1
|
Johnson LG, Zhai C, Brown K, Prenni JE, N Nair M, Huff-Lonergan E, Lonergan SM. Secondary Lipid Oxidation Products as Modulators of Calpain-2 Functionality In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12229-12239. [PMID: 38743679 DOI: 10.1021/acs.jafc.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The objective was to understand the impacts of secondary lipid oxidation products on calpain-2 activity and autolysis and, subsequently, to determine the quantity and localization of modification sites. 2-Hexenal and 4-hydroxynonenal incubation significantly decreased calpain-2 activity and slowed the progression of autolysis, while malondialdehyde had minimal impact on calpain-2 activity and autolysis. Specific modification sites were determined with LC-MS/MS, including distinct malondialdehyde modification sites on the calpain-2 catalytic and regulatory subunits. 2-Hexenal modification sites were observed on the calpain-2 catalytic subunit. Intact protein mass analysis with MALDI-MS revealed that a significant number of modifications on the calpain-2 catalytic and regulatory subunits are likely to exist. These observations confirm that specific lipid oxidation products modify calpain-2 and may affect the calpain-2 functionality. The results of these novel experiments have implications for healthy tissue metabolism, skeletal muscle growth, and post-mortem meat tenderness development.
Collapse
Affiliation(s)
- Logan G Johnson
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, United States
| | - Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kitty Brown
- Analytical Resources Core- Bioanalysis & Omics, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Salem AR, Bryant WB, Doja J, Griffin SH, Shi X, Han W, Su Y, Verin AD, Miano JM. Prime editing in mice with an engineered pegRNA. Vascul Pharmacol 2024; 154:107269. [PMID: 38158001 PMCID: PMC10939748 DOI: 10.1016/j.vph.2023.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
CRISPR editing involves double-strand breaks in DNA with attending insertions/deletions (indels) that may result in embryonic lethality in mice. The prime editing (PE) platform uses a prime editing guide RNA (pegRNA) and a Cas9 nickase fused to a modified reverse transcriptase to precisely introduce nucleotide substitutions or small indels without the unintended editing associated with DNA double-strand breaks. Recently, engineered pegRNAs (epegRNAs), with a 3'-extension that shields the primer-binding site of the pegRNA from nucleolytic attack, demonstrated superior activity over conventional pegRNAs in cultured cells. Here, we show the inability of three-component CRISPR or conventional PE to incorporate a nonsynonymous substitution in the Capn2 gene, expected to disrupt a phosphorylation site (S50A) in CAPN2. In contrast, an epegRNA with the same protospacer correctly installed the desired edit in two founder mice, as evidenced by robust genotyping assays for the detection of subtle nucleotide substitutions. Long-read sequencing demonstrated sequence fidelity around the edited site as well as top-ranked distal off-target sites. Western blotting and histological analysis of lipopolysaccharide-treated lung tissue revealed a decrease in phosphorylation of CAPN2 and notable alleviation of inflammation, respectively. These results demonstrate the first successful use of an epegRNA for germline transmission in an animal model and provide a solution to targeting essential developmental genes that otherwise may be challenging to edit.
Collapse
Affiliation(s)
- Amr R Salem
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America.
| | - W Bart Bryant
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Jaser Doja
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Susan H Griffin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Xiaofan Shi
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Weihong Han
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Joseph M Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| |
Collapse
|
3
|
García-Trevijano ER, Ortiz-Zapater E, Gimeno A, Viña JR, Zaragozá R. Calpains, the proteases of two faces controlling the epithelial homeostasis in mammary gland. Front Cell Dev Biol 2023; 11:1249317. [PMID: 37795261 PMCID: PMC10546029 DOI: 10.3389/fcell.2023.1249317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Calpain-1 and calpain-2 are calcium-dependent Cys-proteases ubiquitously expressed in mammalian tissues with a processive, rather than degradative activity. They are crucial for physiological mammary gland homeostasis as well as for breast cancer progression. A growing number of evidences indicate that their pleiotropic functions depend on the cell type, tissue and biological context where they are expressed or dysregulated. This review considers these standpoints to cover the paradoxical role of calpain-1 and -2 in the mammary tissue either, under the physiological conditions of the postlactational mammary gland regression or the pathological context of breast cancer. The role of both calpains will be examined and discussed in both conditions, followed by a brief snapshot on the present and future challenges for calpains, the two-gateway proteases towards tissue homeostasis or tumor development.
Collapse
Affiliation(s)
- Elena R. García-Trevijano
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Amparo Gimeno
- Department of Anatomy and Human Embryology, Universitat de Valencia, Valencia, Spain
| | - Juan R. Viña
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Rosa Zaragozá
- INLIVA Biomedical Research Institute, Valencia, Spain
- Department of Anatomy and Human Embryology, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
4
|
Kasamatsu H, Chino T, Hasegawa T, Utsunomiya N, Utsunomiya A, Yamada M, Oyama N, Hasegawa M. A cysteine proteinase inhibitor ALLN alleviates bleomycin-induced skin and lung fibrosis. Arthritis Res Ther 2023; 25:156. [PMID: 37626391 PMCID: PMC10463804 DOI: 10.1186/s13075-023-03130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective tissue disease that is characterized by fibrosis in the skin and internal organs, such as the lungs. Activated differentiation of progenitor cells, which are mainly resident fibroblasts, into myofibroblasts is considered a key mechanism underlying the overproduction of extracellular matrix and the resultant tissue fibrosis in SSc. Calpains are members of the Ca2+-dependent cysteine protease family, whose enzymatic activities participate in signal transduction and tissue remodeling, potentially contributing to fibrosis in various organs. However, the roles of calpain in the pathogenesis of SSc remain unknown. This study aimed to examine the anti-fibrotic properties of N-acetyl-Leu-Leu-norleucinal (ALLN), one of the cysteine proteinase inhibitors that primarily inhibit calpain, in vitro and in vivo, to optimally translate into the therapeutic utility in human SSc. METHODS Normal human dermal and lung fibroblasts pretreated with ALLN were stimulated with recombinant transforming growth factor beta 1 (TGF-β1), followed by assessment of TGF-β1/Smad signaling and fibrogenic molecules. RESULTS ALLN treatment significantly inhibited TGF-β1-induced phosphorylation and nuclear transport of Smad2/3 in skin and lung fibroblasts. TGF-β1-dependent increases in α-smooth muscle actin (αSMA), collagen type I, fibronectin 1, and some mesenchymal transcription markers were attenuated by ALLN. Moreover, our findings suggest that ALLN inhibits TGF-β1-induced mesenchymal transition in human lung epithelial cells. Consistent with these in vitro findings, administering ALLN (3 mg/kg/day) three times a week intraperitoneally remarkably suppressed the development of skin and lung fibrosis in a SSc mouse model induced by daily subcutaneous bleomycin injection. The number of skin- and lung-infiltrating CD3+ T cells decreased in ALLN-treated mice compared with that in control-treated mice. Phosphorylation of Smad3 and/or an increase in αSMA-positive myofibroblasts was significantly inhibited by ALLN treatment on the skin and lungs. However, no adverse effects were observed. CONCLUSIONS Our results prove that calpains can be a novel therapeutic target for skin and lung fibrosis in SSc, considering its inhibitor ALLN.
Collapse
Affiliation(s)
- Hiroshi Kasamatsu
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Takenao Chino
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Takumi Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Natsuko Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Akira Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Noritaka Oyama
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Minoru Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| |
Collapse
|
5
|
Zhang Y, Wang Y, Yang Y, Zhao D, Liu R, Li S, Zhang X. Proteomic analysis of ITPR2 as a new therapeutic target for curcumin protection against AFB1-induced pyroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115073. [PMID: 37257342 DOI: 10.1016/j.ecoenv.2023.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Aflatoxin B1 (AFB1) is extremely carcinogenic and can cause liver cancer in humans and animals with continued ingestion. As a natural compound, curcumin (Cur) exhibits excellent anti-inflammatory, and anti-cancer properties with few side effects. In this study, a total of 60 male mice (6-week-olds, 15 per group). After one week of acclimatization feeding, the mice were divided into control group (Con), AFB1 group, curcumin group (Cur), and AF+Cur group. The mice were gavaged with curcumin (Cur, 100 mg/kg) and/or AFB1 (0.75 mg/kg). To identify a new therapeutic target for AFB1-induced pyroptosis, we performed proteomic profiling for curcumin alleviating liver injury caused by AFB1 to further validate the targets through volcano plot analysis, Venn analysis, heatmap analysis, correlation, cluster analysis, GO and KEGG enrichment. AFB1 exposure resulted in the loss of hepatocyte membrane, swelling of the endoplasmic reticulum, and a significant increase in transaminase (ALT and AST) contents, while curcumin greatly improved these changes. We found that differentially expressed proteins are enriched in the endoplasmic reticulum membrane and identified ITPR2 as a target of curcumin that alleviates AFB1-induced liver injury by proteomics. Furthermore, ITPR2 expression was detected by immunofluorescence, and qRT-PCR for mRNA expression of genes downstream of ITPR2 (calpain1, calpain2, caspase-12, caspase-3). ITPR2-activated endoplasmic reticulum stress-related proteins (calpain1, calpaini2, bcl-2, BAX, cl-caspase-12, cl-caspase-3), apoptosis (PARP) and pyroptosis (DFNA5) related proteins were examined by western blotting. The analysis showed that it effectively prevents AFB1-induced pyroptosis by lowering endoplasmic reticulum stress via interfering with ITPR2 and its downstream proteins (calpain1, calpain2, bcl-2, Bax) and inhibiting caspase-12/caspase-3 pathway. Conclusively, this study applied proteomic profiling to elucidate ITPR2 as a new target, which might give a new perspective on the mechanism of curcumin alleviating AFB1-induced pyroptosis.
