1
|
Sangseekew W, Ornnork N, Sornprachum T, Sirirak J, Lirdprapamongkol K, Boonsombat J, Svasti J, Keeratichamroen S. Unraveling the mechanism of the anticancer potential of emodin using 2D and spheroid models of A549 cells. Biochem Biophys Res Commun 2024; 736:150908. [PMID: 39476760 DOI: 10.1016/j.bbrc.2024.150908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/10/2024]
Abstract
The increasing global cancer burden necessitates the development of new treatment options. Herbal medicine offers a viable alternative to conventional cancer treatments. Numerous studies have shown that 3-dimensional (3D) cell culture more accurately represents tumor characteristics in vivo. Therefore, this study utilized tumor spheroids to explore the therapeutic efficacy of emodin, a natural product-derived bioactive agent. We investigated differences in chemotherapeutic response between A549 cells cultured in 2D versus spheroids, assessing key factors influencing cancer progression, including apoptosis, cell proliferation, cell cycle, migration and invasion. The findings revealed that spheroid cells displayed increased resistance to emodin compared to cells cultured in 2D. Emodin exhibited a more pronounced cytostatic effect in 2D cells, while its cytotoxic effect was more prominent in spheroid cells. Moreover, emodin treatment diminished the migratory and invasive capabilities of the cells. Mechanistic investigations indicated that emodin triggered apoptosis in A549 cells via the mitochondrial apoptotic pathway. Emodin-treated cells exhibited a significant reduction in the phosphorylation of key cancer progression pathways, including JAK2, STAT3, FAK, and ERK, compared to untreated controls. Molecular docking analysis confirmed the interactions of emodin with JAK2 and FAK. These findings suggest that the JAK2/STAT3 and FAK/ERK signaling pathways may serve as critical drivers of the therapeutic effectiveness of emodin in A549 cells.
Collapse
Affiliation(s)
- Wannapa Sangseekew
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Narittira Ornnork
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Thiwaree Sornprachum
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Kriengsak Lirdprapamongkol
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, 10400, Thailand
| | - Jutatip Boonsombat
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | | |
Collapse
|
2
|
Faragó T, Mészáros R, Wéber E, Palkó M. Synthesis and Docking Studies of Novel Spiro[5,8-methanoquinazoline-2,3'-indoline]-2',4-dione Derivatives. Molecules 2024; 29:5112. [PMID: 39519753 PMCID: PMC11547464 DOI: 10.3390/molecules29215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, a set of spiro[5,8-methanoquinazoline-2,3'-indoline]-2',4-dione derivatives 3a-p were synthesized starting from unsubstituted and N-methyl-substituted diendo- and diexo-2-aminonorbornene carboxamides, as well as various substituted isatins. The typical method involves a condensation reaction of alicyclic aminocarboxamide and isatin in the presence of a catalyst, using a solvent and an acceptable temperature. We developed a cost-effective and ecologically benign high-speed ball milling (HSBM), microwave irradiation (MW), and continuous flow (CF) technique to synthesize spiroquinazolinone molecule 3a. The structures of the synthesized compounds 3a-p were determined using 1D and 2D NMR spectroscopies. Furthermore, docking studies and absorption, distribution, metabolism, and toxicity (ADMET) predictions were used in this work. In agreement with the corresponding features found in the case of both the SARS-CoV-2 main protease (RCSB Protein Data Bank: 6LU7) and human mast cell tryptase (RCSB Protein Data Bank: 2ZA5) based on the estimated total energy and binding affinity, H bonds, and hydrophobicity in silico, compound 3d among our 3a-g, 3i-k, and 3m derivatives was found to be our top-rated compound.
Collapse
Affiliation(s)
- Tünde Faragó
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; (T.F.); (R.M.)
| | - Rebeka Mészáros
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; (T.F.); (R.M.)
| | - Edit Wéber
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720 Szeged, Hungary
| | - Márta Palkó
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; (T.F.); (R.M.)
| |
Collapse
|
3
|
Patnala SV, Robles R, Snyder DA. Application of CoLD-CoP to Detecting Competitively and Cooperatively Binding Ligands. Biomolecules 2024; 14:1136. [PMID: 39334902 PMCID: PMC11430148 DOI: 10.3390/biom14091136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
NMR utilization in fragment-based drug discovery requires techniques to detect weakly binding fragments and to subsequently identify cooperatively binding fragments. Such cooperatively binding fragments can then be optimized or linked in order to develop viable drug candidates. Similarly, ligands or substrates that bind macromolecules (including enzymes) in competition with the endogenous ligand or substrate are valuable probes of macromolecular chemistry and function. The lengthy and costly process of identifying competitive or cooperative binding can be streamlined by coupling computational biochemistry and spectroscopy tools. The Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP) method, previously developed by Snyder and co-workers, detects weakly binding ligands by analyzing pairs of diffusion spectra, obtained in the absence and the presence of a protein. We extended the CoLD-CoP method to analyze spectra pairs (each in the presence of a protein) with or without a critical ligand, to detect both competitive and cooperative binding.
Collapse
Affiliation(s)
- Shiva V Patnala
- Department of Chemistry, College of Science and Health, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA
| | - Roberto Robles
- Department of Chemistry, College of Science and Health, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA
| | - David A Snyder
- Department of Chemistry, College of Science and Health, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA
| |
Collapse
|
4
|
Kabier M, Gambacorta N, Trisciuzzi D, Kumar S, Nicolotti O, Mathew B. MzDOCK: A free ready-to-use GUI-based pipeline for molecular docking simulations. J Comput Chem 2024; 45:1980-1986. [PMID: 38703357 DOI: 10.1002/jcc.27390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Molecular docking is by far the most preferred approach in structure-based drug design for its effectiveness to predict the scoring and posing of a given bioactive small molecule into the binding site of its pharmacological target. Herein, we present MzDOCK, a new GUI-based pipeline for Windows operating system, designed with the intent of making molecular docking easier to use and higher reproducible even for inexperienced people. By harmonic integration of python and batch scripts, which employs various open source packages such as Smina (docking engine), OpenBabel (file conversion) and PLIP (analysis), MzDOCK includes many practical options such as: binding site configuration based on co-crystallized ligands; generation of enantiomers from SMILES input; application of different force fields (MMFF94, MMFF94s, UFF, GAFF, Ghemical) for energy minimization; retention of selectable ions and cofactors; sidechain flexibility of selectable binding site residues; multiple input file format (SMILES, PDB, SDF, Mol2, Mol); generation of reports and of pictures for interactive visualization. Users can download for free MzDOCK at the following link: https://github.com/Muzatheking12/MzDOCK.
Collapse
Affiliation(s)
- Muzammil Kabier
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Nicola Gambacorta
- Division of Medical Genetics, IRCSS Foundation-Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Foggia, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
5
|
El Yaagoubi OM, Ezzemani W, Oularbi L, Samaki H, Aboudkhil S. In silico identification of 20S proteasome-β5 subunit inhibitors using structure-based virtual screening. J Biomol Struct Dyn 2024; 42:6165-6173. [PMID: 37403265 DOI: 10.1080/07391102.2023.2232041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Proteasome inhibitors have effective anti-tumor activity in cell culture and can induce apoptosis by interfering with the degradation of cell cycle proteins. 20S Proteasome is acknowledged to be a satisfactory target that has persistent properties against the human immune defense and is obligatory for the degradation of some vital proteins. This study aimed to identify potential inhibitors against 20S proteasome, specifically the β5 subunit, using structure-based virtual screening and molecular docking to reduce the number of ligands that should be eligible for experimental assays. A total of 4961 molecules with anticancer activity were screened from the ASINEX database. The filtered compounds that showed higher docking affinity were then used in more sophisticated molecular docking simulations with AutoDock Vina for validation. Finally, six drug molecules (BDE 28974746, BDE 25657353, BDE 29746159, BDD 27844484, BDE 29746109, and BDE 29746162) exhibited highly significant interactions compared to the positive controls were retained. Among these six molecules, three molecules (BDE 28974746, BDE 25657353, and BDD 27844484) showed high binding affinity and binding energy compared with Carfilzomib and Bortezomib. Molecular simulation and dynamics studies of the top three drug molecules in each case allowed us to draw further conclusions about their stability with the β5 subunit. Computed absorption, distribution, metabolism, excretion and toxicity studies on these derivatives showed encouraging results with very low toxicity, distribution, and absorption. These compounds may serve as potential hits for further biological evaluation in the development of new proteasome inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36), Faculty of Sciences and Techniques-Mohammedia, Hassan II University of Casablanca, Morocco
| | - Wahiba Ezzemani
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratoire de Biologie et Santé (URAC34), Département de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Morocco
| | - Larbi Oularbi
- Laboratory of Materials Membranes and Environment, Faculty of Sciences and Techniques-Mohammedia, Hassan II University of Casablanca, Morocco
- Supramolecular Nanomaterials Group (SNG), Mohammed VI Polytechnic University (UM6P), Lot 660, HayMoulayRachid, BenGuerir, Morocco
| | - Hamid Samaki
- National Institute of Social Action (INAS), Tangier, Morocco
| | - Souad Aboudkhil
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36), Faculty of Sciences and Techniques-Mohammedia, Hassan II University of Casablanca, Morocco
| |
Collapse
|
6
|
Egbemhenghe AU, Aderemi OE, Omotara BS, Akhimien FI, Osabuohien FO, Adedapo HA, Temionu OR, Egejuru WA, Ajala CF, Ihunanya MF, Oluwafemi OO, Onu CFD, Ajibare AC, Ddamulira C, Abalum JO, Afolayan OM. Computational-based drug design of novel small molecules targeting p53-MDMX interaction. J Biomol Struct Dyn 2024; 42:6678-6687. [PMID: 37578044 DOI: 10.1080/07391102.2023.2245483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
The regulation of the p53 tumor suppressor pathway is critically dependent on the activity of Murine Double Minute 2 (MDM2) and Murine Double Minute X (MDMX) proteins. In certain types of cancer cells, excessive amount of MDMX can poly-ubiquitinate p53, which can result in its degradation, leading to a subsequent reduction in the levels of this protein. Therefore, the design of small-molecule inhibitors targeting the MDMX-p53 interaction has emerged as a promising strategy for cancer therapy. In this study, we employed computational techniques including pharmacophore modeling and molecular docking to identify three potential small molecule inhibitors (CID_25094615, CID_137634453, and CID_25094344) of the MDMX-p53 interaction from a PubChem database. Molecular dynamics of 100000 ps were conducted to assess the stability of the MDMX-inhibitor complexes. Our results showed that all three compounds exhibit stable binding with MDMX, with significantly lower root mean square deviation (RMSD) and fluctuation (RMSF) values than the control ligand, indicating superior stability. Additionally, the three compounds exhibit stronger intermolecular hydrogen bond (HBOND) interactions compared to the control, suggesting stronger stability. Overall, our findings highlight the potential of these compounds as lead candidates for the development of novel anticancer agents that target the MDMX-p53 interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Olajide Enoch Aderemi
- Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT, USA
| | - Bamidele Samson Omotara
- Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT, USA
| | | | | | | | - Oluwakemi Rita Temionu
- Department of Medical Laboratory Technology, Lagos State College of Health Technology, Lagos, Nigeria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pradhan S, Mishra DK, Gurung P, Chettri A, Singha UK, Dutta T, Sinha B. An In-Silico Drug Designing Approach Attempted on a Newly Synthesized Co(II) Complex along with its Other Biological Activities: A Combined Investigation of both Experimental and Theoretical Aspects. J Fluoresc 2024:10.1007/s10895-024-03852-0. [PMID: 39031237 DOI: 10.1007/s10895-024-03852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
A new Co (II) complex incorporating a novel Schiff base ligand acquired from the condensation of 3,3'-Methylenedianiline and 2-Hydroxy-5-bromobenzaldehyde was synthesized and characterized. The synthesized complex was air and moisture stable, monomeric, and non-electrolytic in nature. Based on physical and spectral studies, tetrahedral conformation was ascribed to the synthesized Co (II) complex.Density Functional Theory (DFT) was used to analysis different electronic parameters of the optimized structure of Co(II) complex to reveal its stability.Using different analytic and spectroscopic techniques, the new Co (II) complex was established to interact with DNA quite effectively and works as an efficient metallo intercalators. The synthesized complex was discovered to cleave DNA significantly, so it can be inferred that the complex will inhibit the growth of pathogens. Molecular docking was performed to check the binding affinity of the cobalt complex with different receptors, responsible for different diseases. Proteins like progesterone receptor and induced myeloid leukemia cell differentiation Mcl-1 protein showed high binding affinity with this complex, and hence the complex might have some implications for inhibition of progesterone hormones in biological systems. Biological activity of the Co (II) complex was also predicted through computational analysis with SwissADME.Using strains of Escherichia coli, Klebsiella pneumoniae, Bacillus subtilis, and Staphylococcus aureus, an in vitro antibacterial activity of the ligand and Co (II) complex was carried out. This activity was further validated by a molecular docking investigation.
