1
|
Tan Y, Chen Y, Wang T, Li J. Serum uric acid and pulmonary arterial hypertension: A two-sample Mendelian randomization study. Heart Lung 2024; 68:337-341. [PMID: 39236651 DOI: 10.1016/j.hrtlng.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Observational studies have suggested a correlation between hyperuricemia and pulmonary arterial hypertension (PAH), yet the causal relationship remains uncertain. We aimed to establish this link using Mendelian Randomization (MR) methods. OBJECTIVES Based on publicly accessible data, our study employs MR to determine the causal relationship between uric acid (UA) and PAH. METHOD MR analysis was conducted among individuals of European descent. Genetic instruments linked to UA (p-value < 5 × 10-8) were extracted from the Chronic Kidney Disease Genetic Consortium and genome-wide association study databases. PAH risk genetic associations were sourced separately. We employed four MR methods (MR-Egger, weighted median, inverse variance weighted, and weighted mode) with selected instrumental variables to assess the causal association between UA and PAH. MR-PRESSO was used to evaluate pleiotropy and outlier Single Nucleotide Polymorphisms (SNPs), while Cochran's Q test and funnel plot assessed SNP heterogeneity. Leave-one-out analysis examined SNP impacts on causal assessment. RESULT Two-sample MR analysis revealed a positive, causal relationship between UA levels and PAH. CONCLUSION Our MR analysis provides robust evidence of a causal link between serum UA and PAH, suggesting UA's potential as a biomarker and therapeutic target for PAH.
Collapse
Affiliation(s)
- Yingjie Tan
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yusi Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tianyu Wang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiang Li
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
2
|
Appunni S, Rubens M, Ramamoorthy V, Saxena A, McGranaghan P, Khosla A, Doke M, Chaparro S, Jimenez J. Molecular remodeling in comorbidities associated with heart failure: a current update. Mol Biol Rep 2024; 51:1092. [PMID: 39460797 PMCID: PMC11512903 DOI: 10.1007/s11033-024-10024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Recent advances in genomics and proteomics have helped in understanding the molecular mechanisms and pathways of comorbidities and heart failure. In this narrative review, we reviewed molecular alterations in common comorbidities associated with heart failure such as obesity, diabetes mellitus, systemic hypertension, pulmonary hypertension, coronary artery disease, hypercholesteremia and lipoprotein abnormalities, chronic kidney disease, and atrial fibrillation. We searched the electronic databases, PubMed, Ovid, EMBASE, Google Scholar, CINAHL, and PhysioNet for articles without time restriction. Although the association between comorbidities and heart failure is already well established, recent studies have explored the molecular pathways in much detail. These molecular pathways demonstrate how novels drugs for heart failure works with respect to the pathways associated with comorbidities. Understanding the altered molecular milieu in heart failure and associated comorbidities could help to develop newer medications and targeted therapies that incorporate these molecular alterations as well as key molecular variations across individuals to improve therapeutic outcomes. The molecular alterations described in this study could be targeted for novel and personalized therapeutic approaches in the future. This knowledge is also critical for developing precision medicine strategies to improve the outcomes for patients living with these conditions.
Collapse
Affiliation(s)
| | - Muni Rubens
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Anshul Saxena
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Center for Advanced Analytics, Baptist Health South Florida, Miami, FL, USA
| | - Peter McGranaghan
- Semmelweis University, Budapest, Hungary.
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 10117, Berlin, Germany.
| | - Atulya Khosla
- William Beaumont University Hospital, Royal Oak, MI, USA
| | | | - Sandra Chaparro
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA
| | - Javier Jimenez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA.
- Advance Heart Failure and Pulmonary Hypertension, South Miami Hospital, Baptist Health South, Miami, FL, USA.
| |
Collapse
|
3
|
Verdonschot JAJ, Fuster JJ, Walsh K, Heymans SRB. The emerging role of clonal haematopoiesis in the pathogenesis of dilated cardiomyopathy. Eur Heart J 2024:ehae682. [PMID: 39417710 DOI: 10.1093/eurheartj/ehae682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The increased sensitivity of novel DNA sequencing techniques has made it possible to identify somatic mutations in small circulating clones of haematopoietic stem cells. When the mutation affects a 'driver' gene, the mutant clone gains a competitive advantage and has the potential to expand over time, a phenomenon referred to as clonal haematopoiesis (CH), which is emerging as a new risk factor for various non-haematological conditions, most notably cardiovascular disease (e.g. heart failure). Dilated cardiomyopathy (DCM) is a form of non-ischaemic heart failure that is characterized by a heterogeneous aetiology. The first evidence is arising that CH plays an important role in the disease course in patients with DCM, and a strong association of CH with multiple aetiologies of DCM has been described (e.g. inflammation, chemotherapy, and atrial fibrillation). The myocardial inflammation induced by CH may be an important trigger for DCM development for an already susceptible heart, e.g. in the presence of genetic variants, environmental triggers, and comorbidities. Studies investigating the role of CH in the pathogenesis of DCM are expected to increase rapidly. To move the field forward, it will be important to report the methodology and results in a standardized manner, so results can be combined and compared. The accurate measurement of CH in patients with DCM can provide guidance of specific (anti-inflammatory) therapies, as mutations in the CH driver genes prime the inflammasome pathway.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jose J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Kenneth Walsh
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, Hematovascular Biology Center, University of Virginia School of Medicine, 415 Lane Rd, Suite 1010, PO Box 801394, Charlottesville, VA, USA
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
- Department of Cardiovascular Science, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
5
|
Kovacs G, Bartolome S, Denton CP, Gatzoulis MA, Gu S, Khanna D, Badesch D, Montani D. Definition, classification and diagnosis of pulmonary hypertension. Eur Respir J 2024; 64:2401324. [PMID: 39209475 DOI: 10.1183/13993003.01324-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary hypertension (PH) is a haemodynamic condition characterised by elevation of mean pulmonary arterial pressure (mPAP) >20 mmHg, assessed by right heart catheterisation. Pulmonary arterial wedge pressure (PAWP) and pulmonary vascular resistance (PVR) distinguish pre-capillary PH (PAWP ≤15 mmHg, PVR >2 Wood Units (WU)), isolated post-capillary PH (PAWP >15 mmHg, PVR ≤2 WU) and combined post- and pre-capillary PH (PAWP >15 mmHg, PVR >2 WU). Exercise PH is a haemodynamic condition describing a normal mPAP at rest with an abnormal increase of mPAP during exercise, defined as a mPAP/cardiac output slope >3 mmHg/L/min between rest and exercise. The core structure of the clinical classification of PH has been retained, including the five major groups. However, some changes are presented herewith, such as the re-introduction of "long-term responders to calcium channel blockers" as a subgroup of idiopathic pulmonary arterial hypertension, the addition of subgroups in group 2 PH and the differentiation of group 3 PH subgroups based on pulmonary diseases instead of functional abnormalities. Mitomycin-C and carfilzomib have been added to the list of drugs with "definite association" with PAH. For diagnosis of PH, we propose a stepwise approach with the main aim of discerning those patients who need to be referred to a PH centre and who should undergo invasive haemodynamic assessment. In case of high probability of severe pulmonary vascular disease, especially if there are signs of right heart failure, a fast-track referral to a PH centre is recommended at any point during the clinical workup.
Collapse
Affiliation(s)
- Gabor Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
| | - Sonja Bartolome
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Michael A Gatzoulis
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton Hospital, Guy's and St Thomas's NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Sue Gu
- Division of Pulmonary Sciences and Critical Care Medicine University of Colorado Anschutz Medical Campus Aurora, Aurora, CO, USA
| | - Dinesh Khanna
- Scleroderma Program, Division of Rheumatology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David Badesch
- Division of Pulmonary Sciences and Critical Care Medicine University of Colorado Anschutz Medical Campus Aurora, Aurora, CO, USA
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
6
|
Boutel M, Dara A, Arvanitaki A, Deuteraiou C, Mytilinaiou M, Dimitroulas T. Towards a Better Prognosis in Patients with Systemic Sclerosis-Related Pulmonary Arterial Hypertension: Recent Developments and Perspectives. J Clin Med 2024; 13:5834. [PMID: 39407897 PMCID: PMC11477739 DOI: 10.3390/jcm13195834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Precapillary pulmonary hypertension (PH) is a significant complication of systemic sclerosis (SSc). It represents one of the leading causes of morbidity and mortality, correlating with a significantly dismal prognosis and quality of life. Despite advancements in the management of patients with pulmonary arterial hypertension associated with SSc (SSc-PAH), no significant improvement has been reported in survival of patients with precapillary SSc-PH associated with extensive lung parenchyma disease. International expert consensus and guidelines for the management of PH recommend annual screening of SSc patients for early detection of pre-capillary PH. The implementation of screening algorithms capable of identifying patients with a high likelihood of developing PH could help limit unnecessary right-heart catheterization procedures and prevent significant delay in diagnosis. Furthermore, early initiation of up-front combination targeted therapy in patients with PAH has shown increase in survival rates, indicating that timely and aggressive medical therapy is key for stabilizing and even improving functional class, hemodynamic parameters and 6 min walking distance (6MWD) in this population. Further research is warranted into the benefit of PAH-targeted therapies in patients with PH associated with lung disease. Lastly, we discuss the potential role of immunosuppression using biologic agents in the therapeutic management of precapillary PH in SSc patients.
Collapse
Affiliation(s)
- Maria Boutel
- Fourth Department of Internal Medicine, Hippokration University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (M.B.); (A.D.); (C.D.); (M.M.); (T.D.)
| | - Athanasia Dara
- Fourth Department of Internal Medicine, Hippokration University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (M.B.); (A.D.); (C.D.); (M.M.); (T.D.)
| | - Alexandra Arvanitaki
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’s NHS Foundation Trust, Imperial College, London SW3 6NP, UK
- First Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Cleopatra Deuteraiou
- Fourth Department of Internal Medicine, Hippokration University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (M.B.); (A.D.); (C.D.); (M.M.); (T.D.)
| | - Maria Mytilinaiou
- Fourth Department of Internal Medicine, Hippokration University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (M.B.); (A.D.); (C.D.); (M.M.); (T.D.)
| | - Theodoros Dimitroulas
- Fourth Department of Internal Medicine, Hippokration University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (M.B.); (A.D.); (C.D.); (M.M.); (T.D.)
