1
|
Pitchai A, Shinde A, Swihart JN, Robison K, Shannahan JH. Specialized Pro-Resolving Lipid Mediators Distinctly Modulate Silver Nanoparticle-Induced Pulmonary Inflammation in Healthy and Metabolic Syndrome Mouse Models. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1642. [PMID: 39452978 PMCID: PMC11510677 DOI: 10.3390/nano14201642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Individuals with chronic diseases are more vulnerable to environmental inhalation exposures. Although metabolic syndrome (MetS) is increasingly common and is associated with susceptibility to inhalation exposures such as particulate air pollution, the underlying mechanisms remain unclear. In previous studies, we determined that, compared to a healthy mouse model, a mouse model of MetS exhibited increased pulmonary inflammation 24 h after exposure to AgNPs. This exacerbated response was associated with decreases in pulmonary levels of specific specialized pro-resolving mediators (SPMs). Supplementation with specific SPMs that are known to be dysregulated in MetS may alter particulate-induced inflammatory responses and be useful in treatment strategies. Our current study hypothesized that administration of resolvin E1 (RvE1), protectin D1 (PD1), or maresin (MaR1) following AgNP exposure will differentially regulate inflammatory responses. To examine this hypothesis, healthy and MetS mouse models were exposed to either a vehicle (control) or 50 μg of 20 nm AgNPs via oropharyngeal aspiration. They were then treated 24 h post-exposure with either a vehicle (control) or 400 ng of RvE1, PD1, or MaR1 via oropharyngeal aspiration. Endpoints of pulmonary inflammation and toxicity were evaluated three days following AgNP exposure. MetS mice that were exposed to AgNPs and received PBS treatment exhibited significantly exacerbated pulmonary inflammatory responses compared to healthy mice. In mice exposed to AgNPs and treated with RvE1, neutrophil infiltration was reduced in healthy mice and the exacerbated neutrophil levels were decreased in the MetS model. This decreased neutrophilia was associated with decreases in proinflammatory cytokines' gene and protein expression. Healthy mice treated with PD1 did not demonstrate alterations in AgNP-induced neutrophil levels compared to mice not receiving treat; however, exacerbated neutrophilia was reduced in the MetS model. These PD1 alterations were associated with decreases in proinflammatory cytokines, as well as elevated interleukin-10 (IL-10). Both mouse models receiving MaR1 treatment demonstrated reductions in AgNP-induced neutrophil influx. MaR1 treatment was associated with decreases in proinflammatory cytokines in both models and increases in the resolution inflammatory cytokine IL-10 in both models, which were enhanced in MetS mice. Inflammatory responses to particulate exposure may be treated using specific SPMs, some of which may benefit susceptible subpopulations.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan H. Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Song SY, Park DH, Lee SH, Lim HK, Park JW, Seo JW, Cho SS. Protective Effects of 7S,15R-Dihydroxy-16S,17S-Epoxy-Docosapentaenoic Acid (diHEP-DPA) against Blue Light-Induced Retinal Damages in A2E-Laden ARPE-19 Cells. Antioxidants (Basel) 2024; 13:982. [PMID: 39199228 PMCID: PMC11351242 DOI: 10.3390/antiox13080982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
The purpose of this study was to investigate the protective effects of 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA) in retinal pigment epithelial (RPE) cell damage. ARPE-19 cells, a human RPE cell line, were cultured with diHEP-DPA and Bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E), followed by exposure to BL. Cell viability and cell death rates were determined. Western blotting was performed to determine changes in apoptotic factors, mitogen-activated protein kinase (MAPK) family proteins, inflammatory proteins, and oxidative and carbonyl stresses. The levels of pro-inflammatory cytokines in the culture medium supernatants were also measured. Exposure to A2E and BL increased the ARPE-19 cell death rate, which was alleviated by diHEP-DPA in a concentration-dependent manner. A2E and BL treatments induced apoptosis in ARPE-19 cells, which was also alleviated by diHEP-DPA. Analysis of the relationship with MAPK proteins revealed that the expression of p-JNK and p-P38 increased after A2E and BL treatments and decreased with exposure to diHEP-DPA in a concentration-dependent manner. DiHEP-DPA also affected the inflammatory response by suppressing the expression of inflammatory proteins and the production of pro-inflammatory cytokines. Furthermore, it was shown that diHEP-DPA regulated the proteins related to oxidative and carbonyl stresses. Taken together, our results provide evidence that diHEP-DPA can inhibit cell damage caused by A2E and BL exposure at the cellular level by controlling various pathways involved in apoptosis and inflammatory responses.
Collapse
Affiliation(s)
- Seung-Yub Song
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju-si 58245, Jeonnam, Republic of Korea;
| | - Sung-Ho Lee
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| | - Han-Kyu Lim
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
- Department of Marine and Fisheries Resources, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea
| | - Jin-Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Jeollabuk-do, Republic of Korea;
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| |
Collapse
|
3
|
Kemper TA, Woo H, Belz D, Fawzy A, Lorizio W, Eakin MN, Putcha N, McCormack MC, Brigham EP, Hanson C, Koch AL, Hansel NN. Higher Plasma Omega-3 Levels are Associated With Improved Exacerbation Risk and Respiratory-Specific Quality of Life in COPD. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:293-302. [PMID: 38687147 PMCID: PMC11216231 DOI: 10.15326/jcopdf.2023.0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Background Omega-3 polyunsaturated fatty acids (PUFAs) have been associated with systemic anti-inflammatory responses. Dietary intake of omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has also been associated with lower chronic obstructive pulmonary disease (COPD) morbidity using self-report food frequency questionnaires. Objective The objective of this study was to investigate the relationship between measured PUFA intake using plasma EPA+DHA levels and COPD morbidity. Methods Former smokers with moderate-to-severe COPD living in low-income communities were enrolled in a 6-month prospective cohort study. Participants completed standardized questionnaires, spirometry, and plasma samples at 3-month intervals. Total plasma PUFAs were analyzed using gas chromatography/mass spectrometry for DHA and EPA concentrations. Linear or logistic mixed model regression was used to evaluate EPA+DHA's and COPD morbidity's association, accounting for demographics, lung function, pack years, comorbidities, and neighborhood poverty. Results A total of 133 plasma EPA+DHA samples from 57 participants were available. Participants exhibited average plasma EPA and DHA levels of 14.7±7.3µg/mL and 40.2±17.2µg/mL, respectively, across the 3 clinic visits. Each standard deviation increase in EPA+DHA levels was associated with 2.7 points lower St George's Respiratory Questionnaire score (95% confidence interval [CI] -5.2, -0.2) and lower odds of moderate exacerbation (odds ratio 0.4; 95% CI 0.2, 0.9), but lacked significant association with the COPD Assessment Test score (95% CI -2.4, 0.8), modified Medical Research Council dyspnea scale (95% CI -02, 0.2), or severe exacerbations (95% CI 0.3, 1.4). Conclusion Plasma EPA+DHA levels are associated with better respiratory-specific quality of life and lower odds of moderate exacerbations in patients with moderate-to-severe COPD. Further research is warranted to investigate the efficacy of an omega-3 dietary intervention in the management of COPD morbidities.
Collapse
Affiliation(s)
- Tyus A Kemper
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | - Han Woo
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Daniel Belz
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Ashraf Fawzy
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Wendy Lorizio
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Michelle N Eakin
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Emily P Brigham
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Corrine Hanson
- Medical Nutrition Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Abigail L Koch
- Section on Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Miami, Miami, Florida, United States
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Lovins HB, Bathon BE, Shaikh SR, Gowdy KM. Inhaled toxicants and pulmonary lipid metabolism: biological consequences and therapeutic interventions. Toxicol Sci 2023; 196:141-151. [PMID: 37740395 DOI: 10.1093/toxsci/kfad100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Inhaled toxicants drive the onset of and exacerbate preexisting chronic pulmonary diseases, however, the biological mechanisms by which this occurs are largely unknown. Exposure to inhaled toxicants, both environmental and occupational, drives pulmonary inflammation and injury. Upon activation of the inflammatory response, polyunsaturated fatty acids (PUFAs) are metabolized into predominately proinflammatory lipid mediators termed eicosanoids which recruit immune cells to the site of injury, perpetuating inflammation to clear the exposed toxicants. Following inflammation, lipid mediator class-switching occurs, a process that leads to increased metabolism of hydroxylated derivates of PUFAs. These mediators, which include mono-hydroxylated PUFA derivatives and specialized proresolving lipid mediators, initiate an active process of inflammation resolution by inhibiting the inflammatory response and activating resolution pathways to return the tissue to homeostasis. Exposure to inhaled toxicants leads to alterations in the synthesis of these proinflammatory and proresolving lipid mediator pathways, resulting in greater pulmonary inflammation and injury, and increasing the risk for the onset of chronic lung diseases. Recent studies have begun utilizing supplementation of PUFAs and their metabolites as potential therapeutics for toxicant-induced pulmonary inflammation and injury. Here we will review the current understanding of the lipid mediators in pulmonary inflammation and resolution as well as the impact of dietary fatty acid supplementation on lipid mediator-driven inflammation following air pollution exposure.
Collapse
Affiliation(s)
- Hannah B Lovins
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Brooke E Bathon
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Chiarella SE, Barnes PJ. Endogenous inhibitory mechanisms in asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100135. [PMID: 37781649 PMCID: PMC10509980 DOI: 10.1016/j.jacig.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 10/03/2023]
Abstract
Endogenous inhibitory mechanisms promote resolution of inflammation, enhance tissue repair and integrity, and promote homeostasis in the lung. These mechanisms include steroid hormones, regulatory T cells, IL-10, prostaglandin E2, prostaglandin I2, lipoxins, resolvins, protectins, maresins, glucagon-like peptide-1 receptor, adrenomedullin, nitric oxide, and carbon monoxide. Here we review the most recent literature regarding these endogenous inhibitory mechanisms in asthma, which remain a promising target for the prevention and treatment of asthma.