Collapse
Affiliation(s)
- Sudarshan Pradhan
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Dipu Kumar Mishra
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Pritika Gurung
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Anmol Chettri
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Uttam Kumar Singha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India
| | - Biswajit Sinha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
| |
Collapse
|
8
|
Deng Y, Fang X, Xu L, Wang H, Gan Q, Wang Q, Jiang M. Integrating network pharmacology and experimental models to investigate the efficacy and mechanism of Tiansha mixture on xerosis. Arch Dermatol Res 2024; 316:468. [PMID: 39002062 DOI: 10.1007/s00403-024-03201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
Epidermal Growth Factor Receptor Inhibitors (EGFRIs) is a common cancer therapy, but they occasionally cause severe side effects such as xerosis. Tiansha mixture (TM), a traditional Chinese medicines formulation, is develpoed to treat xerosis. This study aims to understand mechanisms of TM on xerosis. Bio-active compounds were selected from databases (TCMSP, TCM-ID, HERB, ETCM) and removed for poor oral bioavailability and low drug likeness. Then a network-based approach filtered out potential active compounds against xerosis. KEGG enrichment analysis identified PI3K/AKT and ERK/MAPK pathways, which were further verified by molecular docking. Afterwards, the effect of TM on activation of PI3K/AKT and ERK/MAPK pathways was validated in gefitinib-induced xerosis rats, where AKT-activator SC79 and MAPK-activator CrPic were also applied. Skin damage was assessed by dorsal score and HE and Tunel stainings. the levels of inflammation factors IL-6 and TNF-α in serum and skin tissue were measured by ELISA. Western blot was used to detect protein levels in the pathways. Network pharmacology identified 111 bio-active compounds from TM and 14 potential targets. Docking simulation showed apigenin, luteolin, and quercetin bio-active compounds in TM bound to IKBKG, INSR, and RAF-1 proteins. In xerosis model rats, TM mitigated xerosis damage, decreased inflammation factors, and phosphorylation of PI3K/AKT and ERK/MAPK proteins. SC79 or CrPic or their combination reversed TM's effect. The current study identified potential targets and PI3K/AKT and ERK/MAPK pathways involved in the effect of TM on xerosis, thus providing a foundation for TM clinical application.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Xinhua Fang
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Lihua Xu
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Haixia Wang
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Qinting Gan
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Qian Wang
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Meng Jiang
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China.
| |
Collapse
|
9
|
Hassanein F, Fadel HH, Shehata AI, Hamdy NA, Masoud IM. In silico study to explore the mechanism of Toxoplasma-induced inflammation and target therapy based on sero and salivary Toxoplasma. Sci Rep 2024; 14:13600. [PMID: 38866852 PMCID: PMC11169245 DOI: 10.1038/s41598-024-63735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
We aimed to assess salivary and seroprevalence of Toxoplasma immunoglobulins in risky populations and evaluate drug docking targeting TgERP. A cross-sectional study was conducted in Alexandria University hospitals' outpatient clinics. 192 participants were enrolled from September 2022 to November 2023. Anti-Toxoplasma IgG and IgM were determined in serum and saliva by ELISA. An in-Silico study examined TgERP's protein-protein interactions (PPIs) with pro-inflammatory cytokine receptors, anti-inflammatory cytokine, cell cycle progression regulatory proteins, a proliferation marker, and nuclear envelope integrity-related protein Lamin B1. Our findings revealed that anti-T. gondii IgG were detected in serum (66.1%) and saliva (54.7%), with 2.1% of both samples were positive for IgM. Salivary IgG had 75.59% sensitivity, 86.15% specificity, 91.40% PPV, 64.40% NPP, 79.17% accuracy and fair agreement with serum IgG. On the other hand, the sensitivity, specificity, PPV, NPV, and accuracy in detecting salivary IgM were 75.0%, 99.47%, 75.0%, 99.47%, and 98.96%. AUC 0.859 indicates good discriminatory power. Examined synthetic drugs and natural products can target specific amino acids residues of TgERP that lie at the same binding interface with LB1 and Ki67, subsequently, hindering their interaction. Hence, salivary samples can be a promising diagnostic approach. The studied drugs can counteract the pro-inflammatory action of TgERP.
Collapse
Affiliation(s)
- Faika Hassanein
- Department of Microbiology & Immunology, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt.
| | - Hewida H Fadel
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Amany I Shehata
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Noha Alaa Hamdy
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Inas M Masoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
10
|
Chaudhuri D, Datta J, Majumder S, Giri K. Repurposing of drug molecules from FDA database against Hepatitis C virus E2 protein using ensemble docking approach. Mol Divers 2024; 28:1175-1188. [PMID: 37061608 DOI: 10.1007/s11030-023-10646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
Hepatitis C virus, a member of the Flaviviridae family and genus Hepacivirus, is an enveloped, positively single stranded RNA virus. Its surface consists of a heterodimer of E1 and E2 proteins which play a crucial role in receptor binding and membrane fusion. In this study we have used in silico virtual screening by utilizing ensemble docking on the approved drugs. These drugs can bind with high efficiency to the 36 prominent conformations of the CD81 binding site clustered from a total of 3 µs MD simulation data on the E2 protein. We started with 9213 compounds from the FDA list of drugs and progressively came down to 5 compounds which have been seen to bind with very high efficiency to not only all the conformations but also the two predicted druggable pockets that encompass the CD81 binding site. MM/PBSA binding energy calculations also point to the highly stable interaction of the compounds to the E2 protein. This study may in future broaden the arsenal of therapeutics for use against HCV infection and lead to more effective care against the virus.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
11
|
Lin TE, Yen D, HuangFu W, Wu Y, Hsu J, Yen S, Sung T, Hsieh J, Pan S, Yang C, Huang W, Hsu K. An ensemble machine learning model generates a focused screening library for the identification of CDK8 inhibitors. Protein Sci 2024; 33:e5007. [PMID: 38723187 PMCID: PMC11081523 DOI: 10.1002/pro.5007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/26/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024]
Abstract
The identification of an effective inhibitor is an important starting step in drug development. Unfortunately, many issues such as the characterization of protein binding sites, the screening library, materials for assays, etc., make drug screening a difficult proposition. As the size of screening libraries increases, more resources will be inefficiently consumed. Thus, new strategies are needed to preprocess and focus a screening library towards a targeted protein. Herein, we report an ensemble machine learning (ML) model to generate a CDK8-focused screening library. The ensemble model consists of six different algorithms optimized for CDK8 inhibitor classification. The models were trained using a CDK8-specific fragment library along with molecules containing CDK8 activity. The optimized ensemble model processed a commercial library containing 1.6 million molecules. This resulted in a CDK8-focused screening library containing 1,672 molecules, a reduction of more than 99.90%. The CDK8-focused library was then subjected to molecular docking, and 25 candidate compounds were selected. Enzymatic assays confirmed six CDK8 inhibitors, with one compound producing an IC50 value of ≤100 nM. Analysis of the ensemble ML model reveals the role of the CDK8 fragment library during training. Structural analysis of molecules reveals the hit compounds to be structurally novel CDK8 inhibitors. Together, the results highlight a pipeline for curating a focused library for a specific protein target, such as CDK8.
Collapse
Affiliation(s)
- Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Dyan Yen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
| | - Wei‐Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Yi‐Wen Wu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
| | - Jui‐Yi Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Shih‐Chung Yen
- Warshel Institute for Computational BiologyThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdongPeople's Republic of China
| | - Tzu‐Ying Sung
- Biomedical Translation Research Center, Academia SinicaTaipeiTaiwan
| | - Jui‐Hua Hsieh
- Division of Translational ToxicologyNational Institute of Environmental Health Sciences, National Institutes of HealthDurhamNorth CarolinaUSA
| | - Shiow‐Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chia‐Ron Yang
- School of Pharmacy, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Jan Huang
- Graduate Institute of Pharmacognosy, College of PharmacyTaipei Medical UniversityTaipeiTaiwan
| | - Kai‐Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipeiTaiwan
- Cancer Center, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
12
|
He T, Xiong L, Lin K, Yi J, Duan C, Zhang J. Functional metabolomics reveals arsenic-induced inhibition of linoleic acid metabolism in mice kidney in drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123949. [PMID: 38636836 DOI: 10.1016/j.envpol.2024.123949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Arsenic (As) is a heavy metal known for its detrimental effects on the kidneys, but the precise mechanisms underlying its toxicity remain unclear. In this study, we employed an integrated approach combining traditional toxicology methods with functional metabolomics to explore the nephrotoxicity induced by As in mice. Our findings demonstrated that after 28 days of exposure to sodium arsenite, blood urea nitrogen, serum creatinine levels were significantly increased, and pathological examination of the kidneys revealed dilation of renal tubules and glomerular injury. Additionally, uric acid, total cholesterol, and low-density lipoprotein cholesterol levels were significant increased while triglyceride level was decreased, resulting in renal insufficiency and lipid disorders. Subsequently, the kidney metabolomics analysis revealed that As exposure disrupted 24 differential metabolites, including 14 up-regulated and 10 down-regulated differential metabolites. Ten metabolic pathways including linoleic acid and glycerophospholipid metabolism were significantly enriched. Then, 80 metabolic targets and 168 predicted targets were identified using metabolite network pharmacology analysis. Of particular importance, potential toxicity targets, such as glycine amidinotransferase, mitochondrial (GATM), and nitric oxide synthase, and endothelial (NOS3), were prioritized through the "metabolite-target-pathway" network. Receiver operating characteristics curve and molecular docking analyses suggested that 1-palmitoyl-2-myristoyl-sn-glycero-3-PC, linoleic acid, and L-hydroxyarginine might be functional metabolites associated with GATM and NOS3. Moreover, targeted verification result showed that the level of linoleic acid in As group was 0.4951 μg/mL, which was significantly decreased compared with the control group. And in vivo and in vitro protein expression experiments confirmed that As exposure inhibited the expression of GATM and NOS3. In conclusion, these results suggest that As-induced renal injury may be associated with the inhibition of linoleic acid metabolism through the down-regulation of GATM and NOS3, resulting in decreased levels of linoleic acid, 1-palmitoyl-2-myristoyl-sn-glycero-3-PC, and L-hydroxyarginine metabolites.
Collapse
Affiliation(s)
- Tianmu He
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| | - Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Kexin Lin
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Jing Yi
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
13
|
Elgammal WE, Shaban SS, Eliwa EM, Halawa AH, Abd El-Gilil SM, Hassan RA, Abdou AM, Elhagali GA, Reheim MA. Thiazolation of phenylthiosemicarbazone to access new thiazoles: anticancer activity and molecular docking. Future Med Chem 2024; 16:1219-1237. [PMID: 38989988 PMCID: PMC11247539 DOI: 10.1080/17568919.2024.2342668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/04/2024] [Indexed: 07/12/2024] Open
Abstract
Aim: Novel thiazole hybrids were synthesized via thiazolation of 4-phenylthiosemicarbazone (4). Materials & methods: The anticancer activity against the NCI 60 cancer cell line panel. Results: Methyl 2-(2-((1-(naphthalen-2-yl)ethylidene)hydrazineylidene)-4-oxo-3-phenylthiazolidin-5-ylidene)acetate (6a) showed significant anticancer activity at 10 μM with a mean growth inhibition (GI) of 51.18%. It showed the highest cytotoxic activity against the ovarian cancer OVCAR-4 with an IC50 of 1.569 ± 0.06 μM. Compound 6a inhibited PI3Kα with IC50 = 0.225 ± 0.01 μM. Moreover, compound 6a revealed a decrease of Akt and mTOR phosphorylation in OVCAR-4 cells. In addition, antibacterial activity showed that compounds 11 and 12 were the most active against Staphylococcus aureus. Conclusion: Compound 6a is a promising molecule that could be a lead candidate for further studies.