| |
Collapse
|
7
|
Imai Y, Kusano K, Aiba T, Ako J, Asano Y, Harada-Shiba M, Kataoka M, Kosho T, Kubo T, Matsumura T, Minamino T, Minatoya K, Morita H, Nishigaki M, Nomura S, Ogino H, Ohno S, Takamura M, Tanaka T, Tsujita K, Uchida T, Yamagishi H, Ebana Y, Fujita K, Ida K, Inoue S, Ito K, Kuramoto Y, Maeda J, Matsunaga K, Neki R, Sugiura K, Tada H, Tsuji A, Yamada T, Yamaguchi T, Yamamoto E, Kimura A, Kuwahara K, Maemura K, Minamino T, Morisaki H, Tokunaga K. JCS/JCC/JSPCCS 2024 Guideline on Genetic Testing and Counseling in Cardiovascular Disease. Circ J 2024:CJ-23-0926. [PMID: 39343605 DOI: 10.1253/circj.cj-23-0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Affiliation(s)
- Yasushi Imai
- Division of Clinical Pharmacology and Division of Cardiovascular Medicine, Jichi Medical University
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Yoshihiro Asano
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center
| | | | - Masaharu Kataoka
- The Second Department of Internal Medicine, University of Occupational and Environmental Health
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine
| | - Toru Kubo
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
| | - Takayoshi Matsumura
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Masakazu Nishigaki
- Department of Genetic Counseling, International University of Health and Welfare
| | - Seitaro Nomura
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo
| | | | - Seiko Ohno
- Medical Genome Center, National Cerebral and Cardiovascular Center
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Tetsuro Uchida
- Department of Surgery II (Division of Cardiovascular, Thoracic and Pediatric Surgery), Yamagata University Faculty of Medicine
| | | | - Yusuke Ebana
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University Hospital
| | - Kanna Fujita
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
- Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, The University of Tokyo
| | - Kazufumi Ida
- Division of Counseling for Medical Genetics, National Cerebral and Cardiovascular Center
| | - Shunsuke Inoue
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Jun Maeda
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center
| | - Keiji Matsunaga
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Reiko Neki
- Division of Counseling for Medical Genetics, Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center
| | - Kenta Sugiura
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
| | - Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University
| | - Akihiro Tsuji
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | | | | | | | - Akinori Kimura
- Institutional Research Office, Tokyo Medical and Dental University
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | | | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine
| |
Collapse
|
8
|
Gomez-Arroyo J, Houweling AC, Bogaard HJ, Aman J, Kitzmiller JA, Porollo A, Dooijes D, Meijboom LJ, Hale P, Pauciulo MW, Hong J, Zhu N, Welch C, Shen Y, Zacharias WJ, McCormack FX, Aldred MA, Weirauch MT, Graf S, Rhodes C, Chung WK, Whitsett JA, Martin LJ, Kalinichenko VV, Nichols WC. Role of Forkhead box F1 in the Pathobiology of Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.611448. [PMID: 39345371 PMCID: PMC11429893 DOI: 10.1101/2024.09.18.611448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rationale Approximately 80% of patients with non-familial pulmonary arterial hypertension (PAH) lack identifiable pathogenic genetic variants. While most genetic studies of PAH have focused on predicted loss-of-function variants, recent approaches have identified ultra-rare missense variants associated with the disease. FOXF1 encodes a highly conserved transcription factor, essential for angiogenesis and vasculogenesis in human and mouse lungs. Objectives We identified a rare FOXF1 missense coding variant in two unrelated probands with PAH. FOXF1 is an evolutionarily conserved transcription factor required for lung vascular development and vascular integrity. Our aims were to determine the frequency of FOXF1 variants in larger PAH cohorts compared to the general population, study FOXF1 expression in explanted lung tissue from PAH patients versus control (failed-donor) lungs, and define potential downstream targets linked to PAH development. Methods Three independent, international, multicenter cohorts were analyzed to evaluate the frequency of FOXF1 rare variants. Various composite prediction models assessed the deleteriousness of individual variants. Bulk RNA sequencing datasets from human explanted lung tissues were compared to failed-donor controls to determine FOXF1 expression. Bioinformatic tools identified putative FOXF1 binding targets, which were orthogonally validated using mouse ChIP-seq datasets. Measurements and Main Results Seven novel or ultra-rare missense coding variants were identified across three patient cohorts in different regions of the FOXF1 gene, including the DNA binding domain. FOXF1 expression was dysregulated in PAH lungs, correlating with disease severity. Histological analysis showed heterogeneous FOXF1 expression, with the lowest levels in phenotypically abnormal endothelial cells within complex vascular lesions in PAH samples. A hybrid bioinformatic approach identified FOXF1 downstream targets potentially involved in PAH pathogenesis, including BMPR2 . Conclusions Large genomic and transcriptomic datasets suggest that decreased FOXF1 expression or predicted dysfunction is associated with PAH.
Collapse
|
9
|
Renaud J, Foroshani S, Frishman WH, Aronow WS. The Influence of Pulmonary Arterial Hypertension In Pregnancy: A Review. Cardiol Rev 2024:00045415-990000000-00322. [PMID: 39254515 DOI: 10.1097/crd.0000000000000777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a severe condition characterized by increased pulmonary vascular resistance and right ventricular failure. This review examines the intersection of PAH and pregnancy, highlighting the significant physiological, hemodynamic, and hormonal changes that exacerbate PAH during gestation. Pregnancy is contraindicated in PAH patients due to high maternal and fetal morbidity and mortality rates. However, some patients choose to continue their pregnancies, necessitating a comprehensive understanding of the implications and management strategies. Effective management of PAH in pregnant patients involves individualized treatment plans. Prepartum management focuses on optimizing therapy and monitoring hemodynamic status. Prostacyclin analogs and phosphodiesterase inhibitors are commonly used, though their safety profiles require further investigation. Intrapartum management prioritizes preventing right ventricular failure, utilizing therapies such as intravenous epoprostenol, inhaled iloprost, and inhaled nitric oxide. Managing PAH in pregnancy requires careful planning, continuous monitoring, and tailored therapeutic strategies to navigate the complex interplay of physiological changes and mitigate risks. Future research should focus on elucidating the pathophysiology of PAH during pregnancy and developing safer, more effective treatments to improve maternal and fetal outcomes.
Collapse
Affiliation(s)
- Jodie Renaud
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | - Saam Foroshani
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | | | - Wilbert S Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
10
|
Yan Q, Liu S, Sun Y, Chen C, Yang Y, Yang S, Lin M, Long J, Lin Y, Liang J, Ai Q, Chen N. CC chemokines Modulate Immune responses in Pulmonary Hypertension. J Adv Res 2024; 63:171-186. [PMID: 37926143 PMCID: PMC11380027 DOI: 10.1016/j.jare.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) represents a progressive condition characterized by the remodeling of pulmonary arteries, ultimately culminating in right heart failure and increased mortality rates. Substantial evidence has elucidated the pivotal role of perivascular inflammatory factors and immune dysregulation in the pathogenesis of PH. Chemokines, a class of small secreted proteins, exert precise control over immune cell recruitment and functionality, particularly with respect to their migration to sites of inflammation. Consequently, chemokines emerge as critical drivers facilitating immune cell infiltration into the pulmonary tissue during inflammatory responses. This review comprehensively examines the significant contributions of CC chemokines in the maintenance of immune cell homeostasis and their pivotal role in regulating inflammatory responses. The central focus of this discussion is directed towards elucidating the precise immunoregulatory actions of CC chemokines concerning various immune cell types, including neutrophils, monocytes, macrophages, lymphocytes, dendritic cells, mast cells, eosinophils, and basophils, particularly in the context of pH processes. Furthermore, this paper delves into an exploration of the underlying pathogenic mechanisms that underpin the development of PH. Specifically, it investigates processes such as cellular pyroptosis, examines the intricate crosstalk between bone morphogenetic protein receptor type 2 (BMPR2) mutations and the immune response, and sheds light on key signaling pathways involved in the inflammatory response. These aspects are deemed critical in enhancing our understanding of the complex pathophysiology of PH. Moreover, this review provides a comprehensive synthesis of findings from experimental investigations targeting immune cells and CC chemokines. AIM OF REVIEW In summary, the inquiry into the inflammatory responses mediated by CC chemokines and their corresponding receptors, and their potential in modulating immune reactions, holds promise as a prospective avenue for addressing PH. The potential inhibition of CC chemokines and their receptors stands as a viable strategy to attenuate the inflammatory cascade and ameliorate the pathological manifestations of PH. Nonetheless, it is essential to acknowledge the current state of clinical trials and the ensuing progress, which regrettably appears to be less than encouraging. Substantial hurdles exist in the successful translation of research findings into clinical applications. The intention is that such emphasis could potentially foster the advancement of potent therapeutic agents presently in the process of clinical evaluation. This, in turn, may further bolster the potential for effective management of PH.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Weatherald J, Hemnes AR, Maron BA, Mielniczuk LM, Gerges C, Price LC, Hoeper MM, Humbert M. Phenotypes in pulmonary hypertension. Eur Respir J 2024; 64:2301633. [PMID: 38964779 DOI: 10.1183/13993003.01633-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
The clinical classification of pulmonary hypertension (PH) has guided diagnosis and treatment of patients with PH for several decades. Discoveries relating to underlying mechanisms, pathobiology and responses to treatments for PH have informed the evolution in this clinical classification to describe the heterogeneity in PH phenotypes. In more recent years, advances in imaging, computational science and multi-omic approaches have yielded new insights into potential phenotypes and sub-phenotypes within the existing clinical classification. Identification of novel phenotypes in pulmonary arterial hypertension (PAH) with unique molecular profiles, for example, could lead to new precision therapies. Recent phenotyping studies have also identified groups of patients with PAH that more closely resemble patients with left heart disease (group 2 PH) and lung disease (group 3 PH), which has important prognostic and therapeutic implications. Within group 2 and group 3 PH, novel phenotypes have emerged that reflect a persistent and severe pulmonary vasculopathy that is associated with worse prognosis but still distinct from PAH. In group 4 PH (chronic thromboembolic pulmonary disease) and sarcoidosis (group 5 PH), the current approach to patient phenotyping integrates clinical, haemodynamic and imaging characteristics to guide treatment but applications of multi-omic approaches to sub-phenotyping in these areas are sparse. The next iterations of the PH clinical classification are likely to reflect several emerging PH phenotypes and improve the next generation of prognostication tools and clinical trial design, and improve treatment selection in clinical practice.
Collapse
Affiliation(s)
- Jason Weatherald
- Department of Medicine, Division of Pulmonary Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley A Maron
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland-Institute for Health Computing, Bethesda, MD, USA
| | - Lisa M Mielniczuk
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Christian Gerges
- Department of Internal Medicine, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Laura C Price
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| |
Collapse
|
12
|
Liu B, Wen CJ, Zhou G, Wei YP, Wu Z, Zhang T, Zhou Y, Qiu S, Wang T, Ruiz M, Dupuis J, Yuan P, Liu J, Zhu L, Jing ZC, Hu Q. Identification of Noncoding Functional Regulatory Variants of STIM1 Gene in Idiopathic Pulmonary Arterial Hypertension. Hypertension 2024; 81:1895-1909. [PMID: 38989583 DOI: 10.1161/hypertensionaha.124.22766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND STIM1 (stromal interaction molecule 1) regulates store-operated calcium entry and is involved in pulmonary artery vasoconstriction and pulmonary artery smooth muscle cell proliferation, leading to pulmonary arterial hypertension (PAH). METHODS Bioinformatics analysis and a 2-stage matched case-control study were conducted to screen for noncoding variants that may potentially affect STIM1 transcriptional regulation in 242 patients with idiopathic PAH and 414 healthy controls. Luciferase reporter assay, real-time quantitative polymerase chain reaction, western blot, 5-ethynyl-2'-deoxyuridine (EdU) assay, and intracellular Ca2+ measurement were performed to study the mechanistic roles of those STIM1 noncoding variants in PAH. RESULTS Five noncoding variants (rs3794050, rs7934581, rs3750996, rs1561876, and rs3750994) were identified and genotyped using Sanger sequencing. Rs3794050, rs7934581, and rs1561876 were associated with idiopathic PAH (recessive model, all P<0.05). Bioinformatics analysis showed that these 3 noncoding variants possibly affect the enhancer function of STIM1 or the microRNA (miRNA) binding to STIM1. Functional validation performed in HEK293 and pulmonary artery smooth muscle cells demonstrated that the noncoding variant rs1561876-G (STIM1 mutant) had significantly stronger transcriptional activity than the wild-type counterpart, rs1561876-A, by affecting the transcriptional regulatory function of both hsa-miRNA-3140-5p and hsa-miRNA-4766-5p. rs1561876-G enhanced intracellular Ca2+ signaling in human pulmonary artery smooth muscle cells secondary to calcium-sensing receptor activation and promoted proliferation of pulmonary artery smooth muscle cells under both normoxia and hypoxia conditions, suggesting a possible contribution to PAH development. CONCLUSIONS The potential clinical implications of the 3 noncoding variants of STIM1, rs3794050, rs7934581, and rs1561876, are 2-fold, as they may help predict the risk and prognosis of idiopathic PAH and guide investigations on novel therapeutic pathway(s).
Collapse
Affiliation(s)
- Bingxun Liu
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cen-Jin Wen
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (C.-J.W., Y.-P.W.)
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China (C.-J.W., Z.-C.J.)
| | - Guangyuan Zhou
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Peng Wei
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (C.-J.W., Y.-P.W.)
| | - Zeang Wu
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yudan Zhou
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyi Qiu
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital (T.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition (M.R.), Université de Montréal, Québec, Canada
- Montreal Heart Institute, Québec, Canada (M.R., J.D.)
| | - Jocelyn Dupuis
- Department of Medicine (J.D.), Université de Montréal, Québec, Canada
- Montreal Heart Institute, Québec, Canada (M.R., J.D.)
| | - Ping Yuan
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, China (P.Y., J.L.)
| | - Jinming Liu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, China (P.Y., J.L.)
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China (C.-J.W., Z.-C.J.)