Collapse
Affiliation(s)
- Yixin Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, China
| | - Yikang Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, China
| | - Yaozu Yang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, China
| | - Dongmei Zhao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, China
| | - Ruimeng Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, China
| | - Sihong Li
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Xiuying Zhang
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, Xiangfang District, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Paulson EE, Fishman EL, Schultz RM, Ross PJ. Embryonic microRNAs are essential for bovine preimplantation embryo development. Proc Natl Acad Sci U S A 2022; 119:e2212942119. [PMID: 36322738 PMCID: PMC9659414 DOI: 10.1073/pnas.2212942119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression after transcription. miRNAs are present in transcriptionally quiescent full-grown oocytes and preimplantation embryos that display a low level of transcription prior to embryonic genome activation. The role of miRNAs, if any, in preimplantation development is not known. The temporal pattern of expression of miRNAs during bovine preimplantation development was determined by small RNA-sequencing using eggs and preimplantation embryos (1-cell, 2-cell, 4-cell, 8-cell, 16-cell, morula, and blastocyst). Embryos cultured in the presence of α-amanitin, which permitted the distinguishing of maternal miRNAs from embryonic miRNAs, indicated that embryonic miRNA expression was first detected at the two-cell stage but dramatically increased during the morula and blastocyst stages. Targeting DGCR8 by a small-interfering RNA/morpholino approach revealed a role for miRNAs in the morula-to-blastocyst transition. Knockdown of DGCR8 not only inhibited expression of embryonically expressed miRNAs but also inhibited the morula-to-blastocyst transition. In addition, RNA-sequencing identified an increased relative abundance of messenger RNAs potentially targeted by embryonic miRNAs in DGCR8-knockdown embryos when compared with controls. Results from these experiments implicate an essential role for miRNAs in bovine preimplantation embryo development.
Collapse
Affiliation(s)
- Erika E. Paulson
- Department of Animal Science, University of California, Davis, CA 95616
| | - Emily L. Fishman
- Department of Animal Science, University of California, Davis, CA 95616
| | - Richard M. Schultz
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA 95616
| |
Collapse
|
7
|
Ji XY, Zheng D, Ni R, Wang JX, Shao JQ, Vue Z, Hinton A, Song LS, Fan GC, Chakrabarti S, Su ZL, Peng TQ. Sustained over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice through aberrant autophagy. Acta Pharmacol Sin 2022; 43:2873-2884. [PMID: 35986214 PMCID: PMC9622835 DOI: 10.1038/s41401-022-00965-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/24/2022] [Indexed: 11/09/2022] Open
Abstract
Calpains have been implicated in heart diseases. While calpain-1 has been detrimental to the heart, the role of calpain-2 in cardiac pathology remains controversial. In this study we investigated whether sustained over-expression of calpain-2 had any adverse effects on the heart and the underlying mechanisms. Double transgenic mice (Tg-Capn2/tTA) were generated, which express human CAPN2 restricted to cardiomyocytes. The mice were subjected to echocardiography at age 3, 6, 8 and 12 months, and their heart tissues and sera were collected for analyses. We showed that transgenic mice over-expressing calpain-2 restricted to cardiomyocytes had normal heart function with no evidence of cardiac pathological remodeling at age 3 months. However, they exhibited features of dilated cardiomyopathy including increased heart size, enlarged heart chambers and heart dysfunction from age 8 months; histological analysis revealed loss of cardiomyocytes replaced by myocardial fibrosis and cardiomyocyte hypertrophy in transgenic mice from age 8 months. These cardiac alterations closely correlated with aberrant autophagy evidenced by significantly increased LC3BII and p62 protein levels and accumulation of autophagosomes in the hearts of transgenic mice. Notably, injection of 3-methyladenine, a well-established inhibitor of autophagy (30 mg/kg, i.p. once every 3 days starting from age 6 months for 2 months) prevented aberrant autophagy, attenuated myocardial injury and improved heart function in the transgenic mice. In cultured cardiomyocytes, over-expression of calpain-2 blocked autophagic flux by impairing lysosomal function. Furthermore, over-expression of calpain-2 resulted in lower levels of junctophilin-2 protein in the heart of transgenic mice and in cultured cardiomyocytes, which was attenuated by 3-methyladenine. In addition, blockade of autophagic flux by bafilomycin A (100 nM) induced a reduction of junctophilin-2 protein in cardiomyocytes. In summary, transgenic over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice, which may be mediated through aberrant autophagy and a reduction of junctophilin-2. Thus, a sustained increase in calpain-2 may be detrimental to the heart.
Collapse
Affiliation(s)
- Xiao-Yun Ji
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Dong Zheng
- Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Rui Ni
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Jin-Xi Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Zhao-Liang Su
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Tian-Qing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada.
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada.
| |
Collapse
|
8
|
Ishikawa A, Yamanouchi S, Iwasaki W, Kitano J. Convergent copy number increase of genes associated with freshwater colonization in fishes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200509. [PMID: 35634928 PMCID: PMC9149799 DOI: 10.1098/rstb.2020.0509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/14/2022] [Indexed: 07/20/2023] Open
Abstract
Copy number variation (CNV) can cause phenotypic changes. However, in contrast to amino acid substitutions and cis-regulatory changes, little is known about the functional categories of genes in which CNV is important for adaptation to novel environments. It is also unclear whether the same genes repeatedly change the copy numbers for adapting to similar environments. Here, we investigate CNV associated with freshwater colonization in fishes, which was observed multiple times across different lineages. Using 48 ray-finned fishes across diverse orders, we identified 23 genes whose copy number increases were associated with freshwater colonization. These genes showed enrichment for peptide receptor activity, hexosyltransferase activity and unsaturated fatty acid metabolism. We further revealed that three of the genes showed copy number increases in freshwater populations compared to marine ancestral populations of the stickleback genus Gasterosteus. These results indicate that copy number increases of genes involved in fatty acid metabolism (FADS2), immune function (PSMB8a) and thyroid hormone metabolism (UGT2) may be important for freshwater colonization at both the inter-order macroevolutionary scale and at the intra-genus microevolutionary scale. Further analysis across diverse taxa will help to understand the role of CNV in the adaptation to novel environments. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shun Yamanouchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
9
|
Juibari AD, Rezadoost MH, Soleimani M. The key role of Calpain in COVID-19 as a therapeutic strategy. Inflammopharmacology 2022; 30:1479-1491. [PMID: 35635676 PMCID: PMC9149670 DOI: 10.1007/s10787-022-01002-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/24/2022] [Indexed: 12/02/2022]
Abstract
COVID-19 is one of the viral diseases that has caused many deaths and financial losses to humans. Using the available information, this virus appears to activate the host cell-death mechanism through Calpain activation. Calpain inhibition can stop its downstream cascade reactions that cause cell death. Given the main roles of Calpain in the entry and pathogenicity of the SARS-CoV-2, its inhibition can be effective in controlling the COVID-19. This review describes how the virus activates Calpain by altering calcium flow. When Calpain was activated, the virus can enter the target cell. Subsequently, many complications of the disease, such as inflammation, cytokine storm and pulmonary fibrosis, are caused by virus-activated Calpain function. Calpain inhibitors appear to be a potential drug to control the disease and prevent death from COVID-19.
Collapse
Affiliation(s)
- Aref Doozandeh Juibari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| |
Collapse
|
10
|
Calpains as mechanistic drivers and therapeutic targets for ocular disease. Trends Mol Med 2022; 28:644-661. [PMID: 35641420 PMCID: PMC9345745 DOI: 10.1016/j.molmed.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Ophthalmic neurodegenerative diseases encompass a wide array of molecular pathologies unified by calpain dysregulation. Calpains are calcium-dependent proteases that perpetuate cellular death and inflammation when hyperactivated. Calpain inhibition trials in other organs have faced pharmacological challenges, but the eye offers many advantages for the development and testing of targeted molecular therapeutics, including small molecules, peptides, engineered proteins, drug implants, and gene-based therapies. This review highlights structural mechanisms underlying calpain activation, distinct cellular expression patterns, and in vivo models that link calpain hyperactivity to human retinal and developmental disease. Optimizing therapeutic approaches for calpain-mediated eye diseases can help accelerate clinically feasible strategies for treating calpain dysregulation in other diseased tissues.
Collapse
|
11
|
Aluja D, Delgado-Tomás S, Ruiz-Meana M, Barrabés JA, Inserte J. Calpains as Potential Therapeutic Targets for Myocardial Hypertrophy. Int J Mol Sci 2022; 23:ijms23084103. [PMID: 35456920 PMCID: PMC9032729 DOI: 10.3390/ijms23084103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Despite advances in its treatment, heart failure remains a major cause of morbidity and mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent studies performed in preclinical animal models support the contribution of the Ca2+-dependent cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence implicating calpains in the development of cardiac hypertrophy, as well as the latest advances in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress made in developing new compounds that may serve for testing the efficacy of calpain inhibition in the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- David Aluja
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Sara Delgado-Tomás
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José A. Barrabés
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934894038
| |
Collapse
|
12
|
Belhadj S, Hermann NS, Zhu Y, Christensen G, Strasser T, Paquet-Durand F. Visualizing Cell Death in Live Retina: Using Calpain Activity Detection as a Biomarker for Retinal Degeneration. Int J Mol Sci 2022; 23:ijms23073892. [PMID: 35409251 PMCID: PMC8999672 DOI: 10.3390/ijms23073892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Calpains are a family of calcium-activated proteases involved in numerous disorders. Notably, previous studies have shown that calpain activity was substantially increased in various models for inherited retinal degeneration (RD). In the present study, we tested the capacity of the calpain-specific substrate t-BOC-Leu-Met-CMAC to detect calpain activity in living retina, in organotypic retinal explant cultures derived from wild-type mice, as well as from rd1 and RhoP23H/+ RD-mutant mice. Test conditions were refined until the calpain substrate readily detected large numbers of cells in the photoreceptor layer of RD retina but not in wild-type retina. At the same time, the calpain substrate was not obviously toxic to photoreceptor cells. Comparison of calpain activity with immunostaining for activated calpain-2 furthermore suggested that individual calpain isoforms may be active in distinct temporal stages of photoreceptor cell death. Notably, calpain-2 activity may be a relatively short-lived event, occurring only towards the end of the cell-death process. Finally, our results support the development of calpain activity detection as a novel in vivo biomarker for RD suitable for combination with non-invasive imaging techniques.
