1
|
Dorfman B, Marcos-Hadad E, Tadmor-Levi R, David L. Disease resistance and infectivity of virus susceptible and resistant common carp strains. Sci Rep 2024; 14:4677. [PMID: 38409362 PMCID: PMC10897132 DOI: 10.1038/s41598-024-55133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
Infectious diseases challenge health and welfare of humans and animals. Unlike for humans, breeding of genetically resistant animals is a sustainable solution, also providing unique research opportunities. Chances to survive a disease are improved by disease resistance, but depend also on chances to get infected and infect others. Considerable knowledge exists on chances of susceptible and resistant animals to survive a disease, yet, almost none on their infectivity and if and how resistance and infectivity correlate. Common carp (Cyprinus carpio) is widely produced in aquaculture, suffering significantly from a disease caused by cyprinid herpes virus type 3 (CyHV-3). Here, the infectivity of disease-resistant and susceptible fish types was tested by playing roles of shedders (infecting) and cohabitants (infected) in all four type-role combinations. Resistant shedders restricted spleen viral load and survived more than susceptible ones. However, mortality of susceptible cohabitants infected by resistant shedders was lower than that of resistant cohabitants infected by susceptible shedders. Virus levels in water were lower in tanks with resistant shedders leading to lower spleen viral loads in cohabitants. Thus, we empirically demonstrated that disease resistant fish survive better and infect less, with implications to epidemiology in general and to the benefit of aquaculture production.
Collapse
Affiliation(s)
- Batya Dorfman
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Evgeniya Marcos-Hadad
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roni Tadmor-Levi
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior David
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
2
|
Clouthier S, Tomczyk M, Schroeder T, Klassen C, Dufresne A, Emmenegger E, Nalpathamkalam T, Wang Z, Thiruvahindrapuram B. A New Sturgeon Herpesvirus from Juvenile Lake Sturgeon Acipenser fulvescens Displaying Epithelial Skin Lesions. Pathogens 2023; 12:1115. [PMID: 37764923 PMCID: PMC10537993 DOI: 10.3390/pathogens12091115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Herpesvirus infections of sturgeon pose a potential threat to sturgeon culture efforts worldwide. A new epitheliotropic herpesvirus named Acipenser herpesvirus 3 (AciHV-3) was detected in hatchery-reared Lake Sturgeon Acipenser fulvescens displaying skin lesions in central Canada. The growths were discovered in the fall, reached average prevalence levels of 0.2-40% and eventually regressed. No unusual mortality was observed. The cellular changes within the lesions included epithelial hyperplasia and were reminiscent of other herpesvirus infections. The virus was not evident in lesions examined by electron microscopy. Skin tissue homogenates from symptomatic sturgeon produced atypical cytopathic effects on a primary Lake Sturgeon cell line, and next-generation sequence analysis of the DNA samples revealed the presence of an alloherpesvirus. A new genotyping PCR assay targeting the major capsid protein sequence detected AciHV-3 in symptomatic Lake Sturgeon as well as other apparently healthy sturgeon species. Bayesian inference of phylogeny reconstructed with a concatenation of five alloherpesvirus core proteins revealed a new Alloherpesviridae lineage isomorphic with a new genus. The presence of AciHV-3 homologs in cell lines and sturgeon sequence datasets, low sequence divergence among these homologs and branching patterns within the genotyping phylogeny provide preliminary evidence of an endogenous virus lifestyle established in an ancestral sturgeon.
Collapse
Affiliation(s)
- Sharon Clouthier
- Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada;
| | - Marek Tomczyk
- Manitoba Agriculture & Resource Development Veterinary Diagnostic Services, 545 University Crescent, Winnipeg, MB R3T 5S6, Canada;
| | - Tamara Schroeder
- Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada;
| | - Cheryl Klassen
- Manitoba Hydro, 360 Portage Ave, Winnipeg, MB R3C 0G8, Canada;
| | - André Dufresne
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, MB R3E 3M4, Canada;
| | - Eveline Emmenegger
- Western Fisheries Research Center, U.S. Geological Survey, 6505 NE 65th Street, Seattle, WA 98115, USA;
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; (T.N.); (Z.W.); (B.T.)
| | - Zhuozhi Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; (T.N.); (Z.W.); (B.T.)
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; (T.N.); (Z.W.); (B.T.)
| |
Collapse
|
3
|
Gao Y, Sridhar A, Bernard N, He B, Zhang H, Pirotte S, Desmecht S, Vancsok C, Boutier M, Suárez NM, Davison AJ, Donohoe O, Vanderplasschen AFC. Virus-induced interference as a means for accelerating fitness-based selection of cyprinid herpesvirus 3 single-nucleotide variants in vitro and in vivo. Virus Evol 2023; 9:vead003. [PMID: 36816049 PMCID: PMC9936792 DOI: 10.1093/ve/vead003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and is advantageous to research because, unlike many herpesviruses, it can be studied in the laboratory by infection of the natural host (common and koi carp). Previous studies have reported a negative correlation among CyHV-3 strains between viral growth in vitro (in cell culture) and virulence in vivo (in fish). This suggests the existence of genovariants conferring enhanced fitness in vitro but reduced fitness in vivo and vice versa. Here, we identified the syncytial plaque formation in vitro as a common trait of CyHV-3 strains adapted to cell culture. A comparison of the sequences of virion transmembrane protein genes in CyHV-3 strains, and the use of various recombinant viruses, demonstrated that this trait is linked to a single-nucleotide polymorphism (SNP) in the open reading frame (ORF) 131 coding sequence (C225791T mutation) that results in codon 183 encoding either an alanine (183A) or a threonine (183T) residue. In experiments involving infections with recombinant viruses differing only by this SNP, the 183A genovariant associated with syncytial plaque formation was the more fit in vitro but the less fit in vivo. In experiments involving coinfection with both viruses, the more fit genovariant contributed to the purifying selection of the less fit genovariant by outcompeting it. In addition, this process appeared to be accelerated by viral stimulation of interference at a cellular level and stimulation of resistance to superinfection at a host level. Collectively, this study illustrates how the fundamental biological properties of some viruses and their hosts may have a profound impact on the degree of diversity that arises within viral populations.
Collapse
Affiliation(s)
- Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Noah Bernard
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Bo He
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Haiyan Zhang
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Sébastien Pirotte
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Salomé Desmecht
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, Liège B-4000, Belgium
| | - Catherine Vancsok
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Owen Donohoe
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium.,Bioscience Research Institute, Technological University of the Shannon, Midlands Midwest, Athlone, Co. Westmeath N37HD68, Ireland
| | - Alain F C Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| |
Collapse
|
4
|
Felten M, Adamek M, Gebert M, Rakers S, Steinhagen D. The influence of viral infection on cell line characteristics: Lessons learned from working with new cell lines from common carp. JOURNAL OF FISH DISEASES 2022; 45:1767-1780. [PMID: 35934930 DOI: 10.1111/jfd.13698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Several factors influence the susceptibility of cell lines to infection by different viruses. These can be related to tissue specificity of the viruses, physiological status of the cells, their differentiation level and their capacity to mount immune responses to combat viral infection. To study the influence of cell characteristics and immune responses on their susceptibility on virus infection, newly developed cell lines from common carp brain (CCAbre), fins (CCApin), gills (CCAgill), and heart (CCAcar) and the established common carp brain (CCB) cells were exposed to the carp infecting viruses cyprinid herpesvirus 3 (CyHV-3), carp oedema virus (CEV), and the yet not fully characterized common carp paramyxovirus (CCPV). The susceptibility of these cells to viral infection was measured by formation of a cytopathic effect (CPE), estimation of viral particles produced by the cells and presence of viral mRNA in the cells. Viral susceptibility of the cells was compared to cell characteristics, measured by mRNA expression of the epithelial cell markers cadherin 1, occludin, and cytokeratin 15 and the mesenchymal cell marker vimentin, as well as to the level of type I interferon (IFN) responses. All cell lines were susceptible to CyHV-3 and CCPV but not to CEV infection. The cell lines had different levels of type I IFN responses towards the viruses. Typically, CyHV-3 did not induce high type I IFN responses, while CCPV induced high responses in CCAbre, CCAcar, CCApin cells but no response in CCAgill cells. Consequently, the type I IFN response modulated cell susceptibility to CCPV but not to CyHV-3. Interestingly, when the three different passage levels of CCB cells were examined, the susceptibility of one passage was significantly lower for CyHV-3 and higher for CCPV infection. This coincided with a loss of epithelial markers and lower type I IFN responses. This study confirms an influence of cell characteristics and immune responses on the susceptibility of carp cell lines for virus infection. Depending on the vulnerability of the virus to type I IFN responses, cells with a lower IFN-response can be superior for replication of some viruses. Batches of CCB cells can differentiate and thus may have significantly different levels of susceptibility to certain viruses.
Collapse
Affiliation(s)
- Martin Felten
- Fish Disease Research Unit, University of Veterinary Medicine, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine, Hannover, Germany
| | - Marina Gebert
- Working Group Aquatic Cell Technology and Aquaculture, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| | - Sebastian Rakers
- Working Group Aquatic Cell Technology and Aquaculture, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
5
|
Machat R, Pojezdal L, Gebauer J, Matiasovic J, Tesarik R, Minarova H, Hodkovicova N, Faldyna M. Early immune response of two common carp breeds to koi herpesvirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:206-215. [PMID: 35940535 DOI: 10.1016/j.fsi.2022.07.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Economic importance of common carp (Cyprinus carpio L.) increases every year. Viral diseases are major threat for carp aquaculture and cause significant economic losses. Koi herpesvirus (KHV) is one of the most serious carp diseases. Current study is focused on confirmation of possible differences in early immune response to KHV depending on level of resistance. Class I interferon signalling, complement cascade and cell-mediated cytotoxicity are hypothesized as major mechanisms of early innate immune response against KHV. Different breeds of common carp show distinct level of resistance to KHV. Two breeds of common carp with completely different susceptibility to KHV were chosen for current research: amur wild carp (AS) as highly resistant and koi carp (KOI) as very susceptible breed. KHV infection caused no mortalities, but the viral load in selected tissues increased during infection. Levels of expressions of chosen genes was examined using qRT-PCR and overall change in protein expression profiles was analysed by mass spectrometry. Significant differences in immune response between AS and KOI were detected mostly at the level of protein expression. Although cell-mediated cytotoxicity showed minimal influence during KHV infection, many immune response parameters related to class I interferon signalling pathway and complement cascade were increased earlier during KHV infection in AS comparing to KOI.
Collapse
Affiliation(s)
- Radek Machat
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Lubomir Pojezdal
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Jan Gebauer
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Jan Matiasovic
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Radek Tesarik
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Hana Minarova
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic; Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, 612 42, Czech Republic
| | - Nikola Hodkovicova
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Martin Faldyna
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic.
| |
Collapse
|
6
|
de Lucca Maganha SR, Cardoso PHM, de Carvalho Balian S, de Almeida-Queiroz SR, Fernandes AM, de Sousa RLM. Molecular detection and phylogenetic analysis of Cyprinid herpesvirus 3 in Brazilian ornamental fish. Braz J Microbiol 2022; 53:1807-1815. [PMID: 35867280 PMCID: PMC9679093 DOI: 10.1007/s42770-022-00797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/07/2022] [Indexed: 01/13/2023] Open
Abstract
Cyprinid herpesvirus 3 has a worldwide distribution and presents high mortality rates in species of Cyprinus carpio, causing serious economic loss to the global aquaculture industry. The description of this infection in other ornamental fish species is still limited. For this purpose, 100 ornamental fish from 24 different species were tested by PCR for Cyprinid hespesvirus 3 and the positive samples represented 6% of the tested samples. Phylogenetic reconstruction, based on the Thymidine Kinase gene, revealed the existence of two distinct clades. One clade grouped a Brazilian sample with European and Asian genotypes of CyHV-3 and a second clade, containing only Brazilian sequences described in this study. All of the Brazilian sequences showed identity values greater than 97.7% when compared to each other. This is the first report of the occurrence of Cyprinid herpesvirus 3 in ornamental fish species in Brazil. These results in association with further studies of viral isolation and characterization can help in establishing effective surveillance and disease control program.