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Ye Q, Taleb SJ, Zhao J, Zhao Y. Emerging role of BMPs/BMPR2 signaling pathway in treatment for pulmonary fibrosis. Biomed Pharmacother 2024; 178:117178. [PMID: 39142248 PMCID: PMC11364484 DOI: 10.1016/j.biopha.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary fibrosis is a fatal and chronic lung disease that is characterized by accumulation of thickened scar in the lungs and impairment of gas exchange. The cases with unknown etiology are referred as idiopathic pulmonary fibrosis (IPF). There are currently no effective therapeutics to cure the disease; thus, the investigation of the pathogenesis of IPF is of great importance. Recent studies on bone morphogenic proteins (BMPs) and their receptors have indicated that reduction of BMP signaling in lungs may play a significant role in the development of lung fibrosis. BMPs are members of TGF-β superfamily, and they have been shown to play an anti-fibrotic role in combating TGF-β-mediated pathways. The impact of BMP receptors, in particular BMPR2, on pulmonary fibrosis is growing attraction to researchers. Previous studies on BMPR2 have often focused on pulmonary arterial hypertension (PAH). Given the strong clinical association between PAH and lung fibrosis, understanding BMPs/BMPR2-mediated signaling pathway is important for development of therapeutic strategies to treat IPF. In this review, we comprehensively review recent studies regarding the biological functions of BMPs and their receptors in lungs, especially focusing on their roles in the pathogenesis of pulmonary fibrosis and fibrosis resolution.
Collapse
Affiliation(s)
- Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States.
| |
Collapse
|
14
|
Emanuelli G, Zhu J, Li W, Morrell NW, Marciniak SJ. Functional validation of EIF2AK4 (GCN2) missense variants associated with pulmonary arterial hypertension. Hum Mol Genet 2024; 33:1495-1505. [PMID: 38776952 PMCID: PMC11336063 DOI: 10.1093/hmg/ddae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disorder with a large genetic component. Biallelic mutations of EIF2AK4, which encodes the kinase GCN2, are causal in two ultra-rare subtypes of PAH, pulmonary veno-occlusive disease and pulmonary capillary haemangiomatosis. EIF2AK4 variants of unknown significance have also been identified in patients with classical PAH, though their relationship to disease remains unclear. To provide patients with diagnostic information and enable family testing, the functional consequences of such rare variants must be determined, but existing computational methods are imperfect. We applied a suite of bioinformatic and experimental approaches to sixteen EIF2AK4 variants that had been identified in patients. By experimentally testing the functional integrity of the integrated stress response (ISR) downstream of GCN2, we determined that existing computational tools have insufficient sensitivity to reliably predict impaired kinase function. We determined experimentally that several EIF2AK4 variants identified in patients with classical PAH had preserved function and are therefore likely to be non-pathogenic. The dysfunctional variants of GCN2 that we identified could be subclassified into three groups: misfolded, kinase-dead, and hypomorphic. Intriguingly, members of the hypomorphic group were amenable to paradoxical activation by a type-1½ GCN2 kinase inhibitor. This experiment approach may aid in the clinical stratification of EIF2AK4 variants and potentially identify hypomorophic alleles receptive to pharmacological activation.
Collapse
Affiliation(s)
- Giulia Emanuelli
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Keith Peters Building, Biomedical Campus, Hills Rd, Cambridge CB2 0XY, United Kingdom
| | - JiaYi Zhu
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Keith Peters Building, Biomedical Campus, Hills Rd, Cambridge CB2 0XY, United Kingdom
| | - Wei Li
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Papworth Road, Trumpington, Cambridge CB2 0BB, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital (Box 157), Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Nicholas W Morrell
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Papworth Road, Trumpington, Cambridge CB2 0BB, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital (Box 157), Hills Road, Cambridge CB2 2QQ, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Papworth Rd, Trumpington, Cambridge CB2 0AY, United Kingdom
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Keith Peters Building, Biomedical Campus, Hills Rd, Cambridge CB2 0XY, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital (Box 157), Hills Road, Cambridge CB2 2QQ, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Papworth Rd, Trumpington, Cambridge CB2 0AY, United Kingdom
| |
Collapse
|
15
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
16
|
Zeder K, Brittain E, Kovacs G, Maron BA. The Management of Mild Pulmonary Hypertension in Clinical Practice. Ann Am Thorac Soc 2024; 21:1115-1123. [PMID: 38747696 PMCID: PMC11298986 DOI: 10.1513/annalsats.202312-1079fr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 08/02/2024] Open
Abstract
The definition of pulmonary hypertension (PH) has been revised recently, with the mean pulmonary artery pressure (mPAP) threshold (assessed by right heart catheterization) reduced from ⩾25 mm Hg to >20 mm Hg. This change reflects the mPAP upper limit of normal and a lower limit that is independently associated with adverse outcomes. To improve the specificity of diagnosing pathogenic increases in mPAP, however, a diagnosis of precapillary PH now also includes pulmonary vascular resistance >2.0 Wood units (WU) (lowered from >3.0 WU). These changes are positioned to capture approximately 55% more patients with PH. Because all clinical trials showing a benefit of pulmonary vasodilator therapy in precapillary PH used the classical hemodynamic definition, the approach to the diagnosis and management of patients with mild PH (i.e., mPAP 21-24 mm Hg and pulmonary vascular resistance 2-3 WU) requires particular consideration. Here, we use a question/answer format to discuss key areas in the management of mild PH, including practical information tailored to clinicians without training in PH.
Collapse
Affiliation(s)
- Katarina Zeder
- Department of Pulmonology, Medical University of Graz and Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland; and
- The University of Maryland-Institute for Health Computing, Bethesda, Maryland
| | - Evan Brittain
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gabor Kovacs
- Department of Pulmonology, Medical University of Graz and Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Bradley A. Maron
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland; and
- The University of Maryland-Institute for Health Computing, Bethesda, Maryland
| |
Collapse
|
17
|
Mathai SC. Pulmonary Hypertension Associated with Connective Tissue Disease. Rheum Dis Clin North Am 2024; 50:359-379. [PMID: 38942575 DOI: 10.1016/j.rdc.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Pulmonary hypertension (PH), a syndrome characterized by elevated pulmonary pressures, commonly complicates connective tissue disease (CTD) and is associated with increased morbidity and mortality. The incidence of PH varies widely between CTDs; patients with systemic sclerosis are most likely to develop PH. Several different types of PH can present in CTD, including PH related to left heart disease and respiratory disease. Importantly, CTD patients are at risk for developing pulmonary arterial hypertension, a rare form of PH that is associated with high morbidity and mortality. Future therapies targeting pulmonary vascular remodeling may improve outcomes for patients with this devastating disease.
Collapse
Affiliation(s)
- Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Room 540, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Shen H, Gao Y, Ge D, Tan M, Yin Q, Wei TYW, He F, Lee TY, Li Z, Chen Y, Yang Q, Liu Z, Li X, Chen Z, Yang Y, Zhang Z, Thistlethwaite PA, Wang J, Malhotra A, Yuan JXJ, Shyy JYJ, Gong K. BRCC3 Regulation of ALK2 in Vascular Smooth Muscle Cells: Implication in Pulmonary Hypertension. Circulation 2024; 150:132-150. [PMID: 38557054 PMCID: PMC11230848 DOI: 10.1161/circulationaha.123.066430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND An imbalance of antiproliferative BMP (bone morphogenetic protein) signaling and proliferative TGF-β (transforming growth factor-β) signaling is implicated in the development of pulmonary arterial hypertension (PAH). The posttranslational modification (eg, phosphorylation and ubiquitination) of TGF-β family receptors, including BMPR2 (bone morphogenetic protein type 2 receptor)/ALK2 (activin receptor-like kinase-2) and TGF-βR2/R1, and receptor-regulated Smads significantly affects their activity and thus regulates the target cell fate. BRCC3 modifies the activity and stability of its substrate proteins through K63-dependent deubiquitination. By modulating the posttranslational modifications of the BMP/TGF-β-PPARγ pathway, BRCC3 may play a role in pulmonary vascular remodeling, hence the pathogenesis of PAH. METHODS Bioinformatic analyses were used to explore the mechanism by which BRCC3 deubiquitinates ALK2. Cultured pulmonary artery smooth muscle cells (PASMCs), mouse models, and specimens from patients with idiopathic PAH were used to investigate the rebalance between BMP and TGF-β signaling in regulating ALK2 phosphorylation and ubiquitination in the context of pulmonary hypertension. RESULTS BRCC3 was significantly downregulated in PASMCs from patients with PAH and animals with experimental pulmonary hypertension. BRCC3, by de-ubiquitinating ALK2 at Lys-472 and Lys-475, activated receptor-regulated Smad1/5/9, which resulted in transcriptional activation of BMP-regulated PPARγ, p53, and Id1. Overexpression of BRCC3 also attenuated TGF-β signaling by downregulating TGF-β expression and inhibiting phosphorylation of Smad3. Experiments in vitro indicated that overexpression of BRCC3 or the de-ubiquitin-mimetic ALK2-K472/475R attenuated PASMC proliferation and migration and enhanced PASMC apoptosis. In SM22α-BRCC3-Tg mice, pulmonary hypertension was ameliorated because of activation of the ALK2-Smad1/5-PPARγ axis in PASMCs. In contrast, Brcc3-/- mice showed increased susceptibility of experimental pulmonary hypertension because of inhibition of the ALK2-Smad1/5 signaling. CONCLUSIONS These results suggest a pivotal role of BRCC3 in sustaining pulmonary vascular homeostasis by maintaining the integrity of the BMP signaling (ie, the ALK2-Smad1/5-PPARγ axis) while suppressing TGF-β signaling in PASMCs. Such rebalance of BMP/TGF-β pathways is translationally important for PAH alleviation.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Activin Receptors, Type II/metabolism
- Activin Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Signal Transduction
- Ubiquitination
- Vascular Remodeling
Collapse
Affiliation(s)
- Hui Shen
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Ya Gao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Dedong Ge
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Meng Tan
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Qing Yin
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Tong-You Wade Wei
- Division of Cardiology (T.-Y.W.W., J.Y.-J.S.), University of California, San Diego, La Jolla
| | - Fangzhou He
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, China (F.H.)
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, School of Medicine, Chinese University of Hong Kong, Shenzhen, China (T.-Y.L., Z.L.)
| | - Zhongyan Li
- Warshel Institute for Computational Biology, School of Medicine, Chinese University of Hong Kong, Shenzhen, China (T.-Y.L., Z.L.)
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, China (Y.C., Q. Yang, J.W.)
| | - Qifeng Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, China (Y.C., Q. Yang, J.W.)
| | - Zhangyu Liu
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Xinxin Li
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Zixuan Chen
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Yi Yang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Zhengang Zhang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Patricia A Thistlethwaite
- Department of Medicine, Division of Cardiothoracic Surgery (P.A.T.), University of California, San Diego, La Jolla
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, China (Y.C., Q. Yang, J.W.)
- Guangzhou National Laboratory, Guangzhou International Bio Island, China (J.W.)
| | - Atul Malhotra
- Division of Pulmonary and Critical Care Medicine (A.M.), University of California, San Diego, La Jolla
| | - Jason X-J Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine (J.X.-J.Y.), University of California, San Diego, La Jolla
| | - John Y-J Shyy
- Division of Cardiology (T.-Y.W.W., J.Y.-J.S.), University of California, San Diego, La Jolla
| | - Kaizheng Gong
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| |
Collapse
|
19
|
Prabhakar A, Kumar R, Wadhwa M, Ghatpande P, Zhang J, Zhao Z, Lizama CO, Kharbikar BN, Gräf S, Treacy CM, Morrell NW, Graham BB, Lagna G, Hata A. Reversal of pulmonary veno-occlusive disease phenotypes by inhibition of the integrated stress response. NATURE CARDIOVASCULAR RESEARCH 2024; 3:799-818. [PMID: 39196173 PMCID: PMC11409862 DOI: 10.1038/s44161-024-00495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/29/2024] [Indexed: 08/29/2024]
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension arising from EIF2AK4 gene mutations or mitomycin C (MMC) administration. The lack of effective PVOD therapies is compounded by a limited understanding of the mechanisms driving vascular remodeling in PVOD. Here we show that administration of MMC in rats mediates activation of protein kinase R (PKR) and the integrated stress response (ISR), which leads to the release of the endothelial adhesion molecule vascular endothelial (VE) cadherin (VE-Cad) in complex with RAD51 to the circulation, disruption of endothelial barrier and vascular remodeling. Pharmacological inhibition of PKR or ISR attenuates VE-Cad depletion, elevation of vascular permeability and vascular remodeling instigated by MMC, suggesting potential clinical intervention for PVOD. Finally, the severity of PVOD phenotypes was increased by a heterozygous BMPR2 mutation that truncates the carboxyl tail of the receptor BMPR2, underscoring the role of deregulated bone morphogenetic protein signaling in the development of PVOD.