Collapse
|
6
|
Sahni V, Van Dyke TE. Immunomodulation of periodontitis with SPMs. FRONTIERS IN ORAL HEALTH 2023; 4:1288722. [PMID: 37927821 PMCID: PMC10623003 DOI: 10.3389/froh.2023.1288722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Inflammation is a critical component in the pathophysiology of numerous disease processes, with most therapeutic modalities focusing on its inhibition in order to achieve treatment outcomes. The resolution of inflammation is a separate, distinct pathway that entails the reversal of the inflammatory process to a state of homoeostasis rather than selective inhibition of specific components of the inflammatory cascade. The discovery of specialized pro-resolving mediators (SPMs) resulted in a paradigm shift in our understanding of disease etiopathology. Periodontal disease, traditionally considered as one of microbial etiology, is now understood to be an inflammation-driven process associated with dysbiosis of the oral microbiome that may be modulated with SPMs to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Vaibhav Sahni
- Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | - Thomas E. Van Dyke
- Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
- Faculty of Medicine, Harvard University, Boston, MA, United States
| |
Collapse
|
7
|
Liu WC, Yang YH, Wang YC, Chang WM, Wang CW. Maresin: Macrophage Mediator for Resolving Inflammation and Bridging Tissue Regeneration-A System-Based Preclinical Systematic Review. Int J Mol Sci 2023; 24:11012. [PMID: 37446190 DOI: 10.3390/ijms241311012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maresins are lipid mediators derived from omega-3 fatty acids with anti-inflammatory and pro-resolving properties, capable of promoting tissue regeneration and potentially serving as a therapeutic agent for chronic inflammatory diseases. The aim of this review was to systematically investigate preclinical and clinical studies on maresin to inform translational research. Two independent reviewers performed comprehensive searches with the term "Maresin (NOT) Review" on PubMed. A total of 137 studies were included and categorized into 11 human organ systems. Data pertinent to clinical translation were specifically extracted, including delivery methods, optimal dose response, and specific functional efficacy. Maresins generally exhibit efficacy in treating inflammatory diseases, attenuating inflammation, protecting organs, and promoting tissue regeneration, mostly in rodent preclinical models. The nervous system has the highest number of original studies (n = 25), followed by the cardiovascular system, digestive system, and respiratory system, each having the second highest number of studies (n = 18) in the field. Most studies considered systemic delivery with an optimal dose response for mouse animal models ranging from 4 to 25 μg/kg or 2 to 200 ng via intraperitoneal or intravenous injection respectively, whereas human in vitro studies ranged between 1 and 10 nM. Although there has been no human interventional clinical trial yet, the levels of MaR1 in human tissue fluid can potentially serve as biomarkers, including salivary samples for predicting the occurrence of cardiovascular diseases and periodontal diseases; plasma and synovial fluid levels of MaR1 can be associated with treatment response and defining pathotypes of rheumatoid arthritis. Maresins exhibit great potency in resolving disease inflammation and bridging tissue regeneration in preclinical models, and future translational development is warranted.
Collapse
Affiliation(s)
- Wen-Chun Liu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Hsin Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Chin Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Wei-Ming Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chin-Wei Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
- Division of Periodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
8
|
Zailani H, Satyanarayanan SK, Liao WC, Liao HF, Huang SY, Gałecki P, Su KP, Chang JPC. Omega-3 Polyunsaturated Fatty Acids in Managing Comorbid Mood Disorders in Chronic Obstructive Pulmonary Disease (COPD): A Review. J Clin Med 2023; 12:jcm12072653. [PMID: 37048736 PMCID: PMC10095486 DOI: 10.3390/jcm12072653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third-leading cause of mortality globally, significantly affecting people over 40 years old. COPD is often comorbid with mood disorders; however, they are frequently neglected or undiagnosed in COPD management, thus resulting in unintended treatment outcomes and higher mortality associated with the disease. Although the exact link between COPD and mood disorders remains to be ascertained, there is a broader opinion that inflammatory reactions in the lungs, blood, and inflammation-induced changes in the brain could orchestrate the onset of mood disorders in COPD. Although the current management of mood disorders such as depression in COPD involves using antidepressants, their use has been limited due to tolerability issues. On the other hand, as omega-3 polyunsaturated fatty acids (n-3 PUFAs) play a vital role in regulating inflammatory responses, they could be promising alternatives in managing mood disorders in COPD. This review discusses comorbid mood disorders in COPD as well as their influence on the progression and management of COPD. The underlying mechanisms of comorbid mood disorders in COPD will also be discussed, along with the potential role of n-3 PUFAs in managing these conditions.
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Senthil Kumaran Satyanarayanan
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Hsien-Feng Liao
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan
- Nutrition Research Centre, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland
| | - Kuan-Pin Su
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 833, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
9
|
Wang F, Gong Y, Chen T, Li B, Zhang W, Yin L, Zhao H, Tang Y, Wang X, Huang C. Maresin1 ameliorates ventricular remodelling and arrhythmia in mice models of myocardial infarction via NRF2/HO-1 and TLR4/NF-kB signalling. Int Immunopharmacol 2022; 113:109369. [DOI: 10.1016/j.intimp.2022.109369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
10
|
Säfholm J, Abma W, Bankova LG, Boyce JA, Al-Ameri M, Orre AC, Wheelock CE, Dahlén SE, Adner M. Cysteinyl-maresin 3 inhibits IL-13 induced airway hyperresponsiveness through alternative activation of the CysLT 1 receptor. Eur J Pharmacol 2022; 934:175257. [PMID: 36116518 DOI: 10.1016/j.ejphar.2022.175257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cysteinyl-maresins, also known as maresin-conjugates in tissue regeneration (MCTRs), are recently discovered lipid mediators proposed to reduce airway inflammation. OBJECTIVE To investigate the influence of MCTRs on IL-13-induced airway hyperresponsiveness in isolated human and mice airways. METHODS Before responsiveness to contractile agonists were assessed in myographs, human small bronchi were cultured for 2 days and mouse tracheas were cultured for 1-4 days. During the culture procedure airways were exposed to interleukin (IL)-13 in the presence or absence of MCTRs. Signalling mechanisms were explored using pharmacologic agonists and antagonists, and genetically modified mice. RESULTS IL-13 treatment increased contractions to histamine, carbachol and leukotriene D4 (LTD4) in human small bronchi, and to 5-hydroxytryptamine (5-HT) in mouse trachea. In both preparations, co-incubation of the explanted tissues with MCTR3 reduced the IL-13 induced enhancement of contractions. In mouse trachea, this inhibitory effect of MCTR3 was blocked by three different CysLT1 receptor antagonists (montelukast, zafirlukast and pobilukast) during IL-13 exposure. Likewise, MCTR3 failed to reduce the IL-13-induced 5-HT responsiveness in mice deficient of the CysLT1 receptor. However, co-incubation with the classical CysLT1 receptor agonist LTD4 did not alter the IL-13-induced 5-HT hyperreactivity. CONCLUSIONS MCTR3, but not LTD4, decreased the IL-13-induced airway hyperresponsiveness by activation of the CysLT1 receptor. The distinct actions of the two lipid mediators on the CysLT1 receptor suggest an alternative signalling pathway appearing under inflammatory conditions, where this new action of MCTR3 implicates potential to inhibit airway hyperresponsiveness in asthma.
Collapse
Affiliation(s)
- Jesper Säfholm
- Institute of Environmental Medicine, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Centre for Allergy Research, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden
| | - Willem Abma
- Institute of Environmental Medicine, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Centre for Allergy Research, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden
| | - Lora G Bankova
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mamdoh Al-Ameri
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden; Department of Cardiothoracic Surgery and Anesthesiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ann-Charlotte Orre
- Department of Cardiothoracic Surgery and Anesthesiology, Karolinska University Hospital, Stockholm, Sweden
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Centre for Allergy Research, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden; Centre for Allergy Research, Karolinska Institutet, Biomedicum 5B, Solnavägen 9, SE-171 65, Solna, Sweden.
| |
Collapse
|
11
|
Zhao M, Li C, Zhang J, Yin Z, Zheng Z, Wan J, Wang M. Maresin-1 and Its Receptors RORα/LGR6 as Potential Therapeutic Target for Respiratory Diseases. Pharmacol Res 2022; 182:106337. [PMID: 35781060 DOI: 10.1016/j.phrs.2022.106337] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Maresin-1 is one of the representative specialized pro-resolving mediators that has shown beneficial effects in inflammatory disease models. Recently, two distinct types of receptor molecules were discovered as the targets of maresin-1, further revealing the pro-resolution mechanism of maresin-1. One is retinoic acid-related orphan receptor α (RORα) and the another one is leucine-rich repeat domain-containing G protein-coupled receptor 6 (LGR6). In this review, we summarized the detailed role of maresin-1 and its two different receptors in respiratory diseases. RORα and LGR6 are potential targets for the treatment of respiratory diseases. Future basic research and clinical trials on MaR1 and its receptors should provide useful information for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
12
|
Zúñiga-Hernández J, Sambra V, Echeverría F, Videla LA, Valenzuela R. N-3 PUFAs and their specialized pro-resolving lipid mediators on airway inflammatory response: beneficial effects in the prevention and treatment of respiratory diseases. Food Funct 2022; 13:4260-4272. [PMID: 35355027 DOI: 10.1039/d1fo03551g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Respiratory diseases include a wide range of pathologies with different clinical manifestations, affecting the normal airways and lung function. An increase in the inflammatory response is considered a characteristic hallmark of these diseases, being also a critical factor for their progression. The n-3 polyunsaturated fatty acids (n-3 PUFAs) eicosapentaenoic acid (C20:4n-3, EPA), docosahexaenoic acid (C22:6n-3, DHA) and their lipid mediators are known to have an inflammation pro-resolution effect. The effects of these n-3 PUFAs in the prevention and treatment of respiratory diseases are beginning to be understood. Consequently, this article aims to analyze the influence of n-3 PUFAs and their lipid mediators on the inflammatory response in respiratory health, emphasizing recent data concerning their beneficial effects in the prevention and possible treatment of different respiratory diseases, particularly asthma, airway allergic syndromes and chronic obstructive pulmonary disease. The review includes studies regarding the effects of EPA, DHA, and their specialized pro-resolving lipid mediators (SPMs) on in vivo and in vitro models of respiratory disease, concluding that EPA and DHA have a positive impact in attenuating the pro-inflammatory response in respiratory diseases, reducing symptoms like nasal congestion, fever and difficulty in breathing. Controversial data reported are probably due to differences in several factors, including the dosages, administration vehicles, and the supplementation times employed, which are aspects that remain to be addressed in future studies.
Collapse
Affiliation(s)
| | - Verónica Sambra
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Francisca Echeverría
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile. .,Carrera de Nutrición y Dietética, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
13
|
Dominguez EC, Phandthong R, Nguyen M, Ulu A, Guardado S, Sveiven S, Talbot P, Nordgren TM. Aspirin-Triggered Resolvin D1 Reduces Chronic Dust-Induced Lung Pathology without Altering Susceptibility to Dust-Enhanced Carcinogenesis. Cancers (Basel) 2022; 14:1900. [PMID: 35454807 PMCID: PMC9032113 DOI: 10.3390/cancers14081900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with increased risk being associated with unresolved or chronic inflammation. Agricultural and livestock workers endure significant exposure to agricultural dusts on a routine basis; however, the chronic inflammatory and carcinogenic effects of these dust exposure is unclear. We have developed a chronic dust exposure model of lung carcinogenesis in which mice were intranasally challenged three times a week for 24 weeks, using an aqueous dust extract (HDE) made from dust collected in swine confinement facilities. We also treated mice with the omega-3-fatty acid lipid mediator, aspirin-triggered resolvin D1 (AT-RvD1) to provide a novel therapeutic strategy for mitigating the inflammatory and carcinogenic effects of HDE. Exposure to HDE resulted in significant immune cell influx into the lungs, enhanced lung tumorigenesis, severe tissue pathogenesis, and a pro-inflammatory and carcinogenic gene signature, relative to saline-exposed mice. AT-RvD1 treatment mitigated the dust-induced inflammatory response but did not protect against HDE + NNK-enhanced tumorigenesis. Our data suggest that chronic HDE exposure induces a significant inflammatory and pro-carcinogenic response, whereas treatment with AT-RvD1 dampens the inflammatory responses, providing a strong argument for the therapeutic use of AT-RvD1 to mitigate chronic inflammation.