Collapse
Affiliation(s)
- Soumaya Belhadj
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (S.B.); (Y.Z.); (G.C.)
- Graduate Training Center of Neuroscience, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
| | - Nina Sofia Hermann
- Graduate Training Center of Neuroscience, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
| | - Yu Zhu
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (S.B.); (Y.Z.); (G.C.)
- Graduate Training Center of Neuroscience, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
| | - Gustav Christensen
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (S.B.); (Y.Z.); (G.C.)
- Graduate Training Center of Neuroscience, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
| | - Torsten Strasser
- Applied Vision Research Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
- University Eye Hospital Tübingen, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (S.B.); (Y.Z.); (G.C.)
- Correspondence:
| |
Collapse
|
13
|
Abstract
INTRODUCTION Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be promising therapeutic targets. AREAS COVERED This review covers clinical and basic research studies implicating calpain-1 and calpain-2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and spotlight the challenges facing inhibitor development. EXPERT OPINION Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcinogenesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage products, paired with inconsistencies in model systems, underscores the need for more complete understanding of physiological substrates and how calpain cleavage alters their function in cellular processes. The development of isoform specific calpain inhibitors remains an important goal with therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
- Ivan Shapovalov
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Danielle Harper
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
14
|
Zha C, Farah CA, Holt RJ, Ceroni F, Al-Abdi L, Thuriot F, Khan AO, Helaby R, Lévesque S, Alkuraya FS, Kraus A, Ragge NK, Sossin WS. Biallelic variants in the small optic lobe calpain CAPN15 are associated with congenital eye anomalies, deafness and other neurodevelopmental deficits. Hum Mol Genet 2021; 29:3054-3063. [PMID: 32885237 DOI: 10.1093/hmg/ddaa198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Microphthalmia, coloboma and cataract are part of a spectrum of developmental eye disorders in humans affecting ~12 per 100 000 live births. Currently, variants in over 100 genes are known to underlie these conditions. However, at least 40% of affected individuals remain without a clinical genetic diagnosis, suggesting variants in additional genes may be responsible. Calpain 15 (CAPN15) is an intracellular cysteine protease belonging to the non-classical small optic lobe (SOL) family of calpains, an important class of developmental proteins, as yet uncharacterized in vertebrates. We identified five individuals with microphthalmia and/or coloboma from four independent families carrying homozygous or compound heterozygous predicted damaging variants in CAPN15. Several individuals had additional phenotypes including growth deficits, developmental delay and hearing loss. We generated Capn15 knockout mice that exhibited similar severe developmental eye defects, including anophthalmia, microphthalmia and cataract, and diminished growth. We demonstrate widespread Capn15 expression throughout the brain and central nervous system, strongest during early development, and decreasing postnatally. Together, these findings demonstrate a critical role of CAPN15 in vertebrate developmental eye disorders, and may signify a new developmental pathway.
Collapse
Affiliation(s)
- Congyao Zha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Richard J Holt
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Fabiola Ceroni
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Lama Al-Abdi
- Department of Zoology, College of Science, King Saud University, Riyadh 11564, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fanny Thuriot
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada
| | - Arif O Khan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia.,Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine at Case Western University, Cleveland, Ohio 44195, USA
| | - Rana Helaby
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Sébastien Lévesque
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11564, Saudi Arabia
| | - Alison Kraus
- Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Nicola K Ragge
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.,Department of Clinical Genetics, West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Foundation Trust, Birmingham B15 2TG, UK
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
15
|
Baudry M, Su W, Seinfeld J, Sun J, Bi X. Role of Calpain-1 in Neurogenesis. Front Mol Biosci 2021; 8:685938. [PMID: 34212005 PMCID: PMC8239220 DOI: 10.3389/fmolb.2021.685938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
While calpains have been implicated in neurogenesis for a long time, there is still little information regarding the specific contributions of various isoforms in this process. We took advantage of the availability of mutant mice with complete deletion of calpain-1 to analyze its contribution to neurogenesis. We first used the incorporation of BrdU in newly-generated cells in the subgranular zone of the dentate gyrus to determine the role of calpain-1 deletion in neuronal proliferation. Our results showed that the lack of calpain-1 decreased the rate of cell proliferation in adult hippocampus. As previously shown, it also decreased the long-term survival of newly-generated neurons. We also used data from previously reported RNA and miRNA sequencing analyses to identify differentially expressed genes in brain of calpain-1 knock-out mice related to cell division, cell migration, cell proliferation and cell survival. A number of differentially expressed genes were identified, which could play a significant role in the changes in neurogenesis in calpain-1 knock out mice. The results provide new information regarding the role of calpain-1 in neurogenesis and have implications for better understanding the pathologies associated with calpain-1 mutations in humans.
Collapse
Affiliation(s)
- Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Wenyue Su
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Jeffrey Seinfeld
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
16
|
Zheng D, Cao T, Zhang LL, Fan GC, Qiu J, Peng TQ. Targeted inhibition of calpain in mitochondria alleviates oxidative stress-induced myocardial injury. Acta Pharmacol Sin 2021; 42:909-920. [PMID: 32968209 PMCID: PMC8149722 DOI: 10.1038/s41401-020-00526-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
The protein levels and activities of calpain-1 and calpain-2 are increased in cardiac mitochondria under pathological conditions including ischemia, diabetes, and sepsis, and transgenic overexpression of mitochondrial-targeted calpain-1 induces dilated heart failure, which underscores an important role of increased calpain in mitochondria in mediating myocardial injury. However, it remains to be determined whether selective inhibition of calpain in mitochondria protects the heart under pathological conditions. In this study, we generated transgenic mice overexpressing mitochondrial-targeted calpastatin in cardiomyocytes. Their hearts were isolated and subjected to global ischemia/reperfusion. Hyperglycemia was induced in the transgenic mice by injections of STZ. We showed that transgenic calpastatin was expressed exclusively in mitochondria isolated from their hearts but not from other organs including skeletal muscle and lung tissues. Transgenic overexpression of mitochondrial-targeted calpastatin significantly attenuated mitochondrial oxidative stress and cell death induced by global ischemia/reperfusion in isolated hearts, and ameliorated mitochondrial oxidative stress, cell death, myocardial remodeling and dysfunction in STZ-treated transgenic mice. The protective effects of mitochondrial-targeted calpastatin were correlated with increased ATP5A1 protein expression and ATP synthase activity in isolated hearts subjected to global ischemia/reperfusion and hearts of STZ-treated transgenic mice. In cultured rat myoblast H9c2 cells, overexpression of mitochondrial-targeted calpastatin maintained the protein levels of ATP5A1 and ATP synthase activity, prevented mitochondrial ROS production and decreased cell death following hypoxia/reoxygenation, whereas upregulation of ATP5A1 or scavenging of mitochondrial ROS by mito-TEMPO abrogated mitochondrial ROS production and decreased cell death. These results confirm the role of calpain in myocardial injury, suggesting that selective inhibition of calpain in myocardial mitochondria by mitochondrial-targeted calpastatin is an effective strategy for alleviating myocardial injury and dysfunction in cardiac pathologies.
Collapse
Affiliation(s)
- Dong Zheng
- Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lu-Lu Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jun Qiu
- Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Tian-Qing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
17
|
MRI of Capn15 Knockout Mice and Analysis of Capn 15 Distribution Reveal Possible Roles in Brain Development and Plasticity. Neuroscience 2021; 465:128-141. [PMID: 33951504 DOI: 10.1016/j.neuroscience.2021.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022]
Abstract
The Small Optic Lobe (SOL) family of calpains are intracellular cysteine proteases that are expressed in the nervous system and play an important role in neuronal development in both Drosophila, where loss of this calpain leads to the eponymous small optic lobes, and in mouse and human, where loss of this calpain leads to eye anomalies. Some human individuals with biallelic variants in CAPN15 also have developmental delay and autism. However, neither the specific effect of the loss of the Capn15 protein on brain development nor the brain regions where this calpain is expressed in the adult is known. Here we show using small animal MRI that mice with the complete loss of Capn15 have smaller brains overall with larger decreases in the thalamus and subregions of the hippocampus. These losses are not seen in Capn15 conditional knockout (KO) mice where Capn15 is knocked out only in excitatory neurons in the adult. Based on β-galactosidase expression in an insert strain where lacZ is expressed under the control of the Capn15 promoter, we show that Capn15 is expressed in adult mice, particularly in neurons involved in plasticity such as the hippocampus, lateral amygdala and Purkinje neurons, and partially in other non-characterized cell types. The regions of the brain in the adult where Capn15 is expressed do not correspond well to the regions of the brain most affected by the complete knockout suggesting distinct roles of Capn15 in brain development and adult brain function.
Collapse
|
18
|
Das S, Chen Y, Yan J, Christensen G, Belhadj S, Tolone A, Paquet-Durand F. The role of cGMP-signalling and calcium-signalling in photoreceptor cell death: perspectives for therapy development. Pflugers Arch 2021; 473:1411-1421. [PMID: 33864120 PMCID: PMC8370896 DOI: 10.1007/s00424-021-02556-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
The second messengers, cGMP and Ca2+, have both been implicated in retinal degeneration; however, it is still unclear which of the two is most relevant for photoreceptor cell death. This problem is exacerbated by the close connections and crosstalk between cGMP-signalling and calcium (Ca2+)-signalling in photoreceptors. In this review, we summarize key aspects of cGMP-signalling and Ca2+-signalling relevant for hereditary photoreceptor degeneration. The topics covered include cGMP-signalling targets, the role of Ca2+ permeable channels, relation to energy metabolism, calpain-type proteases, and how the related metabolic processes may trigger and execute photoreceptor cell death. A focus is then put on cGMP-dependent mechanisms and how exceedingly high photoreceptor cGMP levels set in motion cascades of Ca2+-dependent and independent processes that eventually bring about photoreceptor cell death. Finally, an outlook is given into mutation-independent therapeutic approaches that exploit specific features of cGMP-signalling. Such approaches might be combined with suitable drug delivery systems for translation into clinical applications.