Collapse
Grants
- R01HL132058 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135872 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- RG/19/3/34265 British Heart Foundation (BHF)
- R01HL164581 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153915 NHLBI NIH HHS
- R01HL153915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 28IR-0047 Tobacco-Related Disease Research Program (TRDRP)
- R01 HL135872 NHLBI NIH HHS
- 19CDA34730030 American Heart Association (American Heart Association, Inc.)
- R24 HL123767 NHLBI NIH HHS
- P01HL152961 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL164581 NHLBI NIH HHS
- P01 HL152961 NHLBI NIH HHS
- R01 HL132058 NHLBI NIH HHS
Collapse
Affiliation(s)
- Amit Prabhakar
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Rahul Kumar
- Lung Biology Center, Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Meetu Wadhwa
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jingkun Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ziwen Zhao
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Carmen M Treacy
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Brian B Graham
- Lung Biology Center, Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Vuran G, Yılmazer MM, Gerçeker E, Zihni C, Meşe T. Leukotriene B4 levels in CHD-associated paediatric pulmonary hypertension. Cardiol Young 2024; 34:1471-1475. [PMID: 38444233 DOI: 10.1017/s1047951124000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
BACKGROUND The aim of this study is to evaluate the role of leukotriene B4, an inflammatory mediator, in the development of pulmonary hypertension in paediatric patients with CHD with left-right shunt. METHODS The study included forty patients with CHD with left-right shunts. Based on haemodynamic data obtained from cardiac diagnostic catheterisation, 25 patients who met the criteria for pulmonary arterial hypertension were included in the patient group. The control group comprised 15 patients who did not meet the criteria. The standard cardiac haemodynamic study was conducted. Leukotriene B4 levels were assessed in blood samples taken from both pulmonary arteries and peripheral veins. RESULTS The median age of patients with pulmonary arterial hypertension was 10 months (range: 3-168), while the median age of the control group was 50 months (range: 3-194). In the pulmonary hypertension group, the median pulmonary artery systolic/diastolic/mean pressures were 38/18/24 mmHg, compared to 26/10/18 mmHg in the control group. Leukotriene B4 levels in pulmonary artery blood samples were significantly higher in the pulmonary arterial hypertension group compared to the controls (p < 0.05). Peripheral leukotriene B4 levels were also elevated in the pulmonary arterial hypertension group in comparison to the control group, though the difference was not statistically significant. CONCLUSION The discovery of elevated leukotriene B4 levels in pulmonary artery samples from paediatric patients with pulmonary arterial hypertension secondary to CHD with left-to-right shunt suggests that local inflammation may have a pathological role in the development of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Gamze Vuran
- Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| | - Murat Muhtar Yılmazer
- Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| | - Engin Gerçeker
- Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| | - Cüneyt Zihni
- Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| | - Timur Meşe
- Department of Pediatric Cardiology, University of Health Sciences, İzmir Dr. Behçet Uz Pediatric Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
21
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
22
|
Liley J, Newnham M, Bleda M, Bunclark K, Auger W, Barbera JA, Bogaard H, Delcroix M, Fernandes TM, Howard L, Jenkins D, Lang I, Mayer E, Rhodes C, Simpson M, Southgate L, Trembath R, Wharton J, Wilkins MR, Gräf S, Morrell N, Zaba JP, Toshner M. Shared and Distinct Genomics of Chronic Thromboembolic Pulmonary Hypertension and Pulmonary Embolism. Am J Respir Crit Care Med 2024; 209:1477-1485. [PMID: 38470220 PMCID: PMC11208965 DOI: 10.1164/rccm.202307-1236oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024] Open
Abstract
Rationale: Chronic thromboembolic pulmonary hypertension involves the formation and nonresolution of thrombus, dysregulated inflammation, angiogenesis, and the development of a small-vessel vasculopathy. Objectives: We aimed to establish the genetic basis of chronic thromboembolic pulmonary hypertension to gain insight into its pathophysiological contributors. Methods: We conducted a genome-wide association study on 1,907 European cases and 10,363 European control subjects. We coanalyzed our results with existing results from genome-wide association studies on deep vein thrombosis, pulmonary embolism, and idiopathic pulmonary arterial hypertension. Measurements and Main Results: Our primary association study revealed genetic associations at the ABO, FGG, F11, MYH7B, and HLA-DRA loci. Through our coanalysis, we demonstrate further associations with chronic thromboembolic pulmonary hypertension at the F2, TSPAN15, SLC44A2, and F5 loci but find no statistically significant associations shared with idiopathic pulmonary arterial hypertension. Conclusions: Chronic thromboembolic pulmonary hypertension is a partially heritable polygenic disease, with related though distinct genetic associations with pulmonary embolism and deep vein thrombosis.
Collapse
Affiliation(s)
| | - Michael Newnham
- Institute of Applied Health Research, Birmingham, United Kingdom
| | - Marta Bleda
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - William Auger
- University of California, San Diego, San Diego, California
| | - Joan Albert Barbera
- Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, University of Barcelona, Barcelona, Spain
| | - Harm Bogaard
- Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | | | - Luke Howard
- Hammersmith Hospital, London, United Kingdom
| | | | - Irene Lang
- Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | - John Wharton
- St. George’s, University of London, London, United Kingdom
| | | | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Morrell
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Mark Toshner
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Zhang JJ, Mao-Mao, Shao MM, Wang MC. Therapeutic potential of natural flavonoids in pulmonary arterial hypertension: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155535. [PMID: 38537442 DOI: 10.1016/j.phymed.2024.155535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease caused by pulmonary vascular remodeling, with a high incidence and mortality. At present, many clinical drugs for treating PAH mainly exert effects by relaxing the pulmonary artery, with limited therapeutic effects, so the search for viable therapeutic agents continues uninterrupted. In recent years, natural flavonoids have shown promising potential in the treatment of cardiovascular diseases. It is necessary to comprehensively elucidate the potential of natural flavonoids to combat PAH. PURPOSE To evaluate the potential of natural flavonoids to hinder or slow down the occurrence and development of PAH, and to identify promising drug discovery candidates. METHODS Literature was collected from PubMed, Science Direct, Web of science, CNKI databases and Google scholar. The search terms used included "pulmonary arterial hypertension", "pulmonary hypertension", "natural products", "natural flavonoids", "traditional chinese medicine", etc., and several combinations of these keywords. RESULTS The resources, structural characteristics, mechanisms, potential and prospect strategies of natural flavonoids for treating PAH were summarized. Natural flavonoids offer different solutions as possible treatments for PAH. These mechanisms may involve various pathways and molecular targets related to the pathogenesis of PAH, such as inflammation, oxidative stress, vascular remodeling, genetic, ion channels, cell proliferation and autophagy. In addition, prospect strategies of natural flavonoids for anti-PAH including structural modification and nanomaterial delivery systems have been explored. This review suggests that the potential of natural flavonoids as alternative therapeutic agents in the prevention and treatment of PAH holds promise for future research and clinical applications. CONCLUSION Despite displaying the enormous potential of flavonoids in PAH, some limitations need to be further explored. Firstly, using advanced drug discovery tools, including computer-aided design and high-throughput screening, to further investigate the safety, biological activity, and precise mechanism of action of flavonoids. Secondly, exploring the structural modifications of these compounds is expected to optimize their efficacy. Lastly, it is necessary to conduct well controlled clinical trials and a comprehensive evaluation of potential side effects to determine their effectiveness and safety.
Collapse
Affiliation(s)
- Jin-Jing Zhang
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Mao-Mao
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Min-Min Shao
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Meng-Chuan Wang
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China.
| |
Collapse
|
24
|
Hoseini R, Raed Hamid R. Lowering blood pressure by exercise: investigating the effect of sweating. Blood Press Monit 2024; 29:109-118. [PMID: 38299995 DOI: 10.1097/mbp.0000000000000691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
High blood pressure (hypertension), is a common medical condition, affecting millions of people and is associated with significant health risks. Exercise has been suggested to manage hypertension by inducing sweating and the corresponding loss of sodium and water from the body.Thus, a variety of epidemiological and clinical studies have been conducted to investigate the relationship between sweating and exercise-induced blood pressure reduction and its impacts on hypertension. The mechanisms underlying exercise-induced blood pressure reduction are complex and still not fully understood. However, several pathways have been suggested, including the loss of sodium and water through sweat, a decrease in peripheral resistance, and an improvement in endothelial function in the blood vessels. The decrease in sodium and water content in the body associated with sweating may result in a reduction in blood volume and thus a decrease in blood pressure. Moreover, the reduction in peripheral resistance is thought to be mediated by the activation of the nitric oxide synthase pathway and the release of vasodilators such as prostacyclin and bradykinin, which lead to vasodilation and, thus, a reduction in blood pressure. In conclusion, exercise-induced sweating and consequent sodium and water loss appear to be a reliable biological link to the blood pressure-reducing effects of exercise in hypertensive individuals. Additionally, the mechanisms underlying exercise-induced blood pressure reduction are complex and involve several biological pathways in the cardiovascular system. Therefore, understanding the role of sweat production in blood pressure management is important for developing effective exercise interventions to prevent and manage hypertension.
Collapse
Affiliation(s)
- Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah
| | - Rasha Raed Hamid
- Physical Education and Sport Sciences Department, University of Garmian, Kurdistan Region, Iraq
| |
Collapse
|
25
|
Sun Y, Chen C, Yan Q, Wang S, Tan Y, Long J, Lin Y, Ning S, Wang J, Zhang S, Ai Q, Liu S. A peripheral system disease-Pulmonary hypertension. Biomed Pharmacother 2024; 175:116787. [PMID: 38788548 DOI: 10.1016/j.biopha.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disorder characterized by substantial morbidity and mortality rates. It is a chronic condition characterized by intricate pathogenesis and uncontrollable factors. We summarized the pathological effects of estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification on PH. PH is not only a pulmonary vascular disease, but also a systemic disease. The findings emphasize that the onset of PH is not exclusively confined to the pulmonary vasculature, consequently necessitating treatment approaches that extend beyond targeting pulmonary blood vessels. Hence, the research on the pathological mechanism of PH is not limited to target organs such as pulmonary vessels, but also focuses on exploring other fields (such as estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification).
