insights into vitamin D effects on neonatal-specific immune pathways are awaited.
Collapse
|
21
|
Van Mason J, Portnoy JM. Immunologic Strategies for Prevention of Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:834-847. [PMID: 32147137 DOI: 10.1016/j.jaip.2019.11.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
A new understanding of factors leading to the development of asthma has pointed to potential primary, secondary, and tertiary prevention strategies. Some, such as genetic makeup, are not yet modifiable. Interventions targeting other factors such as maternal intake of vitamin D or environmental control can be used to decrease the risk of asthma development (primary prevention). The benefits of a diversified microbiome could be considered when recommending allergen avoidance and pet ownership. In addition to reducing symptoms, allergen immunotherapy is also worth considering for prevention of new sensitivities (secondary prevention) in addition to the development of asthma. Ongoing studies involving the use of bacterial vaccines and biologics may provide additional strategies for primary prevention of asthma and for reducing symptoms once it has developed (tertiary prevention). As the relative benefits of these strategies are defined, they should have an increasingly important place in the prevention and management of asthma.
Collapse
Affiliation(s)
- Jessica Van Mason
- Section of Allergy, Asthma & Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Jay M Portnoy
- Section of Allergy, Asthma & Immunology, Children's Mercy Hospital, Kansas City, Mo.
| |
Collapse
|
22
|
Rago D, Pedersen CET, Huang M, Kelly RS, Gürdeniz G, Brustad N, Knihtilä H, Lee-Sarwar KA, Morin A, Rasmussen MA, Stokholm J, Bønnelykke K, Litonjua AA, Wheelock CE, Weiss ST, Lasky-Su J, Bisgaard H, Chawes BL. Characteristics and Mechanisms of a Sphingolipid-associated Childhood Asthma Endotype. Am J Respir Crit Care Med 2021; 203:853-863. [PMID: 33535020 DOI: 10.1164/rccm.202008-3206oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rationale: A link among sphingolipids, 17q21 genetic variants, and childhood asthma has been suggested, but the underlying mechanisms and characteristics of such an asthma endotype remain to be elucidated.Objectives: To study the sphingolipid-associated childhood asthma endotype using multiomic data.Methods: We used untargeted liquid chromatography-mass spectrometry plasma metabolomic profiles at the ages of 6 months and 6 years from more than 500 children in the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood) birth cohort focusing on sphingolipids, and we integrated the 17q21 genotype and nasal gene expression of SPT (serine palmitoyl-CoA transferase) (i.e., the rate-limiting enzyme in de novo sphingolipid synthesis) in relation to asthma development and lung function traits from infancy until the age 6 years. Replication was sought in the independent VDAART (Vitamin D Antenatal Asthma Reduction Trial) cohort.Measurements and Main Results: Lower concentrations of ceramides and sphingomyelins at the age of 6 months were associated with an increased risk of developing asthma before age 3, which was also observed in VDAART. At the age of 6 years, lower concentrations of key phosphosphingolipids (e.g., sphinganine-1-phosphate) were associated with increased airway resistance. This relationship was dependent on the 17q21 genotype and nasal SPT gene expression, with significant interactions occurring between the genotype and the phosphosphingolipid concentrations and between the genotype and SPT expression, in which lower phosphosphingolipid concentrations and reduced SPT expression were associated with increasing numbers of at-risk alleles. However, the findings did not pass the false discovery rate threshold of <0.05.Conclusions: This exploratory study suggests the existence of a childhood asthma endotype with early onset and increased airway resistance that is characterized by reduced sphingolipid concentrations, which are associated with 17q21 genetic variants and expression of the SPT enzyme.