Collapse
Affiliation(s)
- Samara Rita de Lucca Maganha
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Avenue Duque de Caxias Norte, Jardim Elite, Pirassununga, Sao Paulo, 225, Brazil.
| | | | | | - Sabrina Ribeiro de Almeida-Queiroz
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Avenue Duque de Caxias Norte, Jardim Elite, Pirassununga, Sao Paulo, 225, Brazil
| | - Andrezza Maria Fernandes
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Avenue Duque de Caxias Norte, Jardim Elite, Pirassununga, Sao Paulo, 225, Brazil
| | - Ricardo Luiz Moro de Sousa
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Avenue Duque de Caxias Norte, Jardim Elite, Pirassununga, Sao Paulo, 225, Brazil
| |
Collapse
|
7
|
Adamek M, Matras M, Rebl A, Stachnik M, Falco A, Bauer J, Miebach AC, Teitge F, Jung-Schroers V, Abdullah M, Krebs T, Schröder L, Fuchs W, Reichert M, Steinhagen D. Don't Let It Get Under Your Skin! - Vaccination Protects the Skin Barrier of Common Carp From Disruption Caused by Cyprinid Herpesvirus 3. Front Immunol 2022; 13:787021. [PMID: 35173716 PMCID: PMC8842664 DOI: 10.3389/fimmu.2022.787021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Vaccination is the best form of protecting fish against viral diseases when the pathogen cannot be contained by biosecurity measures. Vaccines based on live attenuated viruses seem to be most effective for vaccination against challenging pathogens like Cyprinid herpesvirus 3. However, there are still knowledge gaps how these vaccines effectively protect fish from the deadly disease caused by the epitheliotropic CyHV-3, and which aspects of non-direct protection of skin or gill integrity and function are important in the aquatic environment. To elucidate some elements of protection, common carp were vaccinated against CyHV-3 using a double deletion vaccine virus KHV-T ΔDUT/TK in the absence or presence of a mix of common carp beta-defensins 1, 2 and 3 as adjuvants. Vaccination induced marginal clinical signs, low virus load and a minor upregulation of cd4, cd8 and igm gene expression in vaccinated fish, while neutralisation activity of blood serum rose from 14 days post vaccination (dpv). A challenge infection with CyHV-3 induced a severe disease with 80-100% mortality in non-vaccinated carp, while in vaccinated carp, no mortality was recorded and the virus load was >1,000-fold lower in the skin, gill and kidney. Histological analysis showed strongest pathological changes in the skin, with a complete destruction of the epidermis in non-vaccinated carp. In the skin of non-vaccinated fish, T and B cell responses were severely downregulated, inflammation and stress responses were increased upon challenge, whereas vaccinated fish had boosted neutrophil, T and B cell responses. A disruption of skin barrier elements (tight and adherence junction, desmosomes, mucins) led to an uncontrolled increase in skin bacteria load which most likely exacerbated the inflammation and the pathology. Using a live attenuated virus vaccine, we were able to show that increased neutrophil, T and B cell responses provide protection from CyHV-3 infection and lead to preservation of skin integrity, which supports successful protection against additional pathogens in the aquatic environment which foster disease development in non-vaccinated carp.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Alexander Rebl
- Fish Genetics Unit, Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Magdalena Stachnik
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), Elche, Spain
| | - Julia Bauer
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anne-Carina Miebach
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Muhammad Abdullah
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Torben Krebs
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lars Schröder
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Michal Reichert
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
8
|
Tolo IE, Bajer PG, Wolf TM, Mor SK, Phelps NBD. Investigation of Cyprinid Herpesvirus 3 (CyHV-3) Disease Periods and Factors Influencing CyHV-3 Transmission in A Low Stocking Density Infection Trial. Animals (Basel) 2021; 12:ani12010002. [PMID: 35011108 PMCID: PMC8749781 DOI: 10.3390/ani12010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Pathogens are the primary limitation to aquaculture production of fish and a major issue in consideration of the interface between cultured and wild populations of fishes worldwide. While rapid spread of fish pathogens between populations (wild or farmed) is generally anthropogenic and the result of trade, the mechanisms of transmission once a pathogen has been introduced to a fish population are not well understood. The most widespread pathogen impacting both aquaculture and wild populations of common carp (Cyprinus carpio, carp) is Cyprinid herpesvirus 3 (CyHV-3). To understand how CyHV-3 is transmitted in a population we conducted a series of infection trials, designed to determine the kinetics CyHV-3 infections, identify the contributions of direct and indirect forms of CyHV-3 transmission, and to determine the contributions of contact rate, viral load, pathogenicity, and contact type. We found that direct contact between fish was the primary mechanism of CyHV-3 transmission rather than transmission through contaminated water. Additionally, CyHV-3 transmission occurred primarily during the incubation period of CyHV-3, prior to the appearance of disease signs and disease-associated reduction in contact rate. Abstract Cyprinid herpesvirus 3 (CyHV-3) is the etiological agent of koi herpesvirus disease (KHVD) and important pathogen of aquaculture and wild populations of common carp worldwide. Understanding the relative contributions of direct and indirect transmission of CyHV-3 as well as the factors that drive CyHV-3 transmission can clarify the importance of environmental disease vectors and is valuable for informing disease modeling efforts. To study the mechanisms and factors driving CyHV-3 transmission we conducted infection trials that determined the kinetics of KHVD and the contributions of direct and indirect forms of CyHV-3 transmission, as well as the contributions of contact rate, viral load, pathogenicity and contact type. The incubation period of KHVD was 5.88 + 1.75 days and the symptomatic period was 5.31 + 0.87 days. Direct transmission was determined to be the primary mechanism of CyHV-3 transmission (OR = 25.08, 95%CI = 10.73–99.99, p = 4.29 × 10−18) and transmission primarily occurred during the incubation period of KHVD. Direct transmission decreased in the symptomatic period of disease. Transmissibility of CyHV-3 and indirect transmission increased during the symptomatic period of disease, correlating with increased viral loads. Additionally, potential virulence-transmission tradeoffs and disease avoidance behaviors relevant to CyHV-3 transmission were identified.
Collapse
Affiliation(s)
- Isaiah E. Tolo
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Przemyslaw G. Bajer
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Tiffany M. Wolf
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Sunil K. Mor
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Nicholas B. D. Phelps
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Correspondence:
| |
Collapse
|
9
|
Li Y, Wang Q, Hu F, Wang Y, Bergmann SM, Zeng W, Yin J, Shi C. Development of a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for the detection of KHV. JOURNAL OF FISH DISEASES 2021; 44:913-921. [PMID: 33634875 DOI: 10.1111/jfd.13351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Koi herpesvirus disease (KHVD) caused by the koi herpesvirus (KHV) is difficult to diagnose in live fish, presenting a challenge to the koi industry. The enzyme-linked immunosorbent assay (ELISA) method cannot be widely used to detect KHV because few commercial anti-KHV antibody exists. Here, we developed an anti-ORF132 polyclonal antibody and confirmed its reactivity via indirect immunofluorescence assay and Western blotting. A double-antibody sandwich ELISA (DAS-ELISA) was established to detect KHV, monoclonal antibody 1B71B4 against ORF92 was used as the capture antibody, and the detection antibody was the polyclonal antibody against the truncated ORF132. The lowest limit was 1.56 ng/ml KHV. Furthermore, the DAS-ELISA reacted with KHV isolates, while no cross-reactions occurred with carp oedema virus, spring viraemia of carp virus, frog virus 3 and grass carp reovirus. Two hundred koi serum samples from Guangdong, China, were used in the DAS-ELISA test, and the positive rate of the koi sera was 13%. The clinical sensitivity and specificity of the DAS-ELISA relative to the traditional PCR method were 66.7% and 97.6%, respectively. Our findings may be useful for diagnosing and preventing KHVD in koi and common carp.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Feng Hu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Sven M Bergmann
- German Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Weiwei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
10
|
Quijano Cardé EM, Yazdi Z, Yun S, Hu R, Knych H, Imai DM, Soto E. Pharmacokinetic and Efficacy Study of Acyclovir Against Cyprinid Herpesvirus 3 in Cyprinus carpio. Front Vet Sci 2020; 7:587952. [PMID: 33195621 PMCID: PMC7642461 DOI: 10.3389/fvets.2020.587952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022] Open
Abstract
Cyprinid Herpesvirus 3 (CyHV-3), more commonly known as Koi Herpesvirus (KHV), is a re-emergent virus causing acute systemic infection with high mortality rates in koi fish (Cyprinus carpio). Survivors from outbreaks can become latent carriers, with viral reactivation under stressful conditions and permissible temperatures. No vaccines or treatments are currently available in the United States. Acyclovir has been shown effective in vitro against KHV. This study aimed to evaluate the cytotoxicity of acyclovir and cidofovir to koi fin (KF1) cells, the efficacy of a single antiviral intracoelomic dose in a koi fingerling cohabitation challenge, and the pharmacokinetics of the effective antiviral. Initially, a lactate dehydrogenase release-based assay revealed no significant acyclovir or cidofovir cytotoxicity to KF1 cells for 24 h at up to 1,500 μM. In laboratory-controlled challenges, KHV associated mortalities occurred 2 weeks post-infection. At this point, fish were treated with an antiviral (10 mg/kg acyclovir or 5 mg/kg cidofovir) or sterile phosphate-buffered solution. Morbidity and mortality were monitored for 30 days. A significant cumulative mortality reduction (p ≤ 0.05), and a 3-day mortality delay were detected in the acyclovir-treated group. Similar viral loads were detected in gills recovered from mortalities throughout the challenge and surviving fish at the end of the challenge regardless of treatment. For pharmacokinetic analysis, blood was collected at various timepoints after acyclovir administration. Liquid chromatography tandem mass spectrometry plasma analysis indicated a 141 μM peak plasma concentration at 0.75 h, a 14 h half-life, and a 0.05/h elimination rate constant. Histopathology of target tissues detected no evidence of acyclovir toxicity. Results suggest that a single 10 mg/kg dose of acyclovir administered intracoelomically to koi fingerlings is safe and reduces cumulative mortality during a KHV mortality event. However, multiple doses are probably required for effective treatment of pet fish.
