1
|
Marcou T, Revilla TA, Křivan V. Evolutionary emergence of plant and pollinator polymorphisms in consumer-resource mutualisms. J Theor Biol 2024; 594:111911. [PMID: 39069203 DOI: 10.1016/j.jtbi.2024.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Mutualism is considered a major driver of biodiversity, as it enables extensive codiversification in terrestrial communities. An important case is flowering plants and their pollinators, where convergent selection on plant and pollinator traits is combined with divergent selection to minimize niche overlap within each group. In this article, we study the emergence of polymorphisms in communities structured trophically: plants are the primary producers of resources required by the primary consumers, the servicing pollinators. We model natural selection on traits affecting mutualism between plants and pollinators and competition within these two trophic levels. We show that phenotypic diversification is favored by broad plant niches, suggesting that bottom-up trophic control leads to codiversification. Mutualistic generalism, i.e., tolerance to differences in plant and pollinator traits, promotes a cascade of evolutionary branching favored by bottom-up plant competition dependent on similarity and top-down mutualistic services that broaden plant niches. Our results predict a strong positive correlation between the diversity of plant and pollinator phenotypes, which previous work has partially attributed to the trophic dependence of pollinators on plants.
Collapse
Affiliation(s)
- Thomas Marcou
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - Tomás A Revilla
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre, Czech Academy of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Vlastimil Křivan
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre, Czech Academy of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Marcionetti A, Bertrand JAM, Cortesi F, Donati GFA, Heim S, Huyghe F, Kochzius M, Pellissier L, Salamin N. Recurrent gene flow events occurred during the diversification of clownfishes of the skunk complex. Mol Ecol 2024; 33:e17347. [PMID: 38624248 DOI: 10.1111/mec.17347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Clownfish (subfamily Amphiprioninae) are an iconic group of coral reef fish that evolved a mutualistic interaction with sea anemones, which triggered the adaptive radiation of the clade. Within clownfishes, the "skunk complex" is particularly interesting. Besides ecological speciation, interspecific gene flow and hybrid speciation are thought to have shaped the evolution of the group. We investigated the mechanisms characterizing the diversification of this complex. By taking advantage of their disjunct geographical distribution, we obtained whole-genome data of sympatric and allopatric populations of the three main species of the complex (Amphiprion akallopisos, A. perideraion and A. sandaracinos). We examined population structure, genomic divergence and introgression signals and performed demographic modelling to identify the most realistic diversification scenario. We excluded scenarios of strict isolation or hybrid origin of A. sandaracinos. We discovered moderate gene flow from A. perideraion to the ancestor of A. akallopisos + A. sandaracinos and weak gene flow between the species in the Indo-Australian Archipelago throughout the diversification of the group. We identified introgressed regions in A. sandaracinos and detected in A. perideraion two large regions of high divergence from the two other species. While we found that gene flow has occurred throughout the species' diversification, we also observed that recent admixture was less pervasive than initially thought, suggesting a role of host repartition or behavioural barriers in maintaining the genetic identity of the species in sympatry.
Collapse
Affiliation(s)
- Anna Marcionetti
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Joris A M Bertrand
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
- Laboratoire Génome et Développement Des Plantes (UMR 5096 UPVD/CNRS), University of Perpignan via Domitia, Perpignan, France
| | - Fabio Cortesi
- School of the Environment and Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Giulia F A Donati
- EAWAG Swiss Federal Institute of Aquatic Science & Technology, Dübendorf, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Sara Heim
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Filip Huyghe
- Marine Biology - Ecology, Evolution and Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Marc Kochzius
- Marine Biology - Ecology, Evolution and Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Ecosystems and Landscape Evolution, Department of Environmental System Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Stieb SM, Cortesi F, Mitchell L, Jardim de Queiroz L, Marshall NJ, Seehausen O. Short-wavelength-sensitive 1 ( SWS1) opsin gene duplications and parallel visual pigment tuning support ultraviolet communication in damselfishes (Pomacentridae). Ecol Evol 2024; 14:e11186. [PMID: 38628922 PMCID: PMC11019301 DOI: 10.1002/ece3.11186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Damselfishes (Pomacentridae) are one of the most behaviourally diverse, colourful and species-rich reef fish families. One remarkable characteristic of damselfishes is their communication in ultraviolet (UV) light. Not only are they sensitive to UV, they are also prone to have UV-reflective colours and patterns enabling social signalling. Using more than 50 species, we aimed to uncover the evolutionary history of UV colour and UV vision in damselfishes. All damselfishes had UV-transmitting lenses, expressed the UV-sensitive SWS1 opsin gene, and most displayed UV-reflective patterns and colours. We find evidence for several tuning events across the radiation, and while SWS1 gene duplications are generally very rare among teleosts, our phylogenetic reconstructions uncovered two independent duplication events: one close to the base of the most species-rich clade in the subfamily Pomacentrinae, and one in a single Chromis species. Using amino acid comparisons, we found that known spectral tuning sites were altered several times in parallel across the damselfish radiation (through sequence change and duplication followed by sequence change), causing repeated shifts in peak spectral absorbance of around 10 nm. Pomacentrinae damselfishes expressed either one or both copies of SWS1, likely to further finetune UV-signal detection and differentiation. This highly advanced and modified UV vision among damselfishes, in particular the duplication of SWS1 among Pomacentrinae, might be seen as a key evolutionary innovation that facilitated the evolution of the exuberant variety of UV-reflectance traits and the diversification of this coral reef fish lineage.