Collapse
Affiliation(s)
- Edward C. Dominguez
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA; (E.C.D.); (P.T.)
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; (M.N.); (A.U.); (S.G.); (S.S.)
| | - Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA;
| | - Matthew Nguyen
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; (M.N.); (A.U.); (S.G.); (S.S.)
| | - Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; (M.N.); (A.U.); (S.G.); (S.S.)
| | - Stephanie Guardado
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; (M.N.); (A.U.); (S.G.); (S.S.)
| | - Stefanie Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; (M.N.); (A.U.); (S.G.); (S.S.)
| | - Prue Talbot
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA; (E.C.D.); (P.T.)
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA;
| | - Tara M. Nordgren
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA; (E.C.D.); (P.T.)
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; (M.N.); (A.U.); (S.G.); (S.S.)
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
Kumar M, Yano N, Fedulov AV. Gestational exposure to titanium dioxide, diesel exhaust, and concentrated urban air particles affects levels of specialized pro-resolving mediators in response to allergen in asthma-susceptible neonate lungs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:243-261. [PMID: 34802391 PMCID: PMC8785906 DOI: 10.1080/15287394.2021.2000906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Maternal gestational exposures to traffic and urban air pollutant particulates have been linked to increased risk and/or worsening asthma in children; however, mechanisms underlying this vertical transmission are not entirely understood. It was postulated that gestational particle exposure might affect the ability to elicit specialized proresolving mediator (SPM) responses upon allergen encounter in neonates. Lipidomic profiling of 50 SPMs was performed in lungs of neonates born to mice exposed to concentrated urban air particles (CAP), diesel exhaust particles (DEP), or less immunotoxic titanium dioxide particles (TiO2). While asthma-like phenotypes were induced with identical eosinophilia intensity across neonates of all particle-exposed mothers, levels of LXA4, HEPE and HETE isoforms, and HDoHe were only decreased by CAP and DEP only but not by TiO2. However, RvE2 and RvD1 were inhibited by all particles. In contrast, isomers of Maresin1 and Protectin D1 were variably elevated by CAP and DEP, whereas Protectin DX, PGE2, and TxB2 were increased in all groups. Only Protectin D1/DX, MaR1(n-3,DPA), 5(S),15(S)-DiHETE, PGE2, and RvE3 correlated with eosinophilia but the majority of other analytes, elevated or inhibited, showed no marked correlation with inflammation intensity. Evidence indicates that gestational particle exposure leads to both particle-specific and nonspecific effects on the SPM network.
Collapse
Affiliation(s)
- Mohan Kumar
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Naohiro Yano
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Alexey V. Fedulov
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| |
Collapse
|
15
|
Ulu A, Velazquez JV, Burr A, Sveiven SN, Yang J, Bravo C, Hammock BD, Nordgren TM. Sex-Specific Differences in Resolution of Airway Inflammation in Fat-1 Transgenic Mice Following Repetitive Agricultural Dust Exposure. Front Pharmacol 2022; 12:785193. [PMID: 35095496 PMCID: PMC8793679 DOI: 10.3389/fphar.2021.785193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
In agriculture industries, workers are at increased risk for developing pulmonary diseases due to inhalation of agricultural dusts, particularly when working in enclosed confinement facilities. Agricultural dusts inhalation leads to unresolved airway inflammation that precedes the development and progression of lung disease. We have previously shown beneficial effects of the omega-3 polyunsaturated fatty acid (ω-3 PUFA) DHA in protecting against the negative inflammatory effects of repetitive dust exposure in the lung. Dietary manipulation of pulmonary disease risk is an attractive and timely approach given the contribution of an increased ω-6 to ω-3 PUFA ratio to low grade inflammation and chronic disease in the Western diet. To prevent any confounding factors that comes with dietary supplementation of ω-3 PUFA (different sources, purity, dose, and duration), we employed a Fat-1 transgenic mouse model that convert ω-6 PUFA to ω-3 PUFA, leading to a tissue ω-6 to ω-3 PUFA ratio of approximately 1:1. Building on our initial findings, we hypothesized that attaining elevated tissue levels of ω-3 PUFA would attenuate agricultural dust-induced lung inflammation and its resolution. To test this hypothesis, we compared wild-type (WT) and Fat-1 transgenic mice in their response to aqueous extracts of agricultural dust (DE). We also used a soluble epoxide hydrolase inhibitor (sEH) to potentiate the effects of ω-3 PUFA, since sEH inhibitors have been shown to stabilize the anti-inflammatory P450 metabolites derived from both ω-3 and ω-6 PUFA and promote generation of specialized pro-resolving lipid mediators from ω-3 PUFA. Over a three-week period, mice were exposed to a total of 15 intranasal instillations of DE obtained from swine confinement buildings in the Midwest. We observed genotype and sex-specific differences between the WT vs. Fat-1 transgenic mice in response to repetitive dust exposure, where three-way ANOVA revealed significant main effects of treatment, genotype, and sex. Also, Fat-1 transgenic mice displayed reduced lymphoid aggregates in the lung following DE exposure as compared to WT animals exposed to DE, suggesting improved resilience to the DE-induced inflammatory effects. Overall, our data implicate a protective role of ω-3 FA in the lung following repetitive dust exposure.
Collapse
Affiliation(s)
- Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jalene V Velazquez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Abigail Burr
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Stefanie N Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jun Yang
- Department of Entomology and Nematology, University of California Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Carissa Bravo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
16
|
Maresin-1 and Inflammatory Disease. Int J Mol Sci 2022; 23:ijms23031367. [PMID: 35163291 PMCID: PMC8835953 DOI: 10.3390/ijms23031367] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is an essential action to protect the host human body from external, harmful antigens and microorganisms. However, an excessive inflammation reaction sometimes exceeds tissue damage and can disrupt organ functions. Therefore, anti-inflammatory action and resolution mechanisms need to be clarified. Dietary foods are an essential daily lifestyle that influences various human physiological processes and pathological conditions. Especially, omega-3 fatty acids in the diet ameliorate chronic inflammatory skin diseases. Recent studies have identified that omega-3 fatty acid derivatives, such as the resolvin series, showed strong anti-inflammatory actions in various inflammatory diseases. Maresin-1 is a derivative of one of the representative omega-3 fatty acids, i.e., docosahexaenoic acid (DHA), and has shown beneficial action in inflammatory disease models. In this review, we summarize the detailed actions of maresin-1 in immune cells and inflammatory diseases.
Collapse
|
17
|
Rodríguez MJ, Sabaj M, Tolosa G, Herrera Vielma F, Zúñiga MJ, González DR, Zúñiga-Hernández J. Maresin-1 Prevents Liver Fibrosis by Targeting Nrf2 and NF-κB, Reducing Oxidative Stress and Inflammation. Cells 2021; 10:3406. [PMID: 34943914 PMCID: PMC8699629 DOI: 10.3390/cells10123406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a complex process characterized by the excessive accumulation of extracellular matrix (ECM) and an alteration in liver architecture, as a result of most types of chronic liver diseases such as cirrhosis, hepatocellular carcinoma (HCC) and liver failure. Maresin-1 (MaR1) is derivative of ω-3 docosahexaenoic acid (DHA), which has been shown to have pro-resolutive and anti-inflammatory effects. We tested the hypothesis that the application of MaR1 could prevent the development of fibrosis in an animal model of chronic hepatic damage. Sprague-Dawley rats were induced with liver fibrosis by injections of diethylnitrosamine (DEN) and treated with or without MaR1 for four weeks. In the MaR1-treated animals, levels of AST and ALT were normalized in comparison with DEN alone, the hepatic architecture was improved, and inflammation and necrotic areas were reduced. Cell proliferation, assessed by the mitotic activity index and the expression of Ki-67, was increased in the MaR1-treated group. MaR1 attenuated liver fibrosis and oxidative stress was induced by DEN. Plasma levels of the pro-inflammatory mediators TNF-α and IL-1β were reduced in MaR1-treated animals, whereas the levels of IL-10, an anti-inflammatory cytokine, increased. Interestingly, MaR1 inhibited the translocation of the p65 subunit of NF-κB, while increasing the activation of Nrf2, a key regulator of the antioxidant response. Finally, MaR1 treatment reduced the levels of the pro-fibrotic mediator TGF-β and its receptor, while normalizing the hepatic levels of IGF-1, a proliferative agent. Taken together, these results suggest that MaR1 improves the parameters of DEN-induced liver fibrosis, activating hepatocyte proliferation and decreasing oxidative stress and inflammation. These results open the possibility of MaR1 as a potential therapeutic agent in fibrosis and other liver pathologies.
Collapse
Affiliation(s)
- María José Rodríguez
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
- Programa de Doctorado en Ciencias Mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Matías Sabaj
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.S.); (G.T.)
| | - Gerardo Tolosa
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.S.); (G.T.)
| | - Francisca Herrera Vielma
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
- Programa de Doctorado en Ciencias Mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - María José Zúñiga
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
| | - Jessica Zúñiga-Hernández
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
| |
Collapse
|
18
|
Lu J, Feng X, Zhang H, Wei Y, Yang Y, Tian Y, Bai L. Maresin-1 suppresses IL-1β-induced MMP-13 secretion by activating the PI3K/AKT pathway and inhibiting the NF-κB pathway in synovioblasts of an osteoarthritis rat model with treadmill exercise. Connect Tissue Res 2021; 62:508-518. [PMID: 32546009 DOI: 10.1080/03008207.2020.1780218] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim: Maresin-1 is a metabolite of docosahexaenoic acid (DHA) that has potential anti-inflammatory effects. To explore whether maresin-1 changes and has a therapeutic effect in osteoarthritis (OA) model rats undergoing treadmill exercise, we examined endogenous maresin-1 in a single-session treadmill experiment and OA model rats were treated with maresin-1, moreover, we examined the effects of maresin-1 on IL-1β induced rat fibroblast-like synoviocytes (FLSs) and possible mechanisms.Methods: In single-session treadmill experiment, 48 rats were randomly divided into 3 groups and performed three different intensities of exercise (15.2 m/min, 0°; 19.3 m/min, 5°; 26.8 m/min, 10°) for 60 min. Intra-articular lavage fluid (IALF) samples were harvested after 0, 2, and 4 h from each group (n = 4) and maresin-1 levels were evaluated by ELISA. Another 30 rats were treated with monosodium iodoacetate (MIA) to induce osteoarthritis and exogenous maresin-1 (MaR-1) and were divided into three groups (n = 10, OA: MIA, OAM: MIA+MaR1, and CG: control group). The level of injury was evaluated by OARSI and Mankin scores, and the levels of type II collagen and MMP13 were evaluated by immunohistochemistry. FLSs were obtained from the knee joint of SD rats, and the expression of MMP13 and activation of the PI3k/Akt and NF-κB p65 pathways in IL-1β-induced FLSs were evaluated by western blotting.Results: Maresin-1 levels were increased in IALF at 4 h after exercise, and type II collagen increased in cartilage and MMP13 decreased in the synovium after treatment with maresin-1 in MIA-induced osteoarthritis. The results of vitro experiment showed decreased MMP13, activation of the PI3k/Akt pathway, and suppression of the NF-κB p65 pathway upon treatment with maresin-1 in IL-1β-induced FLSs.Conclusions: The changes in maresin-1 in IALF, as seen in our single-section treadmill exercise, provides an explanation for the therapeutic effect of appropriate-strength treadmill exercise on osteoarthritis, and our experiments confirmed the therapeutic effect of maresin-1 both in vivo and in vitro.