Collapse
Affiliation(s)
- Eva Marie Quijano Cardé
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Zeinab Yazdi
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Susan Yun
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ruixue Hu
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Heather Knych
- K. L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Denise M Imai
- Comparative Pathology Laboratory, University of California, Davis, Davis, CA, United States
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Ababneh M, Hananeh W, Alzghoul M. Mass mortality associated with koi herpesvirus in common carp in Iraq. Heliyon 2020; 6:e04827. [PMID: 32923729 PMCID: PMC7476233 DOI: 10.1016/j.heliyon.2020.e04827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/11/2020] [Accepted: 08/27/2020] [Indexed: 11/28/2022] Open
Abstract
Koi herpesvirus disease is a serious disease affecting both wild and common carp species in different continents throughout the world. Based on pathological and molecular findings, we document the presence of koi herpesvirus disease in Iraq as a cause of mass mortality among the common carp of the Tigris river. On a macroscopic level, the fish exhibited variably sized skin ulcerations throughout the entire trunk. The gills showed variable degrees of discoloration with an increased amount of slimy mucus. Microscopically, degeneration and necrosis with infiltration of a heterogenous population of inflammatory cells characterized different organs, primarily the skin and gills, with occasional intranuclear inclusion bodies that are consistent with koi herpesvirus disease. A semi-nested PCR assay coupled with sequencing confirmed the pathological diagnosis. Genotyping and sequence analysis of the TK gene, ORF 136 and markers I and II identified the isolated CyHV-3 as variant A1 of the Asian genotype TUSMT1 (J strain) displaying the I++II+ allele.
Collapse
Affiliation(s)
- Mustafa Ababneh
- Department of Basic Medical Veterinary Sciences, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Wael Hananeh
- Department of Pathology and Public Health, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Mohammad Alzghoul
- Department of Basic Medical Veterinary Sciences, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
12
|
Panicz R, Eljasik P, Śmietana N, Sadowski J, Biernaczyk M. New invertebrate species as potential CyHV-3 reservoirs: A case study of common carp mortalities in hyperthermal conditions. JOURNAL OF FISH DISEASES 2020; 43:821-824. [PMID: 32449204 DOI: 10.1111/jfd.13177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Remigiusz Panicz
- Faculty of Food Science and Fisheries, Department of Meat Science, West Pomeranian University of Technology, Szczecin, Poland
| | - Piotr Eljasik
- Faculty of Food Science and Fisheries, Department of Meat Science, West Pomeranian University of Technology, Szczecin, Poland
| | - Natalia Śmietana
- Faculty of Food Science and Fisheries, Department of Meat Science, West Pomeranian University of Technology, Szczecin, Poland
| | - Jacek Sadowski
- Faculty of Food Science and Fisheries, Department of Aquatic Bioengineering and Aquaculture, West Pomeranian University of Technology, Szczecin, Poland
| | - Marcin Biernaczyk
- Faculty of Food Science and Fisheries, Department of Aquatic Bioengineering and Aquaculture, West Pomeranian University of Technology, Szczecin, Poland
| |
Collapse
|
13
|
Zrnčić S, Oraić D, Zupičić IG, Pavlinec Ž, Brnić D, Rogić ŽA, Sučec I, Steinhagen D, Adamek M. Koi herpesvirus and carp edema virus threaten common carp aquaculture in Croatia. JOURNAL OF FISH DISEASES 2020; 43:673-685. [PMID: 32315089 DOI: 10.1111/jfd.13163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 06/11/2023]
Abstract
Common carp (Cyprinus carpio) is a very important fish species for warm-water aquaculture in Croatia. All Croatian carp farms are subjected to a surveillance programme for the presence of koi herpesvirus (KHV), causing a deadly disease called koi herpesvirus disease (KHVD). However, there is no surveillance for other viral pathogens of importance like carp edema virus (CEV), a causative agent of koi sleepy disease (KSD). During regular testing within the KHVD surveillance programme, we tested samples for CEV simultaneously. The screening indicated possible outbreaks of KHVD and KSD. During 2016, KHVD broke out in an isolated area and soon thereafter a KHV eradication programme was successfully performed. However, during 2018 and 2019, two additional mortality events occurred in lakes in the southern part of Croatia during the spring. Samples from both events tested positive for CEV. An epidemiological investigation confirmed the introduction of infected carps from an infected farm to one of the lakes. To prevent the spreading of CEV into open waters, it is of utmost importance to introduce CEV testing before fish movement or to perform regular testing of all carp farms in the country to determine CEV prevalence for the purpose of implementation of control measures.
Collapse
Affiliation(s)
- Snježana Zrnčić
- Laboratory for Fish and Mollusc Diseases, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | - Dražen Oraić
- Laboratory for Fish and Mollusc Diseases, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | - Ivana Giovanna Zupičić
- Laboratory for Fish and Mollusc Diseases, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | - Željko Pavlinec
- Laboratory for Fish and Mollusc Diseases, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | - Dragan Brnić
- Virology Department Zagreb, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | | | - Ivica Sučec
- Ministry of Agriculture, Fisheries Directorate, Zagreb, Croatia
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
14
|
Shahin K, Soto E, Martínez-López B, Barnum S. Genetic Diversity of Cyprinid Herpesvirus 3 from Different Geographical Locations during 1999-2019 in the United States of America. JOURNAL OF AQUATIC ANIMAL HEALTH 2020; 32:50-56. [PMID: 32069378 DOI: 10.1002/aah.10098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Cyprinid herpesvirus 3, also known as koi herpesvirus (KHV), is an important pathogen in common and koi carp Cyprinus carpio, varieties. Two main genotypes of KHV have been reported worldwide that are associated with Asian and European origins. In the USA, outbreaks of KHV diseases have been reported in different states since the early 1990s; however, the diversity of KHV is unknown. In the current study, 67 DNA samples that were extracted from clinical cases of koi tissues that were submitted for diagnosis during KHV outbreaks from 10 different states in the USA from 1999 to 2019 were used to investigate their genetic diversity. The thymidine kinase gene was amplified, sequenced, and used for phylogenetic analysis. Our results showed that the KHV isolates that were collected from the different states were clustered in the two known KHV genogroups, where 31 isolates belonged to the Asian genotype branch and 36 to the European genotype branch. The spatiotemporal analysis demonstrated fluctuation of KHV genotypes in the USA, as the main KHV genotype that was detected in koi in the USA from 1999 to 2013 was the European genotype, whereas the Asian KHV genotype appeared to emerge in the USA in 2008, increasing in incidence until 2019. The current study provides evidence on the genetic diversity of KHV in the USA. Future studies that evaluate the virulence of these genetically diverse isolates is warranted to obtain a better understanding of the epidemiology of this re-emerging pathogen. This may provide an improved awareness of the current status of KHV and help to control the disease in the koi population in the USA.
Collapse
Affiliation(s)
- Khalid Shahin
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Tupper Hall 2108, One Shields Avenue, Davis, California, 95616, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Tupper Hall 2108, One Shields Avenue, Davis, California, 95616, USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance, Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Tupper Hall 2108, One Shields Avenue, Davis, California, 95616, USA
| | - Samantha Barnum
- Real-Time PCR Research and Diagnostic Core Facility, School of Veterinary Medicine, University of California, Tupper Hall 2108, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
15
|
Tadmor-Levi R, Doron-Faigenboim A, Marcos-Hadad E, Petit J, Hulata G, Forlenza M, Wiegertjes GF, David L. Different transcriptional response between susceptible and resistant common carp (Cyprinus carpio) fish hints on the mechanism of CyHV-3 disease resistance. BMC Genomics 2019; 20:1019. [PMID: 31878870 PMCID: PMC6933926 DOI: 10.1186/s12864-019-6391-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background Infectious disease outbreaks form major setbacks to aquaculture production and to further development of this important sector. Cyprinid herpes virus-3 (CyHV-3) is a dsDNA virus widely hampering production of common carp (Cyprinus carpio), one of the most farmed fish species worldwide. Genetically disease resistant strains are highly sought after as a sustainable solution to this problem. To study the genetic basis and cellular pathways underlying disease resistance, RNA-Seq was used to characterize transcriptional responses of susceptible and resistant fish at day 4 after CyHV-3 infection. Results In susceptible fish, over four times more differentially expressed genes were up-regulated between day 0 and 4 compared to resistant fish. Susceptible and resistant fish responded distinctively to infection as only 55 (9%) of the up-regulated genes were shared by these two fish types. Susceptible fish elicited a typical anti-viral response, involving interferon and interferon responsive genes, earlier than resistant fish did. Furthermore, chemokine profiles indicated that the two fish types elicited different cellular immunity responses. A comparative phylogenetic approach assisted in chemokine copies annotation pointing to different orthologous copies common to bony-fishes and even carp-specific paralogs that were differentially regulated and contributed to the different response of these two fish types. Susceptible fish up-regulated more ccl19 chemokines, which attract T-cells and macrophages, the anti-viral role of which is established, whereas resistant fish up-regulated more cxcl8/il8 chemokines, which attract neutrophils, the antiviral role of which is unfamiliar. Conclusions Taken together, by pointing out transcriptional differences between susceptible and resistant fish in response to CyHV-3 infection, this study unraveled possible genes and pathways that take part in disease resistance mechanisms in fish and thus, enhances our understanding of fish immunogenetics and supports the development of sustainable and safe aquaculture.
Collapse
Affiliation(s)
- Roni Tadmor-Levi
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,National Natural History Collections and Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Evgeniya Marcos-Hadad
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jules Petit
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Gideon Hulata
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Lior David
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
16
|
Padhi SK, Tolo I, McEachran M, Primus A, Mor SK, Phelps NBD. Koi herpesvirus and carp oedema virus: Infections and coinfections during mortality events of wild common carp in the United States. JOURNAL OF FISH DISEASES 2019; 42:1609-1621. [PMID: 31637761 DOI: 10.1111/jfd.13082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Koi herpesvirus (KHV; cyprinid herpesvirus-3) and carp oedema virus (CEV) are important viruses of common and koi carp (Cyprinus carpio); however, the distribution of these viruses in wild common carp in North America is largely unknown. During the summers of 2017 and 2018, 27 mass mortalities of common carp were reported from four states in the USA (Minnesota, Iowa, Pennsylvania and Wisconsin), the majority of which were distributed across eight major watersheds in southern Minnesota. Samples from 22 of these mortality events and from five clinically healthy nearby carp populations were screened for KHV, CEV and SVCV using real-time polymerase chain reaction (qPCR). KHV was confirmed in 13 mortality events, CEV in two mortality events and coinfections of KHV/CEV in four mortality events. Nucleotide sequence analysis revealed that the KHV and CEV detected here are closely related to European lineages of these viruses. While molecular detection alone cannot conclusively link either virus with disease, the cases described here expand the known range of two important viruses. This is also the first reported detection of KHV and CEV coinfections in wild carp populations.