Collapse
Affiliation(s)
- Sara M. Stieb
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- School of the EnvironmentThe University of QueenslandBrisbaneAustralia
| | - Laurie Mitchell
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- Marine Eco‐Evo‐Devo UnitOkinawa Institute of Science and TechnologyOnna sonOkinawaJapan
| | - Luiz Jardim de Queiroz
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ole Seehausen
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
4
|
Herrera M, Ravasi T, Laudet V. Anemonefishes: A model system for evolutionary genomics. F1000Res 2023; 12:204. [PMID: 37928172 PMCID: PMC10624958 DOI: 10.12688/f1000research.130752.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Anemonefishes are an iconic group of coral reef fish particularly known for their mutualistic relationship with sea anemones. This mutualism is especially intriguing as it likely prompted the rapid diversification of anemonefish. Understanding the genomic architecture underlying this process has indeed become one of the holy grails of evolutionary research in these fishes. Recently, anemonefishes have also been used as a model system to study the molecular basis of highly complex traits such as color patterning, social sex change, larval dispersal and life span. Extensive genomic resources including several high-quality reference genomes, a linkage map, and various genetic tools have indeed enabled the identification of genomic features controlling some of these fascinating attributes, but also provided insights into the molecular mechanisms underlying adaptive responses to changing environments. Here, we review the latest findings and new avenues of research that have led to this group of fish being regarded as a model for evolutionary genomics.
Collapse
Affiliation(s)
- Marcela Herrera
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi I-Lan 262, Taiwan
| |
Collapse
|
5
|
Dilshan MAH, Omeka WKM, Udayantha HMV, Liyanage DS, Rodrigo DCG, Hanchapola HACR, Kodagoda YK, Lee J, Lee S, Jeong T, Kim KM, Han HJ, Wan Q, Lee J. Molecular features, antioxidant potential, and immunological expression assessment of thioredoxin-like protein 1 (TXNL1) in yellowtail clownfish (Amphiprion clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109009. [PMID: 37598735 DOI: 10.1016/j.fsi.2023.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Thioredoxin-like protein 1 (TXNL1) is a redox-active protein belonging to the thioredoxin family, which mainly controls the redox status of cells. The TXNL1 gene from Amphiprion clarkii (AcTXNL1) was obtained from a pre-established transcriptome database. The AcTXNL1 is encoded with 289 amino acids and is predominantly localized in the cytoplasm and nucleus. The TXN domain of AcTXNL1 comprises a34CGPC37 motif with redox-reactive thiol (SH-) groups. The spatial distribution pattern of AcTXNL1 mRNA was examined in different tissues, and the muscle was identified as the highest expressed tissue. AcTXNL1 mRNA levels in the blood and gills were significantly increased in response to different immunostimulants. In vitro antioxidant capacity of the recombinant AcTXNL1 protein (rACTXNL1) was evaluated using the ABTS free radical-scavenging activity assay, cupric ion reducing antioxidant capacity assay, turbidimetric disulfide reduction assay, and DNA nicking protection assay. The potent antioxidant activity of rAcTXNL1 exhibited a concentration-dependent manner in all assays. Furthermore, in the cellular environment, overexpression of AcTXNL1 increased cell viability under H2O2 stress and reduced nitric oxide (NO) production induced by lipopolysaccharides (LPS). Collectively, the experimental results revealed that AcTXNL1 is an antioxidant and immunologically important gene in A. clarkii.
Collapse
Affiliation(s)
- M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jihun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Kyong Min Kim
- Jeju Fisheries Research Institute, National Institute Fisheries Science, Jeju, 63068, Republic of Korea
| | - Hyun-Ja Han
- Jeju Fisheries Research Institute, National Institute Fisheries Science, Jeju, 63068, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| |
Collapse
|
6
|
Marcionetti A, Salamin N. Insights into the Genomics of Clownfish Adaptive Radiation: The Genomic Substrate of the Diversification. Genome Biol Evol 2023; 15:evad088. [PMID: 37226990 PMCID: PMC10349533 DOI: 10.1093/gbe/evad088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Clownfishes are an iconic group of coral reef fishes that evolved a mutualistic interaction with sea anemones, which triggered the rapid diversification of the group. Following the emergence of this mutualism, clownfishes diversified into different ecological niches and developed convergent phenotypes associated with their host use. The genetic basis of the initial acquisition of the mutualism with host anemones has been described, but the genomic architecture underlying clownfish diversification once the mutualism was established and the extent to which clownfish phenotypic convergence originated through shared genetic mechanisms are still unknown. Here, we investigated these questions by performing comparative genomic analyses on the available genomic data of five pairs of closely related but ecologically divergent clownfish species. We found that clownfish diversification was characterized by bursts of transposable elements, an overall accelerated coding evolution, incomplete lineage sorting, and ancestral hybridization events. Additionally, we detected a signature of positive selection in 5.4% of the clownfish genes. Among them, five presented functions associated with social behavior and ecology, and they represent candidate genes involved in the evolution of the size-based hierarchical social structure so particular to clownfishes. Finally, we found genes with patterns of either relaxation or intensification of purifying selection and signals of positive selection linked with clownfish ecological divergence, suggesting some level of parallel evolution during the diversification of the group. Altogether, this work provides the first insights into the genomic substrate of clownfish adaptive radiation and integrates the growing collection of studies investigating the genomic mechanisms governing species diversification.