Collapse
Affiliation(s)
- Soumyaparna Das
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Yiyi Chen
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Jie Yan
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Gustav Christensen
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Soumaya Belhadj
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Arianna Tolone
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - François Paquet-Durand
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany.
| |
Collapse
|
19
|
Calpain-2 participates in the process of calpain-1 inactivation. Biosci Rep 2021; 40:226716. [PMID: 33078830 PMCID: PMC7610153 DOI: 10.1042/bsr20200552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/18/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Calpain-1 and calpain-2 are highly structurally similar isoforms of calpain. The calpains, a family of intracellular cysteine proteases, cleave their substrates at specific sites, thus modifying their properties such as function or activity. These isoforms have long been considered to function in a redundant or complementary manner, as they are both ubiquitously expressed and activated in a Ca2+- dependent manner. However, studies using isoform-specific knockout and knockdown strategies revealed that each calpain species carries out specific functions in vivo. To understand the mechanisms that differentiate calpain-1 and calpain-2, we focused on the efficiency and longevity of each calpain species after activation. Using an in vitro proteolysis assay of troponin T in combination with mass spectrometry, we revealed distinctive aspects of each isoform. Proteolysis mediated by calpain-1 was more sustained, lasting as long as several hours, whereas proteolysis mediated by calpain-2 was quickly blunted. Calpain-1 and calpain-2 also differed from each other in their patterns of autolysis. Calpain-2–specific autolysis sites in its PC1 domain are not cleaved by calpain-1, but calpain-2 cuts calpain-1 at the corresponding position. Moreover, at least in vitro, calpain-1 and calpain-2 do not perform substrate proteolysis in a synergistic manner. On the contrary, calpain-1 activity is suppressed in the presence of calpain-2, possibly because it is cleaved by the latter protein. These results suggest that calpain-2 functions as a down-regulation of calpain-1, a mechanism that may be applicable to other calpain species as well.
Collapse
|
20
|
Qi Y, Liu J, Chao J, Greer PA, Li S. PTEN dephosphorylates Abi1 to promote epithelial morphogenesis. J Cell Biol 2021; 219:151941. [PMID: 32673396 PMCID: PMC7480098 DOI: 10.1083/jcb.201910041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/08/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
The tumor suppressor PTEN is essential for early development. Its lipid phosphatase activity converts PIP3 to PIP2 and antagonizes the PI3K–Akt pathway. In this study, we demonstrate that PTEN’s protein phosphatase activity is required for epiblast epithelial differentiation and polarization. This is accomplished by reconstitution of PTEN-null embryoid bodies with PTEN mutants that lack only PTEN’s lipid phosphatase activity or both PTEN’s lipid and protein phosphatase activities. Phosphotyrosine antibody immunoprecipitation and mass spectrometry were used to identify Abi1, a core component of the WASP-family verprolin homologous protein (WAVE) regulatory complex (WRC), as a new PTEN substrate. We demonstrate that PTEN dephosphorylation of Abi1 at Y213 and S216 results in Abi1 degradation through the calpain pathway. This leads to down-regulation of the WRC and reorganization of the actin cytoskeleton. The latter is critical to the transformation of nonpolar pluripotent stem cells into the polarized epiblast epithelium. Our findings establish a link between PTEN and WAVE-Arp2/3–regulated actin cytoskeletal dynamics in epithelial morphogenesis.
Collapse
Affiliation(s)
- Yanmei Qi
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Jie Liu
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Joshua Chao
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Shaohua Li
- Department of Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
21
|
Interspecific Variation in One-Carbon Metabolism within the Ovarian Follicle, Oocyte, and Preimplantation Embryo: Consequences for Epigenetic Programming of DNA Methylation. Int J Mol Sci 2021; 22:ijms22041838. [PMID: 33673278 PMCID: PMC7918761 DOI: 10.3390/ijms22041838] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
One-carbon (1C) metabolism provides methyl groups for the synthesis and/or methylation of purines and pyrimidines, biogenic amines, proteins, and phospholipids. Our understanding of how 1C pathways operate, however, pertains mostly to the (rat) liver. Here we report that transcripts for all bar two genes (i.e., BHMT, MAT1A) encoding enzymes in the linked methionine-folate cycles are expressed in all cell types within the ovarian follicle, oocyte, and blastocyst in the cow, sheep, and pig; as well as in rat granulosa cells (GCs) and human KGN cells (a granulosa-like tumor cell line). Betaine-homocysteine methyltransferase (BHMT) protein was absent in bovine theca and GCs, as was activity of this enzyme in GCs. Mathematical modeling predicted that absence of this enzyme would lead to more volatile S-adenosylmethionine-mediated transmethylation in response to 1C substrate (e.g., methionine) or cofactor provision. We tested the sensitivity of bovine GCs to reduced methionine (from 50 to 10 µM) and observed a diminished flux of 1C units through the methionine cycle. We then used reduced-representation bisulfite sequencing to demonstrate that this reduction in methionine during bovine embryo culture leads to genome-wide alterations to DNA methylation in >1600 genes, including a cohort of imprinted genes linked to an abnormal fetal-overgrowth phenotype. Bovine ovarian and embryonic cells are acutely sensitive to methionine, but further experimentation is required to determine the significance of interspecific variation in BHMT expression.
Collapse
|
22
|
Spinozzi S, Albini S, Best H, Richard I. Calpains for dummies: What you need to know about the calpain family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140616. [PMID: 33545367 DOI: 10.1016/j.bbapap.2021.140616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
This review was written in memory of our late friend, Dr. Hiroyuki Sorimachi, who, following the steps of his mentor Koichi Suzuki, a pioneer in calpain research, has made tremendous contributions to the field. During his career, Hiro also wrote several reviews on calpain, the last of which, published in 2016, was comprehensive. In this manuscript, we decided to put together a review with the basic information a novice may need to know about calpains. We also tried to avoid similarities with previous reviews and reported the most significant new findings, at the same time highlighting Hiro's contributions to the field. The review will cover a short history of calpain discovery, the presentation of the family, the life of calpain from transcription to activity, human diseases caused by calpain mutations and therapeutic perspectives.
Collapse
Affiliation(s)
- Simone Spinozzi
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Sonia Albini
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Heather Best
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Isabelle Richard
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France.
| |
Collapse
|
23
|
Piper AK, Sophocleous RA, Ross SE, Evesson FJ, Saleh O, Bournazos A, Yasa J, Reed C, Woolger N, Sluyter R, Greer P, Biro M, Lemckert FA, Cooper ST. Loss of calpains-1 and -2 prevents repair of plasma membrane scrape injuries, but not small pores, and induces a severe muscular dystrophy. Am J Physiol Cell Physiol 2020; 318:C1226-C1237. [PMID: 32348180 DOI: 10.1152/ajpcell.00408.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ubiquitous calpains, calpain-1 and -2, play important roles in Ca2+-dependent membrane repair. Mechanically active tissues like skeletal muscle are particularly reliant on mechanisms to repair and remodel membrane injury, such as those caused by eccentric damage. We demonstrate that calpain-1 and -2 are master effectors of Ca2+-dependent repair of mechanical plasma membrane scrape injuries, although they are dispensable for repair/removal of small wounds caused by pore-forming agents. Using CRISPR gene-edited human embryonic kidney 293 (HEK293) cell lines, we established that loss of both calpains-1 and -2 (CAPNS1-/-) virtually ablates Ca2+-dependent repair of mechanical scrape injuries but does not affect injury or recovery from perforation by streptolysin-O or saponin. In contrast, cells with targeted knockout of either calpain-1 (CAPN1-/-) or -2 (CAPN2-/-) show near-normal repair of mechanical injuries, inferring that both calpain-1 and calpain-2 are equally capable of conducting the cascade of proteolytic cleavage events to reseal a membrane injury, including that of the known membrane repair agent dysferlin. A severe muscular dystrophy in a murine model with skeletal muscle knockout of Capns1 highlights vital roles for calpain-1 and/or -2 for health and viability of skeletal muscles not compensated for by calpain-3 (CAPN3). We propose that the dystrophic phenotype relates to loss of maintenance of plasma membrane/cytoskeletal networks by calpains-1 and -2 in response to directed and dysfunctional Ca2+-signaling, pathways hyperstimulated in the context of membrane injury. With CAPN1 variants associated with spastic paraplegia, a severe dystrophy observed with muscle-specific loss of calpain-1 and -2 activity identifies CAPN2 and CAPNS1 as plausible candidate neuromuscular disease genes.