Collapse
Affiliation(s)
- Daniela Rago
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Casper-Emil T Pedersen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Mengna Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Gözde Gürdeniz
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Hanna Knihtilä
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Kathleen A Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Andréanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Morten A Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, New York; and
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Bo L Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
23
|
Knihtilä HM, Stubbs BJ, Carey VJ, Laranjo N, Chu SH, Kelly RS, Zeiger RS, Bacharier LB, O'Connor GT, Lasky-Su J, Weiss ST, Litonjua AA. Low gestational vitamin D level and childhood asthma are related to impaired lung function in high-risk children. J Allergy Clin Immunol 2021; 148:110-119.e9. [PMID: 33485958 DOI: 10.1016/j.jaci.2020.12.647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/01/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Lung function impairment in early life often persists into adulthood. Therefore, identifying risk factors for low childhood lung function is crucial. OBJECTIVE We examined the effect of 25-hydroxyvitamin D (25[OH]D) level and childhood asthma phenotype on childhood lung function in the Vitamin D Antenatal Asthma Reduction Trial (VDAART). METHODS The 25(OH)D level was measured at set time points in mothers during pregnancy and in children during early life. On the basis of parental reports, children were categorized into 3 clinical phenotypes: asymptomatic/infrequent wheeze, early transient wheeze, and asthma at age 6 years. Lung function was assessed with impulse oscillometry at ages 4, 5, and 6 years and with spirometry at ages 5 and 6 years. RESULTS A total of 570 mother-child pairs were included in this post hoc analysis. Mean gestational 25(OH)D-level quartiles were negatively associated with child respiratory resistance at 5 Hz (R5) from age 4 to 6 years (β, -0.021 kPa/L/s; 95% CI, -0.035 to -0.007; P = .003) and positively associated with FEV1 (β, 0.018 L; 95% CI, 0.005-0.031; P = .008) and forced vital capacity (β, 0.022 L; 95% CI, 0.009-0.036; P = .002) from age 5 to 6 years. Children with asthma at age 6 years had lower lung function from age 4 to 6 years than the asymptomatic/infrequent wheeze group (β, 0.065 kPa/L/s; 95% CI, 0.028 to 0.102; P < .001 for R5 and β, -0.063 L; 95% CI, -0.099 to -0.028; P < .001 for FEV1). CONCLUSIONS Low gestational 25(OH)D level and childhood asthma are important risk factors for decreased lung function in early childhood.
Collapse
Affiliation(s)
- Hanna M Knihtilä
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Benjamin J Stubbs
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Vincent J Carey
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Nancy Laranjo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Su H Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Robert S Zeiger
- Departments of Allergy and Research and Evaluation, Kaiser Permanente Southern California Region, San Diego and Pasadena, Calif
| | - Leonard B Bacharier
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - George T O'Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
24
|
Ahmad S, Arora S, Khan S, Mohsin M, Mohan A, Manda K, Syed MA. Vitamin D and its therapeutic relevance in pulmonary diseases. J Nutr Biochem 2020; 90:108571. [PMID: 33388351 DOI: 10.1016/j.jnutbio.2020.108571] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/20/2020] [Accepted: 12/24/2020] [Indexed: 01/15/2023]
Abstract
Vitamin D is customarily involved in maintaining bone and calcium homeostasis. However, contemporary studies have identified the implication of vitamin D in several cellular processes including cellular proliferation, differentiation, wound healing, repair and regulatory systems inclusive of host defence, immunity, and inflammation. Multiple studies have indicated corelations between low serum levels of vitamin D, perturbed pulmonary functions and enhanced incidences of inflammatory diseases. Almost all of the pulmonary diseases including acute lung injury, cystic fibrosis, asthma, COPD, Pneumonia and Tuberculosis, all are inflammatory in nature. Studies have displayed strong inter-relations with vitamin D deficiency and progression of lung disorders; however, the underlying mechanism is still unknown. Vitamin D has emerged to possess inhibiting effects on pulmonary inflammation while exaggerating innate immune defenses by strongly influencing functions of inflammatory cells including dendritic cells, monocyte/macrophages, T cells, and B cells along with structural epithelial cells. This review dissects the effects of vitamin D on the inflammatory cells and their therapeutic relevance in pulmonary diseases. Although, the data obtained is very limited and needs further corroboration but presents an exciting area of further research. This is because of its ease of supplementation and development of personalized medicine which could lead us to an effective adjunct and cost-effective method of therapeutic modality for highly fatal pulmonary diseases.