Collapse
Affiliation(s)
- Anna Marcionetti
- Department of Computational Biology, Genopode, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Genopode, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Das BK, Kunui A, Nandy SK, Sahoo AK, Meena DK, Paul SK, Sarkar UK, Mondal K. Altitudinal and seasonal distribution of benthic macroinvertebrates in River Tons - a tributary of Yamuna River, Uttarakhand, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:902. [PMID: 37380813 DOI: 10.1007/s10661-023-11488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
The main tributary of the Yamuna, the Tons River, exhibits altitudinal changes in its macroinvertebrate community's diversity, abundance, and composition. Between May 2019 and April 2021, the study was conducted in the upper section of the river. A total of 48 numbers of taxa from 34 families and ten orders were recorded during the investigation. At this elevation of 1150 to 1287 m, the two most predominant orders are Ephemeroptera (32.9%) and Trichoptera (29.5%). During the premonsoon season, they had the lowest macroinvertebrate density (250-290 individuals/m2), and the post-monsoon season had the highest density (600-640 individuals/m2). During the post-monsoon season, the maximum larval forms (60%) of various insect orders were predominant. The findings indicated that lower altitudes (1150-1232 m) have higher macroinvertebrate abundance than higher ones. The diversity of dominance is shallow at site-I (0.0738) and strong at the site-IV during the premonsoon season (0.03837). Taxa richness, as measured by the Margalef index (D), peaked in the spring season (January to March) at 6.9 and reached its lowest point (5.74) in the premonsoon season (April to May). Only 16 taxa were discovered in site-I and site-II, but 39 taxa were discovered at low altitudes (site-IV, 1100 m) (1277-1287 m). The Tons River contains a total of 12 and 13 genera, respectively, that belong to the orders Ephemeroptera and Trichoptera, according to qualitative study of the macroinvertebrates. The current study supports the use of macroinvertebrates as bioindicator species for monitoring biodiversity and assessing the health of ecosystems.
Collapse
Affiliation(s)
- Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India.
| | - Arghya Kunui
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Saurav Kumar Nandy
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Amiya Kumar Sahoo
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Dharmendra Kumar Meena
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Samir Kumar Paul
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Uttam Kumar Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Kausik Mondal
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| |
Collapse
|
8
|
Heim S, Teav T, Gallart-Ayala H, Ivanisevic J, Salamin N. Divergence in metabolomic profile in clownfish and damselfish skin mucus. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1050083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
IntroductionThe clownfish - sea anemone mutualism was suggested to have triggered the adaptive radiation of clownfishes, but the origin of clownfish resistance to stinging tentacles of host anemones remains unclear. The presence of specific compounds in the mucus of clownfishes conferring them the unique ability to prevent nematocyst discharge from their hosts has been the most supported hypothesis. Yet the mystery regarding the types of compounds found in clownfish skin mucus remains unsolved.MethodsWe analyzed the chemical composition of clownfish and damselfish mucus using an untargeted metabolomics (HILIC-HRMS) and lipidomics (RPLC-HRMS) approach.Results and DiscussionThe polar and lipid metabolome signatures were highly specific and allowed to discriminate between the clownfish and damselfish clades. The most discriminative part of the signature was the sphingolipid profile, displaying a broader diversity of ceramides present in significantly higher levels in clownfish mucus. Importantly, the inter-specific variability of metabolic signature was significantly higher in clownfishes, although their diversification is evolutionarily more recent, thus implying the impact of symbiosis on metabolic variability and adaptation. Furthermore, specialists and generalists clownfish species displayed distinctive metabolite signature. Two strict clownfish specialists, which are phylogenetically distant but share the same host species, clustered together based on their molecular signature, suggesting a link with their mutualistic nature. Overall, comparative analyses of metabolic signatures highlight differences in chemical composition of clownfish mucus and provide insight into biochemical pathways potentially implicated in clownfish adaptation to inhabit sea anemones and consequently diversify.
Collapse
|
9
|
Delgado A, Benedict C, Macrander J, Daly M. Never, Ever Make an Enemy… Out of an Anemone: Transcriptomic Comparison of Clownfish Hosting Sea Anemone Venoms. Mar Drugs 2022; 20:730. [PMID: 36547877 PMCID: PMC9782873 DOI: 10.3390/md20120730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Sea anemones are predatory marine invertebrates and have diverse venom arsenals. Venom is integral to their biology, and is used in competition, defense, and feeding. Three lineages of sea anemones are known to have independently evolved symbiotic relationships with clownfish, however the evolutionary impact of this relationship on the venom composition of the host is still unknown. Here, we investigate the potential of this symbiotic relationship to shape the venom profiles of the sea anemones that host clownfish. We use transcriptomic data to identify differences and similarities in venom profiles of six sea anemone species, representing the three known clades of clownfish-hosting sea anemones. We recovered 1121 transcripts matching verified toxins across all species, and show that hemolytic and hemorrhagic toxins are consistently the most dominant and diverse toxins across all species examined. These results are consistent with the known biology of sea anemones, provide foundational data on venom diversity of these species, and allow for a review of existing hierarchical structures in venomic studies.
Collapse
Affiliation(s)
- Alonso Delgado
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Charlotte Benedict
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Macrander
- Department of Biology, Florida Southern College, Lakeland, FL 33815, USA
| | - Marymegan Daly
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Shum CW, Nong W, So WL, Li Y, Qu Z, Yip HY, Swale T, Ang PO, Chan KM, Chan TF, Chu KH, Chui AP, Lau KF, Ngai SM, Xu F, Hui JH. Genome of the sea anemone Exaiptasia pallida and transcriptome profiles during tentacle regeneration. Front Cell Dev Biol 2022; 10:900321. [PMID: 36072338 PMCID: PMC9444052 DOI: 10.3389/fcell.2022.900321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022] Open
Abstract
Cnidarians including sea anemones, corals, hydra, and jellyfishes are a group of animals well known for their regeneration capacity. However, how non-coding RNAs such as microRNAs (also known as miRNAs) contribute to cnidarian tissue regeneration is poorly understood. Here, we sequenced and assembled the genome of the sea anemone Exaiptasia pallida collected in Hong Kong waters. The assembled genome size of E. pallida is 229.21 Mb with a scaffold N50 of 10.58 Mb and BUSCO completeness of 91.1%, representing a significantly improved genome assembly of this species. The organization of ANTP-class homeobox genes in this anthozoan further supported the previous findings in jellyfishes, where most of these genes are mainly located on three scaffolds. Tentacles of E. pallida were excised, and both mRNA and miRNA were sequenced at 9 time points (0 h, 6 h, 12 h, 18 h, 1 day, 2, 3, 6, and 8 days) from regenerating tentacles. In addition to the Wnt signaling pathway and homeobox genes that are shown to be likely involved in tissue regeneration as in other cnidarians, we have shown that GLWamide neuropeptides, and for the first time sesquiterpenoid pathway genes could potentially be involved in the late phase of cnidarian tissue regeneration. The established sea anemone model will be useful for further investigation of biology and evolution in, and the effect of climate change on this important group of animals.