Collapse
Affiliation(s)
- Soumesh K Padhi
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA
- College of Food, Agriculture and Natural Resource Sciences, Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Isaiah Tolo
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA
- College of Food, Agriculture and Natural Resource Sciences, Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Margaret McEachran
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA
- College of Food, Agriculture and Natural Resource Sciences, Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Alexander Primus
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA
- College of Veterinary Medicine, Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA
| | - Sunil K Mor
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA
- College of Veterinary Medicine, Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA
| | - Nicholas B D Phelps
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA
- College of Food, Agriculture and Natural Resource Sciences, Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
17
|
Rakus K, Adamek M, Mojżesz M, Podlasz P, Chmielewska-Krzesińska M, Naumowicz K, Kasica-Jarosz N, Kłak K, Rakers S, Way K, Steinhagen D, Chadzińska M. Evaluation of zebrafish (Danio rerio) as an animal model for the viral infections of fish. JOURNAL OF FISH DISEASES 2019; 42:923-934. [PMID: 30920010 DOI: 10.1111/jfd.12994] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Zebrafish (Danio rerio) is a laboratory model organism used in different areas of biological research including studies of immune response and host-pathogen interactions. Thanks to many biological tools available, zebrafish becomes also an important model in aquaculture research since several fish viral infection models have been developed for zebrafish. Here, we have evaluated the possible use of zebrafish to study infections with fish viruses that have not yet been tested on this model organism. In vitro studies demonstrated that chum salmon reovirus (CSV; aquareovirus A) and two alloherpesviruses cyprinid herpesvirus 1 (CyHV-1) and cyprinid herpesvirus 3 (CyHV-3) are able to replicate in zebrafish cell lines ZF4 and SJD.1. Moreover, CSV induced a clear cytopathic effect and up-regulated the expression of antiviral genes vig-1 and mxa in both cell lines. In vivo studies demonstrated that both CSV and CyHV-3 induce up-regulation of vig-1 and mxa expression in kidney and spleen of adult zebrafish after infection by i.p. injection but not in larvae after infection by immersion. CyHV-3 is eliminated quickly from fish; therefore, virus clearing process could be evaluated, and in CSV-infected fish, a prolonged confrontation of the host with the pathogen could be studied.
Collapse
Affiliation(s)
- Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Mikołaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Miriam Mojżesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Małgorzata Chmielewska-Krzesińska
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Karolina Naumowicz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Natalia Kasica-Jarosz
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Katarzyna Kłak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Sebastian Rakers
- Working Group Aquatic Cell Technology and Aquaculture, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| | - Keith Way
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Magdalena Chadzińska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
18
|
Boutier M, Donohoe O, Kopf RK, Humphries P, Becker JA, Marshall J, Vanderplasschen A. Biocontrol of Carp: The Australian Plan Does Not Stand Up to a Rational Analysis of Safety and Efficacy. Front Microbiol 2019; 10:882. [PMID: 31114554 PMCID: PMC6503052 DOI: 10.3389/fmicb.2019.00882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maxime Boutier
- Department of Parasitic and Infectious Diseases, University of Liège, Liège, Belgium
| | - Owen Donohoe
- Department of Parasitic and Infectious Diseases, University of Liège, Liège, Belgium.,Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - R Keller Kopf
- School of Environmental Sciences, Institute for Land Water & Society, Charles Sturt University, Albury, NSW, Australia
| | - Paul Humphries
- School of Environmental Sciences, Institute for Land Water & Society, Charles Sturt University, Albury, NSW, Australia
| | - Joy A Becker
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW, Australia
| | - Jonathan Marshall
- Queensland Department of Environment and Science, Water Planning Ecology, Brisbane, QLD, Australia.,Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Alain Vanderplasschen
- Department of Parasitic and Infectious Diseases, University of Liège, Liège, Belgium
| |
Collapse
|
19
|
Multiple interacting QTLs affect disease challenge survival in common carp (Cyprinus carpio). Heredity (Edinb) 2019; 123:565-578. [PMID: 31036952 DOI: 10.1038/s41437-019-0224-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/20/2019] [Accepted: 04/12/2019] [Indexed: 11/08/2022] Open
Abstract
With the steady growth of the human population, food security becomes a prime challenge. Aquaculture is the fastest growing sector providing proteins from an animal source, but outbreaks of infectious diseases repeatedly hamper the production and further development of this sector. Breeding of disease-resistant strains is a desired sustainable solution to this problem. Cyprinid herpes virus-3 (CyHV-3) is a dsDNA virus damaging production of common carp, an important food and ornamental fish. Previously, we have demonstrated successful introgression of CyHV-3 resistance from a feral strain to commercial strains. Here, we used genotyping by sequencing to identify two novel quantitative trait loci (QTLs) for disease survival that map to different linkage groups than two other QTLs that we previously identified. Effects of these four QTLs were validated and further studied in 14 families with various levels of disease resistance. CyHV-3 survival was found to be a quantitative trait conditioned by mild additive QTL effects and by intricate dominant allelic and epistatic QTL-QTL interactions. Both rare feral alleles and alleles common to feral and cultured strains contributed to survival. This and other advantages of feral alleles introgression were demonstrated. These QTLs, which affected survival of individuals within families, had no significant effect on variation in cumulative family % survival, suggesting that more between family variation remains to be explored. Unraveling the underlying genetics of survival is important for enhancing the breeding of resistant strains and our knowledge of disease resistance mechanisms.
Collapse
|
20
|
Su H, Su J. Cyprinid viral diseases and vaccine development. FISH & SHELLFISH IMMUNOLOGY 2018; 83:84-95. [PMID: 30195914 PMCID: PMC7118463 DOI: 10.1016/j.fsi.2018.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 05/15/2023]
Abstract
In the past decades, global freshwater fish production has been rapidly growing, while cyprinid takes the largest portion. Along with the rapid rise of novel forms of intensive aquaculture, increased global aquatic animal movement and various anthropogenic stress to aquatic ecosystems during the past century, freshwater fish farming industry encounter the emergence and breakout of many diseases, especially viral diseases. Because of the ability to safely and effectively prevent aquaculture diseases, vaccines have become the mainstream technology for prevention and control of aquatic diseases in the world. In this review, authors summarized six major cyprinid viral diseases, including koi herpesvirus disease (KHVD), spring viraemia of carp (SVC), grass carp hemorrhagic disease (GCHD), koi sleepy disease (KSD), carp pox disease (CPD) and herpesviral haematopoietic necrosis (HPHN). The present review described the characteristics of these diseases from epidemiology, pathology, etiology and diagnostics. Furthermore, the development of specific vaccines respective to these diseases is stated according to preparation methods and immunization approaches. It is hoped that the review could contribute to aquaculture in prevention and controlling of cyprinid viral diseases, and serve the healthy and sustainable development of aquaculture industry.
Collapse
Affiliation(s)
- Hang Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
21
|
Troszok A, Kolek L, Szczygieł J, Wawrzeczko J, Borzym E, Reichert M, Kamińska T, Ostrowski T, Jurecka P, Adamek M, Rakus K, Irnazarow I. Acyclovir inhibits Cyprinid herpesvirus 3 multiplication in vitro. JOURNAL OF FISH DISEASES 2018; 41:1709-1718. [PMID: 30144085 DOI: 10.1111/jfd.12880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3), also known as koi herpesvirus (KHV), is an aetiological agent of a virulent and lethal disease in common and koi carp. In this study, we examined in vitro the anti-CyHV-3 activity of acyclovir (ACV), nucleoside analogue commonly used against human herpesviruses, as well as acyclovir monophospate (ACV-MP). The cytotoxicity of the ACV and the ACV-MP for two common carp cell lines, CCB (Common carp brain) and KF1 (Koi carp fin 1), was determined by means of MTT and crystal violet assays. In subsequent studies, the concentration of 66.67 μM was applied. The ACV and the ACV-MP (66.67 μM) inhibited a cytopathic effect (CPE) induced by the CyHV-3 virus in the CCB (ACV by 66%, ACV-MP by 58%) and the KF1 (ACV by 25%, ACV-MP by 37%). The viral load measured by the means of TaqMan qPCR was reduced in a range of 67%-93% depending on the analogue, the cell line and the time of incubation. The expression of viral genes (ORF149, ORF3, ORF134 and ORF78) in CCB cells infected with the CyHV-3 was strongly downregulated within the range of 78%-91%. In summary, both the ACV and the ACV-MP can inhibit CyHV-3 replication in vitro.
Collapse
Affiliation(s)
- Agnieszka Troszok
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Chybie, Poland
| | - Ludmiła Kolek
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Chybie, Poland
| | - Joanna Szczygieł
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Chybie, Poland
| | - Joanna Wawrzeczko
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Chybie, Poland
| | - Ewa Borzym
- Department of Fish Diseases, National Veterinary Research Institute in Puławy, Puławy, Poland
| | - Michał Reichert
- Department of Fish Diseases, National Veterinary Research Institute in Puławy, Puławy, Poland
| | - Teresa Kamińska
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Chybie, Poland
| | - Tomasz Ostrowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Patrycja Jurecka
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Chybie, Poland
| | - Mikołaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine, Hannover, Germany
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Ilgiz Irnazarow
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Chybie, Poland
| |
Collapse
|
22
|
Gotesman M, Menanteau-Ledouble S, Saleh M, Bergmann SM, El-Matbouli M. A new age in AquaMedicine: unconventional approach in studying aquatic diseases. BMC Vet Res 2018; 14:178. [PMID: 29879957 PMCID: PMC5992843 DOI: 10.1186/s12917-018-1501-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Marine and aquaculture industries are important sectors of the food production and global trade. Unfortunately, the fish food industry is challenged with a plethora of infectious pathogens. The freshwater and marine fish communities are rapidly incorporating novel and most up to date techniques for detection, characterization and treatment strategies. Rapid detection of infectious diseases is important in preventing large disease outbreaks. MAIN TEXT One hundred forty-six articles including reviews papers were analyzed and their conclusions evaluated in the present paper. This allowed us to describe the most recent development research regarding the control of diseases in the aquatic environment as well as promising avenues that may result in beneficial developments. For the characterization of diseases, traditional sequencing and histological based methods have been augmented with transcriptional and proteomic studies. Recent studies have demonstrated that transcriptional based approaches using qPCR are often synergistic to expression based studies that rely on proteomic-based techniques to better understand pathogen-host interactions. Preventative therapies that rely on prophylactics such as vaccination with protein antigens or attenuated viruses are not always feasible and therefore, the development of therapies based on small nucleotide based medicine is on the horizon. Of those, RNAi or CRISPR/Cas- based therapies show great promise in combating various types of diseases caused by viral and parasitic agents that effect aquatic and fish medicine. CONCLUSIONS In our modern times, when the marine industry has become so vital for feed and economic stability, even the most extreme alternative treatment strategies such as the use of small molecules or even the use of disease to control invasive species populations should be considered.
Collapse
Affiliation(s)
- Michael Gotesman
- Department of Biology, New York City College of Technology of the City University of New York, Brooklyn, New York, USA
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
23
|
Chen Y, Shi M, Cheng Y, Zhang W, Tang Q, Xia XQ. FVD: The fish-associated virus database. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 58:23-26. [PMID: 29126995 DOI: 10.1016/j.meegid.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/12/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
With the expanding of marine and freshwater aquaculture, the outbreaks of aquatic animal diseases have increasingly become the major threats to the healthy development of aquaculture industries. Notably, viral infections lead to massive fish deaths and result in great economic loss every year across the world. Hence, it is meaningful to clarify the biodiversity, geographical distribution and host specificity of fish-associated viruses. In this study, viral sequences detected in fish samples were manually collected from public resources, along with the related metadata, such as sampling time, location, specimen type and fish species. Moreover, the information regarding the host fish, including aliases, diet type and geographic distribution were also integrated into a database (FVD). To date, FVD covers the information of 4860 fish-associated viruses belonging to 15 viral families, which were detected from 306 fish species in 57 countries. Meanwhile, sequence alignment, live data statistics and download function are available. Through the user-friendly interface, FVD provides a practical platform that would not only benefit virologists who want to disclose the spread of fish-associated viruses, but also zoologists who focus on the health of domestic and wild animals. Furthermore, it may facilitate the surveillance and prevention of fish viral diseases. Database URL: http://bioinfo.ihb.ac.cn/fvd.
