1
|
Nakano A, Mii M, Hoshino Y. Endosperm culture-based allotriploid hybrid production from an interspecific cross of Haemanthus spp.: new insights into polyploidization and hybridization. BMC PLANT BIOLOGY 2025; 25:158. [PMID: 39910457 PMCID: PMC11800442 DOI: 10.1186/s12870-025-06181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Allopolyploid plants are valuable for plant breeding because they have the advantage of polyploidization and hybridization, such as increased vigor and adaptability. Although biparental triploid endosperms have the potential to be used to produce allotriploid plants, the approach remains largely unexplored. Therefore, this study aimed to produce allotriploid plants from the endosperms of interspecific crosses between Haemanthus pauculifolius and H. albiflos. RESULTS Precisely identified embryo and endosperm pairs were used. Embryos were grown on half-strength Murashige and Skoog (MS) medium, and endosperms from interspecific crossing were cultured to induce callus formation and shoot regeneration, which then developed into plantlets. MS medium supplemented with 4-amino-3,5,6-trichloropicolinic acid (picloram) and 6-benzylaminopurine (BAP), or 2,4-dichloro phenoxy acetic acid (2,4-D) and BAP were used for callus induction, and callus formation rates were measured. Flow cytometry, karyotyping, and Sanger sequencing of the nuclear internal transcribed spacer (ITS) region, chloroplast (trnL-trnF region, matK gene), and mitochondrial (nad1 gene) DNA were performed on plantlets derived from embryos and endosperms, along with their parental plants. In this study, a total of 18 pairs of diploid and triploid plantlets were obtained from the embryo and endosperm, respectively. Callus formation rates were significantly higher on media with picloram and BAP compared to 2,4-D and BAP. ITS sequencing and karyotype analyses detected that all the 16 pairs of plantlets analyzed were hybrids, indicating that most endosperm-derived plantlets were allotriploid with a parental chromosome ratio of 2:1 (maternal: paternal). In addition, chloroplast DNA sequencing revealed maternal inheritance in the endosperm-derived plantlets, consistent with embryo-derived plantlets. CONCLUSIONS This study is the first to demonstrate the production of allotriploid hybrid plants through endosperm culture using seeds from interspecific crosses, as supported by cellular and genetic analyses. Additionally, the study established a novel system for simultaneously producing diploid and allotriploid hybrids from a single seed, providing valuable materials to study the effects of polyploidization and hybridization in allopolyploid plants. These findings contribute to plant breeding strategies and advance our understanding of hybridization, polyploidization, and allopolyploid plant development.
Collapse
Affiliation(s)
- Arisa Nakano
- Field Science Center for Northern Biosphere, Hokkaido University, Kita 11, Nishi 10, Kita-Ku, Sapporo, 060-0811, Japan
| | - Masahiro Mii
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwanoha 6-2-1, Kashiwa, Chiba, 277-0882, Japan
| | - Yoichiro Hoshino
- Field Science Center for Northern Biosphere, Hokkaido University, Kita 11, Nishi 10, Kita-Ku, Sapporo, 060-0811, Japan.
| |
Collapse
|
2
|
Liyanage NS, Awwad F, Gonçalves dos Santos KC, Jayawardena TU, Mérindol N, Desgagné-Penix I. Navigating Amaryllidaceae alkaloids: bridging gaps and charting biosynthetic territories. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:16-34. [PMID: 38652148 PMCID: PMC11659181 DOI: 10.1093/jxb/erae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Amaryllidaceae alkaloid (AA) biosynthesis has garnered significant attention in recent years, particularly with the commercialization of galanthamine as a treatment for the symptoms of Alzheimer's disease. A significant amount of research work over the last eight decades has focused on the understanding of AA biosynthesis, starting from early radiolabelling studies to recent multi-omics analysis with modern biotechnological advancements. Those studies enabled the identification of hundreds of metabolites, the characterization of biochemical pathways, and an understanding of the environmental stimuli and of the molecular regulation of these pharmaceutically and agriculturally important metabolites. Despite numerous studies, there remain significant gaps in understanding the biosynthesis of AAs in Amaryllidaceae plants. As such, further research is needed to fully elucidate the metabolic pathways and facilitate their production. This review aims to provide a comprehensive summary of the current state of knowledge on AA biosynthesis, from elicitation of expression of transcription factors in the cell nucleus to alkaloid transport in the apoplast, and to highlight the challenges that need to be overcome for further advancement.
Collapse
Affiliation(s)
- Nuwan Sameera Liyanage
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Fatima Awwad
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natacha Mérindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| |
Collapse
|
3
|
Negri S, Pietrolucci F, Andreatta S, Chinyere Njoku R, Antunes Silva Nogueira Ramos C, Crimi M, Commisso M, Guzzo F, Avesani L. Bioprospecting of Artemisia genus: from artemisinin to other potentially bioactive compounds. Sci Rep 2024; 14:4791. [PMID: 38413638 PMCID: PMC10899597 DOI: 10.1038/s41598-024-55128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Species from genus Artemisia are widely distributed throughout temperate regions of the northern hemisphere and many cultures have a long-standing traditional use of these plants as herbal remedies, liquors, cosmetics, spices, etc. Nowadays, the discovery of new plant-derived products to be used as food supplements or drugs has been pushed by the exploitation of bioprospection approaches. Often driven by the knowledge derived from the ethnobotanical use of plants, bioprospection explores the existing biodiversity through integration of modern omics techniques with targeted bioactivity assays. In this work we set up a bioprospection plan to investigate the phytochemical diversity and the potential bioactivity of five Artemisia species with recognized ethnobotanical tradition (A. absinthium, A. alba, A. annua, A. verlotiorum and A. vulgaris), growing wild in the natural areas of the Verona province. We characterized the specialized metabolomes of the species (including sesquiterpenoids from the artemisinin biosynthesis pathway) through an LC-MS based untargeted approach and, in order to identify potential bioactive metabolites, we correlated their composition with the in vitro antioxidant activity. We propose as potential bioactive compounds several isomers of caffeoyl and feruloyl quinic acid esters (e.g. dicaffeoylquinic acids, feruloylquinic acids and caffeoylferuloylquinic acids), which strongly characterize the most antioxidant species A. verlotiorum and A. annua. Morevoer, in this study we report for the first time the occurrence of sesquiterpenoids from the artemisinin biosynthesis pathway in the species A. alba.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Fabio Pietrolucci
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | | | - Ruth Chinyere Njoku
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
| | | | - Massimo Crimi
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| | - Linda Avesani
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
4
|
Richard-Bollans A, Aitken C, Antonelli A, Bitencourt C, Goyder D, Lucas E, Ondo I, Pérez-Escobar OA, Pironon S, Richardson JE, Russell D, Silvestro D, Wright CW, Howes MJR. Machine learning enhances prediction of plants as potential sources of antimalarials. FRONTIERS IN PLANT SCIENCE 2023; 14:1173328. [PMID: 37304721 PMCID: PMC10248027 DOI: 10.3389/fpls.2023.1173328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023]
Abstract
Plants are a rich source of bioactive compounds and a number of plant-derived antiplasmodial compounds have been developed into pharmaceutical drugs for the prevention and treatment of malaria, a major public health challenge. However, identifying plants with antiplasmodial potential can be time-consuming and costly. One approach for selecting plants to investigate is based on ethnobotanical knowledge which, though having provided some major successes, is restricted to a relatively small group of plant species. Machine learning, incorporating ethnobotanical and plant trait data, provides a promising approach to improve the identification of antiplasmodial plants and accelerate the search for new plant-derived antiplasmodial compounds. In this paper we present a novel dataset on antiplasmodial activity for three flowering plant families - Apocynaceae, Loganiaceae and Rubiaceae (together comprising c. 21,100 species) - and demonstrate the ability of machine learning algorithms to predict the antiplasmodial potential of plant species. We evaluate the predictive capability of a variety of algorithms - Support Vector Machines, Logistic Regression, Gradient Boosted Trees and Bayesian Neural Networks - and compare these to two ethnobotanical selection approaches - based on usage as an antimalarial and general usage as a medicine. We evaluate the approaches using the given data and when the given samples are reweighted to correct for sampling biases. In both evaluation settings each of the machine learning models have a higher precision than the ethnobotanical approaches. In the bias-corrected scenario, the Support Vector classifier performs best - attaining a mean precision of 0.67 compared to the best performing ethnobotanical approach with a mean precision of 0.46. We also use the bias correction method and the Support Vector classifier to estimate the potential of plants to provide novel antiplasmodial compounds. We estimate that 7677 species in Apocynaceae, Loganiaceae and Rubiaceae warrant further investigation and that at least 1300 active antiplasmodial species are highly unlikely to be investigated by conventional approaches. While traditional and Indigenous knowledge remains vital to our understanding of people-plant relationships and an invaluable source of information, these results indicate a vast and relatively untapped source in the search for new plant-derived antiplasmodial compounds.
Collapse
Affiliation(s)
| | - Conal Aitken
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, United Kingdom
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | - David Goyder
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Eve Lucas
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Ian Ondo
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Samuel Pironon
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, United Kingdom
| | - James E. Richardson
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Tropical Diversity Section, Royal Botanic Garden, Edinburgh, United Kingdom
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - David Russell
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Daniele Silvestro
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Colin W. Wright
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom
| | - Melanie-Jayne R. Howes
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, London, United Kingdom
| |
Collapse
|
5
|
Youssef D, El-Bakatoushi R, Elframawy A, El-Sadek L, Badan GE. Molecular phylogenetic study of flavonoids in medicinal plants: a case study family Apiaceae. JOURNAL OF PLANT RESEARCH 2023; 136:305-322. [PMID: 36853579 PMCID: PMC10126080 DOI: 10.1007/s10265-023-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/12/2023] [Indexed: 05/25/2023]
Abstract
The current study examined the phylogenetic pattern of medicinal species of the family Apiaceae based on flavonoid groups production, as well as the overall mechanism of the key genes involved in flavonol and flavone production. Thirteen species of the family Apiaceae were used, including Eryngium campestre from the subfamily Saniculoideae, as well as Cuminum cyminum, Carum carvi, Coriandrum sativum, Apium graveolens, Petroselinum crispum, Pimpinella anisum, Anethum graveolens, Foeniculum vulgare, Daucus carota, Ammi majus, Torilis arvensis, and Deverra tortuosa from the subfamily Apioideae. The seeds were cultivated, and the leaves were collected to estimate flavonoids and their groups, physiological factors, transcription levels of flavonol and flavone production-related genes. The phylogenetic relationship between the studied species was established using the L-ribosomal 16 (rpl16) chloroplast gene. The results revealed that the studied species were divided into two patterns: six plant species, E. campestre, C. carvi, C. sativum, P. anisum, An. graveolens, and D. carota, contained low content of flavonoids, while the other seven species had high content. This pattern of flavonoids production coincided with the phylogenetic relationships between the studied species. In contrast, the phylogeny of the flavonol and flavone synthase genes was incompatible with the quantitative production of their products. The study concluded that the increment in the production of flavonol depends on the high expression of chalcone synthase, chalcone isomerase, flavanone 3 hydroxylase, flavonol synthase, the increase of Abscisic acid, sucrose, and phenyl ammonia lyase, while flavone mainly depends on evolution and on the high expression of the flavone synthase gene.