Collapse
Affiliation(s)
- Cheryl W.Y. Shum
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas Swale
- Dovetail Genomics, Scotts Valley, CA, United States
| | - Put O. Ang
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Apple P.Y. Chui
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sai Ming Ngai
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Fei Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jerome H.L. Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Jerome H.L. Hui,
| |
Collapse
|
11
|
Miladin JR, Steven JC, Collar DC. A Comparative Approach to Understanding Floral Adaptation to Climate and Pollinators During Diversification in European and Mediterranean Silene. Integr Comp Biol 2022; 62:icac118. [PMID: 35816463 DOI: 10.1093/icb/icac118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pollinator selection on floral traits is a well-studied phenomenon, but less is known about the influence of climate on this species interaction. Floral trait evolution could be a result of both adaptation to climate and pollinator-mediated selection. In addition, climate may also determine pollinator communities, leading to an indirect influence of climate on floral traits. In this study, we present evidence of both direct and indirect effects of climate on plant morphology through a phylogenetic comparative analysis of the relationships between climate, pollinators, and morphology in 89 European and Mediterranean Silene species. Climate directly influences vegetative morphology, where both leaf size and internode length were found to be smaller in habitats that are warmer in the driest quarter of the year and that have more precipitation in the coldest quarter of the year. Similarly, flower size was directly influenced by climate, where smaller calyxes were also associated with habitats that are warmer in the driest quarter of the year. These results suggest that reduced leaf and flower size promote water conservation in species that occupy arid climates. Floral traits also evolved in response to pollinators, with elongated calyxes associated with nocturnal pollination, though we also found evidence that climate influences pollinator distribution. Nocturnal pollinators of Silene are found in habitats that have more temperature evenness across seasons than diurnal pollinators. Correspondingly, nocturnally-pollinated Silene are more likely to occur in habitats that have lower daily temperature fluctuation and more temperature evenness across seasons. Altogether these results show that climate can directly influence vegetative and floral morphology, but it can also affect pollinator distribution, which in turn drives floral adaptation. Our study therefore suggests that climate mediates the influence of species interactions on trait evolution by imposing direct selective demands on floral phenotypes and by determining the pollinator community that imposes its own selective demands on flowers.
Collapse
Affiliation(s)
- Jenna R Miladin
- Avenue of the Arts, Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia 23606
| | - Janet C Steven
- Avenue of the Arts, Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia 23606
| | - David C Collar
- Avenue of the Arts, Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia 23606
| |
Collapse
|
12
|
Ryu T, Herrera M, Moore B, Izumiyama M, Kawai E, Laudet V, Ravasi T. A chromosome-scale genome assembly of the false clownfish, Amphiprion ocellaris. G3 (BETHESDA, MD.) 2022; 12:6555996. [PMID: 35353192 PMCID: PMC9073690 DOI: 10.1093/g3journal/jkac074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/24/2022] [Indexed: 04/13/2023]
Abstract
The false clownfish Amphiprion ocellaris is a popular fish species and an emerging model organism for studying the ecology, evolution, adaptation, and developmental biology of reef fishes. Despite this, high-quality genomic resources for this species are scarce, hindering advanced genomic analyses. Leveraging the power of PacBio long-read sequencing and Hi-C chromosome conformation capture techniques, we constructed a high-quality chromosome-scale genome assembly for the clownfish A. ocellaris. The initial genome assembly comprised of 1,551 contigs of 861.42 Mb, with an N50 of 863.85 kb. Hi-C scaffolding of the genome resulted in 24 chromosomes containing 856.61 Mb. The genome was annotated with 26,797 protein-coding genes and had 96.62% completeness of conserved actinopterygian genes, making this genome the most complete and high quality among published anemonefish genomes. Transcriptomic analysis identified tissue-specific gene expression patterns, with the brain and optic lobe having the largest number of expressed genes. Further, comparative genomic analysis revealed 91 genome elements conserved only in A. ocellaris and its sister species Amphiprion percula, and not in other anemonefish species. These elements are close to genes that are involved in various nervous system functions and exhibited distinct expression patterns in brain tissue, potentially highlighting the genetic toolkits involved in lineage-specific divergence and behaviors of the clownfish branch. Overall, our study provides the highest quality A. ocellaris genome assembly and annotation to date, whilst also providing a valuable resource for understanding the ecology and evolution of reef fishes.