Collapse
Affiliation(s)
- Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Siying Wang
- Pharmacy Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuangcheng Ning
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Jin Wang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Shusheng Zhang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| |
Collapse
|
26
|
Valdeolmillos E, Foray C, Albenque G, Batteux C, Petit J, Lecerf F, Jaïs X, Sitbon O, Montani D, Savale L, Humbert M, Hascoët S. Percutaneous atrial septal defect closure in patients with pulmonary arterial hypertension. Eur Respir J 2024; 63:2301649. [PMID: 38754963 DOI: 10.1183/13993003.01649-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/04/2024] [Indexed: 05/18/2024]
Affiliation(s)
- Estibaliz Valdeolmillos
- Department of Congenital Heart Diseases, Centre de Référence Malformations, Cardiaques Congénitales Complexes M3C, Hôpital Marie Lannelongue, Groupe, Hospitalier Paris-Saint Joseph, Paris, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremin-Bicêtre, France
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Claire Foray
- Department of Congenital Heart Diseases, Centre de Référence Malformations, Cardiaques Congénitales Complexes M3C, Hôpital Marie Lannelongue, Groupe, Hospitalier Paris-Saint Joseph, Paris, France
| | - Gregoire Albenque
- Department of Congenital Heart Diseases, Centre de Référence Malformations, Cardiaques Congénitales Complexes M3C, Hôpital Marie Lannelongue, Groupe, Hospitalier Paris-Saint Joseph, Paris, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremin-Bicêtre, France
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Clément Batteux
- Department of Congenital Heart Diseases, Centre de Référence Malformations, Cardiaques Congénitales Complexes M3C, Hôpital Marie Lannelongue, Groupe, Hospitalier Paris-Saint Joseph, Paris, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremin-Bicêtre, France
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Jerome Petit
- Department of Congenital Heart Diseases, Centre de Référence Malformations, Cardiaques Congénitales Complexes M3C, Hôpital Marie Lannelongue, Groupe, Hospitalier Paris-Saint Joseph, Paris, France
| | - Florence Lecerf
- Research and Innovation Department, Marie Lannelongue Hospital, Paris Saclay University, Le Plessis-Robinson, France
| | - Xavier Jaïs
- Université Paris-Saclay, Faculty of Medicine, Le Kremin-Bicêtre, France
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Reference Centre for Pulmonary Hypertension, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Olivier Sitbon
- Université Paris-Saclay, Faculty of Medicine, Le Kremin-Bicêtre, France
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Reference Centre for Pulmonary Hypertension, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, Faculty of Medicine, Le Kremin-Bicêtre, France
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Reference Centre for Pulmonary Hypertension, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- Université Paris-Saclay, Faculty of Medicine, Le Kremin-Bicêtre, France
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Reference Centre for Pulmonary Hypertension, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, Faculty of Medicine, Le Kremin-Bicêtre, France
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Reference Centre for Pulmonary Hypertension, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Sébastien Hascoët
- Department of Congenital Heart Diseases, Centre de Référence Malformations, Cardiaques Congénitales Complexes M3C, Hôpital Marie Lannelongue, Groupe, Hospitalier Paris-Saint Joseph, Paris, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremin-Bicêtre, France
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
27
|
Rice JL, Austin ED, Mathai SC, Sahay S. Genetic Testing in Pulmonary Arterial Hypertension Evaluation: A Patient and Clinician Survey. Chest 2024; 165:1224-1227. [PMID: 38008306 DOI: 10.1016/j.chest.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
|
28
|
Xu J, Miao S, Wu T, Hu C, Huang D, Zhang X. CXCR7 promotes pulmonary vascular remodeling via targeting p38/MMP2 pathway in pulmonary arterial hypertension. J Thorac Dis 2024; 16:2460-2471. [PMID: 38738224 PMCID: PMC11087638 DOI: 10.21037/jtd-24-331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Background A hallmark feature of pulmonary arterial hypertension (PAH) is the excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) in the pulmonary arteries. The exact role of C-X-C motif chemokine ligand 12 (CXCL12)/chemokine receptor type 7 (CXCR7) in the PASMCs remains unknown. This study was conducted to investigate CXCR7's role in p38/MMP2 pathway and its effect on PASMCs. Methods In this study, we examined the expression profile of CXCL12/CXCR7 in both hypoxic rats and PASMCs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to measure the level of proliferation in PASMCs. Enzyme-linked immunosorbent assay (ELISA) and western blotting assays were applied to investigate the protein expression of the related molecules. Results We found that a high level of CXCR7 was correlated with remodeled pulmonary arterioles in hypoxic rats. Moreover, CXCR7 protein levels were significantly increased by the induction of CXCL12, indicating that the CXCL12-CXCR7 axis participates in PAH. During hypoxia-PAH, CXCR7 inhibition reduces right ventricular systolic pressure (RVSP), the Fulton index, and pulmonary arteriosclerosis remodeling. Further study indicated inhibition CXCR7 reduced PASMCs by downregulating MMP2, via p38 MAPK pathway. It was additionally found that CXCL12/CXCR7 stimulated the phosphorylation of the p38 MAPK pathway, which was a contributing factor to the decrease in MMP2 expression following preconditioning with SB203580, which inhibited p38 MAPK. Conclusions In summary, these findings suggest that CXCL12/CXCR7 plays a critical role in PAH, the therapy of which can be developed further by targeting its potential targets.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Shuai Miao
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Tianjun Wu
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Chunxiao Hu
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Dongxiao Huang
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi No. 2 People’s Hospital, Wuxi, China
| | - Xin Zhang
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
29
|
Hu P, Du Y, Xu Y, Ye P, Xia J. The role of transcription factors in the pathogenesis and therapeutic targeting of vascular diseases. Front Cardiovasc Med 2024; 11:1384294. [PMID: 38745757 PMCID: PMC11091331 DOI: 10.3389/fcvm.2024.1384294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Transcription factors (TFs) constitute an essential component of epigenetic regulation. They contribute to the progression of vascular diseases by regulating epigenetic gene expression in several vascular diseases. Recently, numerous regulatory mechanisms related to vascular pathology, ranging from general TFs that are continuously activated to histiocyte-specific TFs that are activated under specific circumstances, have been studied. TFs participate in the progression of vascular-related diseases by epigenetically regulating vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). The Krüppel-like family (KLF) TF family is widely recognized as the foremost regulator of vascular diseases. KLF11 prevents aneurysm progression by inhibiting the apoptosis of VSMCs and enhancing their contractile function. The presence of KLF4, another crucial member, suppresses the progression of atherosclerosis (AS) and pulmonary hypertension by attenuating the formation of VSMCs-derived foam cells, ameliorating endothelial dysfunction, and inducing vasodilatory effects. However, the mechanism underlying the regulation of the progression of vascular-related diseases by TFs has remained elusive. The present study categorized the TFs involved in vascular diseases and their regulatory mechanisms to shed light on the potential pathogenesis of vascular diseases, and provide novel insights into their diagnosis and treatment.
Collapse
Affiliation(s)
- Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xu
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Bahi M, Li C, Wang G, Korman BD. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: From Bedside to Bench and Back Again. Int J Mol Sci 2024; 25:4728. [PMID: 38731946 PMCID: PMC11084945 DOI: 10.3390/ijms25094728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic sclerosis (SSc) is a heterogeneous disease characterized by autoimmunity, vasculopathy, and fibrosis which affects the skin and internal organs. One key aspect of SSc vasculopathy is pulmonary arterial hypertension (SSc-PAH) which represents a leading cause of morbidity and mortality in patients with SSc. The pathogenesis of pulmonary hypertension is complex, with multiple vascular cell types, inflammation, and intracellular signaling pathways contributing to vascular pathology and remodeling. In this review, we focus on shared molecular features of pulmonary hypertension and those which make SSc-PAH a unique entity. We highlight advances in the understanding of the clinical and translational science pertinent to this disease. We first review clinical presentations and phenotypes, pathology, and novel biomarkers, and then highlight relevant animal models, key cellular and molecular pathways in pathogenesis, and explore emerging treatment strategies in SSc-PAH.
Collapse
Affiliation(s)
| | | | | | - Benjamin D. Korman
- Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, USA; (M.B.)
| |
Collapse
|
31
|
Liu P, Lv M, Rong Y, Yu S, Wu R. No genetic causal association between iron status and pulmonary artery hypertension: Insights from a two-sample Mendelian randomization. Pulm Circ 2024; 14:e12370. [PMID: 38774814 PMCID: PMC11108639 DOI: 10.1002/pul2.12370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
To explore the genetic causal association between pulmonary artery hypertension (PAH) and iron status through Mendelian randomization (MR), we conducted MR analysis using publicly available genome-wide association study (GWAS) summary data. Five indicators related to iron status (serum iron, ferritin, total iron binding capacity (TIBC), soluble transferrin receptor (sTfR), and transferrin saturation) served as exposures, while PAH was the outcome. The genetic causal association between these iron status indicators and PAH was assessed using the inverse variance weighted (IVW) method. Cochran's Q statistic was employed to evaluate heterogeneity. We assessed pleiotropy using MR-Egger regression and MR-Presso test. Additionally, we validated our results using the Weighted median, Simple mode, and Weighted mode methods. Based on the IVW method, we found no causal association between iron status (serum iron, ferritin, TIBC, sTfR, and transferrin saturation) and PAH (p β > 0.05). The Weighted median, Simple mode, and Weighted mode methods showed no potential genetic causal association (p β > 0.05 in the three analyses). Additionally, no heterogeneity or horizontal pleiotropy was detected in any of the analyses. Our results show that there are no genetic causal association between iron status and PAH.
Collapse
Affiliation(s)
- Peng‐Cheng Liu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Meng‐Na Lv
- The First Clinical Medical College of Nanchang UniversityNanchangChina
| | - Yan‐Yan Rong
- Department of Hematology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Shu‐Jiao Yu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Rui Wu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
32
|
Grynblat J, Bogaard HJ, Eyries M, Meyrignac O, Savale L, Jaïs X, Ghigna MR, Celant L, Meijboom L, Houweling AC, Levy M, Antigny F, Chaouat A, Cottin V, Guignabert C, Coulet F, Sitbon O, Bonnet D, Humbert M, Montani D. Pulmonary vascular phenotype identified in patients with GDF2 ( BMP9) or BMP10 variants: an international multicentre study. Eur Respir J 2024; 63:2301634. [PMID: 38514094 DOI: 10.1183/13993003.01634-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/07/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by GDF2 and BMP10, respectively, play a pivotal role in pulmonary vascular regulation. GDF2 variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of GDF2 and BMP10 carriers remains largely unexplored. METHODS We report the characteristics and outcomes of PAH patients in GDF2 and BMP10 carriers from the French and Dutch pulmonary hypertension registries. A literature review explored the phenotypic spectrum of these patients. RESULTS 26 PAH patients were identified: 20 harbouring heterozygous GDF2 variants, one homozygous GDF2 variant, four heterozygous BMP10 variants, and one with both GDF2 and BMP10 variants. The prevalence of GDF2 and BMP10 variants was 1.3% and 0.4%, respectively. Median age at PAH diagnosis was 30 years, with a female/male ratio of 1.9. Congenital heart disease (CHD) was present in 15.4% of the patients. At diagnosis, most of the patients (61.5%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise (median (range) pulmonary vascular resistance 9.0 (3.3-40.6) WU). Haemoptysis was reported in four patients; none met the HHT criteria. Two patients carrying BMP10 variants underwent lung transplantation, revealing typical PAH histopathology. The literature analysis showed that 7.6% of GDF2 carriers developed isolated HHT, and identified cardiomyopathy and developmental disorders in BMP10 carriers. CONCLUSIONS GDF2 and BMP10 pathogenic variants are rare among PAH patients, and occasionally associated with CHD. HHT cases among GDF2 carriers are limited according to the literature. BMP10 full phenotypic ramifications warrant further investigation.
Collapse
Affiliation(s)
- Julien Grynblat
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | - Harm Jan Bogaard
- Amsterdam Cardiovascular Sciences Pulmonary Hypertension and Thrombosis, Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Mélanie Eyries
- Sorbonne Université, Département de Génétique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Meyrignac
- Service de Radiologie Diagnostique et Interventionnelle Adulte, Biomaps - Laboratoire d'Imagerie Multimodale - CEA-INSERM-CNRS, Hôpital de Bicêtre, DMU 14 Smart Imaging, AP-HP, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Xavier Jaïs
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- Department of Pathology, International Center for Thoracic Cancers (CICT), Gustave Roussy, Villejuif, France
| | - Lucas Celant
- Amsterdam Cardiovascular Sciences Pulmonary Hypertension and Thrombosis, Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lilian Meijboom
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marilyne Levy
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | | | - Ari Chaouat
- Département de Pneumologie, Université de Lorraine, CHU de Nancy, Vandœuvre-lès-Nancy, France
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases and Centre for Pulmonary Hypertension, Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG, UMR 754, INRAE, Claude Bernard University Lyon 1, Lyon, France
| | - Christophe Guignabert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
| | - Florence Coulet
- Sorbonne Université, Département de Génétique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Sitbon
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Damien Bonnet
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | - Marc Humbert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - David Montani
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- School of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
33
|
Tang M, Luo J, Liu Q, Song J. Coexistence of pulmonary arterial hypertension and straight back syndrome in a patient with a novel BMPR2 variant affecting cytoplasmic tail domain. Eur J Med Res 2024; 29:209. [PMID: 38561801 PMCID: PMC10983711 DOI: 10.1186/s40001-024-01810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Pathologic variants in the bone morphogenetic protein receptor-2 (BMPR2) gene cause a pulmonary arterial hypertension phenotype in an autosomal-dominant pattern with incomplete penetrance. Straight back syndrome is one of the causes of pseudo-heart diseases. To date, no cases of idiopathic or heritable pulmonary arterial hypertension with straight back syndrome have been reported. CASE PRESENTATION A 30-year-old female was diagnosed with pulmonary arterial hypertension by right heart catheterization. Computed tomography revealed a decreased anteroposterior thoracic space with heart compression, indicating a straight back syndrome. Genetic analysis by whole exome sequencing identified a novel c.2423_2424delGT (p.G808Gfs*4) germline frameshift variant within BMPR2 affecting the cytoplasmic tail domain. CONCLUSIONS This is the first report of different straight back characteristics in heritable pulmonary arterial hypertension with a novel germline BMPR2 variant. This finding may provide a new perspective on the variable penetrance of the pulmonary arterial hypertension phenotype.