Collapse
Affiliation(s)
- Dalia Youssef
- Biology and Geology Sciences Department, Faculty of Education, University of Alexandria, EgyptAlexandria, El-Shatby, 21526, Egypt.
| | - Ranya El-Bakatoushi
- Biology and Geology Sciences Department, Faculty of Education, University of Alexandria, EgyptAlexandria, El-Shatby, 21526, Egypt
| | - Asmaa Elframawy
- Nucleic Acids Research Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Borg El-Arab, Alexandria, 21933, Egypt
| | - Laila El-Sadek
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Camp Caesar, Alexandria, 21525, Egypt
| | - Ghada El Badan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Camp Caesar, Alexandria, 21525, Egypt
| |
Collapse
|
6
|
Chaichompoo W, Rojsitthisak P, Pabuprapap W, Siriwattanasathien Y, Yotmanee P, Suksamrarn A. Alkaloids with cholinesterase inhibitory activities from the bulbs of Crinum × amabile Donn ex Ker Gawl. PHYTOCHEMISTRY 2023; 205:113473. [PMID: 36244402 DOI: 10.1016/j.phytochem.2022.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Seven previously undescribed alkaloids, crinamabilines A-G, two non-alkaloidal compounds, crinamabidiene and 6-phenylpiperonyl alcohol, two first naturally occurring alkaloids, 3-epibuphanisine and (+)-1β,2β-epoxy-epicrinine, together with nineteen known alkaloids, were isolated from the bulbs of Crinum × amabile Donn ex Ker Gawl. Their structures and absolute configurations were elucidated by NMR, MS and ECD spectroscopic techniques. Ungeremine displayed the most potent inhibitory activity against acetylcholinesterase (IC50 0.21 μM), which was about 6-fold more active than the reference drug, galanthamine (IC50 1.23 μM). Ungeremine also exhibited the strongest inhibitory activity against butyrylcholinesterase (IC50 3.57 μM), which was comparable to galanthamine (IC50 3.11 μM). The molecular docking studies were performed and were well in agreement with the experimental results.
Collapse
Affiliation(s)
- Waraluck Chaichompoo
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Natural Products for Aging and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Natural Products for Aging and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Wachirachai Pabuprapap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Yuttana Siriwattanasathien
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Pathumwadee Yotmanee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| |
Collapse
|
7
|
Kaigongi MM, Lukhoba CW, Musila FM, Taylor M, Mbugua RW, Githiomi J, Yenesew A, Makunga NP. A versatile untargeted metabolomics-driven technology for rapid phytochemical profiling of stem barks of Zanthoxylum species with antioxidant and antimicrobial activities. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractZanthoxylum species are credited with various uses in ethnomedicine due to their rich metabolite composition. In Kenya, these include management of cancer and microbial related ailments. However, there are limited reports showing how the bioactivity of Kenyan Zanthoxylum species is linked to their phytochemical profiles. This study therefore aimed at examining the chemical variation among five Zanthoxylum species found in Kenya (Z. chalybeum, Z. gilletii, Z. holtzianum, Z. paracanthum and Z. usambarense) using metabolomics approaches and the anti-oxidant and antimicrobial activities of these species. In a Folin–Ciocalteu test, the phenolic content of the stem bark extracts of these species were 73.083–145.272 mg TAE/g, while the alkaloids (in bromothymol blue chromogenic test) and flavonoids (in aluminium chloride test) were found to be 152.39–207.19 mg ME/g, and 109.416–186.413 mg CE/g, respectively. These extracts also exerted strong antioxidant activities in the 2,2-iphenyl-1-picrylhydrazyl (DPPH) and ferric ion reducing antioxidant power assays. In a broth dilution assay, the extract of the stem bark of Z. holtzianum ability showed the highest antimicrobial activity, followed by Z. chalybeum stem bark extract. The activities were positively correlated to both flavonoids and alkaloids concentrations, while the concentration of phenolics had weak negative correlation to antimicrobial activities. A chemometric analysis of the liquid-chromatography mass spectrometry profiles led to grouping of the species into three clusters. This study illustrates the variation in the bioactivity of Zanthoxylum species based on metabolite composition and justifies the wide usage of Zanthoxylum species in Kenyan traditional medicinal practices.
Graphical abstract
Collapse
|
8
|
Comment on Pyrrolizidine Alkaloids and Terpenes from Senecio (Asteraceae): Chemistry and Research Gaps in Africa. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248868. [PMID: 36558004 PMCID: PMC9781224 DOI: 10.3390/molecules27248868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The genus Senecio is one of the largest in Asteraceae. There are thousands of species across the globe, either confirmed or awaiting taxonomic delimitation. While the species are best known for the toxic pyrrolizidine alkaloids that contaminate honeys (as bees select pollen from the species) and teas via lateral transfer and accumulation from adjacent roots of Senecio in the rhizosphere, they are also associated with more serious cases leading to fatality of grazing ruminants or people by contamination or accidental harvesting for medicine. Surprisingly, there are significantly more sesquiterpenoid than pyrrolizidine alkaloid-containing species. The main chemical classes, aside from alkaloids, are flavonoids, cacalols, eremophilanes, and bisabolols, often in the form of furan derivatives or free acids. The chemistry of the species across the globe generally overlaps with the 469 confirmed species of Africa. A small number of species express multiple classes of compounds, meaning the presence of sesquiterpenes does not exclude alkaloids. It is possible that there are many species that express the pyrrolizidine alkaloids, in addition to the cacalols, eremophilanes, and bisabolols. The aim of the current communication is, thus, to identify the research gaps related to the chemistry of African species of Senecio and reveal the possible chemical groups in unexplored taxa by way of example, thereby creating a summary of references that could be used to guide chemical assignment in future studies.
Collapse
|
9
|
Raj Meena B, Chittora D, Meena S, Jain T, Sharma K. Effect of Different Physical Factors on efficacy of Thevetia Peruviana leaf extract and bio-formulations. Biochem Biophys Rep 2022; 30:101271. [PMID: 35586247 PMCID: PMC9108860 DOI: 10.1016/j.bbrep.2022.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Plant extract possess various secondary metabolites which are antifungal in nature and can be used as a safer alternative to the synthetic fungicides. As we all know that the chemical fungicides are harmful not only for humans but also for animals, other vegetation and for complete ecosystem. To overcome this problem, we have to focused on another alternative which are biologically libel and nonhazardous also. In the present study, herbal formulation was prepared in various combination ratios with Thevetia peruviana leaf extracts, cow dung and neem oil cake. The major aim of this short study is to check the stability of the said plant extracts and prepared herbal formulation on various physical factors like heat, temperature, pH, sunlight and storage etc. The extracts and herbal formulations were exposed to varying conditions of the parameters selected for a precise time period, and then observing the effect as a function of change in the crude extract activity, herbal formulation activity and change minimum inhibitory concentration of plant extract against the Alternaria solani. Control set of MIC, and extract free medium were maintained for comparison in each set of experiment against Alternaria solani. Results suggested that efficacy of leaf extracts and different formulations was not affected by wet heat up to 100 °C while slight reduction in antifungal activity of the plant extract and herbal formulations were observed with dry heat at 100 °C. In addition, slight reduction in activity of extract and herbal formulations was observed with change in pH. However antifungal activity of plant extract as well as herbal formulations, remain unaffected at alkaline pH (pH 9) and neutral pH (pH7). Storage for 6 and 12 months had no negative effect on extract and herbal formulation efficacy and the antifungal activity was observed similar to freshly prepared extract activity. The present study concluded that the plant disease or plant pathogens can be controlled by plant extract and plant based bioformulations by increasing the shelf life with some little changes in the physical parameters such as light, temperature, pH and storage. Effect of Different Physical Factors on Efficacy of Thevetia Peruviana leaf Extract has been presented. Bio-formulation of Thevetia Peruviana prepared. Efficacy of leaf extracts and different formulations was not affected by wet heat up to 100 °C.
Collapse
|
10
|
Reddy K, Stander MA, Stafford GI, Makunga NP. Mass Spectrometry Metabolomics and Feature-Based Molecular Networking Reveals Population-Specific Chemistry in Some Species of the Sceletium Genus. Front Nutr 2022; 9:819753. [PMID: 35425789 PMCID: PMC9001948 DOI: 10.3389/fnut.2022.819753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
The Sceletium genus has been of medicinal importance in southern Africa for millennia and Sceletium tortuosum (Aizoaceae), one of eight species in the genus has gained pharmaceutical importance as an anxiolytic and anti-depressant due to the presence of mesembrine alkaloids. S. tortuosum is used for the manufacture of herbal teas, dietary supplements and other phytopharmaceutical products. This study aimed to provide a metabolomic characterization of S. tortuosum and its sister species as these are not easy to distinguish using morphology alone. Plant samples were thus collected from various locations in the succulent Karoo (South Africa) and analyzed through liquid chromatography-mass spectrometry (LC-MS), using MSE fragmentation as a putative tool for chemical identities. Metabolomics-based analyses in combination with molecular networking were able to distinguish between the four species of Sceletium based on the presence of 4-(3,4-dimethyoxyphenyl)-4-[2-acetylmethlamino)ethyl]cyclohexanone (m/z 334.2020; RT 6.60 min), mesembrine (m/z 290.1757; RT 5.10 min) and 4'-O-demethylmesembrenol (m/z 276.1597; RT 4.17 min). Metabolomic profiles varied according to the different localities and metabolites occurred at variable quantitative levels in Sceletium ecotypes. Molecular networking provided the added advantage of being able to observe mesembrine alkaloid isomers and coeluting metabolites (from the joubertiamine group) that were difficult to discern without this application. By combining high-throughput metabolomics together with global and feature based-molecular networking, a powerful metabolite profiling platform that is able to discern chemical patterns within and between populations was established. These techniques were able to reveal chemotaxonomic relationships and allowed for the discovery of chemical markers that may be used as part of monitoring protocols during the manufacture of phytopharmaceutical and dietary products based on Sceletium.
Collapse
Affiliation(s)
- Kaylan Reddy
- Department of Botany and Zoology, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Marietjie A. Stander
- Department of Biochemistry, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Gary I. Stafford
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Nokwanda P. Makunga
| |
Collapse
|
11
|
Zaman W, Ye J, Saqib S, Liu Y, Shan Z, Hao D, Chen Z, Xiao P. Predicting potential medicinal plants with phylogenetic topology: Inspiration from the research of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114515. [PMID: 34388416 DOI: 10.1016/j.jep.2021.114515] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a dominant source of pharmacological drugs for the treatment and cure of different disorders and diseases. However, selecting the most biologically active plant species for further screening is still challenging. Phylogeny has strong explanatory powers and provides predictive perspectives that are not available in traditional plant classifications. China, which is endowed with a diverse set of therapeutic cures from Mother Nature, represents an ideal environment for the phylogenetic analysis of potential medicinal plants. MATERIALS AND METHODS Herein, we prepared a database of 7,451 traditional Chinese medicinal (TCM) plants, including species with therapeutic effects grouped in 14 categories. To limit our exploration of novel therapeutic species, we plotted the medicinal effects on the phylogenetic tree of almost 30,000 species of China to find hot nodes of therapeutic effects. We used the net relatedness index (NRI) and the nearest taxon index (NTI) to identify clustering and overdispersion of the phylogenetic distribution of TCM plants. RESULTS The NRI and NTI analyses highlighted 3,392 hot node species with single therapeutic effects within 507 genera and 89 families on the phylogenetic tree and about 70% of the 14 medicinal categories clusters identified. The general pattern of the hot nodes on the phylogenetic tree indicates that basal angiosperms and basal eudicots radiated for therapeutic effects. CONCLUSIONS Our study may provide a more targeted way to discover phylogeny-guided drugs in the early screening stage, which may lead to a higher discovery efficiency of new drugs with meaningful biological activities. Phylogenetic studies of plants that are richer in bioactive compounds can set the ground for the identification and discovery of alternative drugs.
Collapse
Affiliation(s)
- Wajid Zaman
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianfei Ye
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yun Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhangjian Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dacheng Hao
- School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China.