Collapse
Affiliation(s)
- Yaxin Chen
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mijuan Shi
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Yingyin Cheng
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Wanting Zhang
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Qin Tang
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiao-Qin Xia
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
24
|
Impacts of an invasive virus (CyHV-3) on established invasive populations of common carp (Cyprinus carpio) in North America. Biol Invasions 2018. [DOI: 10.1007/s10530-017-1655-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Vancsok C, Peñaranda MMD, Raj VS, Leroy B, Jazowiecka-Rakus J, Boutier M, Gao Y, Wilkie GS, Suárez NM, Wattiez R, Gillet L, Davison AJ, Vanderplasschen AFC. Proteomic and Functional Analyses of the Virion Transmembrane Proteome of Cyprinid Herpesvirus 3. J Virol 2017; 91:e01209-17. [PMID: 28794046 PMCID: PMC5640863 DOI: 10.1128/jvi.01209-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 01/28/2023] Open
Abstract
Virion transmembrane proteins (VTPs) mediate key functions in the herpesvirus infectious cycle. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses. The present study was devoted to CyHV-3 VTPs. Using mass spectrometry approaches, we identified 16 VTPs of the CyHV-3 FL strain. Mutagenesis experiments demonstrated that eight of these proteins are essential for viral growth in vitro (open reading frame 32 [ORF32], ORF59, ORF81, ORF83, ORF99, ORF106, ORF115, and ORF131), and eight are nonessential (ORF25, ORF64, ORF65, ORF108, ORF132, ORF136, ORF148, and ORF149). Among the nonessential proteins, deletion of ORF25, ORF132, ORF136, ORF148, or ORF149 affects viral replication in vitro, and deletion of ORF25, ORF64, ORF108, ORF132, or ORF149 impacts plaque size. Lack of ORF148 or ORF25 causes attenuation in vivo to a minor or major extent, respectively. The safety and efficacy of a virus lacking ORF25 were compared to those of a previously described vaccine candidate deleted for ORF56 and ORF57 (Δ56-57). Using quantitative PCR, we demonstrated that the ORF25 deleted virus infects fish through skin infection and then spreads to internal organs as reported previously for the wild-type parental virus and the Δ56-57 virus. However, compared to the parental wild-type virus, the replication of the ORF25-deleted virus was reduced in intensity and duration to levels similar to those observed for the Δ56-57 virus. Vaccination of fish with a virus lacking ORF25 was safe but had low efficacy at the doses tested. This characterization of the virion transmembrane proteome of CyHV-3 provides a firm basis for further research on alloherpesvirus VTPs.IMPORTANCE Virion transmembrane proteins play key roles in the biology of herpesviruses. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and the causative agent of major economic losses in common and koi carp worldwide. In this study of the virion transmembrane proteome of CyHV-3, the major findings were: (i) the FL strain encodes 16 virion transmembrane proteins; (ii) eight of these proteins are essential for viral growth in vitro; (iii) seven of the nonessential proteins affect viral growth in vitro, and two affect virulence in vivo; and (iv) a mutant lacking ORF25 is highly attenuated but induces moderate immune protection. This study represents a major breakthrough in understanding the biology of CyHV-3 and will contribute to the development of prophylactic methods. It also provides a firm basis for the further research on alloherpesvirus virion transmembrane proteins.
Collapse
Affiliation(s)
- Catherine Vancsok
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - M Michelle D Peñaranda
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - V Stalin Raj
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram, India
| | - Baptiste Leroy
- Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons, Belgium
| | - Joanna Jazowiecka-Rakus
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ruddy Wattiez
- Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain F C Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
26
|
Way K, Haenen O, Stone D, Adamek M, Bergmann SM, Bigarré L, Diserens N, El-Matbouli M, Gjessing MC, Jung-Schroers V, Leguay E, Matras M, Olesen NJ, Panzarin V, Piačková V, Toffan A, Vendramin N, Vesel T, Waltzek T. Emergence of carp edema virus (CEV) and its significance to European common carp and koi Cyprinus carpio. DISEASES OF AQUATIC ORGANISMS 2017; 126:155-166. [PMID: 29044045 DOI: 10.3354/dao03164] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carp edema virus disease (CEVD), also known as koi sleepy disease, is caused by a poxvirus associated with outbreaks of clinical disease in koi and common carp Cyprinus carpio. Originally characterised in Japan in the 1970s, international trade in koi has led to the spread of CEV, although the first recognised outbreak of the disease outside of Japan was not reported until 1996 in the USA. In Europe, the disease was first recognised in 2009 and, as detection and diagnosis have improved, more EU member states have reported CEV associated with disease outbreaks. Although the structure of the CEV genome is not yet elucidated, molecular epidemiology studies have suggested distinct geographical populations of CEV infecting both koi and common carp. Detection and identification of cases of CEVD in common carp were unreliable using the original PCR primers. New primers for conventional and quantitative PCR (qPCR) have been designed that improve detection, and their sequences are provided in this paper. The qPCR primers have successfully detected CEV DNA in archive material from investigations of unexplained carp mortalities conducted >15 yr ago. Improvement in disease management and control is possible, and the principles of biosecurity, good health management and disease surveillance, applied to koi herpesvirus disease, can be equally applied to CEVD. However, further research studies are needed to fill the knowledge gaps in the disease pathogenesis and epidemiology that, currently, prevent an accurate assessment of the likely impact of CEVD on European koi and common carp aquaculture and on wild carp stocks.
Collapse
Affiliation(s)
- K Way
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, DT4 8UB, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Boutier M, Gao Y, Vancsok C, Suárez NM, Davison AJ, Vanderplasschen A. Identification of an essential virulence gene of cyprinid herpesvirus 3. Antiviral Res 2017; 145:60-69. [PMID: 28690142 PMCID: PMC5588920 DOI: 10.1016/j.antiviral.2017.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/25/2022]
Abstract
The genus Cyprinivirus consists of a growing list of phylogenetically related viruses, some of which cause severe economic losses to the aquaculture industry. The archetypal member, cyprinid herpesvirus 3 (CyHV-3) causes mass mortalities worldwide in koi and common carp. A CyHV-3 mutant was described previously that is attenuated in vivo by a deletion affecting two genes (ORF56 and ORF57). The relative contributions of ORF56 and ORF57 to the safety and efficacy profile of this vaccine candidate have now been assessed by analysing viruses individually deleted for ORF56 or ORF57. Inoculation of these viruses into carp demonstrated that the absence of ORF56 did not affect virulence, whereas the absence of ORF57 led to an attenuation comparable to, though slightly less than, that of the doubly deleted virus. To demonstrate further the role of ORF57 as a key virulence factor, a mutant retaining the ORF57 region but unable to express the ORF57 protein was produced by inserting multiple in-frame stop codons into the coding region. Analysis of this virus in vivo revealed a safety and efficacy profile comparable to that of the doubly deleted virus. These findings show that ORF57 encodes an essential CyHV-3 virulence factor. They also indicate that ORF57 orthologues in other cypriniviruses may offer promising targets for the rational design of attenuated recombinant vaccines. Cyprinid herpesvirus 3 (CyHV-3) causes a lethal disease in common and koi carp and is the archetypal fish alloherpesvirus. CyHV-3 ORF57 encodes an essential virulence factor and ORF57 deleted viruses represent attenuated vaccine candidates. ORF57 orthologues in other alloherpesviruses may offer promising targets for the design of attenuated recombinant vaccines.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Catherine Vancsok
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
28
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Zancanaro G, Beltrán Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Koi herpes virus disease (KHV). EFSA J 2017; 15:e04907. [PMID: 32625568 PMCID: PMC7009960 DOI: 10.2903/j.efsa.2017.4907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Koi herpes virus (KHV) disease has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of KHV disease to be listed, Article 9 for the categorisation of KHV disease according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to KHV disease. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, it is inconclusive whether KHV disease can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no full consensus on the criterion 5 A(v). Consequently, the assessment on compliance of KHV disease with the criteria as in Annex IV of the AHL, for the application of the disease prevention and control rules referred to in Article 9(1) is also inconclusive, as well as which animal species can be considered to be listed for KHV disease according to Article 8(3) of the AHL.
Collapse
|
29
|
Tadmor-Levi R, Asoulin E, Hulata G, David L. Studying the Genetics of Resistance to CyHV-3 Disease Using Introgression from Feral to Cultured Common Carp Strains. Front Genet 2017; 8:24. [PMID: 28344591 PMCID: PMC5344895 DOI: 10.3389/fgene.2017.00024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
Sustainability and further development of aquaculture production are constantly challenged by outbreaks of fish diseases, which are difficult to prevent or control. Developing fish strains that are genetically resistant to a disease is a cost-effective and a sustainable solution to address this challenge. To do so, heritable genetic variation in disease resistance should be identified and combined together with other desirable production traits. Aquaculture of common carp has suffered substantial losses from the infectious disease caused by the cyprinid herpes virus type 3 (CyHV-3) virus and the global spread of outbreaks indicates that many cultured strains are susceptible. In this research, CyHV-3 resistance from the feral strain “Amur Sassan” was successfully introgressed into two susceptible cultured strains up to the first backcross (BC1) generation. Variation in resistance of families from F1 and BC1 generations was significantly greater compared to that among families of any of the susceptible parental lines, a good starting point for a family selection program. Considerable additive genetic variation was found for CyHV-3 resistance. This phenotype was transferable between generations with contributions to resistance from both the resistant feral and the susceptible cultured strains. Reduced scale coverage (mirror phenotype) is desirable and common in cultured strains, but so far, cultured mirror carp strains were found to be susceptible. Here, using BC1 families ranging from susceptible to resistant, no differences in resistance levels between fully scaled and mirror full-sib groups were found, indicating that CyHV-3 resistance was successfully combined with the desirable mirror phenotype. In addition, the CyHV-3 viral load in tissues throughout the infection of susceptible and resistant fish was followed. Although resistant fish get infected, viral loads in tissues of these fish are significantly lesser than in those of susceptible fish, allowing them to survive the disease. Taken together, in this study we have laid the foundation for breeding CyHV-3-resistant strains and started to address the mechanisms underlying the phenotypic differences in resistance to this disease.
Collapse
Affiliation(s)
- Roni Tadmor-Levi
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| | - Efrat Asoulin
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| | - Gideon Hulata
- Institute of Animal Science, Agricultural Research Organization, Volcani Center Rishon LeZion, Israel
| | - Lior David
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| |
Collapse
|
30
|
Bayliss SC, Verner-Jeffreys DW, Bartie KL, Aanensen DM, Sheppard SK, Adams A, Feil EJ. The Promise of Whole Genome Pathogen Sequencing for the Molecular Epidemiology of Emerging Aquaculture Pathogens. Front Microbiol 2017; 8:121. [PMID: 28217117 PMCID: PMC5290457 DOI: 10.3389/fmicb.2017.00121] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/23/2023] Open
Abstract
Aquaculture is the fastest growing food-producing sector, and the sustainability of this industry is critical both for global food security and economic welfare. The management of infectious disease represents a key challenge. Here, we discuss the opportunities afforded by whole genome sequencing of bacterial and viral pathogens of aquaculture to mitigate disease emergence and spread. We outline, by way of comparison, how sequencing technology is transforming the molecular epidemiology of pathogens of public health importance, emphasizing the importance of community-oriented databases and analysis tools.