Collapse
Affiliation(s)
- Walid E Elgammal
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Safaa S Shaban
- Chemistry Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| | - Essam M Eliwa
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Institute of Chemistry of Strasbourg, UMR 7177-LCSOM, CNRS, Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Ahmed H Halawa
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Shimaa M Abd El-Gilil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amr M Abdou
- Department of Microbiology & Immunology, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Gameel Am Elhagali
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mam Abdel Reheim
- Department of Chemistry, Faculty of Science, Arish University, Arish, 45511, Egypt
| |
Collapse
|
14
|
Chuntakaruk H, Boonpalit K, Kinchagawat J, Nakarin F, Khotavivattana T, Aonbangkhen C, Shigeta Y, Hengphasatporn K, Nutanong S, Rungrotmongkol T, Hannongbua S. Machine learning-guided design of potent darunavir analogs targeting HIV-1 proteases: A computational approach for antiretroviral drug discovery. J Comput Chem 2024; 45:953-968. [PMID: 38174739 DOI: 10.1002/jcc.27298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
In the pursuit of novel antiretroviral therapies for human immunodeficiency virus type-1 (HIV-1) proteases (PRs), recent improvements in drug discovery have embraced machine learning (ML) techniques to guide the design process. This study employs ensemble learning models to identify crucial substructures as significant features for drug development. Using molecular docking techniques, a collection of 160 darunavir (DRV) analogs was designed based on these key substructures and subsequently screened using molecular docking techniques. Chemical structures with high fitness scores were selected, combined, and one-dimensional (1D) screening based on beyond Lipinski's rule of five (bRo5) and ADME (absorption, distribution, metabolism, and excretion) prediction implemented in the Combined Analog generator Tool (CAT) program. A total of 473 screened analogs were subjected to docking analysis through convolutional neural networks scoring function against both the wild-type (WT) and 12 major mutated PRs. DRV analogs with negative changes in binding free energy (ΔΔ G bind ) compared to DRV could be categorized into four attractive groups based on their interactions with the majority of vital PRs. The analysis of interaction profiles revealed that potent designed analogs, targeting both WT and mutant PRs, exhibited interactions with common key amino acid residues. This observation further confirms that the ML model-guided approach effectively identified the substructures that play a crucial role in potent analogs. It is expected to function as a powerful computational tool, offering valuable guidance in the identification of chemical substructures for synthesis and subsequent experimental testing.
Collapse
Affiliation(s)
- Hathaichanok Chuntakaruk
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
| | - Kajjana Boonpalit
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jiramet Kinchagawat
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Fahsai Nakarin
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Tanatorn Khotavivattana
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | | | - Sarana Nutanong
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
| | - Supot Hannongbua
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Center of Excellence in Computational Chemistry (CECC), Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Thandivel S, Rajan P, Gunasekar T, Arjunan A, Khute S, Kareti SR, Paranthaman S. In silico molecular docking and dynamic simulation of anti-cholinesterase compounds from the extract of Catunaregam spinosa for possible treatment of Alzheimer's disease. Heliyon 2024; 10:e27880. [PMID: 38560123 PMCID: PMC10981039 DOI: 10.1016/j.heliyon.2024.e27880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD), is characterized by a progressive loss of cognitive abilities as well as behavioral symptoms including disorientation, trouble solving problems, personality and mood changes. Acetylcholinesterase (AChE) is a promising target for symptomatic improvement in AD due to its consistent and early cholinergic deficit. This research has investigated the potential compounds from Catunaregam spinosa as AChE inhibitors as a treatment option for AD, aiming to enhance cholinergic neurotransmission and alleviate cognitive decline. Tacrine, the FDA's first approved treatment for AD, is no longer in use due to its hepatotoxicity. Box-Behnken design (BBD) modelling was used to optimise the ultrasonic extraction of alkaloids from the dried fruits of C. spinosa. GC-MS analysis revealed the presence of ninety phytoconstituents in the extract. Among them, eighty-nine new phytoconstituents are reported in this plant fruit for the first time. Out of ninety phytoconstituents, eight phytoconstituents showed the best binding affinity against the AChE enzyme, i.e., PDB IDs 1GQR, 1QTI and 4PQE of AD targets using iGEMDOCK. The lead hits were tested for their drug-like properties and atomistic binding mechanisms using in silico ADMET prediction, LigPlot analysis, and molecular dynamics simulation. The results suggest four compounds such as 1,4,7,10,13,16-hexaoxacyclooctadecane; butanoic acid, 3-methyl-2-[(phenylmethoxy)imino]-, trime; butane-1,2,3,4-tetraol; and D-(+)-ribonic acid.gamma-lactone as potent inhibitors of AChE for the possible treatment of AD.
Collapse
Affiliation(s)
- Sathish Thandivel
- Department of Pharmacognosy, Sri Shanmugha College of Pharmacy, Salem district, Sankari, 637 304, Tamil Nadu, India
| | - Poovarasan Rajan
- Department of Pharmacognosy, Sri Shanmugha College of Pharmacy, Salem district, Sankari, 637 304, Tamil Nadu, India
| | - Tamizharasan Gunasekar
- Department of Pharmacognosy, Sri Shanmugha College of Pharmacy, Salem district, Sankari, 637 304, Tamil Nadu, India
| | - Abisek Arjunan
- Department of Pharmacognosy, Sri Shanmugha College of Pharmacy, Salem district, Sankari, 637 304, Tamil Nadu, India
| | - Sulekha Khute
- Institute of Pharmacy, Pandit Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
| | - Srinivasa Rao Kareti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, 484 887, Madhya Pradesh, India
| | - Subash Paranthaman
- Department of Pharmacognosy, Sri Shanmugha College of Pharmacy, Salem district, Sankari, 637 304, Tamil Nadu, India
| |
Collapse
|
16
|
Singha UK, Pradhan S, Gurung P, Chhetri P, Chettri A, Dutta T, Sinha B. Synthesis and Characterization of Zn(II) Complex of 4-chloro-2-(((2-phenoxyphenyl)imino)methyl)phenol and its Biological Efficacies: DNA Interaction, ADMET, DFT and Molecular Docking Study. J Fluoresc 2024:10.1007/s10895-024-03687-9. [PMID: 38613713 DOI: 10.1007/s10895-024-03687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Condensing 2-phenoxyaniline with 5-chlorosalicyldehyde under reflux conditions, a 4-chloro-2-(((2-phenoxyphenyl)imino)methyl)phenol Schiff base has been Synthesized. A zinc complex was synthesized by combining the ligand in a 1:1 molar ratio with zinc sulphateheptahydrate. Mass spectroscopy, NMR, infrared, and elemental analysis were used to characterize the ligand and zinc complex. By measuring the molar conductance, the non-electrolytic character of the complex was confirmed. The zinc ion is coordinated in a pentadentate manner, according to an IR and NMR investigation. Viscosity measurements, absorption and fluorescence spectroscopy were utilized to examine the complex's interaction with CT (calf thymus) DNA. Furthermore, the ligand and complex's ADMET characteristics were ascertained through the use of ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) study. Calculation of the different electronic parameters of the optimized structure through Density Functional Theory (DFT) indicated the stability of the Zn(II) complex. Molecular docking study reflected the future opportunity for the consideration of Zn(II) complex to fight against Alzheimer and Glaucoma diseases.
Collapse
Affiliation(s)
- Uttam Kumar Singha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Sudarshan Pradhan
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Pritika Gurung
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Prajal Chhetri
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Anmol Chettri
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India
| | - Biswajit Sinha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
| |
Collapse
|
17
|
Martynov A, Farber B, Bomko T, Beckles DL, Kleyn I. Molecular Modeling, Synthesis, and Antihyperglycemic Activity of the New Benzimidazole Derivatives - Imidazoline Receptor Agonists. Drug Des Devel Ther 2024; 18:1035-1052. [PMID: 38585255 PMCID: PMC10999201 DOI: 10.2147/dddt.s447289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction The paper presents the results of a study on the first synthesized benzimidazole derivatives obtained from labile nature carboxylic acids. The synthesis conditions of these substances were studied, their structure was proved, and some components were found to have sugar-reducing activity on the model of alloxan diabetes in rats. Methods The study used molecular modeling methods such as docking based on the evolutionary model (igemdock), RP_HPLC method to monitor the synthesis reaction, and 1H NMR and 13C NMR, and other methods of organic chemistry to confirm the structures of synthesized substances. Results & Discussion The docking showed that the ursodeoxycholic acid benzimidazole derivatives have high tropics to all imidazoline receptor carriers (PDB ID: 2XCG, 2bk3, 3p0c, 1QH4). The ursodeoxycholic acid benzimidazole derivative and arginine and histidine benzimidazole derivatives showed the highest sugar-lowering activity in the experiment on alloxan-diabetic rats. For these derivatives, the difference in glucose levels of treated rats was significant against untreated control. Therefore, the new derivatives of benzimidazole and labile natural organic acids can be used to create new classes of imidazoline receptor inhibitors for the treatment of diabetes mellitus and hypertension.
Collapse
Affiliation(s)
- Artur Martynov
- Laboratory and Clinical department of Molecular Immunopharmacology, SI “ I. Mechnikov Institute of Microbiology and Immunology of National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| | | | - Tatyana Bomko
- Laboratory and Clinical department of Molecular Immunopharmacology, SI “ I. Mechnikov Institute of Microbiology and Immunology of National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| | | | - Ilya Kleyn
- SUNY Downstate Medical Center / University Hospital of Brooklyn, New York, NY, USA
| |
Collapse
|
18
|
Lian MY, Dong SH, Ai YF, Duan ZK, Bai M, Huang XX, Song SJ. Eight structurally diverse components with anti-acetylcholinesterase activity from Daphne bholua. PHYTOCHEMISTRY 2024; 220:114015. [PMID: 38364884 DOI: 10.1016/j.phytochem.2024.114015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Eight structurally diverse components, including six undescribed ones, (±)-daphuarin A (1a/1b), daphuarin B (2), daphuarin D-E (4-6), together with a pair of new natural products (±)-daphuarin C (3a/3b) were isolated from the herb of Daphne bholua Buch.-Ham. ex D. Don. Their planar structures were elucidated by extensive spectroscopic analyses. The configurations were established with the assistance of quantum chemical calculations, together with the Custom DP4+ method. The inhibitory potentials of all isolates against acetylcholinesterase were evaluated.
Collapse
Affiliation(s)
- Mei-Ya Lian
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shu-Hui Dong
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yun-Fei Ai
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhi-Kang Duan
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ming Bai
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Xiao Huang
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China; Basic Science Research Center Base (Pharmaceutical Science), Shandong province, Yantai University, Yantai, 264005, China.
| | - Shao-Jiang Song
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
19
|
Krasovec G, Renaud C, Quéinnec É, Sasakura Y, Chambon JP. Extrinsic apoptosis participates to tail regression during the metamorphosis of the chordate Ciona. Sci Rep 2024; 14:5729. [PMID: 38459045 PMCID: PMC10923776 DOI: 10.1038/s41598-023-48411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/26/2023] [Indexed: 03/10/2024] Open
Abstract
Apoptosis is a regulated cell death ubiquitous in animals defined by morphological features depending on caspases. Two regulation pathways are described, currently named the intrinsic and the extrinsic apoptosis. While intrinsic apoptosis is well studied and considered ancestral among metazoans, extrinsic apoptosis is poorly studied outside mammals. Here, we address extrinsic apoptosis in the urochordates Ciona, belonging to the sister group of vertebrates. During metamorphosis, Ciona larvae undergo a tail regression depending on tissue contraction, migration and apoptosis. Apoptosis begin at the tail tip and propagates towards the trunk as a polarized wave. We identified Ci-caspase 8/10 by phylogenetic analysis as homolog to vertebrate caspases 8 and 10 that are the specific initiator of extrinsic apoptosis. We detected Ci-caspase 8/10 expression in Ciona larvae, especially at the tail tip. We showed that chemical inhibition of Ci-caspase 8/10 leads to a delay of tail regression, and Ci-caspase 8/10 loss of function induced an incomplete tail regression. The specificity between apoptotic pathways and initiator caspase suggests that extrinsic apoptosis regulates cell death during the tail regression. Our study presents rare in vivo work on extrinsic apoptosis outside mammals, and contribute to the discussion on its evolutionary history in animals.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, F-75252, Paris Cedex 05, France.
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan.
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| | - Cécile Renaud
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, F-75252, Paris Cedex 05, France
| | - Éric Quéinnec
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, F-75252, Paris Cedex 05, France
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | | |
Collapse
|
20
|
Shah A, Choudhary A, Jain M, Perumal S, Patel V, Parmar G, Patel A. Discovery of novel anticancer flavonoids as potential HDAC2 inhibitors: virtual screening approach based on molecular docking, DFT and molecular dynamics simulations studies. 3 Biotech 2024; 14:83. [PMID: 38375511 PMCID: PMC10874358 DOI: 10.1007/s13205-023-03912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/30/2023] [Indexed: 02/21/2024] Open
Abstract
Virtual screening of a library of 329 flavonoids obtained from the NPACT database was performed to find out potential novel HDAC2 inhibitors. Eleven out of 329 selected flavonoids were screened based on molecular docking studies, as they have higher binding affinities than the standard drugs vorinostat and panobinostat. All screened compounds occupying the catalytic site of HDAC2 showed important molecular interaction with Zn2+ and other important amino acids in the binding pocket. The screened compounds were validated using ADMET filtration and bioactivity prediction from which we obtained six compounds, NPACT00270, NPACT00676, NPACT00700, NPACT001008, NPACT001054, and NPACT001407, which were analyzed using DFT studies. DFT studies were performed for all six screened flavonoids. In DFT studies, three flavonoids, NPACT00700, NPACT001008, and NPACT001407, were found to be better based on HOMO-LUMO and molecular electrostatic potential (MEP) analyses. Furthermore, MD simulations were performed for 100 ns for the three compounds. In the MD analysis, NPACT001407 was found to be more stable in the active site of HDAC2 as zinc formed a coordination bond with ASP181, HIS183, ASP269, and GLY305, along with two hydroxyl groups of the ligand. Our findings reveal that these flavonoids can interact as ligands with the active site of HDAC2. Because of the absence of a hydroxamate group in flavonoids, there are no possibilities for the formation of isocyanate. This suggests that the major drawback of current HDACs inhibitors may be solved. Further experimental validation is needed to understand the selectivity of flavonoids as HDAC2 inhibitors. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03912-5.