Collapse
Affiliation(s)
- Ann-Katrin Piper
- Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Reece A Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Samuel E Ross
- Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Frances J Evesson
- Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Children's Medical Research Institute, Functional Neuromics, Westmead, Sydney, New South Wales, Australia
| | - Omar Saleh
- Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Adam Bournazos
- Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Joe Yasa
- Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Children's Medical Research Institute, Functional Neuromics, Westmead, Sydney, New South Wales, Australia
| | - Claudia Reed
- Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Natalie Woolger
- Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Peter Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Maté Biro
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Level 3, Lowy Cancer Research Centre, Sydney, New South Wales, Australia
| | - Frances A Lemckert
- Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia.,Children's Medical Research Institute, Functional Neuromics, Westmead, Sydney, New South Wales, Australia
| | - Sandra T Cooper
- Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia.,Children's Medical Research Institute, Functional Neuromics, Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
A muscle-specific calpain, CAPN3, forms a homotrimer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140411. [PMID: 32200007 DOI: 10.1016/j.bbapap.2020.140411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/25/2022]
Abstract
Calpain-3 (CAPN3), a 94-kDa member of the calpain protease family, is abundant in skeletal muscle. Mutations in the CAPN3 gene cause limb girdle muscular dystrophy type 2A, indicating that CAPN3 plays important roles in muscle physiology. CAPN3 has several unique features. A crystallographic study revealed that its C-terminal penta-EF-hand domains form a homodimer, suggesting that CAPN3 functions as a homodimeric protease. To analyze complex formation of CAPN3 in a more convenient manner, we performed blue native polyacrylamide gel electrophoresis and found that the observed molecular weight of native CAPN3, as well as recombinant CAPN3, was larger than 240 kDa. Further analysis by cross-linking and sequential immunoprecipitation revealed that CAPN3 in fact forms a homotrimer. Trimer formation was abolished by the deletion of the PEF domain, but not the CAPN3-specific insertion sequences NS, IS1, and IS2. The PEF domain alone formed a homodimer, as reported, but addition of the adjacent CBSW domain to its N-terminus reinforced the trimer-forming property. Collectively, these results suggest that CAPN3 forms a homotrimer in which the PEF domain's dimer-forming ability is influenced by other domains.
Collapse
|
25
|
Hwang SD, Choi KM, Hwang JY, Kwon MG, Jeong JM, Seo JS, Jee BY, Park CI. Molecular genetic characterisation and expression profiling of calpain 3 transcripts in red sea bream (Pagrus major). FISH & SHELLFISH IMMUNOLOGY 2020; 98:19-24. [PMID: 31899359 DOI: 10.1016/j.fsi.2019.12.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/25/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Calpains (CAPNs) belong to the papain superfamily of cysteine proteases, and they are calcium-dependent cytoplasmic cysteine proteases that regulate a variety of physiological processes. We obtained the sequence of CAPN3 from an NGS-based analysis of Pagrus major (PmCAPN3) and confirmed the conserved molecular biological properties in the predicted amino acid sequence. The amino acid sequence and predicted domains of CAPN3 were found to be highly conserved in all of the examined species, and one catalytic domain and four calcium binding sites were identified. In healthy P. major, the PmCAPN3 mRNA was most abundantly expressed in the muscle and skin, and ubiquitously expressed in the other tissues used in the experiment. After artificial infections with fish pathogens, significant changes in its expression levels were found in immune-related tissues, most of showed upregulation. In particular, the highest level of expression was found in the liver, a tissue associated with protease activity. Taken together, these results suggest a physiological activity for PmCAPN3 in P. major and reveal functional possibilities that have not yet been reported in the immune system.
Collapse
Affiliation(s)
- Seong Don Hwang
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Kwang-Min Choi
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Jee Youn Hwang
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mun-Gyeong Kwon
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Ji-Min Jeong
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jung Soo Seo
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Bo-Yeong Jee
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Chan-Il Park
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
26
|
Dókus LE, Yousef M, Bánóczi Z. Modulators of calpain activity: inhibitors and activators as potential drugs. Expert Opin Drug Discov 2020; 15:471-486. [DOI: 10.1080/17460441.2020.1722638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Levente Endre Dókus
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
27
|
Zuo S, Kong D, Wang C, Liu J, Wang Y, Wan Q, Yan S, Zhang J, Tang J, Zhang Q, Lyu L, Li X, Shan Z, Qian L, Shen Y, Yu Y. CRTH2 promotes endoplasmic reticulum stress-induced cardiomyocyte apoptosis through m-calpain. EMBO Mol Med 2019; 10:emmm.201708237. [PMID: 29335338 PMCID: PMC5840549 DOI: 10.15252/emmm.201708237] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Apoptotic death of cardiac myocytes is associated with ischemic heart disease and chemotherapy‐induced cardiomyopathy. Chemoattractant receptor‐homologous molecule expressed on T helper type 2 cells (CRTH2) is highly expressed in the heart. However, its specific role in ischemic cardiomyopathy is not fully understood. Here, we demonstrated that CRTH2 disruption markedly improved cardiac recovery in mice postmyocardial infarction and doxorubicin challenge by suppressing cardiomyocyte apoptosis. Mechanistically, CRTH2 activation specifically facilitated endoplasmic reticulum (ER) stress‐induced cardiomyocyte apoptosis via caspase‐12‐dependent pathway. Blockage of m‐calpain prevented CRTH2‐mediated cardiomyocyte apoptosis under ER stress by suppressing caspase‐12 activity. CRTH2 was coupled with Gαq to elicit intracellular Ca2+ flux and activated m‐calpain/caspase‐12 cascade in cardiomyocytes. Knockdown of caspase‐4, an alternative to caspase‐12 in humans, markedly alleviated CRHT2 activation‐induced apoptosis in human cardiomyocyte response to anoxia. Our findings revealed an unexpected role of CRTH2 in promoting ER stress‐induced cardiomyocyte apoptosis, suggesting that CRTH2 inhibition has therapeutic potential for ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Shengkai Zuo
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Deping Kong
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chenyao Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiao Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyang Wang
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiangyou Wan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Yan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhang
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Juan Tang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luheng Lyu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Biology, University of Miami College of Arts and Science, Miami, FL, USA
| | - Xin Li
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhixin Shan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou Guangdong, China
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yujun Shen
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China .,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Immunohistochemical Localization of Calpains in the Amphibian Xenopus laevis. Methods Mol Biol 2019; 1915:81-92. [PMID: 30617797 DOI: 10.1007/978-1-4939-8988-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Though histochemical techniques have been used for decades, they are still very important in basic research. They make it possible to work on fixed tissues and provide a large amount of information in a relatively short time and at a low cost. Here we describe methods for indirect immunohistochemistry and immunofluorescence on sections of tadpoles and tissues of adult amphibians belonging to the species Xenopus laevis. The objective is to localize calpains within tissues in order to understand their involvement in cellular processes.
Collapse
|
29
|
Ishak R, Hallett MB. Defective rapid cell shape and transendothelial migration by calpain-1 null neutrophils. Biochem Biophys Res Commun 2018; 506:1065-1070. [DOI: 10.1016/j.bbrc.2018.10.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/28/2018] [Indexed: 12/26/2022]
|
30
|
Hou D, Che Z, Chen P, Zhang W, Chu Y, Yang D, Liu J. Suppression of AURKA alleviates p27 inhibition on Bax cleavage and induces more intensive apoptosis in gastric cancer. Cell Death Dis 2018; 9:781. [PMID: 30013101 PMCID: PMC6048174 DOI: 10.1038/s41419-018-0823-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
Bax is a key molecule in mitochondria-apoptosis pathway, however it is not always an efficient apoptosis inducer in chemotherapeutic agents-treated cancer cells. Here, we found that specific inhibition of AURKA by MLN8237-induced calpain-mediated Bax cleavage at N-terminal 33th asparagine (c-Bax) to promote apoptosis. The c-Bax, as Bax, could also efficiently located to mitochondria but c-Bax is a stronger apoptosis inducer than Bax. Morever, c-Bax-induced apoptosis could not be blocked by the canonical Bax inhibitor, Bcl-2. Further study found p27 was degraded and subsequently Bax was transformed to c-Bax through calpain. Also, p27 efficiently inhibited Bax cleavage and p27 knockdown sensitized apoptosis through Bax cleavage when cancer cells were treated with MLN8237. It is also demonstrated that the anti-apoptotic role of p27 lies its cytoplasmic localization. Finally, we found that the positive correlation between AURKA and p27 in advanced gastric cancer patients. In conclusion, we found that MNL8237 suppressed cell growth by regulating calpain-dependent Bax cleavage and p27 dysregulation in gastric cancer cells.
Collapse
Affiliation(s)
- Daisen Hou
- Department of Digestive Diseases of Huashan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhihui Che
- Department of Digestive Diseases, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Chen
- Department of Digestive Diseases of Huashan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenli Zhang
- Department of Digestive Diseases, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Chu
- Institute of Biomedical Sciences and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dongqin Yang
- Department of Digestive Diseases, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China. .,Department of Digestive Diseases, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Coomer CE, Morris AC. Capn5 Expression in the Healthy and Regenerating Zebrafish Retina. Invest Ophthalmol Vis Sci 2018; 59:3643-3654. [PMID: 30029251 PMCID: PMC6054427 DOI: 10.1167/iovs.18-24278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022] Open
Abstract
Purpose Autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) is a devastating inherited autoimmune disease of the eye that displays features commonly seen in other eye diseases, such as retinitis pigmentosa and diabetic retinopathy. ADNIV is caused by a gain-of-function mutation in Calpain-5 (CAPN5), a calcium-dependent cysteine protease. Very little is known about the normal function of CAPN5 in the adult retina, and there are conflicting results regarding its role during mammalian embryonic development. The zebrafish (Danio rerio) is an excellent animal model for studying vertebrate development and tissue regeneration, and represents a novel model to explore the function of Capn5 in the eye. Methods We characterized the expression of Capn5 in the developing zebrafish central nervous system (CNS) and retina, in the adult zebrafish retina, and in response to photoreceptor degeneration and regeneration using whole-mount in situ hybridization, FISH, and immunohistochemistry. Results In zebrafish, capn5 is strongly expressed in the developing embryonic brain, early optic vesicles, and in newly differentiated retinal photoreceptors. We found that expression of capn5 colocalized with cone-specific markers in the adult zebrafish retina. We observed an increase in expression of Capn5 in a zebrafish model of chronic rod photoreceptor degeneration and regeneration. Acute light damage to the zebrafish retina was accompanied by an increase in expression of Capn5 in the surviving cones and in a subset of Müller glia. Conclusions These studies suggest that Capn5 may play a role in CNS development, photoreceptor maintenance, and photoreceptor regeneration.