Collapse
Affiliation(s)
- Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495 Japan
- Corresponding author: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan. ; *Corresponding author: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan.
| | - Marcela Herrera
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495 Japan
| | - Billy Moore
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495 Japan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495 Japan
| | - Erina Kawai
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495 Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495 Japan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, I‐Lan, Taiwan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495 Japan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Corresponding author: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan. ; *Corresponding author: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan.
| |
Collapse
|
13
|
Kashimoto R, Tanimoto M, Miura S, Satoh N, Laudet V, Khalturin K. Transcriptomes of Giant Sea Anemones from Okinawa as a Tool for Understanding Their Phylogeny and Symbiotic Relationships with Anemonefish. Zoolog Sci 2022; 39. [DOI: 10.2108/zs210111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Rio Kashimoto
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Miyako Tanimoto
- Okinawa Churaumi Aquarium, 424 Ishikawa, Motobu, Kunigami District, Okinawa 905-0206, Japan
| | - Saori Miura
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit. Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Konstantin Khalturin
- Marine Genomics Unit. Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
14
|
Salis P, Lee S, Roux N, Lecchini D, Laudet V. The real Nemo movie: Description of embryonic development in Amphiprion ocellaris from first division to hatching. Dev Dyn 2021; 250:1651-1667. [PMID: 33899313 PMCID: PMC8597122 DOI: 10.1002/dvdy.354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Amphiprion ocellaris is one of the rare reef fish species that can be reared in aquaria. It is increasingly used as a model species for Eco-Evo-Devo. Therefore, it is important to have an embryonic development table based on high quality images that will allow for standardized sampling by the scientific community. RESULTS Here we provide high-resolution time-lapse videos to accompany a detailed description of embryonic development in A ocellaris. We describe a series of developmental stages and we define six broad periods of embryogenesis: zygote, cleavage, blastula, gastrula, segmentation, and organogenesis that we further subdivide into 32 stages. These periods highlight the changing spectrum of major developmental processes that occur during embryonic development. CONCLUSIONS We provide an easy system for the determination of embryonic stages, enabling the development of A ocellaris as a coral reef fish model species. This work will facilitate evolutionary development studies, in particular studies of the relationship between climate change and developmental trajectories in the context of coral reefs. Thanks to its lifestyle, complex behavior, and ecology, A ocellaris will undoubtedly become a very attractive model in a wide range of biological fields.
Collapse
Affiliation(s)
- Pauline Salis
- Observatoire Océanologique de Banyuls‐sur‐Mer, UMR CNRS 7232 BIOMSorbonne Université ParisBanyuls‐sur‐MerFrance
- EPHE‐UPVD‐CNRS, USR 3278 CRIOBEPSL UniversityMooreaFrench Polynesia
| | - Shu‐hua Lee
- Lab of Marine Eco‐Evo‐Devo, Marine Research StationInstitute of Cellular and Organismic Biology, Academia SinicaTaipeiTaiwan
| | - Natacha Roux
- Observatoire Océanologique de Banyuls‐sur‐Mer, UMR CNRS 7232 BIOMSorbonne Université ParisBanyuls‐sur‐MerFrance
| | - David Lecchini
- EPHE‐UPVD‐CNRS, USR 3278 CRIOBEPSL UniversityMooreaFrench Polynesia
| | - Vincent Laudet
- Lab of Marine Eco‐Evo‐Devo, Marine Research StationInstitute of Cellular and Organismic Biology, Academia SinicaTaipeiTaiwan
- Marine Eco‐Evo‐Devo UnitOkinawa Institute of Science and TechnologyOnna sonOkinawaJapan
| |
Collapse
|
15
|
McCord CL, Nash CM, Cooper WJ, Westneat MW. Phylogeny of the damselfishes (Pomacentridae) and patterns of asymmetrical diversification in body size and feeding ecology. PLoS One 2021; 16:e0258889. [PMID: 34705840 PMCID: PMC8550381 DOI: 10.1371/journal.pone.0258889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages in coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 345 of the 422 damselfishes. The resulting well-resolved phylogeny helps to address several important questions about higher-level damselfish relationships, their evolutionary history and patterns of divergence. A time-calibrated phylogenetic tree yields a root age for the family of 55.5 mya, refines the age of origin for a number of diverse genera, and shows that ecological changes during the Eocene-Oligocene transition provided opportunities for damselfish diversification. We explored the idea that body size extremes have evolved repeatedly among the Pomacentridae, and demonstrate that large and small body sizes have evolved independently at least 40 times and with asymmetric rates of transition among size classes. We tested the hypothesis that transitions among dietary ecotypes (benthic herbivory, pelagic planktivory and intermediate omnivory) are asymmetric, with higher transition rates from intermediate omnivory to either planktivory or herbivory. Using multistate hidden-state speciation and extinction models, we found that both body size and dietary ecotype are significantly associated with patterns of diversification across the damselfishes, and that the highest rates of net diversification are associated with medium body size and pelagic planktivory. We also conclude that the pattern of evolutionary diversification in feeding ecology, with frequent and asymmetrical transitions between feeding ecotypes, is largely restricted to the subfamily Pomacentrinae in the Indo-West Pacific. Trait diversification patterns for damselfishes across a fully resolved phylogeny challenge many recent general conclusions about the evolution of reef fishes.
Collapse
Affiliation(s)
- Charlene L. McCord
- College of Natural and Behavioral Sciences, California State University Dominguez Hills, Carson, California, United States of America
| | - Chloe M. Nash
- Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, United States of America
- Division of Fishes, Field Museum of Natural History, Chicago, Illinois, United States of America
| | - W. James Cooper
- Department of Biology and Program in Marine and Coastal Science, Western Washington University, Bellingham, Washington, United States of America
| | - Mark W. Westneat
- Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, United States of America
- Division of Fishes, Field Museum of Natural History, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Klann M, Mercader M, Carlu L, Hayashi K, Reimer JD, Laudet V. Variation on a theme: pigmentation variants and mutants of anemonefish. EvoDevo 2021; 12:8. [PMID: 34147131 PMCID: PMC8214269 DOI: 10.1186/s13227-021-00178-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
Pigmentation patterning systems are of great interest to understand how changes in developmental mechanisms can lead to a wide variety of patterns. These patterns are often conspicuous, but their origins remain elusive for many marine fish species. Dismantling a biological system allows a better understanding of the required components and the deciphering of how such complex systems are established and function. Valuable information can be obtained from detailed analyses and comparisons of pigmentation patterns of mutants and/or variants from normal patterns. Anemonefishes have been popular marine fish in aquaculture for many years, which has led to the isolation of several mutant lines, and in particular color alterations, that have become very popular in the pet trade. Additionally, scattered information about naturally occurring aberrant anemonefish is available on various websites and image platforms. In this review, the available information on anemonefish color pattern alterations has been gathered and compiled in order to characterize and compare different mutations. With the global picture of anemonefish mutants and variants emerging from this, such as presence or absence of certain phenotypes, information on the patterning system itself can be gained.