Collapse
Affiliation(s)
- Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| | | | - Kerry L Bartie
- Institute of Aquaculture, University of Stirling Stirling, UK
| | - David M Aanensen
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College LondonLondon, UK; The Centre for Genomic Pathogen Surveillance, Wellcome Genome CampusCambridge, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| | - Alexandra Adams
- Institute of Aquaculture, University of Stirling Stirling, UK
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| |
Collapse
|
31
|
Neave MJ, Sunarto A, McColl KA. Transcriptomic analysis of common carp anterior kidney during Cyprinid herpesvirus 3 infection: Immunoglobulin repertoire and homologue functional divergence. Sci Rep 2017; 7:41531. [PMID: 28148967 PMCID: PMC5288646 DOI: 10.1038/srep41531] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) infects koi and common carp and causes widespread mortalities. While the virus is a significant concern for aquaculture operations in many countries, in Australia the virus may be a useful biocontrol agent for pest carp. However, carp immune responses to CyHV-3, and the molecular mechanisms underpinning resistance, are not well understood. Here we used RNA-Seq on carp during different phases of CyHV-3 infection to detect the gene expression dynamics of both host and virus simultaneously. During acute CyHV-3 infection, the carp host modified the expression of genes involved in various immune systems and detoxification pathways. Moreover, the activated pathways were skewed toward humoral immune responses, which may have been influenced by the virus itself. Many immune-related genes were duplicated in the carp genome, and often these were expressed differently across the infection phases. Of particular interest were two interleukin-10 homologues that were not expressed synchronously, suggesting neo- or sub-functionalization. The carp immunoglobulin repertoire significantly diversified during active CyHV-3 infection, which was followed by the selection of high-affinity B-cells. This is indicative of a developing adaptive immune response, and is the first attempt to use RNA-Seq to understand this process in fish during a viral infection.
Collapse
Affiliation(s)
- Matthew J. Neave
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| | - Agus Sunarto
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
- AMAFRAD Centre for Fisheries Research and Development, Fish Health Research Laboratory, Jakarta 12540, Indonesia
| | - Kenneth A. McColl
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| |
Collapse
|
32
|
Flamm A, Fabian M, Runge M, Böttcher K, Bräuer G, Füllner G, Steinhagen D. Draining and liming of ponds as an effective measure for containment of CyHV-3 in carp farms. DISEASES OF AQUATIC ORGANISMS 2016; 120:255-260. [PMID: 27503923 DOI: 10.3354/dao03024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Infections of common carp Cyprinus carpio and koi, its coloured morphotypes, with the cyprinid herpesvirus 3 (CyHV-3) can induce severe clinical signs and increased mortality in affected stocks. This may significantly challenge the economic basis of carp farming in Central Europe. To limit virus spread in carp farms, effective disinfection measures for ponds stocked with infected populations are required. In the traditional European pond aquaculture of carp, draining and liming of ponds with quicklime (CaO) up to pH 12 is a well-established disinfection measure against various pathogens. The present field study investigated whether these measures are sufficient for the inactivation of CyHV-3 infectivity in carp ponds. After draining and liming, the ponds were stocked with carp fry from a CyHV-3-negative stock, and 2 ponds were examined for the presence of CyHV-3-specific DNA sequences during the growth period of the carp and in the harvested stock. Wild fish (from the ponds, and feeder and drainage canals) and water samples (from the ponds) were also examined for CyHV-3-specific DNA sequences; and naïve carp were cohabited with wild fish, or exposed to the pondwater samples, to test for the presence of infectious virus. All examined samples remained negative for CyHV-3 throughout the study. This indicates that draining and liming with quicklime can be a suitable disinfection measure for ponds after a CyHV-3 outbreak in carp aquaculture.
Collapse
Affiliation(s)
- Agnes Flamm
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Toffan A, Panzarin V, Toson M, Cecchettin K, Pascoli F. Water temperature affects pathogenicity of different betanodavirus genotypes in experimentally challenged Dicentrarchus labrax. DISEASES OF AQUATIC ORGANISMS 2016; 119:231-8. [PMID: 27225206 DOI: 10.3354/dao03003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Betanodaviruses are the causative agents of a highly infectious disease of fish known as viral nervous necrosis (VNN). To date, 4 different nervous necrosis virus (NNV) genotypes have been described, but natural reassortant viruses have also been detected, which further increase viral variability. Water temperature plays an important role in determining the appearance and the severity of VNN disease. We assessed the effect of temperature (20°, 25° and 30°C) on mortality and virus load in the brain of European sea bass Dicentrarchus labrax experimentally infected with 4 genetically different betanodaviruses, namely red-spotted grouper NNV (RGNNV), striped jack NNV (SJNNV) and the reassortant strains RGNNV/SJNNV and SJNNV/RGNNV. The RGNNV/SJNNV virus possesses the polymerase gene of RGNNV and the coat protein gene of SJNNV, and vice versa for the SJNNV/RGNNV virus. The obtained results showed that the RGNNV strain is the most pathogenic for juvenile sea bass, but clinical disease and mortality appeared only at higher temperatures. The SJNNV strain is weakly pathogenic for D. labrax regardless of the temperature used, while virus replication was detected in the brain of survivors only at 20°C. Finally, reassortant strains caused low mortality, independent of the temperature used, but the viral load in the brain was strongly influenced by water temperature and the genetic type of the polymerase gene. Taken together, these data show that nodavirus replication in vivo is a composite process regulated by both the genetic features of the viral strain and water temperatures.
Collapse
Affiliation(s)
- Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie, National Reference Centre for Fish, Mollusk and Crustacean Diseases, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| | | | | | | | | |
Collapse
|
34
|
Fabian M, Baumer A, Adamek M, Steinhagen D. Transmission of Cyprinid herpesvirus 3 by wild fish species--results from infection experiments. JOURNAL OF FISH DISEASES 2016; 39:625-628. [PMID: 26172923 DOI: 10.1111/jfd.12399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Affiliation(s)
- M Fabian
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - A Baumer
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - M Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - D Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
35
|
Cao XL, Chen JJ, Cao Y, Nie GX, Su JG. Identification and expression analysis of the sting gene, a sensor of viral DNA, in common carp Cyprinus carpio. JOURNAL OF FISH BIOLOGY 2016; 88:1949-1964. [PMID: 27001661 DOI: 10.1111/jfb.12960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Stimulator of interferon gene (sting) was identified and characterized from common carp Cyprinus carpio. The sting messenger (m)RNA encoded a polypeptide of 402 amino acids with a calculated molecular mass of 46·184 kDa and an isoelectronic point of 6·08. The deduced protein of sting contained a signal peptide, three transmembrane motifs in the N-terminal region and four putative motifs (RXR) found in resident endoplasmic reticulum proteins. mRNA expression of sting was present in twelve investigated tissues, and was up-regulated by koi herpesvirus (KHV) in vivo and in vitro. The transcription of sting was altered by poly(I:C) and poly(dT:dA) stimulation in vitro. The findings suggested that sting is an inducible gene involved in innate immunity against DNA- and RNA-derived pathogens. To investigate defence mechanisms in C. carpio development, sting level in embryos, larvae and juvenile fish was monitored following KHV challenge. The sting message was negligible in embryos prior to hatching, but observed at higher transcriptional levels throughout larval and juvenile stages. Investigation showed the mRNA expression profiles of genes encoding for proteins promoting various functions in the interferon pathway, from pattern recognition receptors to antiviral genes, to be significantly induced in all examined organs by in vivo infection with KHV. Following KHV infection, the ifn message was significantly downregulated in spleen, head kidney, brain and hepatopancreas but notably up-regulated in gill, intestine and skin, suggesting that ifn induction might be related to the mucosal immune system and virus anti-ifn mechanisms. These results provided the basis for further research into the role and mechanisms of sting in fishes.
Collapse
Affiliation(s)
- X L Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - J J Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Y Cao
- College of Life Science, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - G X Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - J G Su
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
| |
Collapse
|
36
|
Wang H, Xu L, Lu L. Detection of cyprinid herpesvirus 2 in peripheral blood cells of silver crucian carp, Carassius auratus gibelio (Bloch), suggests its potential in viral diagnosis. JOURNAL OF FISH DISEASES 2016; 39:155-162. [PMID: 25630360 DOI: 10.1111/jfd.12340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Epidemics caused by cyprinid herpesvirus 2 (CyHV-2) in domestic cyprinid species have been reported in both European and Asian countries. Although the mechanisms remain unknown, acute CyHV-2 infections generally result in high mortality, and the surviving carps become chronic carriers displaying no external clinical signs. In this study, in situ hybridization analysis showed that CyHV-2 tended to infect peripheral blood cells during either acute or chronic infections in silver crucian carp, Carassius auratus gibelio (Bloch). Laboratory challenge experiments coupled with real-time PCR quantification assays further indicated that steady-state levels of the viral genomic copy number in fish serum exhibited a typical 'one-step' growth curve post-viral challenge. Transcriptional expression of open reading frames (ORF) 121, which was selected due to its highest transcriptional levels in almost all tested tissues, was monitored to represent the replication kinetics of CyHV-2 in peripheral blood cells. Similar kinetic curve of active viral gene transcription in blood cells was obtained as that of serum viral load, indicating that CyHV-2 replicated in peripheral blood cells as well as in other well-characterized tissues. This study should pave the way for designing non-invasive and cost-effective serum diagnostic methods for quick detection of CyHV-2 infection.
Collapse
Affiliation(s)
- H Wang
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lj Xu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lq Lu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of Ministry of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
37
|
Lee X, Yi Y, Weng S, Zeng J, Zhang H, He J, Dong C. Transcriptomic analysis of koi (Cyprinus carpio) spleen tissue upon cyprinid herpesvirus 3 (CyHV3) infection using next generation sequencing. FISH & SHELLFISH IMMUNOLOGY 2016; 49:213-24. [PMID: 26690666 DOI: 10.1016/j.fsi.2015.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 05/18/2023]
Abstract
Cyprinid Herpesvirus 3 (CyHV-3) can infect and specifically cause a huge economic loss in both common carp (Cyprinus carpio) and its ornamental koi variety. The molecular mechanisms underlying CyHV-3 infection are not well understood. In this study, koi spleen tissues of both mock and CyHV-3 infection groups were collected, and high-throughput sequencing technology was used to analyze the differentially expressed genes (DEGs) at the transcriptome level. A total of 105,356,188 clean reads from two libraries were obtained. After the de novo assembly of the transcripts, 129,314 unigenes were generated. Of these unigenes, 70,655 unigenes were matched to the known proteins in the database, while 2190 unigenes were predicted by ESTScan software. Comparing the infection group to the mock group, a total of 23,029 significantly differentially expressed unigenes were identified, including 10,493 up-regulated DEGs and 12,536 down-regulated DEGs. GO (Gene Ontology) annotation and functional enrichment analysis indicated that all of the DEGs were annotated into GO terms in three main GO categories: biological process, cellular component and molecular function. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of the DEGs showed that a total of 12,002 DEG unigenes were annotated into 256 pathways classified into 6 main categories. Additionally, 20 differentially expressed genes were validated by quantitative real-time PCR. As the first report of a transcriptome analysis of koi carp with CyHV-3 infection, the data presented here provide knowledge of the innate immune response against CyHV-3 in koi carp and useful data for further research of the molecular mechanism of CyHV-3 infection.