Collapse
Affiliation(s)
- Cagney E. Coomer
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
32
|
Scott IC, Majithiya JB, Sanden C, Thornton P, Sanders PN, Moore T, Guscott M, Corkill DJ, Erjefält JS, Cohen ES. Interleukin-33 is activated by allergen- and necrosis-associated proteolytic activities to regulate its alarmin activity during epithelial damage. Sci Rep 2018; 8:3363. [PMID: 29463838 PMCID: PMC5820248 DOI: 10.1038/s41598-018-21589-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
Interleukin (IL)-33 is an IL-1 family alarmin released from damaged epithelial and endothelial barriers to elicit immune responses and allergic inflammation via its receptor ST2. Serine proteases released from neutrophils, mast cells and cytotoxic lymphocytes have been proposed to process the N-terminus of IL-33 to enhance its activity. Here we report that processing of full length IL-33 can occur in mice deficient in these immune cell protease activities. We sought alternative mechanisms for the proteolytic activation of IL-33 and discovered that exogenous allergen proteases and endogenous calpains, from damaged airway epithelial cells, can process full length IL-33 and increase its alarmin activity up to ~60-fold. Processed forms of IL-33 of apparent molecular weights ~18, 20, 22 and 23 kDa, were detected in human lungs consistent with some, but not all, proposed processing sites. Furthermore, allergen proteases degraded processed forms of IL-33 after cysteine residue oxidation. We suggest that IL-33 can sense the proteolytic and oxidative microenvironment during tissue injury that facilitate its rapid activation and inactivation to regulate the duration of its alarmin function.
Collapse
Affiliation(s)
- Ian C Scott
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom.
| | - Jayesh B Majithiya
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Caroline Sanden
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Peter Thornton
- Neuroscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Philip N Sanders
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Tom Moore
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Molly Guscott
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Dominic J Corkill
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Jonas S Erjefält
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - E Suzanne Cohen
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Granta Park, Cambridge, CB21 6GH, United Kingdom
| |
Collapse
|
33
|
Bano D, Ankarcrona M. Beyond the critical point: An overview of excitotoxicity, calcium overload and the downstream consequences. Neurosci Lett 2018; 663:79-85. [DOI: 10.1016/j.neulet.2017.08.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/11/2023]
|
34
|
Miyazaki T, Miyazaki A. Dysregulation of Calpain Proteolytic Systems Underlies Degenerative Vascular Disorders. J Atheroscler Thromb 2017; 25:1-15. [PMID: 28819082 PMCID: PMC5770219 DOI: 10.5551/jat.rv17008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic vascular diseases such as atherosclerosis, aneurysms, diabetic angiopathy/retinopathy as well as fibrotic and proliferative vascular diseases are generally complicated by the progression of degenerative insults, which are characterized by endothelial dysfunction, apoptotic/necrotic cell death in vascular/immune cells, remodeling of extracellular matrix or breakdown of elastic lamella. Increasing evidence suggests that dysfunctional calpain proteolytic systems and defective calpain protein metabolism in blood vessels contribute to degenerative disorders. In vascular endothelial cells, the overactivation of conventional calpains consisting of calpain-1 and -2 isozymes can lead to the disorganization of cell-cell junctions, dysfunction of nitric oxide synthase, sensitization of Janus kinase/signal transducer and activator of transcription cascades and depletion of prostaglandin I2, which contributes to degenerative disorders. In addition to endothelial cell dysfunctions, calpain overactivation results in inflammatory insults in macrophages and excessive fibrogenic/proliferative signaling in vascular smooth muscle cells. Moreover, calpain-6, a non-proteolytic unconventional calpain, is involved in the conversion of macrophages to a pro-atherogenic phenotype, leading to the pinocytotic deposition of low-density lipoprotein cholesterol in the cells. Here, we discuss the recent progress that has been made in our understanding of how calpain contributes to degenerative vascular disorders.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine
| |
Collapse
|
35
|
Kumar V, Ahmad A. Targeting calpains: A novel immunomodulatory approach for microbial infections. Eur J Pharmacol 2017; 814:28-44. [PMID: 28789934 DOI: 10.1016/j.ejphar.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 02/09/2023]
Abstract
Calpains are a family of Ca2+ dependent cytosolic non-lysosomal proteases with well conserved cysteine-rich domains for enzymatic activity. Due to their functional dependency on Ca2+ concentrations, they are involved in various cellular processes that are regulated by intracellular ca2+ concentration (i.e. embryo development, cell development and migration, maintenance of cellular architecture and structure etc.). Calpains are widely studied proteases in mammalian (i.e. mouse and human) physiology and pathophysiology due to their ubiquitous presence. For example, these proteases have been found to be involved in various inflammatory disorders such as neurodegeneration, cancer, brain and myocardial ischemia and infarction, cataract and muscular dystrophies etc. Besides their role in these sterile inflammatory conditions, calpains have also been shown to regulate a wide range of infectious diseases (i.e. sepsis, tuberculosis, gonorrhoea and bacillary dysentery etc.). One of these regulatory mechanisms mediated by calpains (i.e. calpain 1 and 2) during microbial infections involves the regulation of innate immune response, inflammation and cell death. Thus, the major emphasis of this review is to highlight the importance of calpains in the pathogenesis of various microbial (i.e. bacterial, fungal and viral) diseases and the use of calpain modulators as potential immunomodulators in microbial infections.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Paediatrics and Child Health, Children's Health Queensland Clinical Unit, School of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Ali Ahmad
- Laboratory of innate immunity, CHU Ste-Justine Research Center/Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, 3175 Cote Ste Catherine, Montreal, Quebec, Canada H3T 1C5.
| |
Collapse
|
36
|
Miyazaki T, Miyazaki A. Emerging roles of calpain proteolytic systems in macrophage cholesterol handling. Cell Mol Life Sci 2017; 74:3011-3021. [PMID: 28432377 PMCID: PMC11107777 DOI: 10.1007/s00018-017-2528-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/21/2023]
Abstract
Calpains are Ca2+-dependent intracellular proteases that play central roles in the post-translational processing of functional proteins. In mammals, calpain proteolytic systems comprise the endogenous inhibitor calpastatin as well as 15 homologues of the catalytic subunits and two homologues of the regulatory subunits. Recent pharmacological and gene targeting studies in experimental animal models have revealed the contribution of conventional calpains, which consist of the calpain-1 and -2 isozymes, to atherosclerotic diseases. During atherogenesis, conventional calpains facilitate the CD36-dependent uptake of oxidized low-density lipoprotein (LDL), and block cholesterol efflux through ATP-binding cassette transporters in lesional macrophages, allowing the expansion of lipid-enriched atherosclerotic plaques. In addition, calpain-6, an unconventional non-proteolytic calpain, in macrophages reportedly potentiates pinocytotic uptake of native LDL, and attenuates the efferocytic clearance of apoptotic and necrotic cell corpses from the lesions. Herein, we discuss the recent progress that has been made in our understanding of how calpain contributes to atherosclerosis, in particular focusing on macrophage cholesterol handling.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
37
|
Tuzlak S, Kaufmann T, Villunger A. Interrogating the relevance of mitochondrial apoptosis for vertebrate development and postnatal tissue homeostasis. Genes Dev 2017; 30:2133-2151. [PMID: 27798841 DOI: 10.1101/gad.289298.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
"Programmed cell death or 'apoptosis' is critical for organogenesis during embryonic development and tissue homeostasis in the adult. Its deregulation can contribute to a broad range of human pathologies, including neurodegeneration, cancer, or autoimmunity…" These or similar phrases have become generic opening statements in many reviews and textbooks describing the physiological relevance of apoptotic cell death. However, while the role in disease has been documented beyond doubt, facilitating innovative drug discovery, we wonder whether the former is really true. What goes wrong in vertebrate development or in adult tissue when the main route to apoptotic cell death, controlled by the BCL2 family, is impaired? Such scenarios have been mimicked by deletion of one or more prodeath genes within the BCL2 family, and gene targeting studies in mice exploring the consequences have been manifold. Many of these studies were geared toward understanding the role of BCL2 family proteins and mitochondrial apoptosis in disease, whereas fewer focused in detail on their role during normal development or tissue homeostasis, perhaps also due to an irritating lack of phenotype. Looking at these studies, the relevance of classical programmed cell death by apoptosis for development appears rather limited. Together, these many studies suggest either highly selective and context-dependent contributions of mitochondrial apoptosis or significant redundancy with alternative cell death mechanisms, as summarized and discussed here.
Collapse
Affiliation(s)
- Selma Tuzlak
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, A6020 Innsbruck, Austria
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Inselspital, CH3010 Bern, Switzerland
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, A6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, A6020 Innsbruck, Austria
| |
Collapse
|
38
|
Bolormaa S, Brown DJ, Swan AA, van der Werf JHJ, Hayes BJ, Daetwyler HD. Genomic prediction of reproduction traits for Merino sheep. Anim Genet 2017; 48:338-348. [PMID: 28211150 DOI: 10.1111/age.12541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
Abstract
Economically important reproduction traits in sheep, such as number of lambs weaned and litter size, are expressed only in females and later in life after most selection decisions are made, which makes them ideal candidates for genomic selection. Accurate genomic predictions would lead to greater genetic gain for these traits by enabling accurate selection of young rams with high genetic merit. The aim of this study was to design and evaluate the accuracy of a genomic prediction method for female reproduction in sheep using daughter trait deviations (DTD) for sires and ewe phenotypes (when individual ewes were genotyped) for three reproduction traits: number of lambs born (NLB), litter size (LSIZE) and number of lambs weaned. Genomic best linear unbiased prediction (GBLUP), BayesR and pedigree BLUP analyses of the three reproduction traits measured on 5340 sheep (4503 ewes and 837 sires) with real and imputed genotypes for 510 174 SNPs were performed. The prediction of breeding values using both sire and ewe trait records was validated in Merino sheep. Prediction accuracy was evaluated by across sire family and random cross-validations. Accuracies of genomic estimated breeding values (GEBVs) were assessed as the mean Pearson correlation adjusted by the accuracy of the input phenotypes. The addition of sire DTD into the prediction analysis resulted in higher accuracies compared with using only ewe records in genomic predictions or pedigree BLUP. Using GBLUP, the average accuracy based on the combined records (ewes and sire DTD) was 0.43 across traits, but the accuracies varied by trait and type of cross-validations. The accuracies of GEBVs from random cross-validations (range 0.17-0.61) were higher than were those from sire family cross-validations (range 0.00-0.51). The GEBV accuracies of 0.41-0.54 for NLB and LSIZE based on the combined records were amongst the highest in the study. Although BayesR was not significantly different from GBLUP in prediction accuracy, it identified several candidate genes which are known to be associated with NLB and LSIZE. The approach provides a way to make use of all data available in genomic prediction for traits that have limited recording.