Collapse
Affiliation(s)
- Jinghan Lu
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyuan Feng
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - He Zhang
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Yang
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yicheng Tian
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lunhao Bai
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Maciejewska-Markiewicz D, Stachowska E, Hawryłkowicz V, Stachowska L, Prowans P. The Role of Resolvins, Protectins and Marensins in Non-Alcoholic Fatty Liver Disease (NAFLD). Biomolecules 2021; 11:937. [PMID: 34202667 PMCID: PMC8301825 DOI: 10.3390/biom11070937] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
Increased triacylglycerols' (TAG) synthesis, insulin resistance, and prolonged liver lipid storage might lead to the development of non-alcoholic fatty liver disease (NAFLD). Global prevalence of NAFLD has been estimated to be around 25%, with gradual elevation of this ratio along with the increased content of adipose tissue in a body. The initial stages of NAFLD may be reversible, but the exposition to pathological factors should be limited. As dietary factors greatly influence various disease development, scientists try to find dietary components, helping to alleviate the steatosis. These components include n-3 polyunsaturated (PUFA) fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA). This review focused on the role of resolvins, protectins and merensins in NAFLD.
Collapse
Affiliation(s)
- Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Piotr Prowans
- Clinic of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, 72-009 Police, Poland;
| |
Collapse
|
20
|
Crawford MS, Nordgren TM, McCole DF. Every breath you take: Impacts of environmental dust exposure on intestinal barrier function-from the gut-lung axis to COVID-19. Am J Physiol Gastrointest Liver Physiol 2021; 320:G586-G600. [PMID: 33501887 PMCID: PMC8054554 DOI: 10.1152/ajpgi.00423.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
As countries continue to industrialize, major cities experience diminished air quality, whereas rural populations also experience poor air quality from sources such as agricultural operations. These exposures to environmental pollution from both rural and populated/industrialized sources have adverse effects on human health. Although respiratory diseases (e.g., asthma and chronic obstructive pulmonary disease) are the most commonly reported following long-term exposure to particulate matter and hazardous chemicals, gastrointestinal complications have also been associated with the increased risk of lung disease from inhalation of polluted air. The interconnectedness of these organ systems has offered valuable insights into the roles of the immune system and the micro/mycobiota as mediators of communication between the lung and the gut during disease states. A topical example of this relationship is provided by reports of multiple gastrointestinal symptoms in patients with coronavirus disease 2019 (COVID-19), whereas the rapid transmission and increased risk of COVID-19 has been linked to poor air quality and high levels of particulate matter. In this review, we focus on the mechanistic effects of environmental pollution on disease progression with special emphasis on the gut-lung axis.
Collapse
Affiliation(s)
- Meli'sa S Crawford
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| |
Collapse
|
21
|
Nutritional Factors in Occupational Lung Disease. Curr Allergy Asthma Rep 2021; 21:24. [PMID: 33768348 DOI: 10.1007/s11882-021-01003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Lung diseases such as asthma and COPD are major public health issues and related to occupational exposures. While therapies to limit the development and progression of these diseases are limited, nutrition interventions could offer potential alternatives to mediate the inflammation associated with these diseases. This is a narrative review of the current state of relevant nutrients on inflammation and respiratory outcomes associated with occupational exposures. RECENT FINDINGS Relevant nutrients that have been investigated in recent years include omega-3 polyunsaturated fatty acids, zinc, vitamin D, dairy products, and antioxidants. These nutrients have demonstrated the potential to prevent or modify the adverse outcomes associated with occupational exposures, primarily in preclinical studies. Current therapies for respiratory consequences associated with occupational exposures are limited; therefore, addressing strategies for reducing inflammation is important in improving quality of life and limiting health care costs. More human studies are warranted to determine the effectiveness of nutrition as an intervention.
Collapse
|
22
|
Sawada Y, Saito-Sasaki N, Nakamura M. Omega 3 Fatty Acid and Skin Diseases. Front Immunol 2021; 11:623052. [PMID: 33613558 PMCID: PMC7892455 DOI: 10.3389/fimmu.2020.623052] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Humans are exposed to various external environmental factors. Food intake is one of the most influential factors impacting daily lifestyle. Among nutrients obtained from foods, omega-3 polyunsaturated fatty acids (PUFAs) have various beneficial effects on inflammatory diseases. Furthermore, omega-3 PUFA metabolites, including resolvins, are known to demonstrate strong anti-inflammatory effects during allergic and inflammatory diseases; however, little is known regarding the actual impact of these metabolites on skin diseases. In this review, we focused on metabolites that have strong anti-inflammatory actions in various inflammatory diseases, as well as those that present antitumor actions in malignancies, in addition to the actual effect of omega-3 PUFA metabolites on various cells.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Natsuko Saito-Sasaki
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Motonobu Nakamura
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
23
|
Maternal Docosahexaenoic Acid Status during Pregnancy and Its Impact on Infant Neurodevelopment. Nutrients 2020; 12:nu12123615. [PMID: 33255561 PMCID: PMC7759779 DOI: 10.3390/nu12123615] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Dietary components are essential for the structural and functional development of the brain. Among these, docosahexaenoic acid, 22:6n-3 (DHA), is critically necessary for the structure and development of the growing fetal brain in utero. DHA is the major n-3 long-chain polyunsaturated fatty acid in brain gray matter representing about 15% of all fatty acids in the human frontal cortex. DHA affects neurogenesis, neurotransmitter, synaptic plasticity and transmission, and signal transduction in the brain. Data from human and animal studies suggest that adequate levels of DHA in neural membranes are required for maturation of cortical astrocyte, neurovascular coupling, and glucose uptake and metabolism. Besides, some metabolites of DHA protect from oxidative tissue injury and stress in the brain. A low DHA level in the brain results in behavioral changes and is associated with learning difficulties and dementia. In humans, the third trimester-placental supply of maternal DHA to the growing fetus is critically important as the growing brain obligatory requires DHA during this window period. Besides, DHA is also involved in the early placentation process, essential for placental development. This underscores the importance of maternal intake of DHA for the structural and functional development of the brain. This review describes DHA’s multiple roles during gestation, lactation, and the consequences of its lower intake during pregnancy and postnatally on the 2019 brain development and function.
Collapse
|
24
|
Qiu S, Li P, Zhao H, Li X. Maresin 1 alleviates dextran sulfate sodium-induced ulcerative colitis by regulating NRF2 and TLR4/NF-kB signaling pathway. Int Immunopharmacol 2019; 78:106018. [PMID: 31780371 DOI: 10.1016/j.intimp.2019.106018] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Ulcerative colitis (UC) is one of the most common gastrointestinal diseases, characterized as a chronic, relapsing inflammation that causes damage to the colonic mucosa. Maresin 1 (MaR1), a specialized proresolving mediator, has powerful anti-inflammatory activity that prevents the occurrence of various inflammatory diseases. The aim of this study was to explore the role and potential mechanism of MaR1 in DSS-induced ulcerative colitis. METHODS In the present study, we established dextran sulfate sodium (DSS)-induced ulcerative colitis rat model in vivo. Rats with colitis received tail vein injection of MaR1, with or without intraperitoneal injection of ML385. The changes of body weight, colon length, disease activity index (DAI), colonic histopathology, inflammatory cytokines, the activity of myeloperoxidase (MPO) and reactive oxygen species (ROS), and infiltration of macrophages expressing F4/80 were analyzed for the evaluation of colitis severity. In addition, protein expressions were detected using western blot. RESULTS MaR1 significantly reduced inflammatory cytokines production, and restored body weight, DAI and colonic histopathology. Besides, MaR1 improved the expression of tight junction (TJ) proteins and reduced the infiltration of neutrophil and macrophages, as well as a decreased activity of MPO and ROS. Meanwhile, MaR1 activated Nrf2 signaling and decreased toll-like receptor 4(TLR4)/nuclear factor-κB(NF-κB) activation. Furthermore, ML385, an inhibitor of Nrf2, significantly reversed the protective effect of MaR1. CONCLUSION MaR1 play a protective role in DSS-induced colitis by activating Nrf2 signaling and inactivating Nrf2-mediated TLR4/NF-κB signaling pathway, which mediate proinflammatory mediators and intestinal TJ proteins in rats, providing novel insights into the therapeutic strategy of colitis.
Collapse
Affiliation(s)
- Shujin Qiu
- Department of Spleen and Stomach, Shannxi Traditional Chinese Medicine Hospital, Xi'an 710018, China
| | - Ping Li
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hengfang Zhao
- Department of Gastroenterology, The Affiliated Hospital of Northwest University, Xi'an No. 3 Hospital, Xi'an 710018, China
| | - Xiaofang Li
- International Medicine Services, The Affiliated Hospital of Northwest University, Xi'an No. 3 Hospital, No. 10 Fengcheng Third Road, Weiyang District, Xi'an 710018, China.
| |
Collapse
|
25
|
Lv C, Jin Q. Maresin-1 Inhibits Oxidative Stress and Inflammation and Promotes Apoptosis in a Mouse Model of Caerulein-Induced Acute Pancreatitis. Med Sci Monit 2019; 25:8181-8189. [PMID: 31671079 PMCID: PMC6844145 DOI: 10.12659/msm.917380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background This study aimed to investigate the effects of maresin-1 (MaR1) in a mouse model of caerulein-induced acute pancreatitis (AP). Material/Methods Fifty C57BL/6 mice with caerulein-induced AP were divided into the untreated control group (N=10), the untreated AP model group (N=10), the MaR1-treated (low-dose, 0.1 μg) AP model group (N=10), the MaR1-treated (middle-dose, 0.5 μg) AP model group (N=10), and the MaR1-treated (high-dose, 1 μg) AP model group (N=10). Enzyme-linked immunoassay (ELISA) measured serum levels of amylase, lipase, tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 and mRNA was measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Malondialdehyde (MDA), protein carbonyls, superoxide dismutase (SOD), and the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) were measured. Histology of the pancreas included measurement of acinar cell apoptosis using the terminal-deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) assay. Western blot measured Toll-like receptor 4 (TLR4), MyD88, and phospho-NF-κB p65, and apoptosis-associated proteins Bcl-2, Bax, cleaved caspase-3, and cleaved caspase-9. Results Following treatment with MaR1, serum levels of amylase, lipase, TNF-α, IL-1β, and IL-6 decreased, MDA and protein carbonyl levels decreased, SOD and the GSH/GSSG ratio increased in a dose-dependent manner. In the MaR1-treated AP mice, inflammation of the pancreas and the expression of inflammatory cytokines, pancreatic acinar cell apoptosis, Bcl-2 expression, and expression of TLR4, MyD88, and p-NF-κB p65 were reduced, but Bax, cleaved caspase-3, and cleaved caspase-9 expression increased. Conclusions In a mouse model of caerulein-induced AP, treatment with MaR1 reduced oxidative stress and inflammation and reduced apoptosis.