Collapse
Affiliation(s)
- Xuezhu Lee
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yang Yi
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shaoping Weng
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jie Zeng
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hetong Zhang
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jianguo He
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| | - Chuanfu Dong
- State Key Laboratory for Bio-control / MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
38
|
Zhao Y, Wang T, Yu Z, Wang H, Liu B, Wu C, Teng CB. Inhibiting cyprinid herpesvirus-3 replication with CRISPR/Cas9. Biotechnol Lett 2015; 38:573-8. [PMID: 26712370 DOI: 10.1007/s10529-015-2020-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The potential of CRISPR/Cas9 gene editing to repress CyHV-3 was tested in vitro. RESULTS By targeting two basic target genes necessary for the early transcription of CyHV-3, we show that virus transcription and particle release were significantly decreased by CRISPR/Cas9, as measured by quantitative real-time PCR and virus titration experiments, respectively. CONCLUSIONS (A) The effectiveness is confirmed of the CRISPR/Cas9 system at repressing exogenous genes, including large viral genomic DNA, by introducing site-specific mutations in vitro. (B) The CyHV-3 virus replicates poorly in Cas9-positive cells. (C) The inhibition of thymidine kinase alone cannot block viral particle release.
Collapse
Affiliation(s)
- Yicheng Zhao
- College of Life Sciences, Northeast Forestry University, Harbin, China.,College of Animal Sciences, Jilin University, Changchun, China
| | - Tiedong Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Ze Yu
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Heming Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Bo Liu
- College of Animal Sciences, Jilin University, Changchun, China.,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunyan Wu
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Chun-Bo Teng
- College of Life Sciences, Northeast Forestry University, Harbin, China.
| |
Collapse
|
39
|
Kuś K, Rakus K, Boutier M, Tsigkri T, Gabriel L, Vanderplasschen A, Athanasiadis A. The Structure of the Cyprinid herpesvirus 3 ORF112-Zα·Z-DNA Complex Reveals a Mechanism of Nucleic Acids Recognition Conserved with E3L, a Poxvirus Inhibitor of Interferon Response. J Biol Chem 2015; 290:30713-25. [PMID: 26559969 DOI: 10.1074/jbc.m115.679407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 01/10/2023] Open
Abstract
In vertebrate species, the innate immune system down-regulates protein translation in response to viral infection through the action of the double-stranded RNA (dsRNA)-activated protein kinase (PKR). In some teleost species another protein kinase, Z-DNA-dependent protein kinase (PKZ), plays a similar role but instead of dsRNA binding domains, PKZ has Zα domains. These domains recognize the left-handed conformer of dsDNA and dsRNA known as Z-DNA/Z-RNA. Cyprinid herpesvirus 3 infects common and koi carp, which have PKZ, and encodes the ORF112 protein that itself bears a Zα domain, a putative competitive inhibitor of PKZ. Here we present the crystal structure of ORF112-Zα in complex with an 18-bp CpG DNA repeat, at 1.5 Å. We demonstrate that the bound DNA is in the left-handed conformation and identify key interactions for the specificity of ORF112. Localization of ORF112 protein in stress granules induced in Cyprinid herpesvirus 3-infected fish cells suggests a functional behavior similar to that of Zα domains of the interferon-regulated, nucleic acid surveillance proteins ADAR1 and DAI.
Collapse
Affiliation(s)
- Krzysztof Kuś
- From the Instituto Gulbenkian de Ciência, 2781-156, Oeiras, Portugal and
| | - Krzysztof Rakus
- the Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - Maxime Boutier
- the Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - Theokliti Tsigkri
- From the Instituto Gulbenkian de Ciência, 2781-156, Oeiras, Portugal and
| | - Luisa Gabriel
- From the Instituto Gulbenkian de Ciência, 2781-156, Oeiras, Portugal and
| | - Alain Vanderplasschen
- the Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | |
Collapse
|
40
|
Yi Y, Qi H, Yuan J, Wang R, Weng S, He J, Dong C. Functional characterization of viral tumor necrosis factor receptors encoded by cyprinid herpesvirus 3 (CyHV3) genome. FISH & SHELLFISH IMMUNOLOGY 2015; 45:757-770. [PMID: 26052019 DOI: 10.1016/j.fsi.2015.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/15/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV3) is a large double-stranded DNA virus of Alloherpesviridae family in the order Herpesvirales. It causes significant morbidity and mortality in common carp and its ornamental koi variety, and threatens the aquaculture industries worldwide. Mimicry of cytokines and cytokine receptors is a particular strategy for large DNA viruses in modulating the host immune response. Here, we report the identification and characterization of two novel viral homologues of tumor necrosis factor receptor (TNFR) encoded by CyHV3-ORF4 and -ORF12, respectively. CyHV3-ORF4 was identified as a homologue of HVEM and CyHV3-ORF12 as a homologue of TNFRSF1. Overexpression of ORF4 and ORF12 in zebrafish embryos results in embryonic lethality, morphological defects and increased apoptosis. Although we failed to identify any interaction between the two vTNFRs and their potential ligands in zebrafish TNF superfamily by yeast two-hybrid system, the expression of some genes in TNF superfamily or TNFR superfamily were mis-regulated in ORF4 or ORF12-overexpressing embryos, especially the death receptor zHDR and its cognate ligand DL1b. Further studies showed that the apoptosis induced by the both CyHV3 vTNFRs is mainly activated through the intrinsic apoptotic pathway and requires the crosstalk between the intrinsic and extrinsic apoptotic pathway. Additionally, using RT-qPCR and Western blot assays, the expression patterns of the both vTNFRs were also analyzed during CyHV3 productive infection. Collectively, this is the first functional study of two unique vTNFRs encoded by a herpesvirus infecting non-mammalian vertebrates, which may provide novel insights into viral immune regulation mechanism and the pathogenesis of CyHV3 infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Carps
- Cell Line
- Female
- Fish Diseases/genetics
- Fish Diseases/metabolism
- Fish Diseases/virology
- Gene Expression Regulation
- Herpesviridae/genetics
- Herpesviridae/physiology
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/veterinary
- Herpesviridae Infections/virology
- Male
- Open Reading Frames
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Sequence Alignment/veterinary
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Zebrafish
Collapse
Affiliation(s)
- Yang Yi
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Hemei Qi
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jimin Yuan
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Rui Wang
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, People's Republic of China
| | - Chuanfu Dong
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
41
|
Brogden G, Adamek M, Proepsting MJ, Ulrich R, Naim HY, Steinhagen D. Cholesterol-rich lipid rafts play an important role in the Cyprinid herpesvirus 3 replication cycle. Vet Microbiol 2015; 179:204-12. [PMID: 26059657 PMCID: PMC7117466 DOI: 10.1016/j.vetmic.2015.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 12/24/2022]
Abstract
Sequestration of cholesterol from the cell membrane inhibits CyHV-3 entry. CyHV-3 egress requires cholesterol. Lipid composition of the CyHV-3 envelope is similar to that of CCB lipid rafts.
The Cyprinus herpesvirus 3 (CyHV-3) is a member of the new Alloherpesviridae virus family in the Herpesvirales order. CyHV-3 has been implicated in a large number of disease outbreaks in carp populations causing up to 100% mortality. The aim of this study was to investigate the requirement of cholesterol-rich lipid rafts in CyHV-3 entry and replication in carp cells. Plasma membrane cholesterol was depleted from common carp brain (CCB) cells with methyl-β-cyclodextrin (MβCD). Treated and non-treated cells were infected with CyHV-3 and virus binding and infection parameters were assessed using RT-qPCR, immunocytochemistry and virus titration. The effect of cholesterol reduction severely stunted virus entry in vitro, however after cholesterol replenishment virus entry and subsequent replication rates were similar to the control infection. Furthermore, cholesterol depletion did not significantly influence virus binding and the subsequent post-entry replication stage, however had an impact on virus egress. Comparative analysis of the lipid compositions of CyHV-3 and CCB membrane fractions revealed strong similarities between the lipid composition of the CyHV-3 and CCB lipid rafts. The results presented here show that cholesterol-rich lipid rafts are important for the CyHV-3 replication cycle especially during entry and egress.
Collapse
Affiliation(s)
- Graham Brogden
- Fish Disease Research Unit, University of Veterinary Medicine Hanover, Germany
| | - Mikołaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hanover, Germany
| | - Marcus J Proepsting
- Fish Disease Research Unit, University of Veterinary Medicine Hanover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine Hanover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hanover, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hanover, Germany.
| |
Collapse
|
42
|
Monaghan SJ, Thompson KD, Adams A, Kempter J, Bergmann SM. Examination of the early infection stages of koi herpesvirus (KHV) in experimentally infected carp, Cyprinus carpio L. using in situ hybridization. JOURNAL OF FISH DISEASES 2015; 38:477-489. [PMID: 24925228 DOI: 10.1111/jfd.12260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Koi herpesvirus (KHV) causes a highly infectious disease afflicting common carp and koi, Cyprinus carpio L. Various molecular and antibody-based detection methods have been used to elucidate the rapid attachment and dissemination of the virus throughout carp tissues, facilitating ongoing development of effective diagnostic approaches. In situ hybridization (ISH) was used here to determine the target tissues of KHV during very early infection, after infecting carp with a highly virulent KHV isolate. Analysis of paraffin-embedded tissues (i.e. gills, skin, spleen, kidney, gut, liver and brain) during the first 8 h and following 10 days post-infection (hpi; dpi) revealed positive signals in skin mucus, gills and gut sections after only 1 hpi. Respiratory epithelial cells were positive as early as 2 hpi. Viral DNA was also detected within blood vessels of various tissues early in the infection. Notable increases in signal abundance were observed in the gills and kidney between 5 and 10 dpi, and viral DNA was detected in all tissues except brain. This study suggests that the gills and gut play an important role in the early pathogenesis of this Alloherpesvirus, in addition to skin, and demonstrates ISH as a useful diagnostic tool for confirmation of acutely infected carp.
Collapse
Affiliation(s)
- S J Monaghan
- Aquatic Vaccine Unit, School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland
| | | | | | | | | |
Collapse
|
43
|
Donohoe OH, Henshilwood K, Way K, Hakimjavadi R, Stone DM, Walls D. Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs. PLoS One 2015; 10:e0125434. [PMID: 25928140 PMCID: PMC4416013 DOI: 10.1371/journal.pone.0125434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/17/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA–offset RNAs (moRNAs) derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3.