Collapse
Affiliation(s)
- S Bolormaa
- AgriBio, Centre for AgriBioscience, Biosciences Research, Agriculture Victoria, Bundoora, Vic, 3083, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| | - D J Brown
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,Animal Genetics and Breeding Unit (AGBU), University of New England, Armidale, NSW, 2351, Australia
| | - A A Swan
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,Animal Genetics and Breeding Unit (AGBU), University of New England, Armidale, NSW, 2351, Australia
| | - J H J van der Werf
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - B J Hayes
- AgriBio, Centre for AgriBioscience, Biosciences Research, Agriculture Victoria, Bundoora, Vic, 3083, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Vic., 3086, Australia
| | - H D Daetwyler
- AgriBio, Centre for AgriBioscience, Biosciences Research, Agriculture Victoria, Bundoora, Vic, 3083, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Vic., 3086, Australia
| |
Collapse
|
39
|
Zak J, Vives V, Szumska D, Vernet A, Schneider JE, Miller P, Slee EA, Joss S, Lacassie Y, Chen E, Escobar LF, Tucker M, Aylsworth AS, Dubbs HA, Collins AT, Andrieux J, Dieux-Coeslier A, Haberlandt E, Kotzot D, Scott DA, Parker MJ, Zakaria Z, Choy YS, Wieczorek D, Innes AM, Jun KR, Zinner S, Prin F, Lygate CA, Pretorius P, Rosenfeld JA, Mohun TJ, Lu X. ASPP2 deficiency causes features of 1q41q42 microdeletion syndrome. Cell Death Differ 2016; 23:1973-1984. [PMID: 27447114 PMCID: PMC5136487 DOI: 10.1038/cdd.2016.76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 11/09/2022] Open
Abstract
Chromosomal abnormalities are implicated in a substantial number of human developmental syndromes, but for many such disorders little is known about the causative genes. The recently described 1q41q42 microdeletion syndrome is characterized by characteristic dysmorphic features, intellectual disability and brain morphological abnormalities, but the precise genetic basis for these abnormalities remains unknown. Here, our detailed analysis of the genetic abnormalities of 1q41q42 microdeletion cases identified TP53BP2, which encodes apoptosis-stimulating protein of p53 2 (ASPP2), as a candidate gene for brain abnormalities. Consistent with this, Trp53bp2-deficient mice show dilation of lateral ventricles resembling the phenotype of 1q41q42 microdeletion patients. Trp53bp2 deficiency causes 100% neonatal lethality in the C57BL/6 background associated with a high incidence of neural tube defects and a range of developmental abnormalities such as congenital heart defects, coloboma, microphthalmia, urogenital and craniofacial abnormalities. Interestingly, abnormalities show a high degree of overlap with 1q41q42 microdeletion-associated abnormalities. These findings identify TP53BP2 as a strong candidate causative gene for central nervous system (CNS) defects in 1q41q42 microdeletion syndrome, and open new avenues for investigation of the mechanisms underlying CNS abnormalities.
Collapse
Affiliation(s)
- J Zak
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - V Vives
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - D Szumska
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - A Vernet
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - J E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - P Miller
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - E A Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - S Joss
- Queen Elizabeth University Hospital Glasgow, Glasgow G51 4TF, UK
| | - Y Lacassie
- Department of Pediatrics, Louisiana State University, New Orleans, LA 70118, USA
- Genetics Services, Children's Hospital New Orleans, New Orleans, LA 70118, USA
| | - E Chen
- Kaiser Permanente, San Francisco Medical Center, San Francisco, CA 94115, USA
| | - L F Escobar
- St Vincent Children's Hospital, Indianapolis, IN 46260, USA
| | - M Tucker
- St Vincent Children's Hospital, Indianapolis, IN 46260, USA
| | - A S Aylsworth
- Departments of Pediatrics and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - H A Dubbs
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - A T Collins
- Seattle Children's Hospital, Seattle, WA 98105, USA
| | - J Andrieux
- Institute of Medical Genetics, Jeanne de Flandre Hospital, CHRU de Lille, Lille 59000, France
| | | | - E Haberlandt
- Clinical Department of Pediatrics, Innsbruck Medical University, Innsbruck A-6020, Austria
| | - D Kotzot
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck A-6020, Austria
| | - D A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - M J Parker
- Sheffield Children's Hospital NHS Foundation Trust, Western Bank, Sheffield, S10 2TH, UK
| | - Z Zakaria
- Institute for Medical Research, Kuala Lumpur, Jalan Pahang 50588, Malaysia
| | - Y S Choy
- Prince Court Medical Centre, Kuala Lumpur 50450, Malaysia
| | - D Wieczorek
- Institute of Human Genetics, University Clinic Essen, Duisburg-Essen University, Essen 45122, Germany
- Institute of Human Genetics, University Clinic, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - A M Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T3B 6A8
| | - K R Jun
- Department of Laboratory Medicine, Haeundae Paik Hospital, Inje University, Haeundae-gu, Busan, Korea
| | - S Zinner
- Seattle Children's Hospital, Seattle, WA 98105, USA
| | - F Prin
- The Francis Crick Institute Mill Hill Laboratory, London NW7 1AA, UK
| | - C A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - P Pretorius
- Department of Neuroradiology, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK
| | - J A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - T J Mohun
- The Francis Crick Institute Mill Hill Laboratory, London NW7 1AA, UK
| | - X Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
40
|
Hata S, Kitamura F, Yamaguchi M, Shitara H, Murakami M, Sorimachi H. A Gastrointestinal Calpain Complex, G-calpain, Is a Heterodimer of CAPN8 and CAPN9 Calpain Isoforms, Which Play Catalytic and Regulatory Roles, Respectively. J Biol Chem 2016; 291:27313-27322. [PMID: 27881674 DOI: 10.1074/jbc.m116.763912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
Calpains (CAPN) are a family of Ca2+-dependent cysteine proteases that regulate various cellular functions by cleaving diverse substrates. Of the 15 mammalian calpains, CAPN8 and CAPN9 are two that are expressed predominantly in the gastrointestinal tract, where they interact to form a protease complex, termed G-calpain. However, because native G-calpain exhibits a highly restricted expression pattern, it has never been purified, and the interactions between CAPN8 and CAPN9 have not been characterized. Here, we clarified the molecular nature of G-calpain by using recombinant proteins and transgenic mice expressing FLAG-tagged CAPN8 (CAPN8-FLAG). Recombinant mouse CAPN8 and CAPN9 co-expressed in eukaryotic expression systems exhibited the same mobility as native mouse G-calpain in Blue Native-PAGE gels, and CAPN8-FLAG immunoprecipitation from stomach homogenates of the transgenic mice showed that CAPN9 was the only protein that associated with CAPN8-FLAG. These results indicated that G-calpain is a heterodimer of CAPN8 and CAPN9. In addition, active recombinant G-calpain was expressed and purified using an in vitro translation system, and the purified protease exhibited enzymatic properties that were comparable with that of calpain-2. We found that an active-site mutant of CAPN8, but not CAPN9, compromised G-calpain's substrate cleavage activity, and that the N-terminal helix region of CAPN8 and the C-terminal EF-hands of CAPN8 and CAPN9 were involved in CAPN8/9 dimerization. Furthermore, CAPN8 protein in Capn9-/- mice was almost completely lost, whereas CAPN9 was only partially lost in Capn8-/- mice. Collectively, these results demonstrated that CAPN8 and CAPN9 function as catalytic and chaperone-like subunits, respectively, in G-calpain.
Collapse
Affiliation(s)
| | | | - Midori Yamaguchi
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, and
| | | |
Collapse
|
41
|
Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 2016; 15:854-876. [PMID: 27833121 DOI: 10.1038/nrd.2016.212] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calpains are a family of proteases that were scientifically recognized earlier than proteasomes and caspases, but remain enigmatic. However, they are known to participate in a multitude of physiological and pathological processes, performing 'limited proteolysis' whereby they do not destroy but rather modulate the functions of their substrates. Calpains are therefore referred to as 'modulator proteases'. Multidisciplinary research on calpains has begun to elucidate their involvement in pathophysiological mechanisms. Therapeutic strategies targeting malfunctions of calpains have been developed, driven primarily by improvements in the specificity and bioavailability of calpain inhibitors. Here, we review the calpain superfamily and calpain-related disorders, and discuss emerging calpain-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
42
|
Expression and localization of calpain 3 in the submandibular gland of mice. Arch Oral Biol 2016; 70:9-15. [DOI: 10.1016/j.archoralbio.2016.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 11/21/2022]
|
43
|
An eccentric calpain, CAPN3/p94/calpain-3. Biochimie 2016; 122:169-87. [DOI: 10.1016/j.biochi.2015.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/07/2015] [Indexed: 01/09/2023]
|
44
|
Abstract
Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body.