Collapse
Affiliation(s)
- Chengjie Lv
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Qi Jin
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
26
|
Gerald CL, McClendon CJ, Ranabhat RS, Waterman JT, Kloc LL, Conklin DR, Barton KT, Khatiwada JR, Williams LL. Sorrel Extract Reduces Oxidant Production in Airway Epithelial Cells Exposed to Swine Barn Dust Extract In Vitro. Mediators Inflamm 2019; 2019:7420468. [PMID: 31481850 PMCID: PMC6701418 DOI: 10.1155/2019/7420468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to hog barn organic dust contributes to occupational lung diseases, which are mediated by inflammatory and oxidative stress pathways. Isoprostanes-a family of eicosanoids produced by oxidation of phospholipids by oxygen radicals-are biomarkers of pulmonary oxidative stress. Importantly, 8-isoprostane has been implicated as a key biomarker and mediator of oxidative stress because it is a potent pulmonary vasoconstrictor. Antioxidants found in fruits and vegetables hold promise for preventing or reducing effects of oxidative stress-related diseases including chronic bronchitis and chronic obstructive pulmonary disease (COPD). Here, we investigated 8-isoP and oxidant production by organic dust-exposed airway epithelial cells and the inhibitory effects of an extract from calyces of the sorrel plant, Hibiscus sabdariffa, on oxidant-producing pathways. Confluent cultures of normal human tracheobronchial epithelial cells were pretreated or not with 1% sorrel extract prior to 5% dust extract (DE) exposure. Following DE treatments, live cells, cell-free supernatants, or cell extracts were evaluated for the presence of 8-isoprostane, superoxide, hydrogen peroxide, nitric oxide, hydroxyl radical, peroxynitrite, and catalase activity to evaluate sorrel's inhibitory effect on oxidative stress. The well-known radical scavenging antioxidant, N-acetyl cysteine (NAC), was used for comparisons with sorrel. DE exposure augmented the production of all radicals measured including 8-isoprostane (p value < 0.001), which could be inhibited by NAC or sorrel. Among reactive oxygen and nitrogen species generated in response to DE exposure, sorrel had no effect on H2O2 production and NAC had no significant effect on NO· production. The observations reported here suggest a possible role for sorrel in preventing 8-isoprostane and oxidant-mediated stress responses in bronchial epithelial cells exposed to hog barn dust. These findings suggest a potential role for oxidative stress pathways in mediating occupational lung diseases and antioxidants within sorrel and NAC in reducing dust-mediated oxidative stress within the airways of exposed workers.
Collapse
Affiliation(s)
- Carresse L. Gerald
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Chakia J. McClendon
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Rohit S. Ranabhat
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Jenora T. Waterman
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Lauren L. Kloc
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Dawn R. Conklin
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Ke'Yona T. Barton
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Janak R. Khatiwada
- Center of Excellence for Post-Harvest Technologies, North Carolina Agricultural and Technical University, 500 Laureate Way, Kannapolis, NC, USA
| | - Leonard L. Williams
- Center of Excellence for Post-Harvest Technologies, North Carolina Agricultural and Technical University, 500 Laureate Way, Kannapolis, NC, USA
| |
Collapse
|
27
|
Treatment with maresin 1, a docosahexaenoic acid-derived pro-resolution lipid, protects skin from inflammation and oxidative stress caused by UVB irradiation. Sci Rep 2019; 9:3062. [PMID: 30816324 PMCID: PMC6395735 DOI: 10.1038/s41598-019-39584-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Acute exposure to UVB irradiation causes skin inflammation and oxidative stress, and long-term exposure to UVB irradiation may lead to carcinogenesis. Our organism has endogenous mechanisms to actively limit inflammation. Maresin 1 (MaR1; 7R,14S-dihydroxy-docosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid) is a pro-resolution lipid mediator derived from the docosahexaenoic acid, which presents anti-inflammatory and pro-resolution effects. However, it remains to be determined if treatment with MaR1 can inhibit inflammatory and oxidative alterations in the skin triggered by UVB. The treatment with MaR1 (0.1-10 ng/mice at -10 min relative to the UVB irradiation protocol) reduced UVB-induced skin edema, neutrophil recruitment (MPO; myeloperoxidase activity, and migration of LysM-eGFP+ cells), cytokine production, matrix metalloproteinase-9 activity, keratinocyte apoptosis, epidermal thickening, mast cells counts and degradation of skin collagen in hairless mice. UVB irradiation caused a decrease of GSH (reduced glutathione) levels, activity of the enzyme catalase, ferric reducing ability (FRAP), and ABTS radical scavenging capacity as well as induced lipid hydroperoxide, superoxide anion production, and gp91phox mRNA expression. These parameters that indicate oxidative stress were inhibited by MaR1 treatment. Therefore, these data suggest MaR1 as a promising pharmacological tool in controlling the deleterious effects related to UVB irradiation.
Collapse
|
28
|
Thatcher TH, Woeller CF, McCarthy CE, Sime PJ. Quenching the fires: Pro-resolving mediators, air pollution, and smoking. Pharmacol Ther 2019; 197:212-224. [PMID: 30759375 DOI: 10.1016/j.pharmthera.2019.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exposure to air pollution and other environmental inhalation hazards, such as occupational exposures to dusts and fumes, aeroallergens, and tobacco smoke, is a significant cause of chronic lung inflammation leading to respiratory disease. It is now recognized that resolution of inflammation is an active process controlled by a novel family of small lipid mediators termed "specialized pro-resolving mediators" or SPMs, derived mainly from dietary omega-3 polyunsaturated fatty acids. Chronic inflammation results from an imbalance between pro-inflammatory and pro-resolution pathways. Research is ongoing to develop SPMs, and the pro-resolution pathway more generally, as a novel therapeutic approach to diseases characterized by chronic inflammation. Here, we will review evidence that the resolution pathway is dysregulated in chronic lung inflammatory diseases, and that SPMs and related molecules have exciting therapeutic potential to reverse or prevent chronic lung inflammation, with a focus on lung inflammation due to inhalation of environmental hazards including urban particulate matter, organic dusts and tobacco smoke.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Collynn F Woeller
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Claire E McCarthy
- National Cancer Institute, Division of Cancer Biology, 9609 Medical Center Drive, Rockville, MD 20850, United States
| | - Patricia J Sime
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
29
|
Krishnamoorthy N, Abdulnour REE, Walker KH, Engstrom BD, Levy BD. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases. Physiol Rev 2018; 98:1335-1370. [PMID: 29717929 DOI: 10.1152/physrev.00026.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Katherine H Walker
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Braden D Engstrom
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
30
|
Saini RK, Keum YS. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review. Life Sci 2018; 203:255-267. [PMID: 29715470 DOI: 10.1016/j.lfs.2018.04.049] [Citation(s) in RCA: 601] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 01/17/2023]
Abstract
Linoleic acid (LA) (n-6) and α-linolenic acid (ALA) (n-3) are essential fatty acids (EFAs) as they cannot be synthesized by humans or other higher animals. In the human body, these fatty acids (FAs) give rise to arachidonic acid (ARA, n-6), eicosapentaenoic acid (EPA, n-3), and docosahexaenoic acid (DHA, n-3) that play key roles in regulating body homeostasis. Locally acting bioactive signaling lipids called eicosanoids derived from these FAs also regulate diverse homeostatic processes. In general, ARA gives rise to pro-inflammatory eicosanoids whereas EPA and DHA give rise to anti-inflammatory eicosanoids. Thus, a proportionally higher consumption of n-3 PUFAs can protect us against inflammatory diseases, cancer, cardiovascular diseases, and other chronic diseases. The present review summarizes major sources, intake, and global consumption of n-3 and n-6 PUFAs. Their metabolism to biosynthesize long-chain PUFAs and eicosanoids and their roles in brain metabolism, cardiovascular disease, obesity, cancer, and bone health are also discussed.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
31
|
Maresins: Specialized Proresolving Lipid Mediators and Their Potential Role in Inflammatory-Related Diseases. Mediators Inflamm 2018; 2018:2380319. [PMID: 29674943 PMCID: PMC5838489 DOI: 10.1155/2018/2380319] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/21/2017] [Accepted: 12/25/2017] [Indexed: 12/14/2022] Open
Abstract
Acute inflammatory responses are host-protective and normally self-limited; these responses can maintain cell homeostasis and promote defense against various infections and damage factors. However, when improperly managed or inappropriately activated, acute inflammation can lead to persistent and uncontrolled chronic inflammation, which is associated with many other chronic diseases including cardiovascular disease and metabolic disease. Recently, studies have shown that resolution of acute inflammation is a biosynthetically active process. Specialized proresolving lipid mediators (SPMs) known as resolvins and protectins are autacoids that resolve inflammation. A new family of anti-inflammatory and proresolving lipid mediators have recently been reported, known as maresins, which are biosynthesized from docosahexaenoic acid (DHA) by macrophages, have a conjugated double-bond system, and display strong anti-inflammatory and proresolving activity. Here, we review the biological actions, pathways, and mechanisms of maresins, which may play pivotal roles in the resolution of inflammation.
Collapse
|
32
|
Barnig C, Frossard N, Levy BD. Towards targeting resolution pathways of airway inflammation in asthma. Pharmacol Ther 2018; 186:98-113. [PMID: 29352860 DOI: 10.1016/j.pharmthera.2018.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic disorder characterized by persistent inflammation of the airways with mucosal infiltration of eosinophils, T lymphocytes, and mast cells, and release of proinflammatory cytokines and lipid mediators. The natural resolution of airway inflammation is now recognized as an active host response, with highly coordinated cellular events under the control of endogenous pro-resolving mediators that enable the restoration of tissue homeostasis. Lead members of proresolving mediators are enzymatically derived from essential polyunsaturated fatty acids, including arachidonic acid-derived lipoxins, eicosapentaenoic acid-derived E-series resolvins, and docosahexaenoic acid-derived D-series resolvins, protectins, and maresins. Functionally, these specialized pro-resolving mediators can limit further leukocyte recruitment, induce granulocyte apoptosis, and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to lymphatics and blood vessels, and help initiate tissue repair and healing. In this review, we highlight cellular and molecular mechanisms for successful resolution of inflammation, and describe the main specialized pro-resolving mediators that drive these processes. Furthermore, we report recent data suggesting that the pathobiology of severe asthma may result in part from impaired resolution of airway inflammation, including defects in the biosynthesis of these specialized pro-resolving mediators. Finally, we discuss resolution-based therapeutic perspectives.