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| |
Collapse
|
12
|
Dennehy Z, Bilsborrow J, Culham A, David J, Könyves K. The complete plastome of the South African species, Amaryllis belladonna L. (Amaryllidaceae). Mitochondrial DNA B Resour 2021; 6:3393-3395. [PMID: 34790872 PMCID: PMC8592595 DOI: 10.1080/23802359.2021.1997121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The complete plastome sequence of Amaryllis belladonna L. is assembled and annotated. This is the type species of Amaryllis and therefore the type of the family Amaryllidaceae and as such, is important to document the phylogenetic position of the family. The plastome sequence has a length of 158,145 bp, with the large single copy (LSC) regions comprising 85,963 bp, the small single copy (SSC) 18634 bp and two identical inverted repeats (IR) regions each of 26,774 bp. Phylogenetic analysis fully resolved Amaryllis in a clade with Crinum L. in the Amaryllidoideae, as expected, with the Allioideae as a sister group. Agapanthus (Agapanthoideae) is a sister to the other two subfamilies in the Amaryllidaceae. The phylogenetic tree produced corresponds to previous topologies based on plastome molecular markers including matK, ndhF and rbcL. This is the first paper reporting the whole plastome comparison of the type genera of all three subfamilies in the Amaryllidaceae.
Collapse
Affiliation(s)
- Zoë Dennehy
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Jordan Bilsborrow
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Alastair Culham
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - John David
- Royal Horticultural Society, RHS Garden Wisley, Wisley, United Kingdom
| | - Kálmán Könyves
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- Royal Horticultural Society, RHS Garden Wisley, Wisley, United Kingdom
| |
Collapse
|
13
|
Könyves K, Bilsborrow J, Christodoulou MD, Culham A, David J. Comparative plastomics of Amaryllidaceae: inverted repeat expansion and the degradation of the ndh genes in Strumaria truncata Jacq. PeerJ 2021; 9:e12400. [PMID: 34824912 PMCID: PMC8592052 DOI: 10.7717/peerj.12400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Amaryllidaceae is a widespread and distinctive plant family contributing both food and ornamental plants. Here we present an initial survey of plastomes across the family and report on both structural rearrangements and gene losses. Most plastomes in the family are of similar gene arrangement and content however some taxa have shown gains in plastome length while in several taxa there is evidence of gene loss. Strumaria truncata shows a substantial loss of ndh family genes while three other taxa show loss of cemA, which has been reported only rarely. Our sparse sampling of the family has detected sufficient variation to suggest further sampling across the family could be a rich source of new information on plastome variation and evolution.
Collapse
Affiliation(s)
- Kálmán Könyves
- Royal Horticultural Society Garden Wisley, Woking, United Kingdom
- Herbarium, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Jordan Bilsborrow
- Herbarium, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Alastair Culham
- Herbarium, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - John David
- Royal Horticultural Society Garden Wisley, Woking, United Kingdom
| |
Collapse
|
14
|
Milliken W, Walker BE, Howes MJR, Forest F, Nic Lughadha E. Plants used traditionally as antimalarials in Latin America: Mining the tree of life for potential new medicines. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114221. [PMID: 34029639 DOI: 10.1016/j.jep.2021.114221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria remains a serious and challenging disease. Traditional antimalarial medicines are largely based on plants, and ethnopharmacological research has inspired the development of antimalarial pharmaceuticals such as artemisinin. Antimalarial drug resistance is an increasing problem in Plasmodium species, and new therapeutic strategies to combat malaria are needed. Although the number of malaria cases has been decreasing in Latin America, malaria remains a significant threat in many regions. Local people in Latin America have been using numerous plant species to treat malaria, some of which have been scientifically studied, but many others have not. AIM OF THE STUDY Our principal objective is to harness ethnobotanical data on species used traditionally to treat malaria, combined with phylogenetic approaches, to understand how ethnobotany could help identify plant genera as potential sources of new medicines. MATERIALS AND METHODS Plants used to treat malaria in Latin America were compiled from published and grey literature, unpublished data, and herbarium specimens. Initial assessment of potentially important species/genera/families included compiling the number of species used within the genus, the number of use reports per genus and species, and the geographic distribution of their use. The analysis of taxonomic distribution of species reported as antimalarial in Latin America (excluding the Southern Cone) was conducted, to determine which genera and families with reputed antimalarial properties are over-represented, and phylogenetic analyses were performed to identify if there was evidence for antimalarial species being dispersed/clustered throughout the tree or at its tips. This approach enabled 'hot-nodes' in certain families to be identified, to predict new genera with potential antimalarial properties. RESULTS Over 1000 plant species have been used to treat malaria in Latin America, of which over 600 species were cited only once. The genera with the highest number of antimalarial species were Aspidosperma, Solanum, Piper, Croton and Aristolochia. In terms of geographic distribution, the most widely used genera were Aspidosperma, Momordica, Cinchona, Senna and Stachytarpheta. Significant phylogenetic signal was detected in the distribution of native species used for malaria, analysed in a genus-level phylogenetic framework. The eudicot and magnoliidae lineages were over-represented, while monocots were not. CONCLUSION Analysis of ethnobotanical use reports in a phylogenetic framework reveals the existence of hot nodes for malaria across the Latin American flora. We demonstrate how species and genera currently lacking such reports could be pinpointed as of potential interest based on their evolutionary history. Extending this approach to other regions of the world and other diseases could accelerate the discovery of novel medicines and enhance healthcare in areas where new therapeutic strategies are needed.
Collapse
Affiliation(s)
| | | | - Melanie-Jayne R Howes
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, SE1 9NH, UK.
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK.
| | | |
Collapse
|
15
|
Basset Y, Jorge LR, Butterill PT, Lamarre GPA, Dahl C, Ctvrtecka R, Gripenberg S, Lewis OT, Barrios H, Brown JW, Bunyavejchewin S, Butcher BA, Cognato AI, Davies SJ, Kaman O, Klimes P, Knížek M, Miller SE, Morse GE, Novotny V, Pongpattananurak N, Pramual P, Quicke DLJ, Sakchoowong W, Umari R, Vesterinen EJ, Weiblen G, Wright SJ, Segar ST. Host specificity and interaction networks of insects feeding on seeds and fruits in tropical rainforests. OIKOS 2021. [DOI: 10.1111/oik.08152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yves Basset
- ForestGEO, Smithsonian Tropical Research Inst., Apartado Balboa Ancon Panamá
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology Ceske Budejovice Czech Republic
- Maestria de Entomologia, Univ. de Panamá Panama City Republic of Panama
| | - Leonardo R. Jorge
- Faculty of Science, Univ. of South Bohemia Ceske Budejovice Czech Republic
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology Ceske Budejovice Czech Republic
| | - Philip T. Butterill
- Faculty of Science, Univ. of South Bohemia Ceske Budejovice Czech Republic
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology Ceske Budejovice Czech Republic
| | - Greg P. A. Lamarre
- ForestGEO, Smithsonian Tropical Research Inst., Apartado Balboa Ancon Panamá
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology Ceske Budejovice Czech Republic
| | - Chris Dahl
- Faculty of Science, Univ. of South Bohemia Ceske Budejovice Czech Republic
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology Ceske Budejovice Czech Republic
| | - Richard Ctvrtecka
- Faculty of Science, Univ. of South Bohemia Ceske Budejovice Czech Republic
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology Ceske Budejovice Czech Republic
| | - Sofia Gripenberg
- School of Biological Sciences, Univ. of Reading Reading Berkshire UK
| | | | - Héctor Barrios
- Maestria de Entomologia, Univ. de Panamá Panama City Republic of Panama
| | - John W. Brown
- National Museum of Natural History, Smithsonian Inst. Washington DC USA
| | | | - Buntika A. Butcher
- Dept of Biology, Faculty of Science, Integrative Ecology Laboratory, Chulalongkorn Univ. Phayathai Road Pathumwan Bangkok Thailand
- Center of Excellence in Entomology: Bee Biology, Diversity of Insects and Mites, Chulalongkorn Univ. Pathumwan Bangkok Thailand
| | - Anthony I. Cognato
- Dept of Entomology, Michigan State Univ., Natural Science Bldg. East Lansing MI USA
| | - Stuart J. Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Inst. and National Museum of Natural History Washington USA
| | - Ondrej Kaman
- Faculty of Science, Univ. of South Bohemia Ceske Budejovice Czech Republic
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology Ceske Budejovice Czech Republic
| | - Petr Klimes
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology Ceske Budejovice Czech Republic
| | - Miloš Knížek
- Forestry and Game Management Research Inst. Strnady Jíloviště Czech Republic
| | - Scott E. Miller
- National Museum of Natural History, Smithsonian Inst. Washington DC USA
| | | | - Vojtech Novotny
- Faculty of Science, Univ. of South Bohemia Ceske Budejovice Czech Republic
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology Ceske Budejovice Czech Republic
| | | | - Pairot Pramual
- Dept of Biology, Faculty of Science, Mahasarakham Univ., Kantharawichai District Maha Sarakham Thailand
| | - Donald L. J. Quicke
- Dept of Biology, Faculty of Science, Integrative Ecology Laboratory, Chulalongkorn Univ. Phayathai Road Pathumwan Bangkok Thailand
| | - Watana Sakchoowong
- Dept of National Parks, Forest Entomology Group, Wildlife and Plant Conservation Praholyothin Road Chatujak Bangkok Thailand
| | - Ruma Umari
- New Guinea Binatang Center Madang Papua New Guinea
| | - Eero J. Vesterinen
- Dept of Biology and Biodiversity Unit, Univ. of Turku Turku Finland
- Dept of Ecology, Swedish Univ. of Agricultural Sciences Uppsala Sweden
| | - George Weiblen
- Bell Museum and Dept of Plant and Microbial Biology, Univ. of Minnesota, Gortner Avenue St. Paul MN USA
| | - S. Joseph Wright
- ForestGEO, Smithsonian Tropical Research Inst. Balboa Ancon Panamá
| | - Simon T. Segar
- Agriculture and Environment Dept, Harper Adams Univ. Newport Shropshire UK
| |
Collapse
|
16
|
Navarrete-Segueda A, Cortés-Flores J, Cornejo-Tenorio G, González-Arqueros ML, Torres-García M, Ibarra-Manríquez G. Timber and non-timber forest products in the northernmost Neotropical rainforest: Ecological factors unravel their landscape distribution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111819. [PMID: 33321354 DOI: 10.1016/j.jenvman.2020.111819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The benefits provided by tropical rainforests are unevenly distributed throughout the landscape and are shaped by abiotic and biotic components that influence the spatial distribution and functional traits of the species involved. We tested whether environmental stratification of the rainforest in biophysical Landscape Units (LU), defined by topography and soil, is related to the spatial distribution of diversity, abundance and productivity (standing biomass) of tree assemblages that provide potential forest products (PFP). Considering that different PFP are associated with specific plant traits, we also tested whether a phylogenetic signal exists among the species that comprise specific use categories. Non-metric multidimensional scaling ordinations and permutational analysis of variance were based on the frequency, abundance and productivity of 129 species, the PFP of which were classified as fodder, food, fuelwood, medicinal, melliferous, ornamental, plywood and timber in 15 plots of 0.5 ha each. We constructed a phylogenetic tree of the studied species and analyzed the phylogenetic signal strength (D-statistic) among them. The spatial distribution of diversity and abundance of useful species changes among the LU. Specific PFP can be provided in contrasting habitat conditions, but generally not by the same species. The PFP categories that presented a phylogenetic signal were associated with wood characteristics (fuelwood and plywood) and the palatability of the leaves and reproductive structures (fodder). The Moraceae family was significantly related to fodder and plywood, whereas Meliaceae, Myrtaceae and Sapotaceae were mostly used for fuelwood. The medicinal species presented convergent traits distributed throughout the phylogeny. However, since our study included a broad variety of plant structures, it is possible that phylogenetic dispersion can change if we consider the specific uses within each category. Our findings show that the assemblages of PFP suppliers can be clustered through biophysical units based on soil and topography, and specific categories of PFP are often supplied by phylogenetically related species. This knowledge is fundamental in order to incorporate the high diversity of tree species and their potential uses into productive reforestation and agroforestry programs.