Collapse
Affiliation(s)
- Ashish Shah
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat India
| | - Aarti Choudhary
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat India
| | - Manav Jain
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT USA
| | - Sathiaseelan Perumal
- Department of Chemistry, Bishop Heber College, Tiruchirappalli, Tamil Nadu India
| | - Vaishali Patel
- Department of Pharmaceutics, Laxminarayan Dev College of Pharmacy, Bharuch, Gujarat India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand, Gujarat India
| |
Collapse
|
21
|
Venugopal DC, Viswanathan P, Ravindran S, Punnoose AM, Yasasve M, Dicky John DG, Prabhakar L, Ramanathan G, Sankarapandian S, Ramshankar V. Antifibrotic effect of silymarin on arecoline-induced fibrosis in primary human buccal fibroblasts: an in silico and in vitro analysis. Mol Biol Rep 2024; 51:303. [PMID: 38356030 DOI: 10.1007/s11033-023-09177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND This study aimed to assess silymarin's anticancer and antifibrotic potential through in silico analysis and investigate its impact on in vitro arecoline-induced fibrosis in primary human buccal fibroblasts (HBF). METHODS & RESULTS The study utilized iGEMDOCK for molecular docking, evaluating nine bioflavonoids, and identified silymarin and baicalein as the top two compounds with the highest target affinity, followed by subsequent validation through a 100ns Molecular Dynamic Simulation demonstrating silymarin's stable behavior with Transforming Growth Factor Beta. HBF cell lines were developed from tissue samples obtained from patients undergoing third molar extraction. Arecoline, a known etiological factor in oral submucous fibrosis (OSMF), was employed to induce fibrogenesis in these HBFs. The inhibitory concentration (IC50) of arecoline was determined using the MTT assay, revealing dose-dependent cytotoxicity of HBFs to arecoline, with notable cytotoxicity observed at concentrations exceeding 50µM. Subsequently, the cytotoxicity of silymarin was assessed at 24 and 72 h, spanning concentrations from 5µM to 200µM, and an IC50 value of 143µM was determined. Real-time polymerase chain reaction (qPCR) was used to analyze the significant downregulation of key markers including collagen, epithelial-mesenchymal transition (EMT), stem cell, hypoxia, angiogenesis and stress markers in silymarin-treated arecoline-induced primary buccal fibroblast cells. CONCLUSION Silymarin effectively inhibited fibroblast proliferation and downregulated genes associated with cancer progression and EMT pathway, both of which are implicated in malignant transformation. To our knowledge, this study represents the first exploration of silymarin's potential as a novel therapeutic agent in an in vitro model of OSMF.
Collapse
Affiliation(s)
- Divyambika Catakapatri Venugopal
- Department of Oral Medicine and Radiology, Sri Ramachandra Dental College & Hospital, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600 116, India.
| | - Paramesh Viswanathan
- Stem Cell & Regenerative Biology Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education & Research (DU), Porur, Chennai, 600 116, India
| | - Soundharya Ravindran
- Department of Preventive Oncology (Research), Cancer Institute (WIA), Adyar, Chennai, 600020, India
| | - Alan Mathew Punnoose
- Stem Cell & Regenerative Biology Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education & Research (DU), Porur, Chennai, 600 116, India
| | - Madhavan Yasasve
- Department of Oral Medicine and Radiology, Sri Ramachandra Dental College & Hospital, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600 116, India
| | - Davis G Dicky John
- Department of Bioinformatics, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600 116, India
| | - Lavanya Prabhakar
- Department of Bioinformatics, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600 116, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Science, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Sathasivasubramanian Sankarapandian
- Department of Oral Medicine and Radiology, Sri Ramachandra Dental College & Hospital, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600 116, India
| | - Vijayalakshmi Ramshankar
- Department of Preventive Oncology (Research), Cancer Institute (WIA), Adyar, Chennai, 600020, India.
| |
Collapse
|
22
|
Pandey AK, Trivedi V. Hemin competitively inhibits HSPA8 ATPase activity mitigating its foldase function. Arch Biochem Biophys 2024; 752:109889. [PMID: 38215959 DOI: 10.1016/j.abb.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Hemolysis in red blood cells followed by hemoglobin degradation results in high hemin levels in the systemic circulation. Such a level of hemin is disastrous for cells and tissues and is considerably responsible for the pathologies of diseases like severe malaria. Hemin's hydrophobic chemical nature and structure allow it to bind several proteins leading to their functional modification. Such modifications in physiologically relevant proteins can have a high impact on various cellular processes. HSPA8 is a chaperone that has a protective role in oxidative stress by aiding protein refolding. Through ATPase activity assays we found that hemin can competitively inhibit ATP hydrolysis by the chaperone HSPA8. Hemin as such does not affect the structural integrity of the protein which is inferred from CD spectroscopy and Gel filtration but it hinders the ATP-dependent foldase function of the chaperone. HSPA8 was not able to cause the refolding of the model protein lysozyme in the presence of hemin. The loss in HSPA8 function was due to competition between hemin and ATP as the chaperone was able to regain the foldase function when the concentration of ATP was gradually increased with hemin present at the inhibitory concentration. In-silico studies to establish the competition for the specific binding site revealed that ATP was unable to replace hemin from the ATP binding pocket of HSPA8 and was forced to form a non-specific and unstable complex. In-vitro isothermal calorimetry revealed that the affinity of ATP for binding to HSPA8 was reduced 22 folds in the presence of hemin. The prevention of HSPA8's cytoprotective function by hemin can be a major factor contributing to the overall cellular damage during hemin accumulation in the case of severe malaria and other hemolytic diseases.
Collapse
Affiliation(s)
- Alok Kumar Pandey
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, 781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
23
|
Dai S, Gu Y, Zhan Y, Zhang J, Xie L, Li Y, Lu Y, Yang R, Zhou E, Chen D, Liu S, Zheng S, Shi Z, Dong K, Dong R. The potential mechanism of Aidi injection against neuroblastoma-an investigation based on network pharmacology analysis. Front Pharmacol 2024; 15:1310009. [PMID: 38313313 PMCID: PMC10834740 DOI: 10.3389/fphar.2024.1310009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background: Aidi injection, a classic traditional Chinese medicine (TCM) formula, has been used on a broader scale in treating a variety of cancers. In this study, we aimed to explore the potential anti-tumor effects of Aidi injection in the treatment of neuroblastoma (NB) using network pharmacology (NP). Methods: To elucidate the anti-NB mechanism of Aidi injection, an NP-based approach and molecular docking validation were employed. The compounds and target genes were collected from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN-TCM) database. The protein-protein interaction network was constructed using the STRING database. clusterProfiler (R package) was utilized to annotate the bioinformatics of hub target genes. The gene survival analysis was performed on R2, a web-based genomic analysis application. iGEMDOCK was used for molecular docking validation, and GROMACS was utilized to validate molecular docking results. Furthermore, we investigated the anticancer effects of gomisin B and ginsenoside Rh2 on human NB cells using a cell viability assay. The Western blot assay was used to validate the protein levels of target genes in gomisin B- and ginsenoside Rh2-treated NB cells. Results: A total of 2 critical compounds with 16 hub target genes were identified for treating NB. All 16 hub genes could potentially influence the survival of NB patients. The top three genes (EGFR, ESR1, and MAPK1) were considered the central hub genes from the drug-compound-hub target gene-pathway network. The endocrine resistance and estrogen signaling pathways were identified as the therapeutic pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Gomisin B and ginsenoside Rh2 showed a good binding ability to the target protein in molecular docking. The results of cell experiments showed the anti-NB effect of gomisin B and ginsenoside Rh2. In addition, the administration of gomisin B over-regulated the expression of ESR1 protein in MYCN-amplified NB cells. Conclusion: In the present study, we investigated the potential pharmacological mechanisms of Aidi against NB and revealed the anti-NB effect of gomisin B, providing clinical evidence of Aidi in treating NB and establishing baselines for further research.
Collapse
Affiliation(s)
- Shuyang Dai
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Yaoyao Gu
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Yong Zhan
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Jie Zhang
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Lulu Xie
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi Li
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Yifei Lu
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Ran Yang
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Enqing Zhou
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Deqian Chen
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Songbin Liu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Shan Zheng
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Zhaopeng Shi
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, School of Medicine, Basic Medical Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Kuiran Dong
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Rui Dong
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
24
|
Harini M, Kavitha K, Prabakaran V, Krithika A, Dinesh S, Rajalakshmi A, Suresh G, Puvanakrishnan R, Ramesh B. Identification of apigenin-4'-glucoside as bacterial DNA gyrase inhibitor by QSAR modeling, molecular docking, DFT, molecular dynamics, and in vitro confirmation studies. J Mol Model 2024; 30:22. [PMID: 38170229 DOI: 10.1007/s00894-023-05813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
CONTEXT It is well known that antibiotic resistance is a major health hazard. To eradicate antibiotic-resistant bacterial infections, it is essential to find a novel antibacterial agent. Hence, in this study, a quantitative structure-activity relationship (QSAR) model was developed using 43 DNA gyrase inhibitors, and 700 natural compounds were screened for their antibacterial properties. Based on molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, the top three leads viz., apigenin-4'-glucoside, 8-deoxygartanin, and cryptodorine were selected and structurally optimized using density functional theory (DFT) studies. The optimized structures were redocked, and molecular dynamic (MD) simulations were performed. Binding energies were calculated by molecular mechanics/Poisson-Boltzmann surface area solvation (MM-PBSA). Based on the above studies, apigenin-4'-glucoside was identified as a potent antibacterial lead. Further in vitro confirmation studies were performed using the plant Lawsonia inermis containing apigenin-4'-glucoside to confirm the antibacterial activity. METHODS For QSAR modeling, 2D descriptors were calculated by PaDEL-Descriptors v2.21 software, and the model was developed using the DTClab QSAR tool. Docking was performed using PyRx v0.8 software. ORCA v5.0.1 computational package was used to optimize the structures. The job type used in optimization was equilibrium structure search using the DFT hybrid functional ORCA method B3LYP. The basis set was 6-311G (3df, 3pd) plus four polarization functions for all atoms. Accurate docking was performed for optimized leads using the iGEMDOCK v2.1 tool with a genetic algorithm by 10 solutions each of 80 generations. Molecular dynamic simulations were performed using GROMACS 2020.04 software with CHARMM36 all-atom force field.
Collapse
Affiliation(s)
- Manoharan Harini
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Kuppuswamy Kavitha
- PG & Research Department of Microbiology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Vadivel Prabakaran
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Anandan Krithika
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Shanmugam Dinesh
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Arumugam Rajalakshmi
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Gopal Suresh
- PG & Research Department of Microbiology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Rengarajulu Puvanakrishnan
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Balasubramanian Ramesh
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India.
| |
Collapse
|
25
|
Khan H, Azad I, Arif Z, Parveen S, Kumar S, Rais J, Ansari JA, Nasibullah M, Kumar S, Arshad M. Structure based docking and biological evaluation towards exploring potential anti-cancerous and apoptotic activity of 6-Gingerol against human prostate carcinoma cells. BMC Complement Med Ther 2024; 24:8. [PMID: 38166796 PMCID: PMC10759763 DOI: 10.1186/s12906-023-04269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND 6-Gingerol (6-G) is the primary active phytocomponent of ginger and has been shown to regulate multiple targets against cancer and its treatment. Androgen receptors (ARs) remain critical in the progression of prostate cancer (PCa). This study focuses on investigating 6-G as a promising anti-cancerous agent that inhibits AR activity significantly. METHODS In this study, molecular docking simulation was done to investigate the binding affinity of 6-G and control drug Bicalutamide (BT) against oncogenic AR and tumor suppressor estrogen receptor β (ERβ). The crystal structure of AR and ERβ was retrieved from Protein Data Bank (PDB) and docked with 3D Pubchem structures of 6-G using iGEMDOCK and AutoDock. Further in vitro study was done to evaluate the antioxidant, anti-cancerous, apoptotic, and wound healing potential of 6-G. RESULTS The result displays that 6-G shows good binding affinity with AR and ERβ. Condensation of the nucleus, change in mitochondrial membrane potential (MMP) and the ability to induce reactive oxygen species (ROS) were done in human PCa PC-3 cells. Results from the MTT assay demonstrated that 6-G and control drug BT showed significant (p < 0.01) dose and time dependent inhibition of human PCa PC-3 cells. 6-G increased the ROS generation intracellularly and decreased the MMP, and cell migration in treated PCa PC-3 cells. 6-G treated cells showed fragmented, condensed chromatin and nuclear apoptotic bodies. CONCLUSIONS Thus, this study validates 6-G as a potential drug candidate against human PCa. However, further study of the anticancer potency of 6-G has to be done before its use for PCa treatment.