Collapse
Affiliation(s)
- Mi Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, No. 139 Ren-Min Road, Changsha, 410011, China
| | - Jun Luo
- Department of Cardiovascular medicine, The Second Xiangya Hospital, Central South University, No. 139 Ren-Min Road, Changsha, 410011, China
| | - Qingqing Liu
- Department of Respiratory and Critical Care, The Second Xiangya Hospital, Central South University, No. 139 Ren-Min Road, Changsha, 410011, China
| | - Jie Song
- Department of Cardiovascular medicine, The Second Xiangya Hospital, Central South University, No. 139 Ren-Min Road, Changsha, 410011, China.
| |
Collapse
|
34
|
Thoreau B, Mouthon L. Pulmonary arterial hypertension associated with connective tissue diseases (CTD-PAH): Recent and advanced data. Autoimmun Rev 2024; 23:103506. [PMID: 38135175 DOI: 10.1016/j.autrev.2023.103506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Pulmonary arterial hypertension (PAH), corresponding to group 1 of pulmonary hypertension classification, is a rare disease with a major prognostic impact on morbidity and mortality. PAH can be either primary in idiopathic and heritable forms or secondary to other conditions including connective tissue diseases (CTD-PAH). Within CTD-PAH, the leading cause of PAH is systemic sclerosis (SSc) in Western countries, whereas systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) are predominantly associated with PAH in Asia. Although many advances have been made during the last two decades regarding classification, definition early screening and risk stratification and therapeutic aspects with initial combination treatment, the specificities of CTD-PAH are not yet clear. In this manuscript, we review recent literature data regarding the updated definition and classification of PAH, pathogenesis, epidemiology, detection, prognosis and treatment of CTD-PAH.
Collapse
Affiliation(s)
- Benjamin Thoreau
- Department of Internal Medicine, Referral Center for Rare Autoimmune and Systemic Diseases, AP-HP.Centre, Université Paris Cité, Hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75679 Cedex 14 Paris, France; Université Paris Cité, F-75006 Paris, France; INSERM U1016, Cochin Institute, CNRS UMR 8104, Université Paris Cité, Paris, France.
| | - Luc Mouthon
- Department of Internal Medicine, Referral Center for Rare Autoimmune and Systemic Diseases, AP-HP.Centre, Université Paris Cité, Hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75679 Cedex 14 Paris, France; Université Paris Cité, F-75006 Paris, France; INSERM U1016, Cochin Institute, CNRS UMR 8104, Université Paris Cité, Paris, France
| |
Collapse
|
35
|
Heaton MP, Harhay GP, Bassett AS, Clark HJ, Carlson JM, Jobman EE, Sadd HR, Pelster MC, Workman AM, Kuehn LA, Kalbfleisch TS, Piscatelli H, Carrie M, Krafsur GM, Grotelueschen DM, Vander Ley BL. Association of ARRDC3 and NFIA variants with bovine congestive heart failure in feedlot cattle. F1000Res 2024; 11:385. [PMID: 38680232 PMCID: PMC11046187 DOI: 10.12688/f1000research.109488.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Bovine congestive heart failure (BCHF) has become increasingly prevalent among feedlot cattle in the Western Great Plains of North America with up to 7% mortality in affected herds. BCHF is an untreatable complex condition involving pulmonary hypertension that culminates in right ventricular failure and death. Genes associated with BCHF in feedlot cattle have not been previously identified. Our aim was to search for genomic regions associated with this disease. METHODS A retrospective, matched case-control design with 102 clinical BCHF cases and their unaffected pen mates was used in a genome-wide association study. Paired nominal data from approximately 560,000 filtered single nucleotide polymorphisms (SNPs) were analyzed with McNemar's test. RESULTS Two independent genomic regions were identified as having the most significant association with BCHF: the arrestin domain-containing protein 3 gene ( ARRDC3), and the nuclear factor IA gene ( NFIA, mid- p-values, 1x10 -8 and 2x10 -7, respectively). Animals with two copies of risk alleles at either gene were approximately eight-fold more likely to have BCHF than their matched pen mates with either one or zero risk alleles at both genes (CI 95 = 3-17). Further, animals with two copies of risk alleles at both genes were 28-fold more likely to have BCHF than all others ( p-value = 1×10 -7, CI 95 = 4-206). A missense variant in ARRDC3 (C182Y) represents a potential functional variant since the C182 codon is conserved among all other jawed vertebrate species observed. A two-SNP test with markers in both genes showed 29% of 273 BCHF cases had homozygous risk genotypes in both genes, compared to 2.5% in 198 similar unaffected feedlot cattle. This and other DNA tests may be useful for identifying feedlot animals with the highest risk for BCHF in the environments described here. CONCLUSIONS Although pathogenic roles for variants in the ARRDC3 and NFIA genes are unknown, their discovery facilitates classifying animals by genetic risk and allows cattle producers to make informed decisions for selective breeding and animal health management.
Collapse
Affiliation(s)
- Michael P. Heaton
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, 68933, USA
| | - Gregory P. Harhay
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, 68933, USA
| | - Adam S. Bassett
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| | - Halden J. Clark
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| | - Jaden M. Carlson
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| | - Erin E. Jobman
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| | - Helen R. Sadd
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, 68933, USA
| | - Madeline C. Pelster
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| | - Aspen M. Workman
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, 68933, USA
| | - Larry A. Kuehn
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, 68933, USA
| | | | | | | | - Greta M. Krafsur
- Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, 80045, USA
| | - Dale M. Grotelueschen
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| | - Brian L. Vander Ley
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| |
Collapse
|
36
|
Heaton MP, Harhay GP, Bassett AS, Clark HJ, Carlson JM, Jobman EE, Sadd HR, Pelster MC, Workman AM, Kuehn LA, Kalbfleisch TS, Piscatelli H, Carrie M, Krafsur GM, Grotelueschen DM, Vander Ley BL. Association of ARRDC3 and NFIA variants with bovine congestive heart failure in feedlot cattle. F1000Res 2024; 11:385. [PMID: 38680232 PMCID: PMC11046187 DOI: 10.12688/f1000research.109488.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 05/01/2024] Open
Abstract
Background Bovine congestive heart failure (BCHF) has become increasingly prevalent among feedlot cattle in the Western Great Plains of North America with up to 7% mortality in affected herds. BCHF is an untreatable complex condition involving pulmonary hypertension that culminates in right ventricular failure and death. Genes associated with BCHF in feedlot cattle have not been previously identified. Our aim was to search for genomic regions associated with this disease. Methods A retrospective, matched case-control design with 102 clinical BCHF cases and their unaffected pen mates was used in a genome-wide association study. Paired nominal data from approximately 560,000 filtered single nucleotide polymorphisms (SNPs) were analyzed with McNemar's test. Results Two independent genomic regions were identified as having the most significant association with BCHF: the arrestin domain-containing protein 3 gene ( ARRDC3), and the nuclear factor IA gene ( NFIA, mid- p-values, 1x10 -8 and 2x10 -7, respectively). Animals with two copies of risk alleles at either gene were approximately eight-fold more likely to have BCHF than their matched pen mates with either one or zero risk alleles at both genes (CI 95 = 3-17). Further, animals with two copies of risk alleles at both genes were 28-fold more likely to have BCHF than all others ( p-value = 1×10 -7, CI 95 = 4-206). A missense variant in ARRDC3 (C182Y) represents a potential functional variant since the C182 codon is conserved among all other jawed vertebrate species observed. A two-SNP test with markers in both genes showed 29% of 273 BCHF cases had homozygous risk genotypes in both genes, compared to 2.5% in 198 similar unaffected feedlot cattle. This and other DNA tests may be useful for identifying feedlot animals with the highest risk for BCHF in the environments described here. Conclusions Although pathogenic roles for variants in the ARRDC3 and NFIA genes are unknown, their discovery facilitates classifying animals by genetic risk and allows cattle producers to make informed decisions for selective breeding and animal health management.
Collapse
Affiliation(s)
- Michael P. Heaton
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, 68933, USA
| | - Gregory P. Harhay
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, 68933, USA
| | - Adam S. Bassett
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| | - Halden J. Clark
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| | - Jaden M. Carlson
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| | - Erin E. Jobman
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| | - Helen R. Sadd
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, 68933, USA
| | - Madeline C. Pelster
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| | - Aspen M. Workman
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, 68933, USA
| | - Larry A. Kuehn
- USDA, ARS, US Meat Animal Research Center, Clay Center, Nebraska, 68933, USA
| | | | | | | | - Greta M. Krafsur
- Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, 80045, USA
| | - Dale M. Grotelueschen
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| | - Brian L. Vander Ley
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, Nebraska, 68933, USA
| |
Collapse
|
37
|
Singh N, Al-Naamani N, Brown MB, Long GM, Thenappan T, Umar S, Ventetuolo CE, Lahm T. Extrapulmonary manifestations of pulmonary arterial hypertension. Expert Rev Respir Med 2024; 18:189-205. [PMID: 38801029 DOI: 10.1080/17476348.2024.2361037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Extrapulmonary manifestations of pulmonary arterial hypertension (PAH) may play a critical pathobiological role and a deeper understanding will advance insight into mechanisms and novel therapeutic targets. This manuscript reviews our understanding of extrapulmonary manifestations of PAH. AREAS COVERED A group of experts was assembled and a complimentary PubMed search performed (October 2023 - March 2024). Inflammation is observed throughout the central nervous system and attempts at manipulation are an encouraging step toward novel therapeutics. Retinal vascular imaging holds promise as a noninvasive method of detecting early disease and monitoring treatment responses. PAH patients have gut flora alterations and dysbiosis likely plays a role in systemic inflammation. Despite inconsistent observations, the roles of obesity, insulin resistance and dysregulated metabolism may be illuminated by deep phenotyping of body composition. Skeletal muscle dysfunction is perpetuated by metabolic dysfunction, inflammation, and hypoperfusion, but exercise training shows benefit. Renal, hepatic, and bone marrow abnormalities are observed in PAH and may represent both end-organ damage and disease modifiers. EXPERT OPINION Insights into systemic manifestations of PAH will illuminate disease mechanisms and novel therapeutic targets. Additional study is needed to understand whether extrapulmonary manifestations are a cause or effect of PAH and how manipulation may affect outcomes.
Collapse
Affiliation(s)
- Navneet Singh
- Department of Medicine, Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Nadine Al-Naamani
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Beth Brown
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Gary Marshall Long
- Department of Kinesiology, Health and Sport Sciences, University of Indianapolis, Indianapolis, IN, USA
| | - Thenappan Thenappan
- Section of Advanced Heart Failure and Pulmonary Hypertension, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Corey E Ventetuolo
- Department of Medicine, Warren Alpert School of Medicine at Brown University, Providence, RI, USA
- Department of Health Services, Policy and Practice, Brown University, Providence, RI, USA
| | - Tim Lahm
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado, Aurora, CO, USA
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
| |
Collapse
|
38
|
Zhang J, Li Q, Liao P, Xiao R, Zhu L, Hu Q. Calcium sensing receptor: A promising therapeutic target in pulmonary hypertension. Life Sci 2024; 340:122472. [PMID: 38290572 DOI: 10.1016/j.lfs.2024.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Pulmonary hypertension (PH) is characterized by elevation of pulmonary arterial pressure and pulmonary vascular resistance. The increased pulmonary arterial pressure and pulmonary vascular resistance due to sustained pulmonary vasoconstriction and pulmonary vascular remodeling can lead to right heart failure and eventual death. A rise in intracellular Ca2+ concentration ([Ca2+]i) and enhanced pulmonary arterial smooth muscle cells (PASMCs) proliferation contribute to pulmonary vasoconstriction and pulmonary vascular remodeling. Recent studies demonstrated that extracellular calcium sensing receptor (CaSR) as a G-protein coupled receptor participates in [Ca2+]i increase induced by hypoxia in the experimental animals of PH and in PH patients. Pharmacological blockade or gene knockout of CaSR significantly attenuates the development of PH. This review will aim to discuss and update the pathogenicity of CaSR attributed to onset and progression in PH.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinli Li
- Department of Clinical Laboratory Medicine, People's Hospital of Dongxihu District Wuhan City and Union Dongxihu Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Liao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiao
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zhu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghua Hu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
39
|
Fröhlich E. Animals in Respiratory Research. Int J Mol Sci 2024; 25:2903. [PMID: 38474149 DOI: 10.3390/ijms25052903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The respiratory barrier, a thin epithelial barrier that separates the interior of the human body from the environment, is easily damaged by toxicants, and chronic respiratory diseases are common. It also allows the permeation of drugs for topical treatment. Animal experimentation is used to train medical technicians, evaluate toxicants, and develop inhaled formulations. Species differences in the architecture of the respiratory tract explain why some species are better at predicting human toxicity than others. Some species are useful as disease models. This review describes the anatomical differences between the human and mammalian lungs and lists the characteristics of currently used mammalian models for the most relevant chronic respiratory diseases (asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and tuberculosis). The generation of animal models is not easy because they do not develop these diseases spontaneously. Mouse models are common, but other species are more appropriate for some diseases. Zebrafish and fruit flies can help study immunological aspects. It is expected that combinations of in silico, in vitro, and in vivo (mammalian and invertebrate) models will be used in the future for drug development.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
40
|
Wang MT, Weng KP, Chang SK, Huang WC, Chen LW. Hemodynamic and Clinical Profiles of Pulmonary Arterial Hypertension Patients with GDF2 and BMPR2 Variants. Int J Mol Sci 2024; 25:2734. [PMID: 38473983 DOI: 10.3390/ijms25052734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Asians have a higher carrier rate of pulmonary arterial hypertension (PAH)-related genetic variants than Caucasians do. This study aimed to identify PAH-related genetic variants using whole exome sequencing (WES) in Asian idiopathic and heritable PAH cohorts. A WES library was constructed, and candidate variants were further validated by polymerase chain reaction and Sanger sequencing in the PAH cohort. In a total of 69 patients, the highest incidence of variants was found in the BMPR2, ATP13A3, and GDF2 genes. Regarding the BMPR2 gene variants, there were two nonsense variants (c.994C>T, p. Arg332*; c.1750C>T, p. Arg584*), one missense variant (c.1478C>T, p. Thr493Ile), and one novel in-frame deletion variant (c.877_888del, p. Leu293_Ser296del). Regarding the GDF2 variants, there was one likely pathogenic nonsense variant (c.259C>T, p. Gln87*) and two missense variants (c.1207G>A, p. Val403Ile; c.38T>C, p. Leu13Pro). The BMPR2 and GDF2 variant subgroups had worse hemodynamics. Moreover, the GDF2 variant patients were younger and had a significantly lower GDF2 value (135.6 ± 36.2 pg/mL, p = 0.002) in comparison to the value in the non-BMPR2/non-GDF2 mutant group (267.8 ± 185.8 pg/mL). The BMPR2 variant carriers had worse hemodynamics compared to the patients with the non-BMPR2/non-GDF2 mutant group. Moreover, there was a significantly lower GDF2 value in the GDF2 variant carriers compared to the control group. GDF2 may be a protective or corrected modifier in certain genetic backgrounds.