Collapse
Affiliation(s)
- Marleen Klann
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Manon Mercader
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Lilian Carlu
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Kina Hayashi
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Molecular Invertebrate Systematics and Ecology Lab, Graduate School of the Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Lab, Graduate School of the Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, I-Lan, Taiwan.
| |
Collapse
|
17
|
Thyroid hormones regulate the formation and environmental plasticity of white bars in clownfishes. Proc Natl Acad Sci U S A 2021; 118:2101634118. [PMID: 34031155 DOI: 10.1073/pnas.2101634118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Determining how plasticity of developmental traits responds to environmental conditions is a challenge that must combine evolutionary sciences, ecology, and developmental biology. During metamorphosis, fish alter their morphology and color pattern according to environmental cues. We observed that juvenile clownfish (Amphiprion percula) modulate the developmental timing of their adult white bar formation during metamorphosis depending on the sea anemone species in which they are recruited. We observed an earlier formation of white bars when clownfish developed with Stichodactyla gigantea (Sg) than with Heteractis magnifica (Hm). As these bars, composed of iridophores, form during metamorphosis, we hypothesized that timing of their development may be thyroid hormone (TH) dependent. We treated clownfish larvae with TH and found that white bars developed earlier than in control fish. We further observed higher TH levels, associated with rapid white bar formation, in juveniles recruited in Sg than in Hm, explaining the faster white bar formation. Transcriptomic analysis of Sg recruits revealed higher expression of duox, a dual oxidase implicated in TH production as compared to Hm recruits. Finally, we showed that duox is an essential regulator of iridophore pattern timing in zebrafish. Taken together, our results suggest that TH controls the timing of adult color pattern formation and that shifts in duox expression and TH levels are associated with ecological differences resulting in divergent ontogenetic trajectories in color pattern development.
Collapse
|
18
|
Tang KL, Stiassny MLJ, Mayden RL, DeSalle R. Systematics of Damselfishes. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/i2020105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kevin L. Tang
- University of Michigan–Flint, Department of Biology, 303 East Kearsley St., Flint, Michigan 48502; . Send reprint requests to this address
| | - Melanie L. J. Stiassny
- American Museum of Natural History, Department of Ichthyology, Central Park West at 79th St., New York, New York 10024;
| | - Richard L. Mayden
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri 63103;
| | - Robert DeSalle
- American Museum of Natural History, Division of Invertebrate Zoology, Central Park West at 79th St., New York, New York 10024;
| |
Collapse
|
19
|
Hosie AM, Fromont J, Munyard K, Wilson NG, Jones DS. Surveying keratose sponges (Porifera, demospongiae, Dictyoceratida) reveals hidden diversity of host specialist barnacles (Crustacea, Cirripedia, Balanidae). Mol Phylogenet Evol 2021; 161:107179. [PMID: 33887480 DOI: 10.1016/j.ympev.2021.107179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
Sponges represent one of the most species-rich hosts for commensal barnacles yet host utilisation and diversity have not been thoroughly examined. This study investigated the diversity and phylogenetic relationships of sponge-inhabiting barnacles within a single, targeted host group, primarily from Western Australian waters. Specimens of the sponge order Dictyoceratida were surveyed and a total of 64 host morphospecies, representing four families, were identified as barnacle hosts during the study. Utilising molecular (COI, 12S) and morphological methods 42 molecular operational taxonomic units (MOTUs) of barnacles, representing Acasta, Archiacasta, Euacasta and Neoacasta were identified. Comparing inter- and intra-MOTU genetic distances showed a barcode gap between 2.5% and 5% for COI, but between 1% and 1.5% in the 12S dataset, thus demonstrating COI as a more reliable barcoding region. These sponge-inhabiting barnacles were demonstrated to show high levels of host specificity with the majority being found in a single sponge species (74%), a single genus (83%) or a single host family (93%). Phylogenetic relationships among the barnacles were reconstructed using mitochondrial (12S, COI) and nuclear (H3, 28S) markers. None of the barnacle genera were recovered as monophyletic. Euacasta was paraphyletic in relation to the remaining Acastinae genera, which were polyphyletic. Six well-supported clades of molecular operational taxonomic units, herein considered to represent species complexes, were recovered, but relationships between them were not well supported. These complexes showed differing patterns of host usage, though most were phylogenetically conserved with sister lineages typically occupying related hosts within the same genus or family of sponge. The results show that host specialists are predominant, and the dynamics of host usage have played a significant role in the evolutionary history of the Acastinae.
Collapse
Affiliation(s)
- Andrew M Hosie
- Collections & Research, Western Australian Museum, 49 Kew St, Welshpool 6106 WA, Australia; Curtin Medical School, Curtin University, Bentley 6102 WA, Australia.