Collapse
Affiliation(s)
- Armando Navarrete-Segueda
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua carretera a Pátzcuaro No. 8701. Col. San José de la Huerta. C. P. 58190. Morelia, Michoacán, Mexico
| | - Jorge Cortés-Flores
- Jardín Botánico, Instituto de Biología, Sede Tlaxcala, Universidad Nacional Autónoma de México, Ex Fábrica San Manuel S/N. Col. San Manuel. C. P., 90640, Santa Cruz Tlaxcala, Tlaxcala, Mexico
| | - Guadalupe Cornejo-Tenorio
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua carretera a Pátzcuaro No. 8701. Col. San José de la Huerta. C. P. 58190. Morelia, Michoacán, Mexico
| | - M Lourdes González-Arqueros
- CONACYT-Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C. P. 58060, Morelia, Michoacán, Mexico
| | - Mariana Torres-García
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua carretera a Pátzcuaro No. 8701. Col. San José de la Huerta. C. P. 58190. Morelia, Michoacán, Mexico
| | - Guillermo Ibarra-Manríquez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua carretera a Pátzcuaro No. 8701. Col. San José de la Huerta. C. P. 58190. Morelia, Michoacán, Mexico.
| |
Collapse
|
17
|
Gras A, Hidalgo O, D’Ambrosio U, Parada M, Garnatje T, Vallès J. The Role of Botanical Families in Medicinal Ethnobotany: A Phylogenetic Perspective. PLANTS 2021; 10:plants10010163. [PMID: 33467763 PMCID: PMC7830233 DOI: 10.3390/plants10010163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/17/2023]
Abstract
Studies suggesting that medicinal plants are not chosen at random are becoming more common. The goal of this work is to shed light on the role of botanical families in ethnobotany, depicting in a molecular phylogenetic frame the relationships between families and medicinal uses of vascular plants in several Catalan-speaking territories. The simple quantitative analyses for ailments categories and the construction of families and disorders matrix were carried out in this study. A Bayesian approach was used to estimate the over- and underused families in the medicinal flora. Phylogenetically informed analyses were carried out to identify lineages in which there is an overrepresentation of families in a given category of use, i.e., hot nodes. The ethnobotanicity index, at a specific level, was calculated and also adapted to the family level. Two diversity indices to measure the richness of reported taxa within each family were calculated. A total of 47,630 use reports were analysed. These uses are grouped in 120 botanical families. The ethnobotanicity index for this area is 14.44% and the ethnobotanicity index at the family level is 68.21%. The most-reported families are Lamiaceae and Asteraceae and the most reported troubles are disorders of the digestive and nutritional system. Based on the meta-analytic results, indicating hot nodes of useful plants at the phylogenetic level, specific ethnopharmacological research may be suggested, including a phytochemical approach of particularly interesting taxa.
Collapse
Affiliation(s)
- Airy Gras
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Catalonia, Spain; (O.H.); (T.G.)
- Correspondence: (A.G.); (J.V.)
| | - Oriane Hidalgo
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Catalonia, Spain; (O.H.); (T.G.)
| | - Ugo D’Ambrosio
- Mediterranean Ethnobiology Programme Director, Global Diversity Foundation, 37 St. Margarets Street, Canterbury, Kent CT1 2TU, UK;
| | - Montse Parada
- Laboratori de Botànica (UB)—Unitat associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Institut de Recerca de la Biodiversitat—IRBio, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain;
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Catalonia, Spain; (O.H.); (T.G.)
| | - Joan Vallès
- Laboratori de Botànica (UB)—Unitat associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Institut de Recerca de la Biodiversitat—IRBio, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain;
- Secció de Ciències Biològiques, Institut d’Estudis Catalans, Carrer del Carme 47, 08001 Barcelona, Catalonia, Spain
- Correspondence: (A.G.); (J.V.)
| |
Collapse
|
18
|
Koistinen VM, Tuomainen M, Lehtinen P, Peltola P, Auriola S, Jonsson K, Hanhineva K. Side-stream products of malting: a neglected source of phytochemicals. NPJ Sci Food 2020; 4:21. [PMID: 33311514 PMCID: PMC7733442 DOI: 10.1038/s41538-020-00081-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022] Open
Abstract
Whole grain consumption reduces the risk of several chronic diseases. A major contributor to the effect is the synergistic and additive effect of phytochemicals. Malting is an important technological method to process whole grains; the main product, malted grain, is used mainly for brewing, but the process also yields high amounts of side-stream products, such as rootlet. In this study, we comprehensively determined the phytochemical profile of barley, oats, rye, and wheat in different stages of malting and the subsequent extraction phases to assess the potential of malted products and side-streams as a dietary source of bioactive compounds. Utilizing semi-quantitative LC-MS metabolomics, we annotated 285 phytochemicals from the samples, belonging to more than 13 chemical classes. Malting significantly altered the levels of the compounds, many of which were highly increased in the rootlet. Whole grain cereals and the malting products were found to be a diverse and rich source of phytochemicals, highlighting the value of these whole foods as a staple. The characterization of phytochemicals from the 24 different sample types revealed previously unknown existence of some of the compound classes in certain species. The rootlet deserves more attention in human nutrition, rather than its current use mainly as feed, to benefit from its high content of bioactive components.
Collapse
Affiliation(s)
- Ville M Koistinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Marjo Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Pekka Lehtinen
- Senson Oy Ltd, Niemenkatu 18, P.O. Box 95, FI-15141, Lahti, Finland
| | - Petri Peltola
- Senson Oy Ltd, Niemenkatu 18, P.O. Box 95, FI-15141, Lahti, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Karin Jonsson
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96, Gothenburg, Sweden
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96, Gothenburg, Sweden
- Food Chemistry and Food Development unit, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Seifert CL, Volf M, Jorge LR, Abe T, Carscallen G, Drozd P, Kumar R, Lamarre GPA, Libra M, Losada ME, Miller SE, Murakami M, Nichols G, Pyszko P, Šigut M, Wagner DL, Novotný V. Plant phylogeny drives arboreal caterpillar assemblages across the Holarctic. Ecol Evol 2020; 10:14137-14151. [PMID: 33732431 PMCID: PMC7771119 DOI: 10.1002/ece3.7005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co-occurring plant species.Using a Holarctic dataset of exposed-feeding and shelter-building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.Our plant-caterpillar network data derived from plot-based samplings at three different continents included >28,000 individual caterpillar-plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed-feeding and shelter-building caterpillars.Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host-specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large-scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
Collapse
Affiliation(s)
- Carlo L Seifert
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Martin Volf
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
| | - Leonardo R Jorge
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | | | - Grace Carscallen
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal VA USA
| | - Pavel Drozd
- Faculty of Science University of Ostrava Ostrava Czech Republic
| | - Rajesh Kumar
- Central Sericultural Research and Training Institute Central Silk Board Ministry of Textiles Govt. of India Pampore Jammu and Kashmir India
| | - Greg P A Lamarre
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
- ForestGEO Smithsonian Tropical Research Institute Balboa, Ancon Panama
| | - Martin Libra
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Maria E Losada
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal VA USA
- National Museum of Natural History Smithsonian Institution Washington DC USA
| | - Scott E Miller
- National Museum of Natural History Smithsonian Institution Washington DC USA
| | | | - Geoffrey Nichols
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal VA USA
| | - Petr Pyszko
- Faculty of Science University of Ostrava Ostrava Czech Republic
| | - Martin Šigut
- Faculty of Science University of Ostrava Ostrava Czech Republic
| | | | - Vojtěch Novotný
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| |
Collapse
|
20
|
Meerow AW, Gardner EM, Nakamura K. Phylogenomics of the Andean Tetraploid Clade of the American Amaryllidaceae (Subfamily Amaryllidoideae): Unlocking a Polyploid Generic Radiation Abetted by Continental Geodynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:582422. [PMID: 33250911 PMCID: PMC7674842 DOI: 10.3389/fpls.2020.582422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/12/2020] [Indexed: 05/27/2023]
Abstract
One of the two major clades of the endemic American Amaryllidaceae subfam. Amaryllidoideae constitutes the tetraploid-derived (n = 23) Andean-centered tribes, most of which have 46 chromosomes. Despite progress in resolving phylogenetic relationships of the group with plastid and nrDNA, certain subclades were poorly resolved or weakly supported in those previous studies. Sequence capture using anchored hybrid enrichment was employed across 95 species of the clade along with five outgroups and generated sequences of 524 nuclear genes and a partial plastome. Maximum likelihood phylogenetic analyses were conducted on concatenated supermatrices, and coalescent-based species tree analyses were run on the gene trees, followed by hybridization network, age diversification and biogeographic analyses. The four tribes Clinantheae, Eucharideae, Eustephieae, and Hymenocallideae (sister to Clinantheae) are resolved in all analyses with > 90 and mostly 100% support, as are almost all genera within them. Nuclear gene supermatrix and species tree results were largely in concordance; however, some instances of cytonuclear discordance were evident. Hybridization network analysis identified significant reticulation in Clinanthus, Hymenocallis, Stenomesson and the subclade of Eucharideae comprising Eucharis, Caliphruria, and Urceolina. Our data support a previous treatment of the latter as a single genus, Urceolina, with the addition of Eucrosia dodsonii. Biogeographic analysis and penalized likelihood age estimation suggests an origin in the Cauca, Desert and Puna Neotropical bioprovinces for the complex in the mid-Oligocene, with more dispersals than vicariances in its history, but no extinctions. Hymenocallis represents the only instance of long-distance vicariance from the tropical Andean origin of its tribe Hymenocallideae. The absence of extinctions correlates with the lack of diversification rate shifts within the clade. The Eucharideae experienced a sudden lineage radiation ca. 10 Mya. We tie much of the divergences in the Andean-centered lineages to the rise of the Andes, and suggest that the Amotape-Huancabamba Zone functioned as both a corridor (dispersal) and a barrier to migration (vicariance). Several taxonomic changes are made. This is the largest DNA sequence data set to be applied within Amaryllidaceae to date.
Collapse
Affiliation(s)
- Alan W. Meerow
- USDA-ARS-SHRS, National Clonal Germplasm Repository, Miami, FL, United States
| | - Elliot M. Gardner
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
- Institute of Environment, Florida International University, Miami, FL, United States
| | - Kyoko Nakamura
- USDA-ARS-SHRS, National Clonal Germplasm Repository, Miami, FL, United States
| |
Collapse
|
21
|
Reinaldo R, Albuquerque U, Medeiros P. Taxonomic affiliation influences the selection of medicinal plants among people from semi-arid and humid regions-a proposition for the evaluation of utilitarian equivalence in Northeast Brazil. PeerJ 2020; 8:e9664. [PMID: 32832277 PMCID: PMC7413083 DOI: 10.7717/peerj.9664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/23/2023] Open
Abstract
Background This study sought to investigate the occurrence of taxonomic patterns between semi-arid and humid regions, verifying how the taxonomic affiliation can influence the selection of plants for medicinal purposes and act as a selection criterion. Methods The relationship between the taxonomic affiliation and the selection of medicinal plants with four different communities was analyzed; two of them associated with a seasonally dry tropical forest and the other two associated with a tropical rain forest. We used the Utilitarian Equivalence Model (transposing the concept of ecological equivalence, proposed by Odum, for ethnobotany) to test the hypothesis that species that have the same taxonomic affiliation tend to have the same therapeutic applications in different environments (utilitarian equivalence). In addition, we used the Utilitarian Redundancy Model to verify whether, within the same medical system, plants of the same taxonomic affiliation tend to be redundant (treating the same diseases). Results We found that a pair of plants of the same genus were 9.25 times more likely to be equivalent than a different genus pair (OR = 9.25, CI [1.68-51.02], p < 0.05). When we analyzed the species used by the same population, the chances of a pair having similar therapeutic uses (utilitarian redundancy) increased when they were species of the same family (OR = 1.94, CI [1.06-3.53]; p < 0.05). Conclusions These findings confirm the hypothesis that there is an influence of taxonomic affiliation, in terms of genera and family, on the selection of medicinal plants in semi-arid and humid areas in Northeast Brazil. In addition, our Utilitarian Equivalence Model can be an important tool in the search for more common selection criteria, in order to identify the shared characteristics among the equivalent pairs and consequently the main types of perceptions or stimuli that led to the inclusion of such species in local pharmacopoeias.