Collapse
Affiliation(s)
- Cindy Barnig
- Department of Chest Disease, Strasbourg University Hospital, 1, place de l'Hôpital, 67091 Strasbourg, France; EA 3072, University of Strasbourg, France.
| | - Nelly Frossard
- UMR 7200 CNRS/Université de Strasbourg, Laboratoire d'Innovation Thérapeutique and LabEx MEDALIS, Faculté de Pharmacie, Strasbourg, France
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Nordgren TM, Heires AJ, Bailey KL, Katafiasz DM, Toews ML, Wichman CS, Romberger DJ. Docosahexaenoic acid enhances amphiregulin-mediated bronchial epithelial cell repair processes following organic dust exposure. Am J Physiol Lung Cell Mol Physiol 2017; 314:L421-L431. [PMID: 29097425 DOI: 10.1152/ajplung.00273.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Injurious dust exposures in the agricultural workplace involve the release of inflammatory mediators and activation of epidermal growth factor receptor (EGFR) in the respiratory epithelium. Amphiregulin (AREG), an EGFR ligand, mediates tissue repair and wound healing in the lung epithelium. Omega-3 fatty acids such as docosahexaenoic acid (DHA) are also known modulators of repair and resolution of inflammatory injury. This study investigated how AREG, DHA, and EGFR modulate lung repair processes following dust-induced injury. Primary human bronchial epithelial (BEC) and BEAS-2B cells were treated with an aqueous extract of swine confinement facility dust (DE) in the presence of DHA and AREG or EGFR inhibitors. Mice were exposed to DE intranasally with or without EGFR inhibition and DHA. Using a decellularized lung scaffolding tissue repair model, BEC recolonization of human lung scaffolds was analyzed in the context of DE, DHA, and AREG treatments. Through these investigations, we identified an important role for AREG in mediating BEC repair processes. DE-induced AREG release from BEC, and DHA treatment following DE exposure, enhanced this release. Both DHA and AREG also enhanced BEC repair capacities and rescued DE-induced recellularization deficits. In vivo, DHA treatment enhanced AREG production following DE exposure, whereas EGFR inhibitor-treated mice exhibited reduced AREG in their lung homogenates. These data indicate a role for AREG in the process of tissue repair after inflammatory lung injury caused by environmental dust exposure and implicate a role for DHA in regulating AREG-mediated repair signaling in BEC.
Collapse
Affiliation(s)
- Tara M Nordgren
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska.,Division of Biomedical Sciences, School of Medicine, University of California Riverside , Riverside, California
| | - Art J Heires
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Kristina L Bailey
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska.,Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Dawn M Katafiasz
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Myron L Toews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , Omaha, Nebraska
| | - Christopher S Wichman
- Department of Biostatistics, University of Nebraska Medical Center , Omaha, Nebraska
| | - Debra J Romberger
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska.,Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
34
|
Ungaro F, Rubbino F, Danese S, D'Alessio S. Actors and Factors in the Resolution of Intestinal Inflammation: Lipid Mediators As a New Approach to Therapy in Inflammatory Bowel Diseases. Front Immunol 2017; 8:1331. [PMID: 29109724 PMCID: PMC5660440 DOI: 10.3389/fimmu.2017.01331] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022] Open
Abstract
In the last few decades, the pathogenesis of inflammatory bowel disease (IBD) in genetically predisposed subjects susceptible to specific environmental factors has been attributed to disturbance of both the immune and non-immune system and/or to the imbalanced interactions with microbes. However, increasing evidences support the idea that defects in pro-resolving pathways might strongly contribute to IBD onset. The resolution of inflammation is now recognized as a dynamic event coordinated by specialized pro-resolving lipid mediators (LMs), which dampen inflammation-sustaining events, such as angiogenesis, release of pro-inflammatory cytokines, clearance of apoptotic cells, and microorganisms. Among these pro-resolving molecules, those derived from essential polyunsaturated fatty acids (PUFAs) have been shown to induce favorable effects on a plethora of human inflammatory disorders, including IBD. Here, we offer a summary of mechanisms involving both cellular and molecular components of the immune response and underlying the anti-inflammatory and pro-resolving properties of PUFAs and their derivatives in the gut, focusing on both ω-3 and ω-6 LMs. These fatty acids may influence IBD progression by: reducing neutrophil transmigration across the intestinal vasculature and the epithelium, preventing the release of pro-inflammatory cytokines and the up-regulation of adhesion molecules, and finally by promoting the production of other pro-resolving molecules. We also discuss the numerous attempts in using pro-resolving PUFAs to ameliorate intestinal inflammation, both in patients with IBD and mouse models. Although their effects in reducing inflammation is incontestable, results from previous works describing the effects of PUFA administration to prevent or treat IBD are controversial. Therefore, more efforts are needed not only to identify and explain the physiological functions of PUFAs in the gut, but also to unveil novel biosynthetic pathways of these pro-resolving LMs that may be dysregulated in these gut-related disorders. We suppose that either PUFAs or new medications specifically promoting resolution-regulating mediators and pathways will be much better tolerated by patients with IBD, with the advantage of avoiding immune suppression.
Collapse
Affiliation(s)
- Federica Ungaro
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Federica Rubbino
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.,Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, IBD Center, Rozzano, Italy
| | - Silvia D'Alessio
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| |
Collapse
|
35
|
Maresin 1 Ameliorates Lung Ischemia/Reperfusion Injury by Suppressing Oxidative Stress via Activation of the Nrf-2-Mediated HO-1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9634803. [PMID: 28751936 PMCID: PMC5511669 DOI: 10.1155/2017/9634803] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Abstract
Lung ischemia/reperfusion (I/R) injury occurs in various clinical conditions and heavily damaged lung function. Oxidative stress reaction and antioxidant enzymes play a pivotal role in the etiopathogenesis of lung I/R injury. In the current study, we investigated the impact of Maresin 1 on lung I/R injury and explored the possible mechanism involved in this process. MaR 1 ameliorated I/R-induced lung injury score, wet/dry weight ratio, myeloperoxidase, tumor necrosis factor, bronchoalveolar lavage fluid (BALF) leukocyte count, BALF neutrophil ratio, and pulmonary permeability index levels in lung tissue. MaR 1 significantly reduced ROS, methane dicarboxylic aldehyde, and 15-F2t-isoprostane generation and restored antioxidative enzyme (superoxide dismutase, glutathione peroxidase, and catalase) activities. Administration of MaR 1 improved the expression of nuclear Nrf-2 and cytosolic HO-1 in I/R-treated lung tissue. Furthermore, we also found that the protective effects of MaR 1 on lung tissue injury and oxidative stress were reversed by HO-1 activity inhibitor, Znpp-IX. Nrf-2 transcription factor inhibitor, brusatol, significantly decreased MaR 1-induced nuclear Nrf-2 and cytosolic HO-1 expression. In conclusion, these results indicate that MaR 1 protects against lung I/R injury through suppressing oxidative stress. The mechanism is partially explained by activation of the Nrf-2-mediated HO-1 signaling pathway.
Collapse
|
36
|
Sun Q, Wu Y, Zhao F, Wang J. Maresin 1 inhibits transforming growth factor-β1-induced proliferation, migration and differentiation in human lung fibroblasts. Mol Med Rep 2017; 16:1523-1529. [PMID: 29067437 PMCID: PMC5561789 DOI: 10.3892/mmr.2017.6711] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
The myofibroblast has been implicated to be an important pathogenic cell in all fibrotic diseases, through synthesis of excess extracellular matrix. Lung fibroblast migration, proliferation and differentiation into a myofibroblast-like cell type are regarded as important steps in the formation of lung fibrosis. In the present study, the effect of maresin 1 (MaR 1), a pro-resolving lipid mediator, on transforming growth factor (TGF)-β1-stimulated lung fibroblasts was investigated, and the underlying molecular mechanisms were examined. The results of the present study demonstrated that MaR 1 inhibited TGF-β1-induced proliferative and migratory ability, assessed using MTT and scratch wound healing assays. The TGF-β1-induced expression of α-smooth muscle actin (α-SMA) and collagen type I, the hallmarks of myofibroblast differentiation, was decreased by MaR 1 at the mRNA and protein levels, determined using the reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Immunofluorescence demonstrated that MaR 1 downregulated the TGF-β1-induced expression of α-SMA. In addition, phosphorylated mothers against decapentaplegic homolog 2/3 (Smad2/3) and extracellular signal-related kinases (ERK) 1/2 were upregulated in TGF-β1-induced lung fibroblasts, and these effects were attenuated by MaR 1 administration. In conclusion, the results of the present study demonstrated that MaR 1 inhibited the TGF-β1-induced proliferation, migration and differentiation of human lung fibroblasts. These observed effects may be mediated in part by decreased phosphorylation of Smad2/3 and ERK1/2 signaling pathways. Therefore, MaR 1 may be a potential therapeutic approach to lung fibrotic diseases.
Collapse
Affiliation(s)
- Quanchao Sun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - You Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Feng Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianjun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
37
|
Bronchoprotective mechanisms for specialized pro-resolving mediators in the resolution of lung inflammation. Mol Aspects Med 2017; 58:44-56. [PMID: 28455109 DOI: 10.1016/j.mam.2017.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/20/2017] [Indexed: 12/31/2022]
Abstract
Bronchi are exposed daily to irritants, microbes and allergens as well as extremes of temperature and acid. The airway mucosal epithelium plays a pivotal role as a sentinel, releasing alarmins when danger is encountered. To maintain homeostasis, an elaborate counter-regulatory network of signals and cellular effector mechanisms are needed. Specialized pro-resolving mediators (SPMs) are chemical mediators that enact resolution programs in response to injury, infection or allergy. SPMs are enzymatically derived from essential polyunsaturated fatty acids with potent cell-type specific immunoresolvent properties. SPMs signal by engaging cell-based receptors to turn off acute inflammatory responses and restore tissue homeostasis. Several common lung diseases involving the airways, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), are characterized by unresolved bronchial inflammation. In preclinical murine models of lung disease, SPMs carry potent bronchoprotective actions. Here, we review cellular and molecular effects for SPM-initiated catabasis in the lung and their human translation.