Collapse
Affiliation(s)
- Mei-Tzu Wang
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ken-Pen Weng
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | | | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Physical Therapy, Fooyin University, Kaohsiung 813, Taiwan
| | - Lee-Wei Chen
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 813, Taiwan
| |
Collapse
|
41
|
Alghamdi B, Aljuhani S, Alansari G, BinHumaid NM, Alkahtani A. Heritable Pulmonary Arterial Hypertension in a Patient With Empty Sella Syndrome: A Case Report. Cureus 2024; 16:e54632. [PMID: 38524058 PMCID: PMC10959505 DOI: 10.7759/cureus.54632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with multiple contributing factors. Genetics, epigenetics, hormonal, and immune factors all contribute to the development and progression of the disease. A number of endocrine disorders and metabolic syndromes are being studied for their potential role in the development of PAH. We report to you a case of a 32-year-old female with a rare presentation of a non-BMPR2 mutation heritable PAH complicated with empty sella syndrome and panhypopituitarism.
Collapse
Affiliation(s)
| | - Shahad Aljuhani
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Ghaday Alansari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Nouf M BinHumaid
- Pulmonology, King Faisal Specialist Hospital & Research Centre, Jeddah, SAU
| | - Abdulkareem Alkahtani
- Medical Imaging, King Abdulaziz Medical City, Jeddah, SAU
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, SAU
| |
Collapse
|
42
|
Alotaibi M, Harvey LD, Nichols WC, Pauciulo MW, Hemnes A, Long T, Watrous JD, Begzati A, Tuomilehto J, Havulinna AS, Niiranen TJ, Jousilahti P, Salomaa V, Bertero T, Kim NH, Desai AA, Malhotra A, Yuan JXJ, Cheng S, Chan SY, Jain M. Pulmonary primary oxysterol and bile acid synthesis as a predictor of outcomes in pulmonary arterial hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576474. [PMID: 38328113 PMCID: PMC10849469 DOI: 10.1101/2024.01.20.576474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and fatal vascular disease with heterogeneous clinical manifestations. To date, molecular determinants underlying the development of PAH and related outcomes remain poorly understood. Herein, we identify pulmonary primary oxysterol and bile acid synthesis (PPOBAS) as a previously unrecognized pathway central to PAH pathophysiology. Mass spectrometry analysis of 2,756 individuals across five independent studies revealed 51 distinct circulating metabolites that predicted PAH-related mortality and were enriched within the PPOBAS pathway. Across independent single-center PAH studies, PPOBAS pathway metabolites were also associated with multiple cardiopulmonary measures of PAH-specific pathophysiology. Furthermore, PPOBAS metabolites were found to be increased in human and rodent PAH lung tissue and specifically produced by pulmonary endothelial cells, consistent with pulmonary origin. Finally, a poly-metabolite risk score comprising 13 PPOBAS molecules was found to not only predict PAH-related mortality but also outperform current clinical risk scores. This work identifies PPOBAS as specifically altered within PAH and establishes needed prognostic biomarkers for guiding therapy in PAH.
Collapse
Affiliation(s)
- Mona Alotaibi
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lloyd D. Harvey
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William C. Nichols
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael W. Pauciulo
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Anna Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tao Long
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jeramie D. Watrous
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Arjana Begzati
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aki S. Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Teemu J. Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Nick H. Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ankit A. Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason X.-J. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohit Jain
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Tai YY, Yu Q, Tang Y, Sun W, Kelly NJ, Okawa S, Zhao J, Schwantes-An TH, Lacoux C, Torrino S, Aaraj YA, Khoury WE, Negi V, Liu M, Corey CG, Belmonte F, Vargas SO, Schwartz B, Bhat B, Chau BN, Karnes JH, Satoh T, Barndt RJ, Wu H, Parikh VN, Wang J, Zhang Y, McNamara D, Li G, Speyer G, Wang B, Shiva S, Kaufman B, Kim S, Gomez D, Mari B, Cho MH, Boueiz A, Pauciulo MW, Southgate L, Trembath RC, Sitbon O, Humbert M, Graf S, Morrell NW, Rhodes CJ, Wilkins MR, Nouraie M, Nichols WC, Desai AA, Bertero T, Chan SY. Allele-specific control of rodent and human lncRNA KMT2E-AS1 promotes hypoxic endothelial pathology in pulmonary hypertension. Sci Transl Med 2024; 16:eadd2029. [PMID: 38198571 PMCID: PMC10947529 DOI: 10.1126/scitranslmed.add2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Hypoxic reprogramming of vasculature relies on genetic, epigenetic, and metabolic circuitry, but the control points are unknown. In pulmonary arterial hypertension (PAH), a disease driven by hypoxia inducible factor (HIF)-dependent vascular dysfunction, HIF-2α promoted expression of neighboring genes, long noncoding RNA (lncRNA) histone lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 stabilized KMT2E protein to increase epigenetic histone 3 lysine 4 trimethylation (H3K4me3), driving HIF-2α-dependent metabolic and pathogenic endothelial activity. This lncRNA axis also increased HIF-2α expression across epigenetic, transcriptional, and posttranscriptional contexts, thus promoting a positive feedback loop to further augment HIF-2α activity. We identified a genetic association between rs73184087, a single-nucleotide variant (SNV) within a KMT2E intron, and disease risk in PAH discovery and replication patient cohorts and in a global meta-analysis. This SNV displayed allele (G)-specific association with HIF-2α, engaged in long-range chromatin interactions, and induced the lncRNA-KMT2E tandem in hypoxic (G/G) cells. In vivo, KMT2E-AS1 deficiency protected against PAH in mice, as did pharmacologic inhibition of histone methylation in rats. Conversely, forced lncRNA expression promoted more severe PH. Thus, the KMT2E-AS1/KMT2E pair orchestrates across convergent multi-ome landscapes to mediate HIF-2α pathobiology and represents a key clinical target in pulmonary hypertension.
Collapse
Affiliation(s)
- Yi Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Qiujun Yu
- Cardiovascular Division, Department Of Internal Medicine, Washington University School of Medicine, St. louis, Mo 63110, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Neil J. Kelly
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Va Medical Center, Pittsburgh, PA 15240, USA
| | - Satoshi Okawa
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Tae-Hwi Schwantes-An
- Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, In 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, In 46202, USA
| | - Caroline Lacoux
- Université côte d’Azur, CNRS, IPMC, IHU RespiERA, Sophia-Antipolis, 06903, France
| | - Stephanie Torrino
- Université côte d’Azur, CNRS, IPMC, IHU RespiERA, Sophia-Antipolis, 06903, France
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Wadih El Khoury
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Catherine G. Corey
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Pediatrics, University of Pittsburgh Medical center children’s hospital, Pittsburgh, PA 15224, USA
| | - Frances Belmonte
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sara O. Vargas
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Bal Bhat
- Translate Bio, Lexington, MA 02421, USA
| | | | - Jason H. Karnes
- Division of Pharmacogenomics, College of Pharmacy, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Taijyu Satoh
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980–8575, Japan
| | - Robert J. Barndt
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Haodi Wu
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Victoria N. Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yingze Zhang
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Dennis McNamara
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Gang Li
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Gil Speyer
- Research Computing, Arizona State University, Tempe, AZ 85281, USA
| | - Bing Wang
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brett Kaufman
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Seungchan Kim
- Center for Computational Systems Biology, Department of Electrical and Computer Engineering, Roy G. Perry college of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Bernard Mari
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, In 46202, USA
| | - Michael H. Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Adel Boueiz
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael W. Pauciulo
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Laura Southgate
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, WC2R 2lS, UK
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, SW17 0RE, UK
| | - Richard C. Trembath
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, WC2R 2lS, UK
| | - Olivier Sitbon
- Université Paris–Saclay, INSERM, Assistance Publique Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin Bicêtre, 94270, France
| | - Marc Humbert
- Université Paris–Saclay, INSERM, Assistance Publique Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin Bicêtre, 94270, France
| | - Stefan Graf
- Department of Medicine, University of Cambridge, Cambridge, CB2 1TN, UK
- NIHR Bioresource for Translational Research, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Haematology, University of Cambridge, NHS Blood and Transplant, Long Road, Cambridge, CB2 2PT, UK
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Cambridge, CB2 1TN, UK
- Centessa Pharmaceuticals, Altrincham, Cheshire, WA14 2DT, UK
| | | | - Martin R. Wilkins
- National Heart and Lung Institute, Imperial College London, London, SW3 6lY, UK
| | - Mehdi Nouraie
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - William C. Nichols
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ankit A. Desai
- Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, In 46202, USA
| | - Thomas Bertero
- Université côte d’Azur, CNRS, IPMC, IHU RespiERA, Sophia-Antipolis, 06903, France
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
44
|
Tomita S, Nakanishi N, Ogata T, Higuchi Y, Sakamoto A, Tsuji Y, Suga T, Matoba S. The Cavin-1/Caveolin-1 interaction attenuates BMP/Smad signaling in pulmonary hypertension by interfering with BMPR2/Caveolin-1 binding. Commun Biol 2024; 7:40. [PMID: 38182755 PMCID: PMC10770141 DOI: 10.1038/s42003-023-05693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
Caveolin-1 (CAV1) and Cavin-1 are components of caveolae, both of which interact with and influence the composition and stabilization of caveolae. CAV1 is associated with pulmonary arterial hypertension (PAH). Bone morphogenetic protein (BMP) type 2 receptor (BMPR2) is localized in caveolae associated with CAV1 and is commonly mutated in PAH. Here, we show that BMP/Smad signaling is suppressed in pulmonary microvascular endothelial cells of CAV1 knockout mice. Moreover, hypoxia enhances the CAV1/Cavin-1 interaction but attenuates the CAV1/BMPR2 interaction and BMPR2 membrane localization in pulmonary artery endothelial cells (PAECs). Both Cavin-1 and BMPR2 are associated with the CAV1 scaffolding domain. Cavin-1 decreases BMPR2 membrane localization by inhibiting the interaction of BMPR2 with CAV1 and reduces Smad signal transduction in PAECs. Furthermore, Cavin-1 knockdown is resistant to CAV1-induced pulmonary hypertension in vivo. We demonstrate that the Cavin-1/Caveolin-1 interaction attenuates BMP/Smad signaling and is a promising target for the treatment of PAH.