Collapse
Affiliation(s)
- Rafael Reinaldo
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Ulysses Albuquerque
- Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Patrícia Medeiros
- Campus de Engenharias e Ciencias Agrárias, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| |
Collapse
|
22
|
Zaman W, Saqib S, Ullah F, Ayaz A, Ye J. COVID-19: Phylogenetic approaches may help in finding resources for natural cure. Phytother Res 2020; 34:2783-2785. [PMID: 32648294 PMCID: PMC7405213 DOI: 10.1002/ptr.6787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Wajid Zaman
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fazal Ullah
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jianfei Ye
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Development of an electrochemical biosensor for phylogenetic analysis of Amaryllidaceae based on the enhanced electrochemical fingerprint recorded from plant tissue. Biosens Bioelectron 2020; 159:112212. [DOI: 10.1016/j.bios.2020.112212] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
|
24
|
Holzmeyer L, Hartig AK, Franke K, Brandt W, Muellner-Riehl AN, Wessjohann LA, Schnitzler J. Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity data. Proc Natl Acad Sci U S A 2020; 117:12444-12451. [PMID: 32393619 PMCID: PMC7275773 DOI: 10.1073/pnas.1915277117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibiotic resistance and viral diseases are rising around the world and are becoming major threats to global health, food security, and development. One measure that has been suggested to mitigate this crisis is the development of new antibiotics. Here, we provide a comprehensive evaluation of the phylogenetic and biogeographic patterns of antiinfective compounds from seed plants in one of the most species-rich regions on Earth and identify clades with naturally occurring substances potentially suitable for the development of new pharmaceutical compounds. Specifically, we combine taxonomic and phylogenetic data for >7,500 seed plant species from the flora of Java with >16,500 secondary metabolites and 6,255 georeferenced occurrence records to 1) identify clades in the phylogeny that are characterized by either an overrepresentation ("hot clades") or an underrepresentation ("cold clades") of antiinfective compounds and 2) assess the spatial patterns of plants with antiinfective compounds relative to total plant diversity across the region. Across the flora of Java, we identify 26 "hot clades" with plant species providing a high probability of finding antibiotic constituents. In addition, 24 "cold clades" constitute lineages with low numbers of reported activities but which have the potential to yield novel compounds. Spatial patterns of plant species and metabolite diversity are strongly correlated across Java, indicating that regions of highest species diversity afford the highest potential to discover novel natural products. Our results indicate that the combination of phylogenetic, spatial, and phytochemical information is a useful tool to guide the selection of taxa for efforts aimed at lead compound discovery.
Collapse
Affiliation(s)
- Laura Holzmeyer
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, D-04103 Leipzig, Germany
| | - Anne-Kathrin Hartig
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Katrin Franke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Alexandra N Muellner-Riehl
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, D-04103 Leipzig, Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| | - Jan Schnitzler
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, D-04103 Leipzig, Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
25
|
Ciavatta ML, Lefranc F, Vieira LM, Kiss R, Carbone M, van Otterlo WAL, Lopanik NB, Waeschenbach A. The Phylum Bryozoa: From Biology to Biomedical Potential. Mar Drugs 2020; 18:E200. [PMID: 32283669 PMCID: PMC7230173 DOI: 10.3390/md18040200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023] Open
Abstract
Less than one percent of marine natural products characterized since 1963 have been obtained from the phylum Bryozoa which, therefore, still represents a huge reservoir for the discovery of bioactive metabolites with its ~6000 described species. The current review is designed to highlight how bryozoans use sophisticated chemical defenses against their numerous predators and competitors, and which can be harbored for medicinal uses. This review collates all currently available chemoecological data about bryozoans and lists potential applications/benefits for human health. The core of the current review relates to the potential of bryozoan metabolites in human diseases with particular attention to viral, brain, and parasitic diseases. It additionally weighs the pros and cons of total syntheses of some bryozoan metabolites versus the synthesis of non-natural analogues, and explores the hopes put into the development of biotechnological approaches to provide sustainable amounts of bryozoan metabolites without harming the natural environment.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.L.C.); (M.C.)
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Leandro M. Vieira
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil;
| | - Robert Kiss
- Retired – formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS), 1000 Brussels, Belgium;
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.L.C.); (M.C.)
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
| | - Nicole B. Lopanik
- School of Earth and Atmospheric Sciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | | |
Collapse
|
26
|
Hao DC, Xiao PG. Pharmaceutical resource discovery from traditional medicinal plants: Pharmacophylogeny and pharmacophylogenomics. CHINESE HERBAL MEDICINES 2020; 12:104-117. [PMID: 36119793 PMCID: PMC9476761 DOI: 10.1016/j.chmed.2020.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 01/25/2023] Open
Abstract
The worldwide botanical and medicinal culture diversity are astonishing and constitute a Pierian spring for innovative drug R&D. Here, the latest awareness and the perspectives of pharmacophylogeny and pharmacophylogenomics, as well as their expanding utility in botanical drug R&D, are systematically summarized and highlighted. Chemotaxonomy is based on the fact that closely related plants contain the same or similar chemical profiles. Correspondingly, it is better to combine morphological characters, DNA markers and chemical markers in the inference of medicinal plant phylogeny. Medicinal plants within the same phylogenetic groups may have the same or similar therapeutic effects, thus forming the core of pharmacophylogeny. Here we systematically review and comment on the versatile applications of pharmacophylogeny in (1) looking for domestic resources of imported drugs, (2) expanding medicinal plant resources, (3) quality control, identification and expansion of herbal medicines, (4) predicting the chemical constituents or active ingredients of herbal medicine and assisting in the identification and determination of chemical constituents, (5) the search for new drugs sorting out, and (6) summarizing and improving herbal medicine experiences, etc. Such studies should be enhanced within the context of deeper investigations of molecular biology and genomics of traditional medicinal plants, phytometabolites and metabolomics, and ethnomedicine-based pharmacological activity, thus enabling the sustainable conservation and utilization of traditional medicinal resources.
Collapse
Affiliation(s)
- Da-cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
- Corresponding author.
| | - Pei-gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Revealing the Variation and Stability of Bacterial Communities in Tomato Rhizosphere Microbiota. Microorganisms 2020; 8:microorganisms8020170. [PMID: 31991727 PMCID: PMC7074737 DOI: 10.3390/microorganisms8020170] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Microorganisms that colonize the plant rhizosphere can contribute to plant health, growth and productivity. Although the importance of the rhizosphere microbiome is known, we know little about the underlying mechanisms that drive microbiome assembly and composition. In this study, the variation, assembly and composition of rhizobacterial communities in 11 tomato cultivars, combined with one cultivar in seven different sources of soil and growing substrate, were systematically investigated. The tomato rhizosphere microbiota was dominated by bacteria from the phyla Proteobacteria, Bacteroidetes, and Acidobacteria, mainly comprising Rhizobiales, Xanthomonadales, Burkholderiales, Nitrosomonadales, Myxococcales, Sphingobacteriales, Cytophagales and Acidobacteria subgroups. The bacterial community in the rhizosphere microbiota of the samples in the cultivar experiment mostly overlapped with that of tomato cultivar MG, which was grown in five natural field soils, DM, JX, HQ, QS and XC. The results supported the hypothesis that tomato harbors largely conserved communities and compositions of rhizosphere microbiota that remains consistent in different cultivars of tomato and even in tomato cultivar grown in five natural field soils. However, significant differences in OTU richness (p < 0.0001) and bacterial diversity (p = 0.0014 < 0.01) were observed among the 7 different sources of soil and growing substrate. Two artificial commercial nutrient soils, HF and CF, resulted in a distinct tomato rhizosphere microbiota in terms of assembly and core community compared with that observed in natural field soils. PERMANOVA of beta diversity based on the combined data from the cultivar and soil experiments demonstrated that soil (growing substrate) and plant genotype (cultivar) had significant impacts on the rhizosphere microbial communities of tomato plants (soil, F = 22.29, R2 = 0.7399, p < 0.001; cultivar, F = 2.04, R2 = 0.3223, p = 0.008). Of these two factors, soil explained a larger proportion of the compositional variance in the tomato rhizosphere microbiota. The results demonstrated that the assembly process of rhizosphere bacterial communities was collectively influenced by soil, including the available bacterial sources and biochemical properties of the rhizosphere soils, and plant genotype.
Collapse
|
28
|
Antonelli A, Smith RJ, Simmonds MSJ. Unlocking the properties of plants and fungi for sustainable development. NATURE PLANTS 2019; 5:1100-1102. [PMID: 31712752 DOI: 10.1038/s41477-019-0554-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, UK.
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.
| | | | | |
Collapse
|
29
|
Mawalagedera SMUP, Callahan DL, Gaskett AC, Rønsted N, Symonds MRE. Combining Evolutionary Inference and Metabolomics to Identify Plants With Medicinal Potential. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
30
|
Allevato DM, Groppo M, Kiyota E, Mazzafera P, Nixon KC. Evolution of phytochemical diversity in Pilocarpus (Rutaceae). PHYTOCHEMISTRY 2019; 163:132-146. [PMID: 31078082 DOI: 10.1016/j.phytochem.2019.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
The evolution of phytochemical diversity and biosynthetic pathways in plants can be evaluated from a phylogenetic and environmental perspective. Pilocarpus Vahl (Rutaceae), an economically important medicinal plant in the family Rutaceae, has a great diversity of imidazole alkaloids and coumarins. In this study, we used phylogenetic comparative methods to determine whether there is a phylogenetic signal for chemical traits across the genus Pilocarpus; this included ancestral reconstructions of continuous and discrete chemical traits. Bioclimatic variables found to be associated with the distribution of this genus were used to perform OLS regressions between chemical traits and bioclimatic variables. Next, these regression models were evaluated to test whether bioclimatic traits could significantly predict compound concentrations. Our study found that in terms of compound concentration, variation is most significantly associated with adaptive environmental convergence rather than phylogenetic relationships. The best predictive model of chemical traits was the OLS regression that modeled the relationship between coumarin and precipitation in the coldest quarter. However, we also found one chemical trait was dependent on phylogenetic history and bioclimatic factors. These findings emphasize that consideration of both environmental and phylogenetic factors is essential to tease out the intricate processes in the evolution of chemical diversity in plants. These methods can benefit fields such as conservation management, ecology, and evolutionary biology.
Collapse
Affiliation(s)
- Daniella M Allevato
- Cornell University, L.H. Bailey Hortorium, Section of Plant Biology, School of Plant Sciences, Cornell University, Ithaca, NY, USA.
| | - Milton Groppo
- USP Ribeirão Preto, Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Eduardo Kiyota
- UNICAMP, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Brazil.
| | - Paulo Mazzafera
- UNICAMP, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Brazil; Escola Superior de Agricultura Luiz de Queiroz, Departamento de Produção Vegetal, Universidade de São Paulo, Piracicaba, Brazil.
| | - Kevin C Nixon
- Cornell University, L.H. Bailey Hortorium, Section of Plant Biology, School of Plant Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
31
|
Li X, Li X, Li Y, Yu C, Xue W, Hu J, Li B, Wang P, Zhu F. What Makes Species Productive of Anti-Cancer Drugs? Clues from Drugs’ Species Origin, Druglikeness, Target and Pathway. Anticancer Agents Med Chem 2019; 19:194-203. [DOI: 10.2174/1871520618666181029132017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/22/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022]
Abstract
Background:Despite the substantial contribution of natural products to the FDA drug approval list, the discovery of anti-cancer drugs from the huge amount of species on the planet remains looking for a needle in a haystack. Objective: Drug-productive clusters in the phylogenetic tree are thus proposed to narrow the searching scope by focusing on much smaller amount of species within each cluster, which enable prioritized and rational bioprospecting for novel drug-like scaffolds. However, the way anti-cancer nature-derived drugs distribute in phylogenetic tree has not been reported, and it is oversimplified to just focus anti-cancer drug discovery on the drug-productive clusters, since the number of species in each cluster remains too large to be managed.Objective:Drug-productive clusters in the phylogenetic tree are thus proposed to narrow the searching scope by focusing on much smaller amount of species within each cluster, which enable prioritized and rational bioprospecting for novel drug-like scaffolds. However, the way anti-cancer nature-derived drugs distribute in phylogenetic tree has not been reported, and it is oversimplified to just focus anti-cancer drug discovery on the drug-productive clusters, since the number of species in each cluster remains too large to be managed.Methods:In this study, 260 anti-cancer drugs approved in the past 70 years were comprehensively analyzed by hierarchical clustering of phylogenetic distribution.Results:207 out of these 260 drugs were derived from or inspired by the natural products isolated from 58 species. Phylogenetic distribution of those drugs further revealed that nature-derived anti-cancer drugs originated mostly from drug-productive families that tend to be clustered rather than scattered on the phylogenetic tree. Moreover, based on their productivity, drug-producing species were categorized into productive (CPS), newly emerging (CNS) and lessproductive (CLS). Statistical significances in druglikeness between drugs from CPS and CLS were observed, and drugs from CNS were found to share similar drug-like properties to those from CPS.Conclusion:This finding indicated a great raise in drug approval standard, which suggested us to focus bioprospecting on the species yielding multiple drugs and keeping productive for long period of time.