Collapse
Affiliation(s)
- Sandra T Cooper
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia; and Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia
| | - Paul L McNeil
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia; and Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
45
|
Sun X, Zheng M, Zhang M, Qian M, Zheng Y, Li M, Cretoiu D, Chen C, Chen L, Popescu LM, Wang X. Differences in the expression of chromosome 1 genes between lung telocytes and other cells: mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells and lymphocytes. J Cell Mol Med 2015; 18:801-10. [PMID: 24826900 PMCID: PMC4119386 DOI: 10.1111/jcmm.12302] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/21/2014] [Indexed: 01/18/2023] Open
Abstract
Telocytes (TCs) are a unique type of interstitial cells with specific, extremely long prolongations named telopodes (Tps). Our previous study showed that TCs are distinct from fibroblasts (Fbs) and mesenchymal stem cells (MSCs) as concerns gene expression and proteomics. The present study explores patterns of mouse TC-specific gene profiles on chromosome 1. We investigated the network of main genes and the potential functional correlations. We compared gene expression profiles of mouse pulmonary TCs, MSCs, Fbs, alveolar type II cells (ATII), airway basal cells (ABCs), proximal airway cells (PACs), CD8+ T cells from bronchial lymph nodes (T-BL) and CD8+ T cells from lungs (T-LL). The functional and feature networks were identified and compared by bioinformatics tools. Our data showed that on TC chromosome 1, there are about 25% up-regulated and 70% down-regulated genes (more than onefold) as compared with the other cells respectively. Capn2, Fhl2 and Qsox1 were over-expressed in TCs compared to the other cells, indicating that biological functions of TCs are mainly associated with morphogenesis and local tissue homoeostasis. TCs seem to have important roles in the prevention of tissue inflammation and fibrogenesis development in lung inflammatory diseases and as modulators of immune cell response. In conclusion, TCs are distinct from the other cell types.
Collapse
Affiliation(s)
- Xiaoru Sun
- Department of Pulmonary Medicine, Fudan University, Zhongshan Hospital, Shanghai Respiratory Research Institute, Shanghai, China; Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome. Proc Natl Acad Sci U S A 2014; 111:E5292-301. [PMID: 25422446 DOI: 10.1073/pnas.1421055111] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Wolfram syndrome is a genetic disorder characterized by diabetes and neurodegeneration and considered as an endoplasmic reticulum (ER) disease. Despite the underlying importance of ER dysfunction in Wolfram syndrome and the identification of two causative genes, Wolfram syndrome 1 (WFS1) and Wolfram syndrome 2 (WFS2), a molecular mechanism linking the ER to death of neurons and β cells has not been elucidated. Here we implicate calpain 2 in the mechanism of cell death in Wolfram syndrome. Calpain 2 is negatively regulated by WFS2, and elevated activation of calpain 2 by WFS2-knockdown correlates with cell death. Calpain activation is also induced by high cytosolic calcium mediated by the loss of function of WFS1. Calpain hyperactivation is observed in the WFS1 knockout mouse as well as in neural progenitor cells derived from induced pluripotent stem (iPS) cells of Wolfram syndrome patients. A small-scale small-molecule screen targeting ER calcium homeostasis reveals that dantrolene can prevent cell death in neural progenitor cells derived from Wolfram syndrome iPS cells. Our results demonstrate that calpain and the pathway leading its activation provides potential therapeutic targets for Wolfram syndrome and other ER diseases.
Collapse
|
47
|
Neuhof C, Neuhof H. Calpain system and its involvement in myocardial ischemia and reperfusion injury. World J Cardiol 2014; 6:638-652. [PMID: 25068024 PMCID: PMC4110612 DOI: 10.4330/wjc.v6.i7.638] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/26/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Calpains are ubiquitous non-lysosomal Ca2+-dependent cysteine proteases also present in myocardial cytosol and mitochondria. Numerous experimental studies reveal an essential role of the calpain system in myocardial injury during ischemia, reperfusion and postischemic structural remodelling. The increasing Ca2+-content and Ca2+-overload in myocardial cytosol and mitochondria during ischemia and reperfusion causes an activation of calpains. Upon activation they are able to injure the contractile apparatus and impair the energy production by cleaving structural and functional proteins of myocytes and mitochondria. Besides their causal involvement in acute myocardial dysfunction they are also involved in structural remodelling after myocardial infarction by the generation and release of proapoptotic factors from mitochondria. Calpain inhibition can prevent or attenuate myocardial injury during ischemia, reperfusion, and in later stages of myocardial infarction.
Collapse
|
48
|
De Tullio R, Averna M, Pedrazzi M, Sparatore B, Salamino F, Pontremoli S, Melloni E. Differential regulation of the calpain-calpastatin complex by the L-domain of calpastatin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2583-91. [PMID: 25026177 DOI: 10.1016/j.bbamcr.2014.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/28/2023]
Abstract
Here we demonstrate that the presence of the L-domain in calpastatins induces biphasic interaction with calpain. Competition experiments revealed that the L-domain is involved in positioning the first inhibitory unit in close and correct proximity to the calpain active site cleft, both in the closed and in the open conformation. At high concentrations of calpastatin, the multiple EF-hand structures in domains IV and VI of calpain can bind calpastatin, maintaining the active site accessible to substrate. Based on these observations, we hypothesize that two distinct calpain-calpastatin complexes may occur in which calpain can be either fully inhibited (I) or fully active (II). In complex II the accessible calpain active site can be occupied by an additional calpastatin molecule, now a cleavable substrate. The consequent proteolysis promotes the accumulation of calpastatin free inhibitory units which are able of improving the capacity of the cell to inhibit calpain. This process operates under conditions of prolonged [Ca(2+)] alteration, as seen for instance in Familial Amyotrophic Lateral Sclerosis (FALS) in which calpastatin levels are increased. Our findings show that the L-domain of calpastatin plays a crucial role in determining the formation of complexes with calpain in which calpain can be either inhibited or still active. Moreover, the presence of multiple inhibitory domains in native full-length calpastatin molecules provides a reservoir of potential inhibitory units to be used to counteract aberrant calpain activity.
Collapse
Affiliation(s)
- Roberta De Tullio
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy.
| | - Monica Averna
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy
| | - Marco Pedrazzi
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy
| | - Bianca Sparatore
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy
| | - Franca Salamino
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy
| | - Sandro Pontremoli
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy
| | - Edon Melloni
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 7-16132 Genova, Italy
| |
Collapse
|
49
|
Wheal BD, Beach RJ, Tanabe N, Dixon SJ, Sims SM. Subcellular elevation of cytosolic free calcium is required for osteoclast migration. J Bone Miner Res 2014; 29:725-34. [PMID: 23956003 DOI: 10.1002/jbmr.2068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/15/2013] [Accepted: 08/02/2013] [Indexed: 11/10/2022]
Abstract
Osteoclasts are multinucleated cells responsible for the resorption of bone and other mineralized tissues during development, physiological remodeling, and pathological bone loss. Osteoclasts have the ability to resorb substrate while concurrently migrating. However, the subcellular processes underlying migration are not well understood. It has been proposed that, in other cell types, cytosolic free Ca(2+) concentration ([Ca(2+) ]i ) regulates cell protrusion as well as retraction. Integration of these distinct events would require precise spatiotemporal patterning of subcellular Ca(2+) . The large size of osteoclasts offers a unique opportunity to monitor patterns of Ca(2+) during cell migration. We used ratiometric imaging to map [Ca(2+) ]i within rat and mouse osteoclasts. Migration was characterized by lamellipodial outgrowth at the leading edge, along with intermittent retraction of the uropod. Migrating osteoclasts displayed elevation of [Ca(2+) ]i in the uropod, that began prior to retraction. Dissipation of this [Ca(2+) ]i gradient by loading osteoclasts with the Ca(2+) chelator BAPTA abolished uropod retraction, on both glass and mineralized substrates. In contrast, elevation of [Ca(2+) ]i using ionomycin initiated prompt uropod retraction. To investigate downstream effectors, we treated cells with calpain inhibitor-1, which impaired uropod retraction. In contrast, lamellipodial outgrowth at the leading edge of osteoclasts was unaffected by any of these interventions, indicating that the signals regulating outgrowth are distinct from those triggering retraction. The large size of mature, multinucleated osteoclasts allowed us to discern a novel spatiotemporal pattern of Ca(2+) involved in cell migration. Whereas localized elevation of Ca(2+) is necessary for uropod retraction, lamellipod outgrowth is independent of Ca(2+) -a heretofore unrecognized degree of specificity underlying the regulation of osteoclast migration.
Collapse
Affiliation(s)
- Benjamin D Wheal
- Graduate Program in Neuroscience, The University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
50
|
Zhuang Q, Qian X, Cao Y, Fan M, Xu X, He X. Capn4 mRNA level is correlated with tumour progression and clinical outcome in clear cell renal cell carcinoma. J Int Med Res 2014; 42:282-91. [PMID: 24514433 DOI: 10.1177/0300060513505524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To investigate the mRNA and protein levels of calpain small subunit-1 (Capn4) in human clear cell renal cell carcinoma (ccRCC), to analyse the relationship between Capn4 mRNA level and pathological stage of ccRCC, and to examine the potential of Capn4 as a prognostic factor in ccRCC. METHODS mRNA and protein levels of Capn4 were measured in pairs of tumour tissues and matched adjacent nontumour tissue obtained from patients with ccRCC by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting, respectively. Associations of the mRNA level of Capn4 with pathological tumour stage and the overall survival of ccRCC patients were also analysed. RESULTS Capn4 mRNA and protein level were significantly higher in ccRCC tumour tissues compared with adjacent nontumour tissues as assessed by qRT-PCR and Western blotting, respectively. Higher Capn4 mRNA levels were observed in patients with more advanced pathological stage of ccRCC and were also associated with decreased overall survival of patients with ccRCC. CONCLUSIONS The findings from this study indicate that Capn4 has the potential to be an independent prognostic indicator for ccRCC.
Collapse
Affiliation(s)
- Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | | | | | | | | | | |
Collapse
|