Collapse
Affiliation(s)
- Owen H. Donohoe
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | | | - Keith Way
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, the United Kingdom
| | - Roya Hakimjavadi
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - David M. Stone
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, the United Kingdom
| | - Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
- * E-mail:
| |
Collapse
|
44
|
Boutier M, Ronsmans M, Rakus K, Jazowiecka-Rakus J, Vancsok C, Morvan L, Peñaranda MMD, Stone DM, Way K, van Beurden SJ, Davison AJ, Vanderplasschen A. Cyprinid Herpesvirus 3: An Archetype of Fish Alloherpesviruses. Adv Virus Res 2015; 93:161-256. [PMID: 26111587 DOI: 10.1016/bs.aivir.2015.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The order Herpesvirales encompasses viruses that share structural, genetic, and biological properties. However, members of this order infect hosts ranging from molluscs to humans. It is currently divided into three phylogenetically related families. The Alloherpesviridae family contains viruses infecting fish and amphibians. There are 12 alloherpesviruses described to date, 10 of which infect fish. Over the last decade, cyprinid herpesvirus 3 (CyHV-3) infecting common and koi carp has emerged as the archetype of fish alloherpesviruses. Since its first description in the late 1990s, this virus has induced important economic losses in common and koi carp worldwide. It has also had negative environmental implications by affecting wild carp populations. These negative impacts and the importance of the host species have stimulated studies aimed at developing diagnostic and prophylactic tools. Unexpectedly, the data generated by these applied studies have stimulated interest in CyHV-3 as a model for fundamental research. This review intends to provide a complete overview of the knowledge currently available on CyHV-3.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Maygane Ronsmans
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Krzysztof Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Joanna Jazowiecka-Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Catherine Vancsok
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Léa Morvan
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ma Michelle D Peñaranda
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - David M Stone
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Keith Way
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Steven J van Beurden
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
45
|
Negenborn J, van der Marel MC, Ganter M, Steinhagen D. Cyprinid herpesvirus-3 (CyHV-3) disturbs osmotic balance in carp (Cyprinus carpio L.)--A potential cause of mortality. Vet Microbiol 2015; 177:280-8. [PMID: 25888311 DOI: 10.1016/j.vetmic.2015.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Abstract
Cyprinid herpesvirus-3 (CyHV-3) causes a fatal disease in carp (Cyprinus carpio) and its ornamental koi varieties which seriously affects production and trade of this fish species globally. Up to now, the pathophysiology of this disease remains unclear. Affected individuals develop most prominent lesions in gills, skin and kidney, in tissues which are involved in the osmotic regulation of freshwater teleosts. Therefore, here serum and urine electrolyte levels were examined during the course of an experimental infection of carp with CyHV-3. In infected carp an interstitial nephritis with a progressive deterioration of nephric tubules developed, which was paralleled by elevated electrolyte losses, mainly Na(+) in the urine. The urine/plasma ratio for Na(+) increased from 0.03 in uninfected carp to 0.43-0.83 in carp under CyHV-3 infection, while concentration of divalent ions were not significantly changed. These electrolyte losses could not be compensated since plasma osmolality and Na(+) concentration dropped significantly in CyHV-3 infected carp. This was most probably caused by the progressive deterioration of the branchial epithelium, which in teleosts plays a prominent role in osmoregulation, and which was seen concomitantly with decreasing electrolyte levels in the serum of carp under CyHV-3 infection. Immediately after infection with CyHV-3, by day 2 post exposure, affected carp showed severe anaemia and prominent leucocytosis indicating the development of an acute inflammation, which could intensify the observed hydro-mineral imbalances. The data presented here show that an infection with CyHV-3 induces an acute inflammation and a severe dysfunction of osmoregulation in affected carp or koi, which may lead to death in particular in the case of acute disease progression.
Collapse
Affiliation(s)
- J Negenborn
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - M C van der Marel
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - M Ganter
- Clinic for Pigs, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - D Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany.
| |
Collapse
|
46
|
Boutier M, Ronsmans M, Ouyang P, Fournier G, Reschner A, Rakus K, Wilkie GS, Farnir F, Bayrou C, Lieffrig F, Li H, Desmecht D, Davison AJ, Vanderplasschen A. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging. PLoS Pathog 2015; 11:e1004690. [PMID: 25700279 PMCID: PMC4336323 DOI: 10.1371/journal.ppat.1004690] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/20/2015] [Indexed: 12/27/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV-3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV-3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin. Common carp, and its colorful ornamental variety koi, is one of the most economically valuable species in aquaculture. Since the late 1990s, the common and koi carp culture industries have suffered devastating worldwide losses due to cyprinid herpesvirus 3 (CyHV-3). In the present study, we report the development of an attenuated recombinant vaccine against CyHV-3. Two genes were deleted from the viral genome, leading to a recombinant virus that is no longer capable of causing the disease but can be propagated in cell culture (for vaccine production) and infect fish when added to the water, thereby immunizing the fish. This attenuated recombinant vaccine also had a drastic defect in spreading from vaccinated to non-vaccinated cohabitant fish. The vaccine induced a protective mucosal immune response capable of preventing the entry of virulent CyHV-3 and is compatible with the simultaneous vaccination of a large number of carp by simply immersing the fish in water containing the vaccine. This vaccine represents a promising tool for controlling the most dreadful disease ever encountered by the carp culture industries. In addition, the present study highlights the importance of the CyHV-3 - carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Maygane Ronsmans
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ping Ouyang
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Guillaume Fournier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Anca Reschner
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Krzysztof Rakus
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Gavin S. Wilkie
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Frédéric Farnir
- Biostatistics and Bioinformatics, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Calixte Bayrou
- Pathology, Department of Morphology and Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - François Lieffrig
- Fish Pathology Lab, Department of Biotechnology, CER Groupe, Marloie, Belgium
| | - Hong Li
- USDA-ARS-ADRU, Washington State University, Pullman, Pullman, Washington, United States of America
| | - Daniel Desmecht
- Pathology, Department of Morphology and Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Andrew J. Davison
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
47
|
Gan H, He H, Sato A, Hatta H, Nakao M, Somamoto T. Ulcer disease prophylaxis in koi carp by bath immersion with chicken egg yolk containing anti-Aeromonas salmonicida IgY. Res Vet Sci 2015; 99:82-6. [PMID: 25687817 DOI: 10.1016/j.rvsc.2015.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/06/2015] [Accepted: 01/25/2015] [Indexed: 02/02/2023]
Abstract
Ulcer disease, caused by atypical Aeromonas salmonicida, is a serious concern in ornamental koi carp, because it induces skin ulceration, disfiguring ornamental fish and causing economic loses. The present study aimed to establish a novel prophylaxis with chicken egg yolk immunoglobulin, IgY, against ulcer disease and to assess its feasibility in the ornamental fish industry. Addition of egg yolk powder containing anti-A. salmonicida IgY to rearing water provided significant protection against an A. salmonicida bath infection, whereas administration of non-specific IgY did not. Consecutive immersion of fish into rearing water containing specific IgY completely prevented ulcer disease resulting from cohabitation infection, indicating that this prophylaxis could prevent infection from such type of contact. Thus, passive immunization induced by immersing fish into aquarium water containing specific IgY is a prospective prophylaxis against diseases caused by pathogens that invade the skin and gills.
Collapse
Affiliation(s)
- Hongjian Gan
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Haiwen He
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Atsushi Sato
- Kyorin Co. Ltd., 9 Minami-machi, Himeji, Hyogo, Japan
| | - Hajime Hatta
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
48
|
Li W, Lee X, Weng S, He J, Dong C. Whole-genome sequence of a novel Chinese cyprinid herpesvirus 3 isolate reveals the existence of a distinct European genotype in East Asia. Vet Microbiol 2014; 175:185-94. [PMID: 25510475 DOI: 10.1016/j.vetmic.2014.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/02/2014] [Accepted: 11/16/2014] [Indexed: 11/15/2022]
Abstract
Cyprinid herpesvirus 3 (CyHV3), also known as koi herpesvirus (KHV), can be subdivided primarily into European and Asian genotypes, which are represented by CyHV3-U or CyHV3-I and CyHV3-J, respectively. In this study, the whole genome sequence of a novel Chinese CyHV3 isolate (GZ11) was determined and annotated. CyHV3-GZ11 genome was found to contain 295,119 nucleotides with 52.9% G/C content, which is highly similar to those of published CyHV3-U, CyHV3-I, and CyHV3-J strains. With reference to CyHV3-U, CyHV3-I, and CyHV3-J, CyHV3-GZ11 was also classified into 164 open reading frames (ORF), which include eight repeated ORFs. On the basis of the 12 alloherpeviruses core genes, results from phylogenetic analysis showed that CyHV3-GZ11 had closer evolutionary relationships with CyHV3-U and CyHV3-I than with CyHV3/KHV-J, which were also supported by genome wide-based single nucleotide substitution analysis and the use of a series of developed molecular markers. This study was the first to reveal the presence of a distinct European CyHV3 genotype in East and Southeast Asia at a whole genome level, which will evoke new insights on exploring the origin, evolution, and epidemiology of the virus.
Collapse
Affiliation(s)
- Wei Li
- MOE Key Laboratory of Aquatic Food Safety / State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, No.135, Xingang Road West, Guangzhou 510275, PR China
| | - Xuezhu Lee
- MOE Key Laboratory of Aquatic Food Safety / State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, No.135, Xingang Road West, Guangzhou 510275, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Food Safety / State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, No.135, Xingang Road West, Guangzhou 510275, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Food Safety / State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, No.135, Xingang Road West, Guangzhou 510275, PR China; School of Marine Sciences, Sun Yat-sen University, No.135, Xingang Road West, Guangzhou 510275, PR China.
| | - Chuanfu Dong
- MOE Key Laboratory of Aquatic Food Safety / State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, No.135, Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
49
|
Ronsmans M, Boutier M, Rakus K, Farnir F, Desmecht D, Ectors F, Vandecan M, Lieffrig F, Mélard C, Vanderplasschen A. Sensitivity and permissivity of Cyprinus carpio to cyprinid herpesvirus 3 during the early stages of its development: importance of the epidermal mucus as an innate immune barrier. Vet Res 2014; 45:100. [PMID: 25281322 PMCID: PMC4198741 DOI: 10.1186/s13567-014-0100-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/24/2014] [Indexed: 11/21/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) causes a lethal disease in common and koi carp (Cyprinus carpio). The present study investigated the ability of CyHV-3 to infect common carp during the early stages of its development (from embryos to fingerlings) after inoculation by immersion in water containing the virus. Fish were inoculated at different times after hatching with a pathogenic recombinant CyHV-3 strain expressing luciferase. The sensitivity and permissivity of carp to CyHV-3 were investigated using in vivo bioluminescence imaging. The susceptibility of carp to CyHV-3 disease was investigated by measuring the survival rate. Carp were sensitive and permissive to CyHV-3 infection and susceptible to CyHV-3 disease at all stages of development, but the sensitivity of the two early developmental stages (embryo and larval stages) was limited compared to later stages. The lower sensitivity observed for the early developmental stages was due to stronger inhibition of viral entry into the host by epidermal mucus. In addition, independent of the developmental stage at which inoculation was performed, the localization of light emission suggested that the skin is the portal of CyHV-3 entry. Taken together, the results of the present study demonstrate that carp are sensitive and permissive to CyHV-3 at all stages of development and confirm that the skin is the major portal of entry after inoculation by immersion in infectious water. The results also stress the role of epidermal mucus as an innate immune barrier against pathogens even and especially at the early stages of development.
Collapse
Affiliation(s)
- Maygane Ronsmans
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases (B43b), Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium.
| | - Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases (B43b), Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium.
| | - Krzysztof Rakus
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases (B43b), Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium.
| | - Frédéric Farnir
- Biostatistics and Bioinformatics applied to Veterinary Science (B43), Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium.
| | - Daniel Desmecht
- Pathology, Department of Morphology and Pathology (B43), Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium.
| | - Fabien Ectors
- Transgenic Platform, Groupe Interdisciplinaire de Génoprotéomique Appliquée, Centre Hospitalier Universitaire B34, University of Liège, 4000, Liège, Belgium.
| | - Michaël Vandecan
- CEFRA-University of Liège, 10 Chemin de la Justice, 4500, Tihange, Belgium.
| | | | - Charles Mélard
- CEFRA-University of Liège, 10 Chemin de la Justice, 4500, Tihange, Belgium.
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases (B43b), Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
50
|
Yi Y, Zhang H, Lee X, Weng S, He J, Dong C. Extracellular virion proteins of two Chinese CyHV-3/KHV isolates, and identification of two novel envelope proteins. Virus Res 2014; 191:108-16. [DOI: 10.1016/j.virusres.2014.07.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/01/2022]
|