Collapse
Affiliation(s)
- Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India; Institute of Nuclear Medicine and Allied Science, Defence Research and Development Organisation, New Delhi, India
| | - Shweta Arora
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Salman Khan
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohd Mohsin
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine, AIIMS, New Delhi, India
| | - Kailash Manda
- Institute of Nuclear Medicine and Allied Science, Defence Research and Development Organisation, New Delhi, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
25
|
Raita Y, Camargo CA, Bochkov YA, Celedón JC, Gern JE, Mansbach JM, Rhee EP, Freishtat RJ, Hasegawa K. Integrated-omics endotyping of infants with rhinovirus bronchiolitis and risk of childhood asthma. J Allergy Clin Immunol 2020; 147:2108-2117. [PMID: 33197460 DOI: 10.1016/j.jaci.2020.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Young children with rhinovirus (RV) infection-particularly bronchiolitis-are at high risk for developing childhood asthma. Emerging evidence suggests clinical heterogeneity within RV bronchiolitis. However, little is known about these biologically distinct subgroups (endotypes) and their relations with asthma risk. OBJECTIVE We aimed to identify RV bronchiolitis endotypes and examine their longitudinal relations with asthma risk. METHODS As part of a multicenter prospective cohort study of infants (age <12 months) hospitalized for bronchiolitis, we integrated clinical, RV species (RV-A, RV-B, and RV-C), nasopharyngeal microbiome (16S rRNA gene sequencing), cytokine, and metabolome (liquid chromatography tandem mass spectrometry) data collected at hospitalization. We then applied network and clustering approaches to identify bronchiolitis endotypes. We also examined their longitudinal association with risks of developing recurrent wheeze by age 3 years and asthma by age 5 years. RESULTS Of 122 infants hospitalized for RV bronchiolitis (median age, 4 months), we identified 4 distinct endotypes-mainly characterized by RV species, microbiome, and type 2 cytokine (T2) response: endotype A, virusRV-CmicrobiomemixedT2low; endotype B, virusRV-AmicrobiomeHaemophilusT2low; endotype C, virusRSV/RVmicrobiomeStreptococcusT2low; and endotype D, virusRV-CmicrobiomeMoraxellaT2high. Compared with endotype A infants, endotype D infants had a significantly higher rate of recurrent wheeze (33% vs 64%; hazard ratio, 2.23; 95% CI, 1.00-4.96; P = .049) and a higher risk for developing asthma (28% vs 59%; odds ratio, 3.74: 95% CI, 1.21-12.6; P = .03). CONCLUSIONS Integrated-omics analysis identified biologically meaningful RV bronchiolitis endotypes in infants, such as one characterized by RV-C infection, Moraxella-dominant microbiota, and high T2 cytokine response, at higher risk for developing recurrent wheeze and asthma. This study should facilitate further research toward validating our inferences.
Collapse
Affiliation(s)
- Yoshihiko Raita
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Yury A Bochkov
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Eugene P Rhee
- Nephrology Division and Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Robert J Freishtat
- Division of Emergency Medicine, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
26
|
Schrumpf JA, van der Does AM, Hiemstra PS. Impact of the Local Inflammatory Environment on Mucosal Vitamin D Metabolism and Signaling in Chronic Inflammatory Lung Diseases. Front Immunol 2020; 11:1433. [PMID: 32754156 PMCID: PMC7366846 DOI: 10.3389/fimmu.2020.01433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D plays an active role in the modulation of innate and adaptive immune responses as well as in the protection against respiratory pathogens. Evidence for this immunomodulatory and protective role is derived from observational studies showing an association between vitamin D deficiency, chronic airway diseases and respiratory infections, and is supported by a range of experimental studies using cell culture and animal models. Furthermore, recent intervention studies have now shown that vitamin D supplementation reduces exacerbation rates in vitamin D-deficient patients with chronic obstructive pulmonary disease (COPD) or asthma and decreases the incidence of acute respiratory tract infections. The active vitamin D metabolite, 1,25-dihydroxy-vitamin D (1,25(OH)2D), is known to contribute to the integrity of the mucosal barrier, promote killing of pathogens (via the induction of antimicrobial peptides), and to modulate inflammation and immune responses. These mechanisms may partly explain its protective role against infections and exacerbations in COPD and asthma patients. The respiratory mucosa is an important site of local 1,25(OH)2D synthesis, degradation and signaling, a process that can be affected by exposure to inflammatory mediators. As a consequence, mucosal inflammation and other disease-associated factors, as observed in e.g., COPD and asthma, may modulate the protective actions of 1,25(OH)2D. Here, we discuss the potential consequences of various disease-associated processes such as inflammation and exposure to pathogens and inhaled toxicants on vitamin D metabolism and local responses to 1,25(OH)2D in both immune- and epithelial cells. We furthermore discuss potential consequences of disturbed local levels of 25(OH)D and 1,25(OH)2D for chronic lung diseases. Additional insight into the relationship between disease-associated mechanisms and local effects of 1,25(OH)2D is expected to contribute to the design of future strategies aimed at improving local levels of 1,25(OH)2D and signaling in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