| | - Jane Fromont
- Collections & Research, Western Australian Museum, 49 Kew St, Welshpool 6106 WA, Australia
| | - Kylie Munyard
- Curtin Medical School, Curtin University, Bentley 6102 WA, Australia
| | - Nerida G Wilson
- Collections & Research, Western Australian Museum, 49 Kew St, Welshpool 6106 WA, Australia; School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley 6009 WA, Australia
| | - Diana S Jones
- Collections & Research, Western Australian Museum, 49 Kew St, Welshpool 6106 WA, Australia
| |
Collapse
|
20
|
Schalm G, Bruns K, Drachenberg N, Geyer N, Foulkes NS, Bertolucci C, Gerlach G. Finding Nemo's clock reveals switch from nocturnal to diurnal activity. Sci Rep 2021; 11:6801. [PMID: 33762724 PMCID: PMC7990958 DOI: 10.1038/s41598-021-86244-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/12/2021] [Indexed: 11/08/2022] Open
Abstract
Timing mechanisms play a key role in the biology of coral reef fish. Typically, fish larvae leave their reef after hatching, stay for a period in the open ocean before returning to the reef for settlement. During this dispersal, larvae use a time-compensated sun compass for orientation. However, the timing of settlement and how coral reef fish keep track of time via endogenous timing mechanisms is poorly understood. Here, we have studied the behavioural and genetic basis of diel rhythms in the clown anemonefish Amphiprion ocellaris. We document a behavioural shift from nocturnal larvae to diurnal adults, while juveniles show an intermediate pattern of activity which potentially indicates flexibility in the timing of settlement on a host anemone. qRTPCR analysis of six core circadian clock genes (bmal1, clocka, cry1b, per1b, per2, per3) reveals rhythmic gene expression patterns that are comparable in larvae and juveniles, and so do not reflect the corresponding activity changes. By establishing an embryonic cell line, we demonstrate that clown anemonefish possess an endogenous clock with similar properties to that of the zebrafish circadian clock. Furthermore, our study provides a first basis to study the multi-layered interaction of clocks from fish, anemones and their zooxanthellae endosymbionts.
Collapse
Affiliation(s)
- Gregor Schalm
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany.
| | - Kristina Bruns
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Nina Drachenberg
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Nathalie Geyer
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121, Naples, Italy
| | - Gabriele Gerlach
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Ammerländer Heerstr. 231, 26129, Oldenburg, Germany
- Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
21
|
Roux N, Logeux V, Trouillard N, Pillot R, Magré K, Salis P, Lecchini D, Besseau L, Laudet V, Romans P. A star is born again: Methods for larval rearing of an emerging model organism, the False clownfish Amphiprion ocellaris. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:376-385. [PMID: 33539680 PMCID: PMC8248105 DOI: 10.1002/jez.b.23028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
As interest increases in ecological, evolutionary, and developmental biology (Eco‐Evo‐Devo), wild species are increasingly used as experimental models. However, we are still lacking a suitable model for marine fish species, as well as coral reef fishes that can be reared at laboratory scales. Extensive knowledge of the life cycle of anemonefishes, and the peculiarities of their biology, make them relevant marine fish models for developmental biology, ecology, and evolutionary sciences. Here, we present standard methods to maintain breeding pairs of the anemonefish Amphiprion ocellaris in captivity, obtain regular good quality spawning, and protocols to ensure larval survival throughout rearing. We provide a detailed description of the anemonefish husbandry system and life prey culturing protocols. Finally, a “low‐volume” rearing protocol useful for the pharmacological treatment of larvae is presented. Such methods are important as strict requirements for large volumes in rearing tanks often inhibit continuous treatments with expensive or rare compounds. This paper describes how to set up a rearing system for anemone fishes at the laboratory scale as this species is becoming a relevant marine fish model to tackle Eco‐Evo‐Devo questions. We detail two rearing methods, one consisting of classical rearing conditions and the other one consisting of low‐volume conditions (500 ml).
Collapse
Affiliation(s)
- Natacha Roux
- CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Valentin Logeux
- CNRS, FR3724, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Nancy Trouillard
- CNRS, FR3724, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Rémi Pillot
- CNRS, FR3724, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Kévin Magré
- CNRS, FR3724, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Pauline Salis
- CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France.,EPHE-UPVD-CNRS-USR 3278 CRIOBE BP 1013, PSL Research University, Papetoai, Moorea, French Polynesia
| | - David Lecchini
- EPHE-UPVD-CNRS-USR 3278 CRIOBE BP 1013, PSL Research University, Papetoai, Moorea, French Polynesia.,Laboratoire d'Excellence "CORAIL", Papetoai, Moorea, French Polynesia
| | - Laurence Besseau
- CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Vincent Laudet
- CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France.,Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.,Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan, Taiwan
| | - Pascal Romans
- CNRS, FR3724, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| |
Collapse
|
22
|
Goldberg Y, Friedman J. Positive interactions within and between populations decrease the likelihood of evolutionary rescue. PLoS Comput Biol 2021; 17:e1008732. [PMID: 33600401 PMCID: PMC7924792 DOI: 10.1371/journal.pcbi.1008732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Positive interactions, including intraspecies cooperation and interspecies mutualisms, play crucial roles in shaping the structure and function of many ecosystems, ranging from plant communities to the human microbiome. While the evolutionary forces that form and maintain positive interactions have been investigated extensively, the influence of positive interactions on the ability of species to adapt to new environments is still poorly understood. Here, we use numerical simulations and theoretical analyses to study how positive interactions impact the likelihood that populations survive after an environment deteriorates, such that survival in the new environment requires quick adaptation via the rise of new mutants-a scenario known as evolutionary rescue. We find that the probability of evolutionary rescue in populations engaged in positive interactions is reduced significantly. In cooperating populations, this reduction is largely due to the fact that survival may require at least a minimal number of individuals, meaning that adapted mutants must arise and spread before the population declines below this threshold. In mutualistic populations, the rescue probability is decreased further due to two additional effects-the need for both mutualistic partners to adapt to the new environment, and competition between the two species. Finally, we show that the presence of cheaters reduces the likelihood of evolutionary rescue even further, making it extremely unlikely. These results indicate that while positive interactions may be beneficial in stable environments, they can hinder adaptation to changing environments and thereby elevate the risk of population collapse. Furthermore, these results may hint at the selective pressures that drove co-dependent unicellular species to form more adaptable organisms able to differentiate into multiple phenotypes, including multicellular life.