Collapse
Affiliation(s)
- Habiba Khan
- Department of Zoology, University of Lucknow, 226007, Lucknow, U.P, India.
| | - Iqbal Azad
- Department of Chemistry, Integral University, Kursi Road, 226026, Lucknow, U.P, India
| | - Zeeshan Arif
- Computational Toxicology Facility, Toxicoinformatics and Industrial Research, CSIR-Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, 226001, Lucknow, U. P, India
- Academy of Scientific & Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Shama Parveen
- Department of Zoology, University of Lucknow, 226007, Lucknow, U.P, India
| | - Saurabh Kumar
- Department of Zoology, University of Lucknow, 226007, Lucknow, U.P, India
| | - Juhi Rais
- Department of Nuclear Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226014, Lucknow, India
| | - Jamal Akhtar Ansari
- Department of Chemistry, Integral University, Kursi Road, 226026, Lucknow, U.P, India
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Kursi Road, 226026, Lucknow, U.P, India
| | - Sudhir Kumar
- Department of Zoology, University of Lucknow, 226007, Lucknow, U.P, India
| | - Md Arshad
- Department of Zoology, Aligarh Muslim University, 202002, Aligarh, India.
| |
Collapse
|
26
|
Sahu D, Rathor LS, Dwivedi SD, Shah K, Chauhan NS, Singh MR, Singh D. A Review on Molecular Docking As an Interpretative Tool for Molecular Targets in Disease Management. Assay Drug Dev Technol 2024; 22:40-50. [PMID: 38232353 DOI: 10.1089/adt.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
One of the most often utilized methods for drug discovery is molecular docking. With docking, one may discover new therapeutically relevant molecules by targeting the molecule and predicting the target-ligand interactions as well as different conformation of ligand at various positions. The prediction signifies the effectiveness of the molecule or the developed molecule having different affinity with target. Drug discovery plays an important role in the development of a new drug molecule of different moiety attached to it, which leads us in the management of several diseases. In silico approach led us to identification of numerous diseases caused by virus, fungi, bacteria, protozoa, and other microorganisms that affect human health. By means of computational approach, we can categorize disease symptoms and use the drugs available for such types of warning signs. After the docking process, molecular dynamics computational technique helps in the simulation of the physical movement of atoms and molecules for a fixed period of time, giving a view of the dynamic evaluation of the system. This review is an attempt to illustrate the role of molecular docking in drug development.
Collapse
Affiliation(s)
- Divya Sahu
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Lokendra Singh Rathor
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Kamal Shah
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
27
|
Rai S, Shukla S, Scotti L, Mani A. Drug Repurposing against Novel Therapeutic Targets in Plasmodium falciparum for Malaria: The Computational Perspective. Curr Med Chem 2024; 31:6272-6287. [PMID: 37550911 DOI: 10.2174/0929867331666230807151708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/28/2023] [Accepted: 07/01/2023] [Indexed: 08/09/2023]
Abstract
Malaria remains one of the most challenging tropical diseases. Since malaria cases are reportedly alarming in terms of infections and mortality, urgent attention is needed for addressing the issues of drug resistance in falciparum malaria. High throughput screening methods have paved way for rapid identification of anti-malarial. Furthermore, drug repurposing helps in shortening the time required for drug safety approvals. Hence, discovery of new antimalarials by drug repurposing is a promising approach for combating the disease. This article summarizes the recent computational approaches used for identifying novel antimalarials by using drug target interaction tools followed by pharmacokinetic studies.
Collapse
Affiliation(s)
- Shweta Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| | - Shruti Shukla
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| | - Luciana Scotti
- Postgraduate Programa in Natural and Synthetic Bioactive Compounds, University Hospital, Federal University of Paraíba-Campus I, 58051-970, João Pessoa, PB, Brazil
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| |
Collapse
|
28
|
Kubera A, Putanyawiwat P, Bantuchai S, Kumpitak C, Duangmanee A, Sattabongkot J. Knockdown of Anopheles dirus far upstream element-binding protein gene lower oocyst numbers of Plasmodium vivax. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:647-655. [PMID: 37102339 DOI: 10.1111/mve.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The modulation of gene expression levels of Anopheles dirus on Plasmodium vivax infection at the ookinete and oocyst stages was previously reported. In the present study, several upregulated An. dirus genes were selected based on their high expression levels and subcellular locations to examine their roles in P. vivax infection. Five An. dirus genes-carboxylesterase, cuticular protein RR-2 family, far upstream element-binding protein, kraken, and peptidase212-were knocked down by dsRNA feeding using dsRNA-lacZ as a control. The dsRNA-fed mosquitoes were later challenged by P. vivax-infected blood, and the oocyst numbers were determined. The expression of these five genes was examined in many organs of both male and female mosquitoes. The results showed that the decreased expression level of the far upstream element-binding protein gene could lower the oocyst numbers, whereas the others showed no effect on P. vivax infection. The expression levels of these genes in ovaries were found, and in many organs, they were similar between male and female mosquitoes. The reduction of these five gene expressions did not affect the lifespan of the mosquitoes. In addition, the malaria box compound, MMV000634, demonstrated the lowest binding energy to the far upstream element-binding protein using virtual screening. This protein might be a target to block malaria transmission.
Collapse
Affiliation(s)
- Anchanee Kubera
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Piriya Putanyawiwat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sirasate Bantuchai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chalermpon Kumpitak
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Apisak Duangmanee
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
29
|
Kurbanova MM, Maharramov AM, Sadigova AZ, Gurbanova FZ, Mali SN, Al-Salahi R, El Bakri Y, Lai CH. Synthesis, Characterization, DFT, and In Silico Investigation of Two Newly Synthesized β-Diketone Derivatives as Potent COX-2 Inhibitors. Bioengineering (Basel) 2023; 10:1361. [PMID: 38135952 PMCID: PMC10741009 DOI: 10.3390/bioengineering10121361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of β-diketones remains largely unexplored. β-Diketones and their complexes find broad applications as biologically active compounds. In this study, in silico molecular docking results revealed that two β-diketone derivatives, namely 2-(2-(4-fluorophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione and 5,5-dimethyl-2-(2-(2-(trifluoromethyl)phenyl)hydrazono)cyclohexane-1,3-dione, exhibit anti-COX-2 activities. However, recent docking results indicated that the relative anti-COX-2 activity of these two studied β-diketones was influenced by the employed docking programs. For improved design of COX-2 inhibitors from β-diketones, we conducted molecular dynamics simulations, density functional theory (DFT) calculations, Hirshfeld surface analysis, energy framework, and ADMET studies. The goal was to understand the interaction mechanisms and evaluate the inhibitory characteristics. The results indicate that 5,5-dimethyl-2-(2-(2-(trifluoromethyl)phenyl)hydrazono)cyclohexane-1,3-dione shows greater anti-COX-2 activity compared to 2-(2-(4-fluorophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione.
Collapse
Affiliation(s)
- Malahat Musrat Kurbanova
- Organic Chemistry Department, Baku State University, Z. Khalilov 23, Baku 1148, Azerbaijan; (A.M.M.); (A.Z.S.)
| | - Abel Mammadali Maharramov
- Organic Chemistry Department, Baku State University, Z. Khalilov 23, Baku 1148, Azerbaijan; (A.M.M.); (A.Z.S.)
| | - Arzu Zabit Sadigova
- Organic Chemistry Department, Baku State University, Z. Khalilov 23, Baku 1148, Azerbaijan; (A.M.M.); (A.Z.S.)
| | - Fidan Zaur Gurbanova
- Department of Pharmacy and Biotechnology, Bioinformatics, University of Bologna, Via Marsala, 49/A, 40126 Bologna, Italy;
| | - Suraj Narayan Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra 835215, India;
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Lenin Prospect 76, Chelyabinsk 454080, Russia;
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40241, Taiwan
| |
Collapse
|
30
|
Wu CS, Li YC, Peng SL, Chen CY, Chen HF, Hsueh PR, Wang WJ, Liu YY, Jiang CL, Chang WC, Wang SC, Hung MC. Coffee as a dietary strategy to prevent SARS-CoV-2 infection. Cell Biosci 2023; 13:210. [PMID: 37964389 PMCID: PMC10644613 DOI: 10.1186/s13578-023-01154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND To date, most countries lifted the restriction requirement and coexisted with SARS-CoV-2. Thus, dietary behavior for preventing SARS-CoV-2 infection becomes an interesting issue on a daily basis. Coffee consumption is connected with reduced COVID-19 risk and correlated to COVID-19 severity. However, the mechanisms of coffee for the reduction of COVID-19 risk are still unclear. RESULTS Here, we identified that coffee can inhibit multiple variants of the SARS-CoV-2 infection by restraining the binding of the SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (ACE2), and reducing transmembrane serine protease 2 (TMPRSS2) and cathepsin L (CTSL) activity. Then, we used the method of "Here" (HRMS-exploring-recombination-examining) and found that isochlorogenic acid A, B, and C of coffee ingredients showed their potential to inhibit SARS-CoV-2 infection (inhibitory efficiency 43-54%). In addition, decaffeinated coffee still preserves inhibitory activity against SARS-CoV-2. Finally, in a human trial of 64 subjects, we identified that coffee consumption (approximately 1-2 cups/day) is sufficient to inhibit infection of multiple variants of SARS-CoV-2 entry, suggesting coffee could be a dietary strategy to prevent SARS-CoV2 infection. CONCLUSIONS This study verified moderate coffee consumption, including decaffeination, can provide a new guideline for the prevention of SARS-CoV-2. Based on the results, we also suggest a coffee-drinking plan for people to prevent infection in the post-COVID-19 era.
Collapse
Affiliation(s)
- Chen-Shiou Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, School of Medicine, China Medical University Hospital, China Medical University Taichung, Taichung, Taiwan
| | - Wei-Jan Wang
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yen-Yi Liu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Ciao-Ling Jiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Biotechnology, Asia University, Taichung, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan.
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
31
|
Khatooni Z, Akhtari K, Wilson HL. Conformational dynamics of α-synuclein and study of its intramolecular forces in the presence of selected compounds. Sci Rep 2023; 13:19020. [PMID: 37923923 PMCID: PMC10624887 DOI: 10.1038/s41598-023-46181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023] Open
Abstract
Protein misfolding and aggregation play crucial roles in amyloidogenic diseases through the self-assembly of intrinsically disordered proteins (IDPs) in type II diabetes (T2D), Alzheimer's disease (AD) and Parkinson's disease (PD). PD is the most common neurodegenerative disorder after AD, and is associated with the loss of dopaminergic signaling, which causes motor and nonmotor signs and symptoms. Lewy bodies and Lewy neurites are common pathological hallmarks of PD that are mainly composed of aggregates of disordered α-synuclein (α-Syn). There have been many efforts to develop chemical compounds to prevent aggregation or facilitate disruption of the aggregates. Furthermore, the roles and interactions of many compounds have yet to be revealed at the atomistic level, especially their impacts on the dynamics and chain-chain interactions of the oligomers, which are of interest in this study. The conformational diversity and detailed interactions among homo-oligomer chains of α-Syn are not fully discovered; identifying these might help uncover a practical approach to developing a potent therapy. In this study, we used an in-silico investigation to address the conformational diversity of α-Syn oligomer. The roles of several point mutations in protein aggregation in PD are known; we take this further by evaluating the interaction energies and contributions of all residues in stability and residue-chain interactions. In this study, we docked chemical derivatives of three compounds with high drug-likeness properties to evaluate the roles of our ligands in the conformational dynamicity of the oligomers, with emphasis on intramolecular forces. Free energy evaluation of the modeled inter and intramolecular interactions through MD simulation shows effective interaction and binding between α-Syn and our compounds. However, we find that they do not significantly disrupt the chain-chain interactions, compared to unliganded simulation.