Collapse
|
38
|
Lannan KL, Spinelli SL, Blumberg N, Phipps RP. Maresin 1 induces a novel pro-resolving phenotype in human platelets. J Thromb Haemost 2017; 15:802-813. [PMID: 28079976 PMCID: PMC5378657 DOI: 10.1111/jth.13620] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 01/01/2023]
Abstract
Essentials Specialized proresolving mediators (SPMs) promote the resolution of inflammation. This study sought to investigate the effects of SPMs on human platelet function. The SPM, Maresin 1, enhanced hemostatic, but suppressed inflammatory functions of platelets. SPMs uniquely regulate platelet function and may represent a new class of antiplatelet agents. SUMMARY Background Antiplatelet therapy is a cornerstone of modern medical practice and is routinely employed to reduce the likelihood of myocardial infarction, thrombosis and stroke. However, current antiplatelet therapies, such as aspirin, often have adverse side-effects, including increased risk of bleeding, and some patients are relatively 'aspirin-resistant'. Platelets are intimately involved in hemostasis and inflammation, and clinical consequences are associated with excessive or insufficient platelet activation. Objectives A major unmet need in the field of hematology is the development of new agents that safely prevent unwanted platelet activation in patients with underlying cardiovascular disease, while minimizing the risk of bleeding. Here, we investigate the potential of endogenously produced, specialized pro-resolving mediators (SPMs) as novel antiplatelet agents. SPMs are a recently discovered class of lipid-derived molecules that drive the resolution of inflammation without being overtly immunosuppressive. Methods Human platelets were treated with lipoxin A4, resolvin D1, resolvin D2, 17-HDHA or maresin 1 for 15 min, then were subjected to platelet function tests, including spreading, aggregation and inflammatory mediator release. Results We show for the first time that human platelets express the SPM receptors, GPR32 and ALX. Furthermore, our data demonstrate that maresin 1 differentially regulates platelet hemostatic function by enhancing platelet aggregation and spreading, while suppressing release of proinflammatory and prothrombotic mediators. Conclusions These data support the concept that SPMs differentially regulate platelet function and may represent a novel class of antiplatelet agents. SPMs also may play an important role in the resolution of inflammation in cardiovascular diseases.
Collapse
Affiliation(s)
- K L Lannan
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - S L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - N Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
39
|
Pulmonary innate inflammatory responses to agricultural occupational contaminants. Cell Tissue Res 2017; 367:627-642. [PMID: 28168324 DOI: 10.1007/s00441-017-2573-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Agricultural workers are exposed to many contaminants and suffer from respiratory and other symptoms. Dusts, gases, microbial products and pesticide residues from farms have been linked to effects on the health of agricultural workers. Growing sets of data from in vitro and in vivo models demonstrate the role of the innate immune system, especially Toll-like receptor 4 (TLR4) and TLR9, in lung inflammation induced following exposure to contaminants in agricultural environments. Interestingly, inflammation and lung function changes appear to be discordant indicating the complexity of inflammatory responses to exposures. Whereas the recent development of rodent models and exposure systems have yielded valuable data, we need new systems to examine the combined effects of multiple contaminants in order to increase our understanding of farm-exposure-induced negative health effects.
Collapse
|
40
|
Maresin 1 Mitigates High Glucose-Induced Mouse Glomerular Mesangial Cell Injury by Inhibiting Inflammation and Fibrosis. Mediators Inflamm 2017; 2017:2438247. [PMID: 28182085 PMCID: PMC5274668 DOI: 10.1155/2017/2438247] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/06/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Inflammation and fibrosis are the important pathophysiologic processes in diabetic nephropathy (DN). Maresin 1 is a potential anti-inflammatory lipid mediator, which has displayed powerful proresolving activities. Aim. We determine whether maresin 1 has protective effect on mouse glomerular mesangial cells (GMCs) induced by high glucose. Methods. We cultured GMCs stimulated by high glucose and categorized as follows: normal glucose group (5.6 mmol/L), high glucose group (30 mmol/L), mannitol group, maresin 1 intervention group (1, 10, and 100 nmol/L), maresin 1 and normal glucose group, and the N-acetylcysteine (NAC) intervention group (10 μmol/L NAC). After 24 h, the expression of ROS, NLRP3, caspase-1, procaspase-1, IL-1β, and pro-IL-1β was detected by western-blot, RT-PCR, and immunofluorescence. After 48 h, the expression of TGF-β1 and FN was detected by RT-PCR and ELISA. Results. Compared with normal glucose group, the expression of ROS, NLRP3, caspase-1, IL-1β, TGF-β1, and FN increased in high glucose group (P < 0.05), but it decreased after the treatment of maresin 1 in different concentrations. On the contrary, the expression of procaspase-1 and pro-IL-1β protein was restrained by high glucose and enhanced by maresin 1 in a dose-dependent manner (P < 0.05). Conclusion. Maresin 1 can inhibit NLRP3 inflammasome, TGF-β1, and FN in GMCs; it may have protective effect on DN by mitigating the inflammation and early fibrosis.
Collapse
|
41
|
Maresin 1 Mitigates Inflammatory Response and Protects Mice from Sepsis. Mediators Inflamm 2016; 2016:3798465. [PMID: 28042205 PMCID: PMC5155100 DOI: 10.1155/2016/3798465] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/18/2016] [Accepted: 10/30/2016] [Indexed: 01/13/2023] Open
Abstract
Sepsis, frequently caused by infection of bacteria, is considered as an uncontrollable systematic inflammation response syndrome (SIRS). Maresin 1 (Mar1) is a new proresolving mediator with potent anti-inflammatory effect in several animal models. However, its effect in sepsis is still not investigated. To address this question, we developed sepsis model in BALB/c mice by cecal ligation and puncture (CLP) with or without Mar1 treatment. Our data showed that Mar1 markedly improved survival rate and decreased the levels of proinflammatory cytokines in CLP mice such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Furthermore, Mar1 reduced serum level of lipopolysaccharide (LPS) and enhanced the bacteria clearance in mice sepsis model. Moreover, Mar1 attenuated lung injury and decreased level of alanine transaminase (ALT), aspartate transaminase (AST), creatinine (Cre), and blood urea nitrogen (BUN) in serum in mice after CLP surgery. Treatment with Mar1 inhibited activation of nuclear factor kappa B (NF-κb) pathway. In conclusion, Mar1 exhibited protective effect in sepsis by reducing LPS, bacteria burden in serum, inhibiting inflammation response, and improving vital organ function. The possible mechanism is partly involved in inhibition of NF-κb activation.
Collapse
|
42
|
COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance. Eur J Pharmacol 2016; 785:116-132. [DOI: 10.1016/j.ejphar.2015.08.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/19/2015] [Accepted: 08/26/2015] [Indexed: 01/22/2023]
|
43
|
Gu Z, Lamont GJ, Lamont RJ, Uriarte SM, Wang H, Scott DA. Resolvin D1, resolvin D2 and maresin 1 activate the GSK3β anti-inflammatory axis in TLR4-engaged human monocytes. Innate Immun 2016; 22:186-95. [PMID: 26878867 DOI: 10.1177/1753425916628618] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/31/2015] [Indexed: 01/08/2023] Open
Abstract
Pro-resolving, docosahexaenoic acid-derived mediators have recently emerged as important potential therapeutic agents for the amelioration of complications arising from inflammation, such as vascular disease, asthma, acute lung injury and colitis. While resolvin D1 (RVD1), resolvin D2 (RVD2) and maresin 1 (MaR1) are established pro-resolvins, their mechanisms of action remain unclear. Here we show that, in LPS-stimulated primary human monocytes, RVD1, RVD2 and MaR1 each suppress the release of pro-inflammatory cytokines (TNF, IL-1β, IL-8) and the innate/adaptive bridging cytokine, IL-12 p40, while simultaneously augmenting the production of the anti-inflammatory cytokine, IL-10. Such resolving activity is accompanied by the increased phosphorylation (enhanced anti-inflammatory state) of glycogen synthase kinase 3β (GSK3β) along with increased phosphorylation (activation) of Akt, SGK1 and CREB but not MAPK-related molecules. Gain and loss of function experiments confirm a key role for GSK3β and CREB in the anti-inflammatory actions of resolvins. These results suggest that induction of the GSK3β anti-inflammatory axis is a common mechanism of action for RVD1, RVD2 and MaR1.
Collapse
Affiliation(s)
- Zhen Gu
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Gwyneth J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA Department of Medicine, University of Louisville, KY, USA
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| |
Collapse
|
44
|
Balas L, Durand T. Dihydroxylated E,E,Z-docosatrienes. An overview of their synthesis and biological significance. Prog Lipid Res 2016; 61:1-18. [DOI: 10.1016/j.plipres.2015.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022]
|
45
|
Abstract
The immune response comprises not only pro-inflammatory and anti-inflammatory pathways but also pro-resolution mechanisms that serve to balance the need of the host to target microbial pathogens while preventing excess inflammation and bystander tissue damage. Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids to serve as a novel class of immunoresolvents that limit acute responses and orchestrate the clearance of tissue pathogens, dying cells and debris from the battlefield of infectious inflammation. SPMs are composed of lipoxins, E-series and D-series resolvins, protectins and maresins. Individual members of the SPM family serve as agonists at cognate receptors to induce cell-type specific responses. Important regulatory roles for SPMs have been uncovered in host responses to several microorganisms, including bacterial, viral, fungal and parasitic pathogens. SPMs also promote the resolution of non-infectious inflammation and tissue injury. Defects in host SPM pathways contribute to the development of chronic inflammatory diseases. With the capacity to enhance host defence and modulate inflammation, SPMs represent a promising translational approach to enlist host resolution programmes for the treatment of infection and excess inflammation.
Here, the authors detail our current understanding of specialized pro-resolving mediators (SPMs), a family of endogenous mediators that have important roles in promoting the resolution of inflammation. With a focus on the lungs, they discuss the contribution of SPMs to infectious and chronic inflammatory diseases and their emerging therapeutic potential. Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids and have important roles in orchestrating the resolution of tissue inflammation — that is, catabasis. Host responses to tissue infection elicit acute inflammation in an attempt to control invading pathogens. SPMs are lipid mediators that are part of a larger family of pro-resolving molecules, which includes proteins and gases, that together restrain inflammation and resolve the infection. These immunoresolvents are distinct from immunosuppressive molecules as they not only dampen inflammation but also promote host defence. Here, we focus primarily on SPMs and their roles in lung infection and inflammation to illustrate the potent actions these mediators play in restoring tissue homeostasis after an infection.