Collapse
Affiliation(s)
- Xiaofeng Li
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoxu Li
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yinghong Li
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Chunyan Yu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jie Hu
- School of International Studies, Zhejiang University, Hangzhou 310058, China
| | - Bo Li
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Panpan Wang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
32
|
Romano JD, Tatonetti NP. Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Front Genet 2019; 10:368. [PMID: 31114606 PMCID: PMC6503039 DOI: 10.3389/fgene.2019.00368] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
The discovery of new pharmaceutical drugs is one of the preeminent tasks-scientifically, economically, and socially-in biomedical research. Advances in informatics and computational biology have increased productivity at many stages of the drug discovery pipeline. Nevertheless, drug discovery has slowed, largely due to the reliance on small molecules as the primary source of novel hypotheses. Natural products (such as plant metabolites, animal toxins, and immunological components) comprise a vast and diverse source of bioactive compounds, some of which are supported by thousands of years of traditional medicine, and are largely disjoint from the set of small molecules used commonly for discovery. However, natural products possess unique characteristics that distinguish them from traditional small molecule drug candidates, requiring new methods and approaches for assessing their therapeutic potential. In this review, we investigate a number of state-of-the-art techniques in bioinformatics, cheminformatics, and knowledge engineering for data-driven drug discovery from natural products. We focus on methods that aim to bridge the gap between traditional small-molecule drug candidates and different classes of natural products. We also explore the current informatics knowledge gaps and other barriers that need to be overcome to fully leverage these compounds for drug discovery. Finally, we conclude with a "road map" of research priorities that seeks to realize this goal.
Collapse
Affiliation(s)
- Joseph D. Romano
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Systems Biology, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
| | - Nicholas P. Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Systems Biology, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
| |
Collapse
|
33
|
Henz Ryen A, Backlund A. Charting Angiosperm Chemistry: Evolutionary Perspective on Specialized Metabolites Reflected in Chemical Property Space. JOURNAL OF NATURAL PRODUCTS 2019; 82:798-812. [PMID: 30912945 DOI: 10.1021/acs.jnatprod.8b00767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plants possess an outstanding chemical diversity of specialized metabolites developed to adapt to environmental niches and increase fitness. The observed diversity is hypothesized to result from various evolutionary mechanisms, such as the continuous branching off and extension of existing biosynthetic pathways or enhanced levels of catalytic promiscuity in certain enzymes. In this study, ChemGPS-NP has been employed to chart the distribution and diversity of physicochemical properties for selected types of specialized metabolites from the angiosperms. Utilizing these charts, it is analyzed how different properties of various types of specialized metabolites change in different plant groups, and the chemical diversity from the volume they occupy in chemical property space is evaluated. In this context, possible underlying evolutionary mechanisms are discussed, which could explain the observed distribution and behavior in chemical property space. Based on these studies, it is demonstrated that evolutionary processes in plant specialized metabolism and the resultant metabolic diversification are reflected in chemical property space.
Collapse
Affiliation(s)
- Astrid Henz Ryen
- Research Group for Pharmacognosy, Department of Medicinal Chemistry , Uppsala University , BMC, Box 574, S-75123 Uppsala , Sweden
| | - Anders Backlund
- Research Group for Pharmacognosy, Department of Medicinal Chemistry , Uppsala University , BMC, Box 574, S-75123 Uppsala , Sweden
| |
Collapse
|
34
|
Foutami IJ, Mariager T, Rinnan R, Barnes CJ, Rønsted N. Hundred Fifty Years of Herbarium Collections Provide a Reliable Resource of Volatile Terpenoid Profiles Showing Strong Species Effect in Four Medicinal Species of Salvia Across the Mediterranean. FRONTIERS IN PLANT SCIENCE 2018; 9:1877. [PMID: 30619429 PMCID: PMC6305373 DOI: 10.3389/fpls.2018.01877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/05/2018] [Indexed: 05/08/2023]
Abstract
Herbarium samples are increasingly being recognized for their potential in answering a wide range of research questions. However, the suitability of herbarium samples for chemical analysis is largely unexplored as they are thought to be too degraded. The aim of this study was to explore terpenoid profiles across time and geographic space for four medicinal species of Salvia across the Mediterranean to assess the suitability of using herbarium specimens in chemical analyses. Herbarium samples of Salvia aethiopis, S. multicaulis, S. officinalis, and S. sclarea collected over 150 years across the Mediterranean were compared to modern samples using both targeted and untargeted gas chromatography-mass spectrometry analysis of terpene profiles. There was no effect of collection year on chemical composition, although the total concentration of the 20 assessed standards and two individual standards significantly decreased over time. Instead, chemical profiles were defined by species, with strong species effects identified on both the targeted and untargeted chemical composition. Geographic variation was a factor in regulating the untargeted chemical compositions, suggesting some underlying environmental effects. However, there was no effect of sample altitude on either the targeted or untargeted chemical compositions. Chemical composition of four Salvia species are predominantly defined by species, and there was a substantially smaller effect of year of sampling. Given these results herbarium collections may well represent a considerably underused resource for chemical analyses that can benefit biodiversity and other studies.
Collapse
Affiliation(s)
- Isa Jafari Foutami
- Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Trine Mariager
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Nina Rønsted
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Hegde S, Pai SR, Bhagwat RM, Saini A, Rathore PK, Jalalpure SS, Hegde HV, Sugunan AP, Gupta VS, Kholkute SD, Roy S. Genetic and phytochemical investigations for understanding population variability of the medicinally important tree Saraca asoca to help develop conservation strategies. PHYTOCHEMISTRY 2018; 156:43-54. [PMID: 30189346 DOI: 10.1016/j.phytochem.2018.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 08/02/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Saraca asoca (Roxb.) De Wilde (Caesalpiniaceae) is a highly traded IUCN red listed tree species used in Ayurvedic medicines for the treatment of various disorders, especially gynaecological problems. However, information about the genetic variations between populations and corresponding variation in specialized metabolites of S. asoca remains unclear. To address this issue, we analysed 11 populations of S. asoca with 106 accessions collected from Western Ghats of India using ISSR markers along with selected phytocompounds using RP-HPLC. Twenty primers were screened, out of which seven were selected for further analysis based on generation of clear polymorphic banding patterns. These seven ISSR primers produced 74 polymorphic loci. AMOVA showed 43% genetic variation within populations and 57% among the populations of S. asoca. To estimate the genetic relationships among S. asoca populations, UPGMA and Bayesian Models were constructed, which revealed two clusters of similar grouping patterns. However, excluding minor deviations, UPGMA and dissimilarity analysis showed close association of genotypes according to their geographical locations. Catechin (CAT), epicatechin (EPI) and gallic acid (GA) were quantified from bark and leaf samples of corresponding genotypes collected from 106 accessions. ROC plots depicted the sensitivity and specificity of the concentrations of tested phytocompounds at various cut-off points. Although, multiple logistic regression analysis predicted some association between few loci with GA, EPI and CAT, but PCA for phytochemical data failed to distinguish the populations. Overall, there were no significant trends observed to distinguish the populations based on these phytocompounds. Furthermore, the study advocates the delineate provenance regions of S. asoca genotypes/chemotype snapshots for in-situ conservation and ex-situ cultivation.
Collapse
Affiliation(s)
- Satisha Hegde
- ICMR - National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research, Government of India, Belagavi, Karnataka, 590010, India; KLE Academy of Higher Education and Research (Deemed-to-be-University), Dr. Prabhakar Kore Basic Science Research Center, Belagavi, Karnataka, 590010, India
| | - Sandeep Ramchandra Pai
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan, Post - Somathne, Panvel, Mumbai, Maharashtra, 410206, India
| | - Rasika M Bhagwat
- Plant Molecular Biology Group, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - Archana Saini
- ICMR - National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research, Government of India, Belagavi, Karnataka, 590010, India
| | - Poonam Kanwar Rathore
- ICMR - National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research, Government of India, Belagavi, Karnataka, 590010, India
| | - Sunil Satyappa Jalalpure
- KLE Academy of Higher Education and Research (Deemed-to-be-University), Dr. Prabhakar Kore Basic Science Research Center, Belagavi, Karnataka, 590010, India; Department of Pharmacognosy and Phytochemistry, College of Pharmacy, KLE Academy of Higher Education and Research (Deemed-to-be-University), Belagavi, Karnataka, 590010, India
| | - Harsha Vasudev Hegde
- ICMR - National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research, Government of India, Belagavi, Karnataka, 590010, India
| | - Attayoor Purushottaman Sugunan
- Division of Epidemiology, RMRC-NIE-LRU, National Institute of Epidemiology, Indian Council of Medical Research, Department of Health Research, Government of India, Chennai, Tamil Nadu, 600 077, India
| | - Vidya S Gupta
- Plant Molecular Biology Group, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - Sanjiva D Kholkute
- ICMR - National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research, Government of India, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR - National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research, Government of India, Belagavi, Karnataka, 590010, India.
| |
Collapse
|
36
|
Comparing Medicinal Uses of Cochlospermaceae throughout Its Geographic Range with Insights from Molecular Phylogenetics. DIVERSITY 2018. [DOI: 10.3390/d10040123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Species of the Cochlospermaceae, a small mostly pantropical plant family, were evaluated at a continental scale for medicinal uses in traditional medicine. This ethnobotanical information was placed in a phylogenetic framework to make informed predictions in the search for new medicines and bioactive compounds. Medicinal plant-use data were mapped onto a molecular phylogeny based on DNA sequences of nuclear and chloroplast markers. Associations of medicinal uses among closely related species occurring in different geographic regions and among diverse cultures were evaluated. The most common medicinal uses for these species are those used to treat skin ailments, gastro-intestinal problems, malaria, and liver issues. The plant species with the most numerous uses is Cochlospermum tinctorium, which occurs primarily in West Africa. Closely related species being used by cultural groups in different geographic regions to treat the same illnesses suggests the presence of bioactive compounds with potential biomedical value, since they may represent independent discoveries of similar medicinally-active compounds. This leads to the speculation that those closely related species not currently being used to treat these ailments may also contain identical or similar medicinally-active compounds and are worthy of laboratory investigations.