Collapse
Affiliation(s)
- Shinya Tomita
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Akira Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yumika Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takaomi Suga
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
45
|
Li M, Pan W, Tian D, Chen D, Zhang X, Zhang Y, Chen S, Zhou D, Ge J. Diagnostic Value of Serum Galectin-3 Binding Protein Level in Patients with Pulmonary Arterial Hypertension. Curr Vasc Pharmacol 2024; 22:67-77. [PMID: 38038005 DOI: 10.2174/0115701611268078231010072521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) still lacks effective biomarkers to assist in its diagnosis and prognosis. Galectin-3 binding protein (Gal-3BP) plays a role in immune and inflammatory diseases. OBJECTIVE This study aimed to evaluate Gal-3BP as a prognostic and predictive factor in patients with PAH. METHODS From January 2017 to December 2019, we enrolled 167 consecutive PAH patients and 58 healthy controls. Right heart catheterization (RHC) was used to diagnose PAH. Serum Gal-3BP levels were measured by high-sensitivity human enzyme-linked immunosorbent assay (ELISA). RESULTS Serum Gal-3BP levels in the PAH group were significantly higher compared with the control group (4.87±2.09 vs 2.22±0.86 μg/mL, p<0.001). Gal-3BP level was correlated with several hemodynamic parameters obtained from RHC (p<0.001). Multivariate linear regression analysis showed that Gal-3BP was a risk factor for PAH (odds ratio (OR)=2.947, 95% CI: 1.821-4.767, p<0.001). The optimal cut-off value of serum Gal-3BP level for predicting PAH was 2.89 μg/mL (area under the curve (AUC)=0.860, 95 % CI: 0.811-0.910, p<0.001). Kaplan-Meier analysis showed that Gal-3BP levels above the median (4.87 μg/mL) were associated with an increased risk of death in patients with PAH (hazard ratio (HR)=8.868, 95 % CI: 3.631-21.65, p<0.0001). Cox multivariate risk regression analysis showed that Gal-3BP was a risk factor for death in PAH patients (HR=2.779, 95 % CI: 1.823-4.237, p<0.001). CONCLUSION Serum Gal-3BP levels were increased in patients with PAH, and levels of Gal-3BP were associated with the severity of PAH. Gal-3BP might have predictive value for the diagnosis and prognosis of PAH.
Collapse
Affiliation(s)
- Mingfei Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Wenzhi Pan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Dan Tian
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dandan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yuan Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shasha Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
46
|
Santos RT, de Sá Freire Onofre ME, de Assis Fernandes Caldeira D, Klein AB, Rocco PRM, Cruz FF, Silva PL. Pharmacological Agents and Potential New Therapies in Pulmonary Arterial Hypertension. Curr Vasc Pharmacol 2024; 22:155-170. [PMID: 38115617 DOI: 10.2174/0115701611266576231211045731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by an imbalance between vasoactive mediators, which causes vascular remodeling, increased pulmonary vascular resistance, and right ventricular overload, ultimately leading to heart failure and death. A metabolic theory has been suggested to explain the pathophysiology of PAH whereby abnormalities in mitochondrial biogenesis can trigger a hyperproliferative and apoptosis-resistant phenotype in cardiopulmonary and malignant cells, leading to mitochondrial dysfunction, which in turn causes the Warburg effect. This can culminate in the mitophagy of pulmonary vessels and cardiomyocytes. The present narrative review focuses on the pathophysiology of PAH, the pharmacological agents currently available for its treatment, and promising and challenging areas of therapeutic investigation.
Collapse
Affiliation(s)
- Renata Trabach Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Eduarda de Sá Freire Onofre
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dayene de Assis Fernandes Caldeira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane Bello Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Al-Qazazi R, Emon IM, Potus F, Martin AY, Lima PDA, Vlasschaert C, Chen KH, Wu D, Gupta AD, Noordhof C, Jefferson L, McNaughton AJM, Bick AG, Pauciulo MW, Nichols WC, Chung WK, Hassoun PM, Damico RL, Rauh MJ, Archer SL. Germline and Somatic Mutations in DNA Methyltransferase 3A (DNMT3A) Predispose to Pulmonary Arterial Hypertension (PAH) in Humans and Mice: Implications for Associated PAH. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.30.23300391. [PMID: 38234783 PMCID: PMC10793539 DOI: 10.1101/2023.12.30.23300391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Background Mutations are found in 10-20% of idiopathic PAH (IPAH) patients, but none are consistently identified in connective tissue disease-associated PAH (APAH), which accounts for ∼45% of PAH cases. TET2 mutations, a cause of clonal hematopoiesis of indeterminant potential (CHIP), predispose to an inflammatory type of PAH. We now examine mutations in another CHIP gene, DNMT3A , in PAH. Methods We assessed DNMT3A mutation prevalence in PAH Biobank subjects as compared with controls, first using whole exome sequencing (WES)-derived CHIP calls in 1832 PAH Biobank patients versus 7509 age-and sex-matched gnomAD controls. We then performed deep, targeted panel sequencing of CHIP genes on a subset of 710 PAH Biobank patients and compared the prevalence of DNMT3A mutations therein to an independent pooled control cohort (N = 3645). In another cohort of 80 PAH patients and 41 controls, DNMT3A mRNA expression was studied in peripheral blood mononuclear cells (PBMCs). Finally, we evaluated the development of PAH in a conditional, hematopoietic, Dnmt3a knockout mouse model. Results DNMT3A mutations were more frequent in PAH cases versus control subjects in the WES dataset (OR 2.60, 95% CI: 1.71-4.27). Among PAH patients, 33 had DNMT3A variants, most of whom had APAH (21/33). While 21/33 had somatic mutations (female:male 17:4), germline variants occurred in 12/33 (female:male 11:1). Hemodynamics were comparable with and without DNMT3A mutations (mPAP=58±21 vs. 52±18 mmHg); however, patients with DNMT3A mutations were unresponsive to acute vasodilator testing. Targeted panel sequencing identified that 14.6% of PAH patients had CHIP mutations (104/710), with DNMT3A accounting for 49/104. There was a significant association between all CHIP mutations and PAH in analyses adjusted for age and sex (OR 1.40, 95% CI: 1.09-1.80), though DNMT3A CHIP alone was not significantly enriched (OR:1.15, 0.82-1.61). DNMT3A expression was reduced in patient-derived versus control PAH-PBMCs. Spontaneous PAH developed in Dnmt3a -/- mice, and it was exacerbated by 3 weeks of hypoxia. Dnmt3a -/- mice had increased lung macrophages and elevated plasma IL-13. The IL-1β antibody canakinumab attenuated PAH in Dnmt3a -/- mice. Conclusions Germline and acquired DNMT3A variants predispose to PAH in humans. DNMT3A mRNA expression is reduced in human PAH PBMCs. Hematopoietic depletion of Dnmt3a causes inflammatory PAH in mice. DNMT3A is a novel APAH gene and may be a biomarker and therapeutic target.
Collapse
|
48
|
Condliffe R, Durrington C, Hameed A, Lewis RA, Venkateswaran R, Gopalan D, Dorfmüller P. Clinical-radiological-pathological correlation in pulmonary arterial hypertension. Eur Respir Rev 2023; 32:230138. [PMID: 38123231 PMCID: PMC10731450 DOI: 10.1183/16000617.0138-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/21/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary hypertension (PH) is defined by the presence of a mean pulmonary arterial pressure >20 mmHg. Current guidelines describe five groups of PH with shared pathophysiological and clinical features. In this paper, the first of a series covering all five PH classification groups, the clinical, radiological and pathological features of pulmonary arterial hypertension (PAH) will be reviewed. PAH may develop in the presence of associated medical conditions or a family history, following exposure to certain medications or drugs, or may be idiopathic in nature. Although all forms of PAH share common histopathological features, the presence of certain pulmonary arterial abnormalities, such as plexiform lesions, and extent of co-existing pulmonary venous involvement differs between the different subgroups. Radiological investigations are key to diagnosing the correct form of PH and a systematic approach to interpretation, especially of computed tomography, is essential.
Collapse
Affiliation(s)
- Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
- These authors contributed equally to this work
| | - Charlotte Durrington
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Abdul Hameed
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Robert A Lewis
- Department of Respiratory Medicine, Middlemore Hospital, Auckland, New Zealand
| | - Rajamiyer Venkateswaran
- Department of Heart and Lung Transplantation, Manchester University NHS Foundation Trust, Manchester, UK
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
- These authors contributed equally to this work
| | - Peter Dorfmüller
- Department of Pathology, University Hospital of Giessen and Marburg, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
- These authors contributed equally to this work
| |
Collapse
|
49
|
Singh N, Eickhoff C, Garcia-Agundez A, Bertone P, Paudel SS, Tambe DT, Litzky LA, Cox-Flaherty K, Klinger JR, Monaghan SF, Mullin CJ, Pereira M, Walsh T, Whittenhall M, Stevens T, Harrington EO, Ventetuolo CE. Transcriptional profiles of pulmonary artery endothelial cells in pulmonary hypertension. Sci Rep 2023; 13:22534. [PMID: 38110438 PMCID: PMC10728171 DOI: 10.1038/s41598-023-48077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by endothelial cell (EC) dysfunction. There are no data from living patients to inform whether differential gene expression of pulmonary artery ECs (PAECs) can discern disease subtypes, progression and pathogenesis. We aimed to further validate our previously described method to propagate ECs from right heart catheter (RHC) balloon tips and to perform additional PAEC phenotyping. We performed bulk RNA sequencing of PAECs from RHC balloons. Using unsupervised dimensionality reduction and clustering we compared transcriptional signatures from PAH to controls and other forms of pulmonary hypertension. Select PAEC samples underwent single cell and population growth characterization and anoikis quantification. Fifty-four specimens were analyzed from 49 subjects. The transcriptome appeared stable over limited passages. Six genes involved in sex steroid signaling, metabolism, and oncogenesis were significantly upregulated in PAH subjects as compared to controls. Genes regulating BMP and Wnt signaling, oxidative stress and cellular metabolism were differentially expressed in PAH subjects. Changes in gene expression tracked with clinical events in PAH subjects with serial samples over time. Functional assays demonstrated enhanced replication competency and anoikis resistance. Our findings recapitulate fundamental biological processes of PAH and provide new evidence of a cancer-like phenotype in ECs from the central vasculature of PAH patients. This "cell biopsy" method may provide insight into patient and lung EC heterogeneity to advance precision medicine approaches in PAH.
Collapse
Affiliation(s)
- Navneet Singh
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Carsten Eickhoff
- Department of Computer Science, Brown University, Providence, RI, USA
| | | | - Paul Bertone
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Dhananjay T Tambe
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Department of Mechanical Aerospace and Biomedical Engineering, College of Engineering, University of South Alabama, Mobile, AL, USA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - James R Klinger
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sean F Monaghan
- Department of Surgery, Alpert Medical School of Brown University, Providence, RI, USA
| | - Christopher J Mullin
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | - Mary Whittenhall
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Elizabeth O Harrington
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Corey E Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Health Services, Policy and Practice, Brown University, Providence, RI, USA.
| |
Collapse
|
50
|
Newcomb G, Farkas L. Endothelial cell clonality, heterogeneity and dysfunction in pulmonary arterial hypertension. Front Med (Lausanne) 2023; 10:1304766. [PMID: 38126077 PMCID: PMC10731016 DOI: 10.3389/fmed.2023.1304766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Our understanding of the pathophysiology of pulmonary arterial hypertension (PAH) has evolved over recent years, with the recognition that endothelial cell (EC) dysfunction and inflammation play an integral role in the development of this disease. ECs within the pulmonary vasculature play a unique role in maintaining vascular integrity and barrier function, regulating gas exchange, and contributing to vascular tone. Using single-cell transcriptomics, research has shown that there are multiple, unique EC subpopulations with different phenotypes. In response to injury or certain stressors such as hypoxia, there can be a dysregulated response with aberrant endothelial injury repair involving other pulmonary vascular cells and even immune cells. This aberrant signaling cascade is potentially a primary driver of pulmonary arterial remodeling in PAH. Recent studies have examined the role of EC clonal expansion, immune dysregulation, and genetic mutations in the pathogenesis of PAH. This review summarizes the existing literature on EC subpopulations and the intricate mechanisms through which ECs develop aberrant physiologic phenotypes and contribute to PAH. Our goal is to provide a framework for understanding the unique pulmonary EC biology and pathophysiology that is involved in the development of PAH.
Collapse
Affiliation(s)
- Geoffrey Newcomb
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Laszlo Farkas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|