Collapse
Affiliation(s)
- Zahed Khatooni
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- School of Public Health, Vaccinology & Immunotherapeutics Program, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
32
|
Azmi MB, Sehgal SA, Asif U, Musani S, Abedin MFE, Suri A, Ahmed SDH, Qureshi SA. Genetic insights into obesity: in silico identification of pathogenic SNPs in MBOAT4 gene and their structural molecular dynamics consequences. J Biomol Struct Dyn 2023:1-17. [PMID: 37921712 DOI: 10.1080/07391102.2023.2274970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Membrane Bound O-Acyltransferase Domain-Containing 4 (MBOAT4) protein catalyzes ghrelin acylation, leading to prominent ghrelin activity, hence characterizing its role as an anti-obesity target. We extracted 625 exonic SNPs from the ENSEMBL database and one phenotype-based missense mutation associated with obesity (A46T) from the HGMD (Human Gene Mutation Database). These were differentiated on deleterious missense SNPs of the MBOAT4 gene through MAF (minor allele frequency: <0.01) cut-off criteria in relation to some bioinformatics-based supervised machine learning tools. We found 8 rare-coding and harmful missense SNPs. The consensus classifier (PredictSNP) tool predicted that the SNP (G57S, C: rs561065025) was the most pathogenic. Several trained in silico algorithms have predicted decreased protein stability [ΔΔG (kcal/mol)] function in the presence of these rare-coding pathogenic mutations in the MBOAT4 gene. Then, a stereochemical quality check (i.e. validation and assessment) of the 3D model was performed, followed by a blind cavity docking approach, used to search for druggable cavities and molecular interactions with citrus flavonoids of the Rutaceae family, ranked with energetic estimations. Significant interactions with Phloretin 3',5'-Di-C-Glucoside were also observed at R304, W306, N307, A311, L314 and H338 with (iGEMDOCK: -95.82 kcal/mol and AutoDock: -7.80 kcal/mol). The RMSD values and other variables of MD simulation analyses on this protein further validated its significant interactions with the above flavonoids. The MBOAT4 gene and its molecular interactions could serve as an interventional future anti-obesity target. The current study's findings will benefit future prospects for large population-based studies and drug development, particularly for generating personalized medicine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Bilal Azmi
- Department of Biochemistry, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Uzma Asif
- Department of Biochemistry, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Sarah Musani
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Azeema Suri
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Danish Haseen Ahmed
- Department of Biochemistry, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
33
|
Hou Y, Bai Y, Lu C, Wang Q, Wang Z, Gao J, Xu H. Applying molecular docking to pesticides. PEST MANAGEMENT SCIENCE 2023; 79:4140-4152. [PMID: 37547967 DOI: 10.1002/ps.7700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/17/2023] [Accepted: 08/05/2023] [Indexed: 08/08/2023]
Abstract
Pesticide creation is related to the development of sustainable agricultural and ecological safety, and molecular docking technology can effectively help in pesticide innovation. This paper introduces the basic theory behind molecular docking, pesticide databases, and docking software. It also summarizes the application of molecular docking in the pesticide field, including the virtual screening of lead compounds, detection of pesticides and their metabolites in the environment, reverse screening of pesticide targets, and the study of resistance mechanisms. Finally, problems with the use of molecular docking technology in pesticide creation are discussed, and prospects for the future use of molecular docking technology in new pesticide development are discussed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Hou
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuqian Bai
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Chang Lu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Qiuchan Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Jinsheng Gao
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
34
|
Kongkaew N, Hengphasatporn K, Injongkol Y, Mee-Udorn P, Shi L, Mahalapbutr P, Maitarad P, Harada R, Shigeta Y, Rungrotmongkol T, Vangnai AS. Design of electron-donating group substituted 2-PAM analogs as antidotes for organophosphate insecticide poisoning. RSC Adv 2023; 13:32266-32275. [PMID: 37928857 PMCID: PMC10620644 DOI: 10.1039/d3ra03087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
The use of organophosphate (OPs) pesticides is widespread in agriculture and horticulture, but these chemicals can be lethal to humans, causing fatalities and deaths each year. The inhibition of acetylcholinesterase (AChE) by OPs leads to the overstimulation of cholinergic receptors, ultimately resulting in respiratory arrest, seizures, and death. Although 2-pralidoxime (2-PAM) is the FDA-approved drug for treating OP poisoning, there is difficulty in blood-brain barrier permeation. To address this issue, we designed and evaluated a series of 2-PAM analogs by substituting electron-donating groups on the para and/or ortho positions of the pyridinium core using in silico techniques. Our PCM-ONIOM2 (MP2/6-31G*:PM7//B3LYP/6-31G*:UFF) binding energy results demonstrated that 13 compounds exhibited higher binding energy than 2-PAM. The analog with phenyl and methyl groups substituted on the para and ortho positions, respectively, showed the most favorable binding characteristics, with aromatic residues in the active site (Y124, W286, F297, W338, and Y341) and the catalytic residue S203 covalently bonding with paraoxon. The results of DS-MD simulation revealed a highly favorable apical conformation of the potent analog, which has the potential to enhance reactivation of AChE. Importantly, newly designed compound demonstrated appropriate drug-likeness properties and blood-brain barrier penetration. These results provide a rational guide for developing new antidotes to treat organophosphate insecticide toxicity.
Collapse
Affiliation(s)
- Nalinee Kongkaew
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Yuwanda Injongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
| | - Pitchayathida Mee-Udorn
- National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park Pathumthani 12120 Thailand
| | - Liyi Shi
- Research Center of Nano Science and Technology, Department of Chemistry, College of Science, Shanghai University Shanghai 200444 China
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University Shanghai 200444 China
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Phornphimon Maitarad
- Research Center of Nano Science and Technology, Department of Chemistry, College of Science, Shanghai University Shanghai 200444 China
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University Shanghai 200444 China
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Alisa S Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
35
|
Azmi MB, Ahmed A, Ahmed TF, Imtiaz F, Asif U, Zaman U, Khan KA, Sherwani AK. Transcript-Level In Silico Analysis of Alzheimer's Disease-Related Gene Biomarkers and Their Evaluation with Bioactive Flavonoids to Explore Therapeutic Interactions. ACS OMEGA 2023; 8:40695-40712. [PMID: 37929088 PMCID: PMC10621018 DOI: 10.1021/acsomega.3c05769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive brain disorder that can significantly affect the quality of life. We used a variety of in silico tools to investigate the transcript-level mutational impact of exonic missense rare variations (single nucleotide polymorphisms, SNPs) on protein function and to identify potential druggable protein cavities that correspond to potential therapeutic targets for the management of AD. According to the NIA-AA (National Institute on Aging-Alzheimer's Association) framework, we selected three AD biomarker genes (APP, NEFL, and MAPT). We systematically screened transcript-level exonic rare SNPs from these genes with a minor allele frequency of 1% in 1KGD (1000 Genomes Project Database) and gnomAD (Genome Aggregation Database). With downstream functional effect predictions, a single variation (rs182024939: K > N) of the MAPT gene with nine transcript SNPs was identified as the most pathogenic variation from the large dataset of mutations. The machine learning consensus classifier predictor categorized these transcript-level SNPs as the most deleterious variations, resulting in a large decrease in protein structural stability (ΔΔG kcal/mol). The bioactive flavonoid library was screened for drug-likeness and toxicity risk. Virtual screening of eligible flavonoids was performed using the MAPT protein. Identification of druggable protein-binding cavities showed VAL305, GLU655, and LYS657 as consensus-interacting residues present in the MAPT-docked top-ranked flavonoid compounds. The MM/PB(GB)SA analysis indicated hesperetin (-5.64 kcal/mol), eriodictyol (-5.63 kcal/mol), and sakuranetin (-5.60 kcal/mol) as the best docked flavonoids with the near-native binding pose. The findings of this study provide important insights into the potential of hesperetin as a promising flavonoid that can be utilized for further rational drug design and lead optimization to open new gateways in the field of AD therapeutics.
Collapse
Affiliation(s)
- Muhammad Bilal Azmi
- Department
of Biochemistry, Dow Medical College, Dow
University of Health Sciences, Karachi 74400, Pakistan
| | - Affan Ahmed
- Dow
Medical College, Dow University of Health
Sciences, Karachi 74400, Pakistan
| | - Tehniat Faraz Ahmed
- Department
of Biochemistry, Dow International Dental College, Dow University of Health Sciences, Karachi 75460, Pakistan
| | - Fauzia Imtiaz
- Department
of Biochemistry, Dow Medical College, Dow
University of Health Sciences, Karachi 74400, Pakistan
| | - Uzma Asif
- Department
of Biochemistry, Medicine Program, Batterjee
Medical College, Jeddah 21442, Saudi Arabia
| | - Uzma Zaman
- Department
of Biochemistry, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Khalid Ali Khan
- Unit of Bee
Research and Honey Production, Research Center for Advanced Materials
Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Applied
College, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Asif Khan Sherwani
- Research
and Development Unit, Jamjoom Pharmaceuticals
Co. Ltd, Jeddah 21442, Saudi Arabia
| |
Collapse
|
36
|
Dabrell SN, Li YC, Yamaguchi H, Chen HF, Hung MC. Herbal Compounds Dauricine and Isoliensinine Impede SARS-CoV-2 Viral Entry. Biomedicines 2023; 11:2914. [PMID: 38001915 PMCID: PMC10669532 DOI: 10.3390/biomedicines11112914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Targeting viral entry has been the focal point for the last 3 years due to the continued threat posed by SARS-CoV-2. SARS-CoV-2's entry is highly dependent on the interaction between the virus's Spike protein and host receptors. The virus's Spike protein is a key modulator of viral entry, allowing sequential cleavage of ACE2 at the S1/S2 and S2 sites, resulting in the amalgamation of membranes and subsequent entry of the virus. A Polybasic insertion (PRRAR) conveniently located at the S1/S2 site can also be cleaved by furin or by serine protease, TMPRSS2, at the cell surface. Since ACE2 and TMPRSS2 are conveniently located on the surface of host cells, targeting one or both receptors may inhibit receptor-ligand interaction. Here, we show that Dauricine and Isoliensinine, two commonly used herbal compounds, were capable of inhibiting SARS-CoV-2 viral entry by reducing Spike-ACE2 interaction but not suppressing TMPRSS2 protease activity. Further, our biological assays using pseudoviruses engineered to express Spike proteins of different variants revealed a reduction in infection rates following treatment with these compounds. The molecular modeling revealed an interconnection between R403 of Spike protein and both two compounds. Spike mutations at residue R403 are critical, and often utilized by ACE2 to gain cell access. Overall, our findings strongly suggest that Dauricine and Isoliensinine are effective in blocking Spike-ACE2 interaction and may serve as effective therapeutic agents for targeting SARS-CoV-2's viral entry.
Collapse
Affiliation(s)
- Shaneek Natoya Dabrell
- International Master's Program of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan
- Department of Biotechnology, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
37
|
Krstulović L, Mišković Špoljarić K, Rastija V, Filipović N, Bajić M, Glavaš-Obrovac L. Novel 1,2,3-Triazole-Containing Quinoline-Benzimidazole Hybrids: Synthesis, Antiproliferative Activity, In Silico ADME Predictions, and Docking. Molecules 2023; 28:6950. [PMID: 37836794 PMCID: PMC10574761 DOI: 10.3390/molecules28196950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The newly synthesized quinoline-benzimidazole hybrids containing two types of triazole-methyl-phenoxy linkers were characterized via NMR and elemental analysis. Additional derivatization was achieved by introducing bromine at the C-2 position of the phenoxy core. These novel hybrids were tested for their effects on the growth of the non-tumor cell line MRC-5 (human fetal lung fibroblasts), leukemia and lymphoma cell lines: Hut78, THP-1 and HL-60, and carcinoma cell lines: HeLa and CaCo-2. The results obtained, presented as the concentration that achieves 50% inhibition of cell growth (IC50 value), show that the compounds tested affect tumor cell growth differently depending on the cell line and the dose applied (IC50 ranged from 0.2 to >100 µM). The quinoline-benzimidazole hybrids tested, including 7-chloro-4-(4-{[4-(5-methoxy-1H-1,3-benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)quinoline 9c, 2-(3-bromo-4-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methoxy}phenyl)-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride 10e, 2-{4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride 14e and 2-{3-bromo-4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride 15e, arrested the cell cycle of lymphoma (HuT78) cells. The calculated ADMET properties showed that the synthesized compounds violated at most two of Lipinski's rules, making them potential drug candidates, but mainly for parenteral use due to low gastrointestinal absorption. The quinoline-benzimidazole hybrid 14e, which was shown to be a potent and selective inhibitor of lymphoma cell line growth, obtained the highest binding energy (-140.44 kcal/mol), by docking to the TAO2 kinase domain (PDB: 2GCD).
Collapse
Affiliation(s)
- Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Katarina Mišković Špoljarić
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia;
| | - Nikolina Filipović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8a, 31000 Osijek, Croatia;
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| |
Collapse
|
38
|
Vlasiou M, Nicolaidou V, Papaneophytou C. Targeting Lactate Dehydrogenase-B as a Strategy to Fight Cancer: Identification of Potential Inhibitors by In Silico Analysis and In Vitro Screening. Pharmaceutics 2023; 15:2411. [PMID: 37896171 PMCID: PMC10609963 DOI: 10.3390/pharmaceutics15102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Lactate dehydrogenase (LDH) is an enzyme that catalyzes the reversible conversion of lactate to pyruvate while reducing NAD+ to NADH (or oxidizing NADH to NAD+). Due to its central role in the Warburg effect, LDH-A isoform has been considered a promising target for treating several types of cancer. However, research on inhibitors targeting LDH-B isoform is still limited, despite the enzyme's implication in the development of specific cancer types such as breast and lung cancer. This study aimed to identify small-molecule compounds that specifically inhibit LDH-B. Our in silico analysis identified eight commercially available compounds that may affect LDH-B activity. The best five candidates, namely tucatinib, capmatinib, moxidectin, rifampicin, and acetyldigoxin, were evaluated further in vitro. Our results revealed that two compounds, viz., tucatinib and capmatinib, currently used for treating breast and lung cancer, respectively, could also act as inhibitors of LDH-B. Both compounds inhibited LDH-B activity through an uncompetitive mechanism, as observed in in vitro experiments. Molecular dynamics studies further support these findings. Together, our results suggest that two known drugs currently being used to treat specific cancer types may have a dual effect and target more than one enzyme that facilitates the development of these types of cancers. Furthermore, the results of this study could be used as a new starting point for identifying more potent and specific LDH-B inhibitors.