Collapse
|
46
|
Nordgren TM, Bauer CD, Heires AJ, Poole JA, Wyatt TA, West WW, Romberger DJ. Maresin-1 reduces airway inflammation associated with acute and repetitive exposures to organic dust. Transl Res 2015; 166:57-69. [PMID: 25655838 PMCID: PMC4458456 DOI: 10.1016/j.trsl.2015.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/17/2023]
Abstract
Agriculture industry workers are at a higher risk for chronic bronchitis and obstructive pulmonary diseases, and current therapeutics are not entirely effective. We previously found that the specialized proresolving lipid mediator maresin-1 (MaR1) reduced proinflammatory cytokine release and intracellular adhesion molecule-1 (ICAM-1) expression in bronchial epithelial cells exposed to extracts of organic dust (DE) derived from swine confinement facilities in vitro. The objective of this study was to determine whether MaR1 is effective at limiting lung inflammation associated with acute and repetitive exposures to DE in an established murine model of inhalant dust exposures. C57Bl/6 mice were treated with MaR1 or vehicle control and intranasally instilled with DE once or daily for 3 weeks. Bronchioalveolar lavage fluid was analyzed for total and differential cell counts and proinflammatory cytokine levels, and lung tissues were assessed for histopathology and ICAM-1 expression. In both single and repetitive DE exposure studies, MaR1 significantly decreased bronchoalveolar lavage neutrophil infiltration, interleukin 6, tumor necrosis factor α, and chemokine C-X-C motif ligand 1 levels without altering repetitive DE-induced bronchioalveolar inflammation or lymphoid aggregate formation. Lung tissue ICAM-1 expression was also reduced in both single and repetitive exposure studies. These data suggest that MaR1 might contribute to an effective strategy to reduce airway inflammatory diseases induced by agricultural-related organic dust environmental exposures.
Collapse
Affiliation(s)
- Tara M Nordgren
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb
| | - Christopher D Bauer
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Neb
| | - Art J Heires
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb
| | - Jill A Poole
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb
| | - Todd A Wyatt
- VA Nebraska-Western Iowa Health Care System, Research Service and Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb; Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, Neb
| | - William W West
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Neb
| | - Debra J Romberger
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb; VA Nebraska-Western Iowa Health Care System, Research Service and Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb.
| |
Collapse
|
47
|
Gong J, Wu ZY, Qi H, Chen L, Li HB, Li B, Yao CY, Wang YX, Wu J, Yuan SY, Yao SL, Shang Y. Maresin 1 mitigates LPS-induced acute lung injury in mice. Br J Pharmacol 2015; 171:3539-50. [PMID: 24697684 DOI: 10.1111/bph.12714] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/24/2014] [Accepted: 03/29/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute lung injury (ALI) is a severe illness with a high rate of mortality. Maresin 1 (MaR1) was recently reported to regulate inflammatory responses. We used a LPS-induced ALI model to determine whether MaR1 can mitigate lung injury. EXPERIMENTAL APPROACH Male BALB/c mice were injected, intratracheally, with either LPS (3 mg·kg(-1) ) or normal saline (1.5 mL·kg(-1) ). After this, normal saline, a low dose of MaR1 (0.1 ng per mouse) or a high dose of MaR1 (1 ng per mouse) was given i.v. Lung injury was evaluated by detecting arterial blood gas, pathohistological examination, pulmonary oedema, inflammatory cell infiltration, inflammatory cytokines in the bronchoalveolar lavage fluid and neutrophil-platelet interactions. KEY RESULTS The high dose of MaR1 significantly inhibited LPS-induced ALI by restoring oxygenation, attenuating pulmonary oedema and mitigating pathohistological changes. A combination of elisa and immunohistochemistry showed that high-dose MaR1 attenuated LPS-induced increases in pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), chemokines [keratinocyte chemokine, monocyte chemoattractant protein-5, macrophage inflammatory protein (MIP)-1α and MIP-1γ], pulmonary myeloperoxidase activity and neutrophil infiltration in the lung tissues. Consistent with these observations, flow cytometry and Western blotting indicated that MaR1 down-regulated LPS-induced neutrophil adhesions and suppressed the expression of intercellular adhesion molecule (ICAM)-1, P-selection and CD24. CONCLUSIONS AND IMPLICATIONS High-dose MaR1 mitigated LPS-induced lung injury in mice by inhibiting neutrophil adhesions and decreasing the levels of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Jie Gong
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Keeren K, Huang D, Smyl C, Fischer A, Rothe M, Weylandt KH. Effect of Different Omega-6/Omega-3 Polyunsaturated Fatty Acid Ratios on the Formation of Monohydroxylated Fatty Acids in THP-1 Derived Macrophages. BIOLOGY 2015; 4:314-26. [PMID: 25860776 PMCID: PMC4498302 DOI: 10.3390/biology4020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/28/2015] [Accepted: 03/10/2015] [Indexed: 11/25/2022]
Abstract
Omega-6 and omega-3 polyunsaturated fatty acids (n-6 and n-3 PUFA) can modulate inflammatory processes. In western diets, the content of n-6 PUFA is much higher than that of n-3 PUFA, which has been suggested to promote a pro-inflammatory phenotype. The aim of this study was to analyze the effect of modulating the n-6/n-3 PUFA ratio on the formation of monohydroxylated fatty acid (HO-FAs) derived from the n-6 PUFA arachidonic acid (AA) and the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in THP-1 macrophages by means of LC-MS. Lipid metabolites were measured in THP-1 macrophage cell pellets. The concentration of AA-derived hydroxyeicosatetraenoic acids (HETEs) was not significantly changed when incubated THP-1 macrophages in a high AA/(EPA+DHA) ratio of 19/1 vs. a low ratio AA/(EPA+DHA) of 1/1 (950.6 ± 110 ng/mg vs. 648.2 ± 92.4 ng/mg, p = 0.103). Correspondingly, the concentration of EPA-derived hydroxyeicosapentaenoic acids (HEPEs) and DHA-derived hydroxydocosahexaenoic acids (HDHAs) were significantly increased (63.9 ± 7.8 ng/mg vs. 434.4 ± 84.3 ng/mg, p = 0.012 and 84.9 ± 18.3 ng/mg vs. 439.4 ± 82.7 ng/mg, p = 0.014, respectively). Most notable was the strong increase of 18-hydroxyeicosapentaenoic acid (18-HEPE) formation in THP-1 macrophages, with levels of 170.9 ± 40.2 ng/mg protein in the high n-3 PUFA treated cells. Thus our data indicate that THP-1 macrophages prominently utilize EPA and DHA for monohydroxylated metabolite formation, in particular 18-HEPE, which has been shown to be released by macrophages to prevent pressure overload-induced maladaptive cardiac remodeling.
Collapse
Affiliation(s)
- Kathrin Keeren
- Department of Medicine, Division of Hepatology, Gastroenterology and Endocrinology, Charité University Medicine Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany.
| | - Dan Huang
- Department of Medicine, Division of Hepatology, Gastroenterology and Endocrinology, Charité University Medicine Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany.
| | - Christopher Smyl
- Department of Medicine, Division of Hepatology, Gastroenterology and Endocrinology, Charité University Medicine Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany.
- Lipid Clinic, Experimental and Clinical Research Centre (ECRC), Charité University Medicine and Max Delbrueck Center for Molecular Medicine, Berlin 13353, Germany.
| | - Andreas Fischer
- Department of Medicine, Division of Hepatology, Gastroenterology and Endocrinology, Charité University Medicine Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany.
| | | | - Karsten-H Weylandt
- Department of Medicine, Division of Hepatology, Gastroenterology and Endocrinology, Charité University Medicine Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany.
- Lipid Clinic, Experimental and Clinical Research Centre (ECRC), Charité University Medicine and Max Delbrueck Center for Molecular Medicine, Berlin 13353, Germany.
| |
Collapse
|
49
|
Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N. Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:397-413. [PMID: 25139562 PMCID: PMC4324013 DOI: 10.1016/j.bbalip.2014.08.006] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/06/2014] [Accepted: 08/09/2014] [Indexed: 02/06/2023]
Abstract
Acute inflammatory responses are protective, yet without timely resolution can lead to chronic inflammation and organ fibrosis. A systems approach to investigate self-limited (self-resolving) inflammatory exudates in mice and structural elucidation uncovered novel resolution phase mediators in vivo that stimulate endogenous resolution mechanisms in inflammation. Resolving inflammatory exudates and human leukocytes utilize DHA and other n-3 EFA to produce three structurally distinct families of potent di- and trihydroxy-containing products, with several stereospecific potent mediators in each family. Given their potent and stereoselective picogram actions, specific members of these new families of mediators from the DHA metabolome were named D-series resolvins (Resolvin D1 to Resolvin D6), protectins (including protectin D1-neuroprotectin D1), and maresins (MaR1 and MaR2). In this review, we focus on a) biosynthesis of protectins and maresins as anti-inflammatory-pro-resolving mediators; b) their complete stereochemical assignments and actions in vivo in disease models. Each pathway involves the biosynthesis of epoxide-containing intermediates produced from hydroperoxy-containing precursors from human leukocytes and within exudates. Also, aspirin triggers an endogenous DHA metabolome that biosynthesizes potent products in inflammatory exudates and human leukocytes, namely aspirin-triggered Neuroprotectin D1/Protectin D1 [AT-(NPD1/PD1)]. Identification and structural elucidation of these new families of bioactive mediators in resolution has opened the possibility of diverse patho-physiologic actions in several processes including infection, inflammatory pain, tissue regeneration, neuroprotection-neurodegenerative disorders, wound healing, and others. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy W Winkler
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
50
|
Nordgren TM, Friemel TD, Heires AJ, Poole JA, Wyatt TA, Romberger DJ. The omega-3 fatty acid docosahexaenoic acid attenuates organic dust-induced airway inflammation. Nutrients 2014; 6:5434-52. [PMID: 25436433 PMCID: PMC4276977 DOI: 10.3390/nu6125434] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/03/2014] [Accepted: 11/13/2014] [Indexed: 12/31/2022] Open
Abstract
Workers exposed to organic dusts from concentrated animal feeding operations (CAFOs) are at risk for developing airway inflammatory diseases. Available preventative and therapeutic measures for alleviating dust-induced lung disease are inadequate. Because omega-3 fatty acids can mitigate inflammatory processes, we aimed to determine whether nutritional supplementation with the omega-3 fatty acid docosahexaenoic acid (DHA) could reduce the airway inflammatory consequences of exposures to organic dust. Aqueous extracts of organic dusts from swine CAFOs (ODE) were utilized. In DHA-pretreated human bronchial epithelial cells, lung fibroblasts, monocyte cell cultures, and precision-cut murine lung slices, we found that DHA pretreatment dose-dependently decreased ODE-induced inflammatory cytokine production. To determine the in vivo significance of DHA, C57BL/6 mice were orally administered DHA for seven days prior to treatment with intranasal ODE or saline inhalations. Animals treated with 2 mg DHA demonstrated significant reductions in ODE-induced bronchial alveolar lavage neutrophil influx and pro-inflammatory cytokine/chemokine production compared to mice exposed to ODE alone. Collectively, these data demonstrate that DHA affects several lung cells to reduce the airway inflammatory response to organic dust exposures. Dietary supplementation with DHA may be an effective therapeutic strategy to reduce the airway inflammatory consequences in individuals exposed to agriculture dust environments.
Collapse
Affiliation(s)
- Tara M Nordgren
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Taylor D Friemel
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Art J Heires
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jill A Poole
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Todd A Wyatt
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Debra J Romberger
- Pulmonary, Critical Care, Sleep and Allergy Division, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|