Collapse
|
37
|
Pellicer J, Saslis-Lagoudakis CH, Carrió E, Ernst M, Garnatje T, Grace OM, Gras A, Mumbrú M, Vallès J, Vitales D, Rønsted N. A phylogenetic road map to antimalarial Artemisia species. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:1-9. [PMID: 29936053 DOI: 10.1016/j.jep.2018.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The discovery of the antimalarial agent artemisinin is considered one of the most significant success stories of ethnopharmacological research in recent times. The isolation of artemisinin was inspired by the use of Artemisia annua in traditional Chinese medicine (TCM) and was awarded a Nobel Prize in 2015. Antimalarial activity has since been demonstrated for a range of other Artemisia species, suggesting that the genus could provide alternative sources of antimalarial treatments. Given the stunning diversity of the genus (c. 500 species), a prioritisation of taxa to be investigated for their likely antimalarial properties is required. MATERIALS AND METHODS Here we use a phylogenetic approach to explore the potential for identifying species more likely to possess antimalarial properties. Ethnobotanical data from literature reports is recorded for 117 species. Subsequent phylogenetically informed analysis was used to identify lineages in which there is an overrepresentation of species used to treat malarial symptoms, and which could therefore be high priority for further investigation of antimalarial activity. RESULTS We show that these lineages indeed include several species with documented antimalarial activity. To further inform our approach, we use LC-MS/MS analysis to explore artemisinin content in fifteen species from both highlighted and not highlighted lineages. We detected artemisinin in nine species, in eight of them for the first time, doubling the number of Artemisia taxa known to content this molecule. CONCLUSIONS Our findings indicate that artemisinin may be widespread across the genus, providing an accessible local resource outside the distribution area of Artemisia annua.
Collapse
Affiliation(s)
- Jaume Pellicer
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond TW9 3AE, United Kingdom
| | - C Haris Saslis-Lagoudakis
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1353, Denmark
| | - Esperança Carrió
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain
| | - Madeleine Ernst
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1353, Denmark
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
| | - Olwen M Grace
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond TW9 3AE, United Kingdom
| | - Airy Gras
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain
| | - Màrius Mumbrú
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain
| | - Joan Vallès
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain
| | - Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
| | - Nina Rønsted
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1353, Denmark.
| |
Collapse
|
38
|
N-oxide alkaloids from Crinum amabile (Amaryllidaceae). Molecules 2018; 23:molecules23061277. [PMID: 29861456 PMCID: PMC6099558 DOI: 10.3390/molecules23061277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 11/17/2022] Open
Abstract
Natural products play an important role in the development of new drugs. In this context, the Amaryllidaceae alkaloids have attracted considerable attention in view of their unique structural features and various biological activities. In this study, twenty-three alkaloids were identified from Crinum amabile by GC-MS and two new structures (augustine N-oxide and buphanisine N-oxide) were structurally elucidated by NMR. Anti-parasitic and cholinesterase (AChE and BuChE) inhibitory activities of six alkaloids isolated from this species, including the two new compounds, are described herein. None of the alkaloids isolated from C. amabile gave better results than the reference drugs, so it was possible to conclude that the N-oxide group does not increase their therapeutic potential.
Collapse
|
39
|
Ningthoujam SS, Talukdar AD, Sarker SD, Nahar L, Choudhury MD. Prediction of Medicinal Properties Using Mathematical Models and Computation, and Selection of Plant Materials. COMPUTATIONAL PHYTOCHEMISTRY 2018. [PMCID: PMC7149595 DOI: 10.1016/b978-0-12-812364-5.00002-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In any phytochemical drug discovery programme, one of the major issues is the appropriate selection of target plant species that may provide lead for new drug discovery and development. Conducting research without any working hypotheses may produce serendipitous discoveries, but the chances of success are much slimmer than any information-based targeted approach. Therefore, the plant selection process is extremely important for ensuring success. In recent years, there have been significant amounts of work involving applications of various mathematical modelling and computational techniques to predict medicinal properties of plants, and thus to provide information-based selection of plant materials for further studies aiming at potential drug discovery and development. This chapter presents an overview of methods and processes involved in plant selection by utilizing various mathematical modelling and computational techniques.
Collapse
Affiliation(s)
| | | | | | - Lutfun Nahar
- Liverpool John Moores University, Liverpool, United Kingdom
| | | |
Collapse
|
40
|
Cobaleda-Velasco M, Almaraz-Abarca N, Alanis-Bañuelos RE, Uribe-Soto JN, González-Valdez LS, Muñoz-Hernández G, Zaca-Morán O, Rojas-López M. Rapid Determination of Phenolics, Flavonoids, and Antioxidant Properties of Physalis ixocarpa Brot. ex Hornem. and Physalis angulata L. by Infrared Spectroscopy and Partial Least Squares. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1331238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | | | | | | | - Orlando Zaca-Morán
- Instituto Politécnico Nacional, CIBA-Tlaxcala, Tepetitla, Tlaxcala, México
| | - Marlon Rojas-López
- Instituto Politécnico Nacional, CIBA-Tlaxcala, Tepetitla, Tlaxcala, México
| |
Collapse
|
41
|
Maldonado C, Barnes CJ, Cornett C, Holmfred E, Hansen SH, Persson C, Antonelli A, Rønsted N. Phylogeny Predicts the Quantity of Antimalarial Alkaloids within the Iconic Yellow Cinchona Bark (Rubiaceae: Cinchona calisaya). FRONTIERS IN PLANT SCIENCE 2017; 8:391. [PMID: 28382048 PMCID: PMC5360753 DOI: 10.3389/fpls.2017.00391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/07/2017] [Indexed: 05/24/2023]
Abstract
Considerable inter- and intraspecific variation with respect to the quantity and composition of plant natural products exists. The processes that drive this variation remain largely unknown. Understanding which factors determine chemical diversity has the potential to shed light on plant defenses against herbivores and diseases and accelerate drug discovery. For centuries, Cinchona alkaloids were the primary treatment of malaria. Using Cinchona calisaya as a model, we generated genetic profiles of leaf samples from four plastid (trnL-F, matK, rps16, and ndhF) and one nuclear (ITS) DNA regions from twenty-two C. calisaya stands sampled in the Yungas region of Bolivia. Climatic and soil parameters were characterized and bark samples were analyzed for content of the four major alkaloids using HPLC-UV to explore the utility of evolutionary history (phylogeny) in determining variation within species of these compounds under natural conditions. A significant phylogenetic signal was found for the content of two out of four major Cinchona alkaloids (quinine and cinchonidine) and their total content. Climatic parameters, primarily driven by changing altitude, predicted 20.2% of the overall alkaloid variation, and geographical separation accounted for a further 9.7%. A clade of high alkaloid producing trees was identified that spanned a narrow range of altitudes, from 1,100 to 1,350 m. However, climate expressed by altitude was not a significant driver when accounting for phylogeny, suggesting that the chemical diversity is primarily driven by phylogeny. Comparisons of the relative effects of both environmental and genetic variability in determining plant chemical diversity have scarcely been performed at the genotypic level. In this study we demonstrate there is an essential need to do so if the extensive genotypic variation in plant biochemistry is to be fully understood.
Collapse
Affiliation(s)
- Carla Maldonado
- Natural History Museum of Denmark, University of CopenhagenCopenhagen, Denmark
- Herbario Nacional de Bolivia, Universidad Mayor de San AndresLa Paz, Bolivia
| | | | - Claus Cornett
- Analytical Biosciences, Department of Pharmacy, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Else Holmfred
- Analytical Biosciences, Department of Pharmacy, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Steen H. Hansen
- Analytical Biosciences, Department of Pharmacy, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Claes Persson
- Department of Biological and Environmental Sciences, University of GothenburgGothenburg, Sweden
- Gothenburg Global Biodiversity CentreGothenburg, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of GothenburgGothenburg, Sweden
- Gothenburg Botanical GardenGothenburg, Sweden
| | - Nina Rønsted
- Natural History Museum of Denmark, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
42
|
Garnatje T, Peñuelas J, Vallès J. Ethnobotany, Phylogeny, and 'Omics' for Human Health and Food Security. TRENDS IN PLANT SCIENCE 2017; 22:187-191. [PMID: 28209326 DOI: 10.1016/j.tplants.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/09/2016] [Accepted: 01/05/2017] [Indexed: 05/21/2023]
Abstract
Here, we propose a new term, 'ethnobotanical convergence', to refer to the similar uses for plants included in the same node of a phylogeny. This phylogenetic approach, together with the 'omics' revolution, shows how combining modern technologies with traditional ethnobotanical knowledge could be used to identify potential new applications of plants.
Collapse
Affiliation(s)
- Teresa Garnatje
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Catalonia, Spain
| | - Joan Vallès
- Laboratori de Botànica (UB), Unitat associada al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII s.n., 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
43
|
Moyo M, Aremu AO, Chukwujekwu JC, Gruz J, Skorepa J, Doležal K, Katsvanga CA, Van Staden J. Phytochemical Characterization, Antibacterial, Acetylcholinesterase Inhibitory and Cytotoxic Properties of Cryptostephanus vansonii
, an Endemic Amaryllid. Phytother Res 2017; 31:713-720. [DOI: 10.1002/ptr.5788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Mack Moyo
- Research Centre for Plant Growth and Development, School of Life Sciences; University of KwaZulu-Natal; Pietermaritzburg, Private Bag X01 Scottsville 3209 South Africa
- Department of Horticultural Sciences, Faculty of Applied Sciences; Cape Peninsula University of Technology; Symphony Way, PO Box 1906 Bellville 7535 Cape Town South Africa
| | - Adeyemi O. Aremu
- Research Centre for Plant Growth and Development, School of Life Sciences; University of KwaZulu-Natal; Pietermaritzburg, Private Bag X01 Scottsville 3209 South Africa
| | - Jude C. Chukwujekwu
- Research Centre for Plant Growth and Development, School of Life Sciences; University of KwaZulu-Natal; Pietermaritzburg, Private Bag X01 Scottsville 3209 South Africa
| | - Jiri Gruz
- Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science; Palacký University and Institute of Experimental Botany, Academy of Sciences of Czech Republic Šlechtitelů 11; 783 71 Olomouc-Holice Czech Republic
| | - Jiri Skorepa
- Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science; Palacký University and Institute of Experimental Botany, Academy of Sciences of Czech Republic Šlechtitelů 11; 783 71 Olomouc-Holice Czech Republic
| | - Karel Doležal
- Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science; Palacký University and Institute of Experimental Botany, Academy of Sciences of Czech Republic Šlechtitelů 11; 783 71 Olomouc-Holice Czech Republic
| | - Cuthbert A.T. Katsvanga
- Department of Environmental Science, Faculty of Agriculture and Environmental Science; Bindura University of Science Education; Private Bag 1020 Bindura Zimbabwe
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences; University of KwaZulu-Natal; Pietermaritzburg, Private Bag X01 Scottsville 3209 South Africa
| |
Collapse
|
44
|
Liu K, Abdullah AA, Huang M, Nishioka T, Altaf-Ul-Amin M, Kanaya S. Novel Approach to Classify Plants Based on Metabolite-Content Similarity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5296729. [PMID: 28164123 PMCID: PMC5253511 DOI: 10.1155/2017/5296729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/14/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
Secondary metabolites are bioactive substances with diverse chemical structures. Depending on the ecological environment within which they are living, higher plants use different combinations of secondary metabolites for adaptation (e.g., defense against attacks by herbivores or pathogenic microbes). This suggests that the similarity in metabolite content is applicable to assess phylogenic similarity of higher plants. However, such a chemical taxonomic approach has limitations of incomplete metabolomics data. We propose an approach for successfully classifying 216 plants based on their known incomplete metabolite content. Structurally similar metabolites have been clustered using the network clustering algorithm DPClus. Plants have been represented as binary vectors, implying relations with structurally similar metabolite groups, and classified using Ward's method of hierarchical clustering. Despite incomplete data, the resulting plant clusters are consistent with the known evolutional relations of plants. This finding reveals the significance of metabolite content as a taxonomic marker. We also discuss the predictive power of metabolite content in exploring nutritional and medicinal properties in plants. As a byproduct of our analysis, we could predict some currently unknown species-metabolite relations.