Collapse
Affiliation(s)
- Manos Vlasiou
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Vicky Nicolaidou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| |
Collapse
|
39
|
G F N, V V, M G, S M, M P. Surface enhanced Raman scattering investigation of tecovirimat on silver, gold and platinum loaded silica nanocomposites: Theoretical analysis (DFT) and molecular modeling. Heliyon 2023; 9:e21122. [PMID: 37916120 PMCID: PMC10616345 DOI: 10.1016/j.heliyon.2023.e21122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
As of today, there have been 612 million confirmed cases of coronavirus disease (COVID-19) around the world, with over 6 million fatalities. Tecovirimat (TPOXX) is an anti-viral drug, and it was the first drug approved for the treatment of anti-pox virus in the US. However, the effectiveness of this drug against COVID-19 has not yet been explored. Since TPOXX is an anti-viral drug, an attempt has been made to determine its ability to act as a COVID inhibitor. Recent medical advances have resulted in the development of nano cage-based drug delivery. Drug delivery clusters based on nano cages have recently been used in the medical industry. As such, we used DFT coupled to the B3LYP/LANL2DZ basis set to study the adsorption behavior of the anti-viral drug TPOXX on Au/Ag/Pt⋯SiO2loaded silica nanocomposites. In order to identify the active site of the molecule, we have used the frontier molecular orbital (FMO) theory of molecular electrostatic potential (MEP). The compound and its complexes obey Lipinski's rule of five and have good drug-likeness properties based on the bioactivity evaluation. The biological properties of organic molecules and nano metal clusters were compared. The TPOXX with its nanocomposites was also studied in terms of Electron Localization Function (ELF) and Localized Orbital Locator (LOL). Molecular docking was performed for both pure molecule and its silica nanocomposites-doped derivatives with the chosen proteins to discuss the protein-ligand binding properties. These results could be more helpful in designing the drug and exploring its application for the inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- Nivetha G F
- Department of Physics, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, 635205, India
| | - Vetrivelan V
- Department of Physics, Government College of Engineering, Srirangam, Tiruchirappalli, 620012, Tamilnadu, India
| | - Govindammal M
- Department of Physics, Government Arts College, Dharmapuri, 636705, India
| | - Muthu S
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
| | - Prasath M
- Department of Physics, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, 635205, India
| |
Collapse
|
40
|
Ahmed S, Bhat AR, Rahiman AK, Dongre RS, Hasan AH, Niranjan V, C L, Sheikh SA, Jamalis J, Berredjem M, Kawsar SMA. Green synthesis, antibacterial and antifungal evaluation of new thiazolidine-2,4-dione derivatives: molecular dynamic simulation, POM study and identification of antitumor pharmacophore sites. J Biomol Struct Dyn 2023; 42:10635-10651. [PMID: 37768136 DOI: 10.1080/07391102.2023.2258404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
In this study, a series of thiazolidine-2,4-dione derivatives 3a-i were synthesized and evaluated for antibacterial activity against Gram-positive and Gram-negative strains of Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Newly prepared thiazolidine (TZD) derivatives were further screened separately for in vitro antifungal activity against cultures of fungal species, namely, Aspergillus niger, Alternaria brassicicola, Chaetomium murorum, Fusarium oxysporum, Lycopodium sp. and Penicillium notatum. The electron-donating substituents (-OH and -OCH3) and electron-withdrawing substituents (-Cl and -NO2) on the attached arylidene moieties of five-membered heterocyclic ring enhanced the broad spectrum of antimicrobial and antifungal activities. The molecular docking study has revealed that compound 3h strongly interacts with the catalytic residues of the active site of the β-carbonic anhydrase (P. aeruginosa) and has the best docking score. In silico pharmacokinetics studies showed the drug-likeness and non-toxic nature of the synthesized compounds, which indicates the combined antibacterial, antiviral and antitumor pharmacophore sites of the targeted drug. This work demonstrates that potential TZD derivatives bind to different types of bacterial and fungal pathogens for circumventing their activities and opens avenues for the development of newer drug candidates that can target bacterial and fungal pathogens.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | - Ajmal R Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | | | - Aso Hameed Hasan
- Department of Chemistry, College of Science, University of Garmian, Kalar, Iraq
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Bengaluru, India
| | - Lavanya C
- Department of Biotechnology, R V College of Engineering, Bengaluru, India
| | - S A Sheikh
- Department of Physics, National Institute of Technology, Srinagar, Kashmir, India
| | - Joazaizulfazli Jamalis
- Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
41
|
Sewariya S, Sehrawat H, Mishra N, Singh MB, Singh P, Kukreti S, Chandra R. Comparative assessment of 9-bromo noscapine ionic liquid and noscapine: Synthesis, in-vitro studies plus computational & biophysical evaluation with human hemoglobin. Int J Biol Macromol 2023; 247:125791. [PMID: 37442512 DOI: 10.1016/j.ijbiomac.2023.125791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Noscapine is a proficient anticancer drug active against wide variety of tumors including lung cancer. Over time, several noscapine analogues have been assessed to maximize the efficiency of the drug, amongst which 9-bromo noscapine remains one of the most potent analogues till date. In the present work, we have synthesized 9-bromo noscapine ionic liquid [9-Br-Nos]IBr2, an active pharmaceutical ingredient based ionic liquid (API-IL) to address the existing issues of solubility and targeted drug delivery in the parent alkaloid as well as the synthesized analogues. We have devised a novel two-step synthesis route (first-ever ionic to ionic bromination) to obtain the desired [9-Br-Nos]IBr2 which is advantageous to its organic analogue in terms of increased solubility, lesser reaction time and better yield. Furthermore, we have compared 9-bromo noscapine ionic liquid with noscapine based on its binding interaction with human hemoglobin (Hb) studied via computational along with spectroscopic studies, and bioactivity against non-small cell lung cancer. We inferred formation of a complex between [9-Br-Nos]IBr2 and Hb in the stoichiometric ratio of 1:1, similar to noscapine. At 298 K, [9-Br-Nos]IBr2-Hb binding was found to exhibit Kb and ∆G of 36,307 M-1 and -11.5 KJmol-1, respectively, as compared to 159 M-1 and -12.5 KJmol-1 during Noscapine-Hb binding. This indicates a more stronger and viable interaction between [9-Br-Nos]IBr2 and Hb than the parent compound. From computational studies, the observed higher stability of [9-Br-Nos]I and better binding affinity with Hb with a binding energy of -91.75 kcalmol-1 supported the experimental observations. In the same light, novel [9-Br-Nos]IBr2 was found to exhibit an IC50 = 95.02 ± 6.32 μM compared to IC50 = 128.82 ± 2.87 μM for noscapine on A549 (non-small lung cancer) cell line at 48 h. Also, the desired ionic liquid proved to be more cytotoxic inducing a mortality rate of 87 % relative to 66 % evoked by noscapine at concentrations of 200 μM after 72 h.
Collapse
Affiliation(s)
- Shubham Sewariya
- Department of Chemistry, University of Delhi, Delhi 110007, India; Maharaja Surajmal Brij University, Rajasthan - 321201, India
| | - Hitesh Sehrawat
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Nistha Mishra
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Madhur Babu Singh
- Atma Ram Sanatan Dharma College, University of Delhi, Delhi 110007, India
| | - Prashant Singh
- Atma Ram Sanatan Dharma College, University of Delhi, Delhi 110007, India
| | - Shrikant Kukreti
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi 110007, India; Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India; Institute of Nano Medical Sciences, University of Delhi, Delhi 110007, India; Maharaja Surajmal Brij University, Rajasthan - 321201, India.
| |
Collapse
|
42
|
Patel K, Akbari D, Pandya RV, Trivedi J, Mevada V, Wanale SG, Patel R, Yadav VK, Tank JG, Sahoo DK, Patel A. Larvicidal proficiency of volatile compounds present in Commiphora wightii gum extract against Aedes aegypti (Linnaeus, 1762). FRONTIERS IN PLANT SCIENCE 2023; 14:1220339. [PMID: 37711311 PMCID: PMC10499046 DOI: 10.3389/fpls.2023.1220339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Aedes mosquitoes are the major cause of several vector-borne diseases in tropical and subtropical regions. Synthetic pesticides against these mosquitoes have certain limitations; hence, natural, eco-friendly, and safe larvicides obtained from plant resources are used to overcome these. In the present study, the larvicidal efficiency of Commiphora wightii against the fourth instar stage of the dengue fever mosquito Aedes aegypti (Linnaeus, 1762) was studied. The gum resin of C. wightii was collected using the borehole tapping method, and hexane extracts in different concentrations were prepared. The fourth-instar larvae were exposed to the extracts, and percent mortality, as well as LC20, LC50, and LC90, was calculated. Volatile compounds of the hexane gum extract were analyzed by Headspace GC/MS, and the sequence of the acetylcholine, Gamma-aminobutyric acid (GABA) receptor, and octopamine receptor subunit of A. aegypti was obtained. It was found that the hexane gum extract was toxic and lethal for larvae at different concentrations. Minimum mortality was observed at 164 µg mL-1 (10%/h), while maximum mortality was at 276 µg mL-1 (50%/h). The lethal concentrations LC20, LC50, and LC90 were 197.38 µg mL-1, 294.13 µg mL-1, and 540.15 µg mL-1, respectively. The GC/MS analysis confirmed the presence of diterpenes, monoterpenes, monoterpene alcohol, and sesquiterpenes in the gum samples, which are lethal for larvae due to their inhibitory activity on the acetylcholinesterase enzyme, GABA receptor, and octopamine receptor subunit. The use of commonly occurring plant gum for the control of mosquitoes was explored, and it was found that the gum of C. wightii had larvicidal activities and could be potentially insecticidal.
Collapse
Affiliation(s)
- Krupal Patel
- Marine Biodiversity and Ecology Laboratory, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Divya Akbari
- University Grants Commission-Career Advancement Scheme (UGC-CAS) Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Rohan V. Pandya
- Department of Microbiology, Atmiya University, Rajkot, Gujarat, India
| | - Jigneshkumar Trivedi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Vishal Mevada
- DNA Division, Directorate of Forensic Science, Gandhinagar, India
| | - Shivraj Gangadhar Wanale
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Jigna G. Tank
- University Grants Commission-Career Advancement Scheme (UGC-CAS) Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
43
|
Chawengrum P, Luepongpatthana N, Thongnest S, Sirirak J, Boonsombat J, Lirdprapamongkol K, Keeratichamroen S, Kongwaen P, Montatip P, Kittakoop P, Svasti J, Ruchirawat S. The amide derivative of anticopalic acid induces non-apoptotic cell death in triple-negative breast cancer cells by inhibiting FAK activation. Sci Rep 2023; 13:13456. [PMID: 37596365 PMCID: PMC10439230 DOI: 10.1038/s41598-023-40669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023] Open
Abstract
Anticopalic acid (ACP), a labdane type diterpenoid obtained from Kaempferia elegans rhizomes, together with 21 semi-synthetic derivatives, were evaluated for their cancer cytotoxic activity. Most derivatives displayed higher cytotoxic activity than the parent compound ACP in a panel of nine cancer cell lines. Among the tested compounds, the amide 4p showed the highest cytotoxic activity toward leukemia cell lines, HL-60 and MOLT-3, with IC50 values of 6.81 ± 1.99 and 3.72 ± 0.26 µM, respectively. More interestingly, the amide derivative 4l exhibited cytotoxic activity with an IC50 of 13.73 ± 0.04 µM against the MDA-MB-231 triple-negative breast cancer cell line, which is the most aggressive type of breast cancer. Mechanistic studies revealed that 4l induced cell death in MDA-MB-231 cells through non-apoptotic regulated cell death. In addition, western blot analysis showed that compound 4l decreased the phosphorylation of FAK protein in a concentration-dependent manner. Molecular docking simulations elucidated that compound 4l could potentially inhibit FAK activation by binding to a pocket of FAK kinase domain. The data suggested that compound 4l could be a potential FAK inhibitor for treating triple-negative breast cancer and worth being further investigated.
Collapse
Affiliation(s)
- Pornsuda Chawengrum
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Natthaorn Luepongpatthana
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sanit Thongnest
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Jutatip Boonsombat
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand.
| | - Kriengsak Lirdprapamongkol
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand.