27
|
Gut Microbial-Derived Metabolomics of Asthma. Metabolites 2020; 10:metabo10030097. [PMID: 32155960 PMCID: PMC7142494 DOI: 10.3390/metabo10030097] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
In this review, we discuss gut microbial-derived metabolites involved with the origins and pathophysiology of asthma, a chronic respiratory disease that is influenced by the microbiome. Although both gut and airway microbiomes may be important in asthma development, we focus here on the gut microbiome and metabolomic pathways involved in immune system ontogeny. Metabolite classes with existing evidence that microbial-derived products influence asthma risk include short chain fatty acids, polyunsaturated fatty acids and bile acids. While tryptophan metabolites and sphingolipids have known associations with asthma, additional research is needed to clarify the extent to which the microbiome contributes to the effects of these metabolites on asthma. These metabolite classes can influence immune function in one of two ways: (i) promoting growth or maturity of certain immune cell populations or (ii) influencing antigenic load by enhancing the number or species of specific bacteria. A more comprehensive understanding of how gut microbes and metabolites interact to modify asthma risk and morbidity will pave the way for targeted diagnostics and treatments.
Collapse
|
28
|
Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors. Semin Immunopathol 2020; 42:5-15. [PMID: 32020334 DOI: 10.1007/s00281-020-00785-1] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
Asthma is a clinical syndrome that affects all age groups. Asthma prevalence worldwide has seen a rapid increase in the latter part of the last century. Recent data has shown that asthma prevalence has plateaued and even decreased in some areas of the world, despite continuing to increase in other areas of the world. Many risk factors have been associated with asthma and the differences in distributions of these risk factors may explain the differences in prevalence. This article will review recent trends in the prevalence of asthma and recent studies that investigate risk factors of asthma.
Collapse
Affiliation(s)
- Jessica Stern
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Division of Allergy and Immunology, Department of Pediatrics, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer Pier
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Division of Allergy and Immunology, Department of Pediatrics, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Golisano Children's Hospital, University of Rochester Medical Center, 601 Elmwood Avenue, Box 667, Rochester, NY, 14642, USA. .,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
29
|
Votto M, Marseglia GL, De Filippo M, Brambilla I, Caimmi SME, Licari A. Early Life Risk Factors in Pediatric EoE: Could We Prevent This Modern Disease? Front Pediatr 2020; 8:263. [PMID: 32548083 PMCID: PMC7274037 DOI: 10.3389/fped.2020.00263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic antigen-mediated inflammatory disease that affects the esophagus. In the last 20 years, a large number of epidemiological studies showed a significant increase in the incidence and prevalence of EoE, especially in developed countries. This phenomenon might correlate to the overall increase in pediatric allergic diseases or might be a result of improved medical awareness and knowledge through modern diagnostic instruments. Since 1993, when EoE was first recognized as a distinct clinical entity, several signs of progress in the pathophysiology of EoE were achieved. However, a few studies reported data on early risk factors for pediatric EoE and how these factors may interfere with genes. Currently, the most defined risk factors for EoE are male sex, Caucasian race, and atopic comorbidities. Other putative risk factors may include alterations in epithelial barrier function and fibrous remodeling, esophageal dysbiosis, variation in the nature and timing of oral antigen exposure, and early prescription of proton pump inhibitors and antibiotics. Notably, the timing and nature of food antigen exposure may be fundamental in inducing or reversing immune tolerance, but no studies are reported. This review summarized the current evidence on the risk factors that might contribute to the increasing development of EoE, focusing on the possible preventive role of early interventions.
Collapse
Affiliation(s)
- Martina Votto
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Maria De Filippo
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Ilaria Brambilla
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Silvia Maria Elena Caimmi
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Amelia Licari
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Zhu Z, Camargo CA, Hasegawa K. Metabolomics in the prevention and management of asthma. Expert Rev Respir Med 2019; 13:1135-1138. [PMID: 31561725 DOI: 10.1080/17476348.2019.1674650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|