Collapse
Affiliation(s)
- Kang Liu
- Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Azian Azamimi Abdullah
- Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Ming Huang
- Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takaaki Nishioka
- Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Md. Altaf-Ul-Amin
- Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shigehiko Kanaya
- Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
45
|
Grimbs A, Shrestha A, Rezk ASD, Grimbs S, Hakeem Said I, Schepker H, Hütt MT, Albach DC, Brix K, Kuhnert N, Ullrich MS. Bioactivity in Rhododendron: A Systemic Analysis of Antimicrobial and Cytotoxic Activities and Their Phylogenetic and Phytochemical Origins. FRONTIERS IN PLANT SCIENCE 2017; 8:551. [PMID: 28450876 PMCID: PMC5390042 DOI: 10.3389/fpls.2017.00551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/27/2017] [Indexed: 05/20/2023]
Abstract
The exceptional diversity of the genus Rhododendron has a strong potential for identification, characterization, and production of bioactive lead compounds for health purposes. A particularly relevant field of application is the search for new antibiotics. Here, we present a comparative analysis of nearly 90 Rhododendron species targeted toward the search for such candidate substances. Through a combination of phytochemical profiles with antimicrobial susceptibility and cytotoxicity, complemented by phylogenetic analyses, we identify seven potentially antimicrobial active but non-cytotoxic compounds in terms of mass-to-charge ratios and retention times. Exemplary bioactivity-guided fractionation for a promising Rhododendron species experimentally supports in fact one of these candidate lead compounds. By combining categorical correlation analysis with Boolean operations, we have been able to investigate the origin of bioactive effects in further detail. Intriguingly, we discovered clear indications of systems effects (synergistic interactions and functional redundancies of compounds) in the manifestation of antimicrobial activities in this plant genus.
Collapse
Affiliation(s)
- Anne Grimbs
- Department for Life Sciences and Chemistry, Jacobs University BremenBremen, Germany
| | - Abhinandan Shrestha
- Department for Life Sciences and Chemistry, Jacobs University BremenBremen, Germany
| | - Ahmed S. D. Rezk
- Department for Life Sciences and Chemistry, Jacobs University BremenBremen, Germany
| | - Sergio Grimbs
- Department for Life Sciences and Chemistry, Jacobs University BremenBremen, Germany
| | | | | | - Marc-Thorsten Hütt
- Department for Life Sciences and Chemistry, Jacobs University BremenBremen, Germany
| | - Dirk C. Albach
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University OldenburgOldenburg, Germany
| | - Klaudia Brix
- Department for Life Sciences and Chemistry, Jacobs University BremenBremen, Germany
| | - Nikolai Kuhnert
- Department for Life Sciences and Chemistry, Jacobs University BremenBremen, Germany
| | - Matthias S. Ullrich
- Department for Life Sciences and Chemistry, Jacobs University BremenBremen, Germany
- *Correspondence: Matthias S. Ullrich
| |
Collapse
|
46
|
Ito Y, Tanaka N, Albach DC, Barfod AS, Oxelman B, Muasya AM. Molecular phylogeny of the cosmopolitan aquatic plant genus Limosella (Scrophulariaceae) with a particular focus on the origin of the Australasian L. curdieana. JOURNAL OF PLANT RESEARCH 2017; 130:107-116. [PMID: 27864639 DOI: 10.1007/s10265-016-0872-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Limosella is a small aquatic genus of Scrophulariaceae of twelve species, of which one is distributed in northern circumpolar regions, two in southern circumpolar regions, two in the Americas, one endemic to Australia, and six in tropical or southern Africa or both. The Australasian L. curdieana has always been considered distinct but its close phylogenetic relationships have never been inferred. Here, we investigated the following alternative phylogenetic hypotheses based on comparative leaf morphology and habitat preferences or floral morphology: (1) L. curdieana is sister to the African L. grandiflora; or (2) it is closely related to a group of other African species and the northern circumpolar L. aquatica. We tested these hypotheses in a phylogenetic framework using DNA sequence data from four plastid DNA regions and the nuclear ITS region. These were analyzed using maximum parsimony and Bayesian inference. We obtained moderately resolved, partially conflicting phylogenies, supporting that accessions of L. grandiflora form the sister group to the rest of the genus and that L. curdieana groups with the African taxa, L. africana and L. major, and L. aquatica. Thus, the molecular evidence supports the second hypothesis. A biogeographic analysis suggests an out-of-southern Africa scenario and several dispersal events in the Southern Hemisphere. Past dispersal from southern Africa to Australasia is suggested, yet it cannot be excluded that a route via tropical Africa and temperate Asia has existed.
Collapse
Affiliation(s)
- Yu Ito
- Biological Sciences, University of Canterbury, Christchurch, 8020, New Zealand.
- Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Kunming, 650223, People's Republic of China.
| | - Norio Tanaka
- Tsukuba Botanical Garden, National Museum of Nature and Science, Tokyo, Japan
| | - Dirk C Albach
- Institute of Biology and Environmental Sciences (IBU), Carl von Ossietzky-University Oldenburg, 26111, Oldenburg, Germany
| | - Anders S Barfod
- Department of Bioscience, Aarhus University, 8000, Aarhus C, Denmark
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| |
Collapse
|
47
|
Maroyi A. A review of ethnoboatany, therapeutic value, phytochemistry and pharmacology of Crinum macowanii Baker: A highly traded bulbous plant in Southern Africa. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:595-608. [PMID: 27773801 DOI: 10.1016/j.jep.2016.10.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/07/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crinum macowanii is a deciduous bulbous plant which grows in east, central and southern Africa. Crinum macowanii has been used as herbal medicine by the indigenous people of east and southern Africa has for several centuries. The bulb, leaves and roots of C. macowanii are reported to possess diverse medicinal properties and used to treat or manage various human and animal diseases and ailments throughout its distributional range. Crinum macowanii is used traditionally as a remedy for boils, diarrhoea, fever, inflammation, respiratory system problems, skin rashes, tuberculosis, wounds and urinary tract problems. AIM OF THE REVIEW The present review aims to summarize comprehensively the research that has been done on the ethnomedicinal uses, botany, phytochemistry and pharmacology of C. macowanii in different locations throughout its geographical range in east, central and southern African region so as to highlight research gaps and provide a foundation for further investigations on the plant species. MATERIALS AND METHODS A review of the literature was undertaken and an in-depth analysis of previous research on ethnobotany, therapeutic value, phytochemistry and pharmacology of C. macowanii throughout its distributional range in east, central and southern Africa. Literature sources included papers published in international journals, reports from international, regional and national organizations, conference papers, books, theses, websites and other grey literature. Electronic search engines such as Google, Google scholar, publishing sites such as Elsevier, scienceDirect, BMC, PubMed and other scientific database sites such as ChemSpider, PubChem were used as well as searching the library collections of the National Herbarium and Botanic Gardens (SRGH), Harare, Zimbabwe and the University of Fort Hare, South Africa. RESULTS A total of 32 ethnomedicinal uses of C. macowanii are documented in literature, which can be grouped into seven major ethnomedicinal general purpose usages, namely "fever", "wounds, sores and skin rashes", "boils and inflammation", "respiratory system problems", "blood cleansing", "urinary tract problem" and "veterinary uses". The chemical composition of C. macowanii is dominated by various isoquinoline alkaloids, which have been isolated from the bulbs, flowering stalks, leaves and roots. Major biological activities demonstrated by C. macowanii include antifungal, antiviral and antiplasmodial activities, cardiovascular effects as well as effects on the central nervous system. The population of C. macowanii is declining in the wild as the bulbs are over-collected for sale in medicinal (muthi) markets in southern Africa. CONCLUSION A literature search revealed that C. macowanii has a lot of potential as a possible source of pharmaceutical products for the treatment of a wide range of human and animal diseases and ailments. Some of the alkaloids isolated from C. macowanii have demonstrated various biological activities when investigated in in vitro assays. However, some of the ethnomedicinal uses of C. macowanii still require pharmacological investigations. Therefore, further studies are required to improve our knowledge about the mechanisms of action, efficacy, toxicity and clinical relevance of the plant species as well as its bioactive compounds.
Collapse
Affiliation(s)
- Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| |
Collapse
|
48
|
Ernst M, Saslis-Lagoudakis CH, Grace OM, Nilsson N, Simonsen HT, Horn JW, Rønsted N. Evolutionary prediction of medicinal properties in the genus Euphorbia L. Sci Rep 2016; 6:30531. [PMID: 27464466 PMCID: PMC4964329 DOI: 10.1038/srep30531] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/05/2016] [Indexed: 11/21/2022] Open
Abstract
The current decrease of new drugs brought to the market has fostered renewed interest in plant-based drug discovery. Given the alarming rate of biodiversity loss, systematic methodologies in finding new plant-derived drugs are urgently needed. Medicinal uses of plants were proposed as proxy for bioactivity, and phylogenetic patterns in medicinal plant uses have suggested that phylogeny can be used as predictive tool. However, the common practice of grouping medicinal plant uses into standardised categories may restrict the relevance of phylogenetic predictions. Standardised categories are mostly associated to systems of the human body and only poorly reflect biological responses to the treatment. Here we show that medicinal plant uses interpreted from a perspective of a biological response can reveal different phylogenetic patterns of presumed underlying bioactivity compared to standardised methods of medicinal plant use classification. In the cosmopolitan and pharmaceutically highly relevant genus Euphorbia L., identifying plant uses modulating the inflammatory response highlighted a greater phylogenetic diversity and number of potentially promising species than standardised categories. Our interpretation of medicinal plant uses may therefore allow for a more targeted approach for future phylogeny-guided drug discovery at an early screening stage, which will likely result in higher discovery rates of novel chemistry with functional biological activity.
Collapse
Affiliation(s)
- Madeleine Ernst
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Sølvgade 83S, DK-1307 Copenhagen K, Denmark
| | - C Haris Saslis-Lagoudakis
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Sølvgade 83S, DK-1307 Copenhagen K, Denmark
| | - Olwen M Grace
- Comparative Plant &Fungal Biology, Royal Botanic Gardens, Kew, Surrey TW9 3AB, United Kingdom
| | - Niclas Nilsson
- Skin Research, LEO Pharma A/S, Industriparken 55, DK-2750 Ballerup, Denmark
| | - Henrik Toft Simonsen
- Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - James W Horn
- Natural and Applied Sciences, University of Wisconsin, Green Bay, LS 458, UW-Green Bay, 2420 Nicolet Dr, Green Bay, WI 54311-7001, USA
| | - Nina Rønsted
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Sølvgade 83S, DK-1307 Copenhagen K, Denmark
| |
Collapse
|
49
|
Kilgore MB, Kutchan TM. The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:317-337. [PMID: 27340382 PMCID: PMC4914137 DOI: 10.1007/s11101-015-9451-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 05/21/2023]
Abstract
Amaryllidaceae alkaloids are an example of the vast diversity of secondary metabolites with great therapeutic promise. The identification of novel compounds in this group with over 300 known structures continues to be an area of active study. The recent identification of norbelladine 4'-O-methyltransferase (N4OMT), an Amaryllidaceae alkaloid biosynthetic enzyme, and the assembly of transcriptomes for Narcissus sp. aff. pseudonarcissus and Lycoris aurea highlight the potential for discovery of Amaryllidaceae alkaloid biosynthetic genes with new technologies. Recent technical advances of interest include those in enzymology, next generation sequencing, genetic modification, nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS).
Collapse
Affiliation(s)
- Matthew B. Kilgore
- Donald Danforth Plant Science Center, 63132 St. Louis, Missouri, 975 N. Warson Rd., St. Louis, MO
| | - Toni M. Kutchan
- Donald Danforth Plant Science Center, 63132 St. Louis, Missouri, 975 N. Warson Rd., St. Louis, MO
- To whom correspondence should be addressed: Toni M. Kutchan, , Tel.: (314) 587-1473, Fax: (314) 587-1573
| |
Collapse
|
50
|
Giovino A, Domina G, Bazan G, Campisi P, Scibetta S. Taxonomy and conservation ofPancratium maritimum(Amaryllidaceae) and relatives in the Central Mediterranean. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/12538078.2015.1089416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|