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand.
| | | | - Patcharin Kongwaen
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand
| | - Phreeranat Montatip
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Prasat Kittakoop
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand
| | - Jisnuson Svasti
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Somsak Ruchirawat
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand
| |
Collapse
|
44
|
Jamir E, Sarma H, Priyadarsinee L, Kiewhuo K, Nagamani S, Sastry GN. Polypharmacology guided drug repositioning approach for SARS-CoV2. PLoS One 2023; 18:e0289890. [PMID: 37556478 PMCID: PMC10411734 DOI: 10.1371/journal.pone.0289890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Drug repurposing has emerged as an important strategy and it has a great potential in identifying therapeutic applications for COVID-19. An extensive virtual screening of 4193 FDA approved drugs has been carried out against 24 proteins of SARS-CoV2 (NSP1-10 and NSP12-16, envelope, membrane, nucleoprotein, spike, ORF3a, ORF6, ORF7a, ORF8, and ORF9b). The drugs were classified into top 10 and bottom 10 drugs based on the docking scores followed by the distribution of their therapeutic indications. As a result, the top 10 drugs were found to have therapeutic indications for cancer, pain, neurological disorders, and viral and bacterial diseases. As drug resistance is one of the major challenges in antiviral drug discovery, polypharmacology and network pharmacology approaches were employed in the study to identify drugs interacting with multiple targets and drugs such as dihydroergotamine, ergotamine, bisdequalinium chloride, midostaurin, temoporfin, tirilazad, and venetoclax were identified among the multi-targeting drugs. Further, a pathway analysis of the genes related to the multi-targeting drugs was carried which provides insight into the mechanism of drugs and identifying targetable genes and biological pathways involved in SARS-CoV2.
Collapse
Affiliation(s)
- Esther Jamir
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Himakshi Sarma
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
| | - Lipsa Priyadarsinee
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kikrusenuo Kiewhuo
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Selvaraman Nagamani
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - G. Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR–North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
45
|
Kong X, Lin K, Wu G, Tao X, Zhai X, Lv L, Dong D, Zhu Y, Yang S. Machine Learning Techniques Applied to the Study of Drug Transporters. Molecules 2023; 28:5936. [PMID: 37630188 PMCID: PMC10459831 DOI: 10.3390/molecules28165936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
With the advancement of computer technology, machine learning-based artificial intelligence technology has been increasingly integrated and applied in the fields of medicine, biology, and pharmacy, thereby facilitating their development. Transporters have important roles in influencing drug resistance, drug-drug interactions, and tissue-specific drug targeting. The investigation of drug transporter substrates and inhibitors is a crucial aspect of pharmaceutical development. However, long duration and high expenses pose significant challenges in the investigation of drug transporters. In this review, we discuss the present situation and challenges encountered in applying machine learning techniques to investigate drug transporters. The transporters involved include ABC transporters (P-gp, BCRP, MRPs, and BSEP) and SLC transporters (OAT, OATP, OCT, MATE1,2-K, and NET). The aim is to offer a point of reference for and assistance with the progression of drug transporter research, as well as the advancement of more efficient computer technology. Machine learning methods are valuable and attractive for helping with the study of drug transporter substrates and inhibitors, but continuous efforts are still needed to develop more accurate and reliable predictive models and to apply them in the screening process of drug development to improve efficiency and success rates.
Collapse
Affiliation(s)
- Xiaorui Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Kexin Lin
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Gaolei Wu
- Department of Pharmacy, Dalian Women and Children’s Medical Group, Dalian 116024, China;
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| |
Collapse
|
46
|
Qiao R, Tang W, Li J, Li C, Zhao C, Wang X, Li M, Cui Y, Chen Y, Cai G, Wu Q, Zhao X, Wang P. Structure-based virtual screening of ROCK1 inhibitors for the discovery of Enterovirus-A71 antivirals. Virology 2023; 585:205-214. [PMID: 37384967 DOI: 10.1016/j.virol.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Human enterovirus A71 (EV-A71) is the major causative agent of hand, foot, and mouth disease (HFMD), which may lead to neurological sequelae and even death. Although EV-A71 seriously threatens public health, there remains no efficient drug for the treatment of EV-A71 infection. We previously demonstrated that ROCK1 is a novel host dependency factor for EV-A71 replication and can serve as a target for the development of anti-EV-A71 therapeutics. In this study, we identified a subset of inhibitors with potential anti-EV-A71 activity by virtual screening using ROCK1 as a target. Among the hits, Dasabuvir, an HCV polymerase inhibitor, was found to have the best antiviral activity which is consistent with the ranking scores in Autodock Vina and iGEMDOCK. We found that Dasabuvir efficiently suppressed EV-A71 replication in a dose-dependent manner. Moreover, Dasabuvir not only efficiently suppressed the replication of EV-A71 in RD cells, but also in multiple cell lines, including HEK-293T, Caco-2, HT-29, HepG2, and Huh7. Besides, Dasabuvir alleviated the release of proinflammatory cytokines caused by EV-A71 infection. Notably, Dasabuvir also exhibited antiviral activity of CVA10, indicating it may have broad-spectrum antiviral activity against species Enteroviruses A. Hence, our results further confirm that ROCK1 can be a potential drug target and suggest Dasabuvir could be a clinical candidate for the treatment of EV-A71 infection.
Collapse
Affiliation(s)
- Rui Qiao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wanggang Tang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chaoyue Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Minghui Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Cui
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanjia Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Guonan Cai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingyu Wu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Liu W, Li E, Liu L, Tian F, Luo X, Cai Y, Wang J, Jin X. Antifungal activity of compounds from Gordonia sp. WA8-44 isolated from the gut of Periplaneta americana and molecular docking studies. Heliyon 2023; 9:e17777. [PMID: 37539250 PMCID: PMC10395128 DOI: 10.1016/j.heliyon.2023.e17777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Invasive fungal infections are on the rise, leading to a continuous demand for antifungal antibiotics. Rare actinomycetes have been shown to contain a variety of interesting compounds worth exploring. In this study, 15 strains of rare actinobacterium Gordonia were isolated from the gut of Periplaneta americana and screened for their anti-fungal activity against four human pathogenic fungi. Strain WA8-44 was found to exhibit significant anti-fungal activity and was selected for bioactive compound production, separation, purification, and characterization. Three anti-fungal compounds, Collismycin A, Actinomycin D, and Actinomycin X2, were isolated from the fermentation broth of Gordonia strain WA8-44. Of these, Collismycin A was isolated and purified from the secondary metabolites of Gordonia for the first time, and its anti-filamentous fungi activity was firstly identified in this study. Molecular docking was carried out to determine their hypothetical binding affinities against nine target proteins of Candida albicans. Chitin Synthase 2 was found to be the most preferred antimicrobial protein target for Collismycin A, while 1,3-Beta-Glucanase was the most preferred anti-fungal protein target for Actinomycin D and Actinomycin X2. ADMET prediction revealed that Collismycin A has favorable oral bioavailability and little toxicity, making it a potential candidate for development as an orally active medication.
Collapse
Affiliation(s)
- Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ertong Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lingyan Liu
- School of Pharmacy, Xi'an Medical College, Xi'an 710300, PR China
| | - Fangyuan Tian
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiongming Luo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yanqu Cai
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
48
|
El-Sayed DS, Tawfik EM, Elhusseiny AF, El-Dissouky A. A perception into binary and ternary copper (II) complexes: synthesis, characterization, DFT modeling, antimicrobial activity, protein binding screen, and amino acid interaction. BMC Chem 2023; 17:55. [PMID: 37316928 DOI: 10.1186/s13065-023-00962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Ensuring healthy lives and promoting well-being for all at all ages is the third goal of the sustainable development plan, so it was necessary to identify the most important problems that threaten health in our world. The World Health Organization declared that antibiotic resistance is one of the uppermost global public health threats facing humanity and searching for new antibiotics is slow. This problem can be approached by improving available drugs to combat various bacterial threats. To circumvent bacterial resistance, three copper(II) complexes based on the pefloxacin drug were prepared and characterized using analytical, spectroscopic, and thermal techniques. The resulting data suggested the formation of one octahedral binary and two distorted square pyramidal ternary complexes. Fluorescence spectra results revealed the formation of a turn-on fluorophore for amino acid detection. Computational calculations investigated quantum and reactivity parameters. Molecular electrostatic potential profiles and noncovalent bond interaction-reduced density gradient analysis indicated the active sites on the complex surface. The complexes were subjected to six microbial species, where the octahedral binary complex provoked its antimicrobial potency in comparison with ternary complexes. The enhanced antimicrobial activity against gram-negative bacterium E-coli compared to gentamicin was exhibited by the three complexes. Docking simulation was performed based on the crystal structure of E. coli and S. pneumoniae receptors using 5I2D and 6O15 codes. The binary complex exhibited a potent fitness score with 5I2D (TBE = - 107 kcal/mol) while ternary complexes displayed the highest docked score of fitness with 6O15.
Collapse
Affiliation(s)
- Doaa S El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, 2 Bagdad Street, P.O. Box 2-Moharrem Beck, Alexandria, 21321, Egypt.
| | - Eman M Tawfik
- Chemistry Department, Faculty of Science, Alexandria University, 2 Bagdad Street, P.O. Box 2-Moharrem Beck, Alexandria, 21321, Egypt
| | - Amel F Elhusseiny
- Chemistry Department, Faculty of Science, Alexandria University, 2 Bagdad Street, P.O. Box 2-Moharrem Beck, Alexandria, 21321, Egypt
| | - Ali El-Dissouky
- Chemistry Department, Faculty of Science, Alexandria University, 2 Bagdad Street, P.O. Box 2-Moharrem Beck, Alexandria, 21321, Egypt
| |
Collapse
|
49
|
Azad I, Khan T, Ahmad N, Khan AR, Akhter Y. Updates on drug designing approach through computational strategies: a review. Future Sci OA 2023; 9:FSO862. [PMID: 37180609 PMCID: PMC10167725 DOI: 10.2144/fsoa-2022-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
The drug discovery and development (DDD) process in pursuit of novel drug candidates is a challenging procedure requiring lots of time and resources. Therefore, computer-aided drug design (CADD) methodologies are used extensively to promote proficiency in drug development in a systematic and time-effective manner. The point in reference is SARS-CoV-2 which has emerged as a global pandemic. In the absence of any confirmed drug moiety to treat the infection, the science fraternity adopted hit and trial methods to come up with a lead drug compound. This article is an overview of the virtual methodologies, which assist in finding novel hits and help in the progression of drug development in a short period with a specific medicinal solution.
Collapse
Affiliation(s)
- Iqbal Azad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Naseem Ahmad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, UP, 2260025, India
| |
Collapse
|
50
|
Devang N, Banjan B, V.K. P. Discovery of novel inhibitor of 11 beta-hydroxysteroid dehydrogenase type 1 using in silico structure-based screening approach for the treatment of type 2 diabetes. J Diabetes Metab Disord 2023; 22:657-672. [PMID: 37255841 PMCID: PMC10225457 DOI: 10.1007/s40200-023-01191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023]
Abstract
Purpose The current study is aimed to perform structure-based screening of FDA-approved drugs that can act as novel inhibitor of the 11beta- hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. Methods Structural analogs of carbenoxolone (CBX) were selected from DrugBank database and their Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) parameters were investigated by SwissADME. Molecular docking of CBX analogs against 11β-HSD1 was performed by AutoDock tool, their binding patterns were visualized using PyMOL and the interacting amino acids were determined by ProteinPlus tool. Molecular dynamics simulation was performed on the docked structure of 11β-HSD1 (Protein Data Bank (PDB) code: 2ILT) using GROMACS 2018.1. Results The binding energies of hydrocortisone succinate, medroxyprogesterone acetate, testolactone, hydrocortisone cypionate, deoxycorticosterone acetate, and hydrocortisone probutate were lower than that of substrate corticosterone. The molecular dynamics simulation of 11β-HSD1 and hydrocortisone cypionate docked structure showed that it formed a stable complex with the inhibitor. The Root mean square deviation (RMSD) of the protein (0.37 ± 0.05 nm) and ligand (0.41 ± 0.06 nm) shows the stability of the ligand-protein interaction. Conclusion The docking study revealed that hydrocortisone cypionate has a higher binding affinity than carbenoxolone and its other analogs. The molecular dynamics simulation indicated the stability of the docked complex of 11β-HSD1 and hydrocortisone cypionate. These findings indicate the potential use of this FDA approved drug in the treatment of type 2 diabetes. However, validation by in vitro inhibitory studies and clinical trials on type 2 diabetes patients is essential to confirm the current findings.
Collapse
Affiliation(s)
- Nayana Devang
- Department of Biochemistry, Kanachur Institute of Medical Sciences, 575004 Natekal, Mangaluru, Karnataka India
| | - Bhavya Banjan
- Manipal School of Life Sciences, Manipal Academy of Higher Education, 576104 Manipal, Karnataka India
| | - Priya V.K.
- School of Biotechnology, National Institute of Technology Calicut, 673601 Calicut, Kerala India
| |
Collapse
|