Collapse
Affiliation(s)
- Yaron Goldberg
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
23
|
Zeng Y, Wiens JJ. Species interactions have predictable impacts on diversification. Ecol Lett 2020; 24:239-248. [PMID: 33146947 DOI: 10.1111/ele.13635] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
A fundamental goal of ecology is to reveal generalities in the myriad types of interactions among species, such as competition, mutualism and predation. Another goal is to explain the enormous differences in species richness among groups of organisms. Here, we show how these two goals are intertwined: we find that different types of species interactions have predictable impacts on rates of species diversification, which underlie richness patterns. On the basis of a systematic review, we show that interactions with positive fitness effects for individuals of a clade (e.g. insect pollination for plants) generally increase that clade's diversification rates. Conversely, we find that interactions with negative fitness effects (e.g. predation for prey, competition) generally decrease diversification rates. The sampled clades incorporate all animals and land plants, encompassing 90% of all described species across life. Overall, we show that different types of local-scale species interactions can predictably impact large-scale patterns of diversification and richness.
Collapse
Affiliation(s)
- Yichao Zeng
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721-0088, USA
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721-0088, USA
| |
Collapse
|
24
|
Roux N, Salis P, Lee SH, Besseau L, Laudet V. Anemonefish, a model for Eco-Evo-Devo. EvoDevo 2020; 11:20. [PMID: 33042514 PMCID: PMC7539381 DOI: 10.1186/s13227-020-00166-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Anemonefish, are a group of about 30 species of damselfish (Pomacentridae) that have long aroused the interest of coral reef fish ecologists. Combining a series of original biological traits and practical features in their breeding that are described in this paper, anemonefish are now emerging as an experimental system of interest for developmental biology, ecology and evolutionary sciences. They are small sized and relatively easy to breed in specific husbandries, unlike the large-sized marine fish used for aquaculture. Because they live in highly structured social groups in sea anemones, anemonefish allow addressing a series of relevant scientific questions such as the social control of growth and sex change, the mechanisms controlling symbiosis, the establishment and variation of complex color patterns, and the regulation of aging. Combined with the use of behavioral experiments, that can be performed in the lab or directly in the wild, as well as functional genetics and genomics, anemonefish provide an attractive experimental system for Eco-Evo-Devo.
Collapse
Affiliation(s)
- Natacha Roux
- Sorbonne Université, CNRS, UMR « Biologie Intégrative Des Organismes Marins », BIOM, 1, 66650 Banyuls-sur-Mer, France
| | - Pauline Salis
- Sorbonne Université, CNRS, UMR « Biologie Intégrative Des Organismes Marins », BIOM, 1, 66650 Banyuls-sur-Mer, France
| | - Shu-Hua Lee
- Lab of Marine Eco-Evo-Devo, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Laurence Besseau
- Sorbonne Université, CNRS, UMR « Biologie Intégrative Des Organismes Marins », BIOM, 1, 66650 Banyuls-sur-Mer, France
| | - Vincent Laudet
- Lab of Marine Eco-Evo-Devo, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa, 904-0495 Japan
| |
Collapse
|
25
|
Baguette M, Bertrand JAM, Stevens VM, Schatz B. Why are there so many bee-orchid species? Adaptive radiation by intra-specific competition for mnesic pollinators. Biol Rev Camb Philos Soc 2020; 95:1630-1663. [PMID: 32954662 DOI: 10.1111/brv.12633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023]
Abstract
Adaptive radiations occur mostly in response to environmental variation through the evolution of key innovations that allow emerging species to occupy new ecological niches. Such biological innovations may play a major role in niche divergence when emerging species are engaged in reciprocal ecological interactions. To demonstrate coevolution is a difficult task; only a few studies have confirmed coevolution as driver of speciation and diversification. Herein we review current knowledge about bee orchid (Ophrys spp.) reproductive biology. We propose that the adaptive radiation of the Mediterranean orchid genus Ophrys, comprising several hundred species, is due to coevolutionary dynamics between these plants and their pollinators. We suggest that pollination by sexual swindling used by Ophrys orchids is the main driver of this coevolution. Flowers of each Ophrys species mimic a sexually receptive female of one particular insect species, mainly bees. Male bees are first attracted by pseudo-pheromones emitted by Ophrys flowers that are similar to the sexual pheromones of their females. Males then are lured by the flower shape, colour and hairiness, and attempt to copulate with the flower, which glues pollen onto their bodies. Pollen is later transferred to the stigma of another flower of the same Ophrys species during similar copulation attempts. In contrast to rewarding pollination strategies, Ophrys pollinators appear to be parasitized. Here we propose that this apparent parasitism is in fact a coevolutionary relationship between Ophrys and their pollinators. For plants, pollination by sexual swindling could ensure pollination efficiency and specificity, and gene flow among populations. For pollinators, pollination by sexual swindling could allow habitat matching and inbreeding avoidance. Pollinators might use the pseudo-pheromones emitted by Ophrys to locate suitable habitats from a distance within complex landscapes. In small populations, male pollinators would disperse once they have memorized the local diversity of sexual pseudo-pheromone bouquets or if all Ophrys flowers are fertilized and thus repel pollinators via production of repulsive pheromones that mimic those produced by fertilized female bees. We propose the following evolutionary scenario: Ophrys radiation is driven by strong intra-specific competition among Ophrys individuals for the attraction of species-specific pollinators, which is a consequence of the high cognitive abilities of pollinators. Male bees record the pheromone signatures of kin or of previously courted partners to avoid further copulation attempts, thereby inducing strong selection on Ophrys for variation in odour bouquets emitted by individual flowers. The resulting odour bouquets could by chance correspond to pseudo-pheromones of the females of another bee species, and thus attract a new pollinator. If such pollinator shifts occur simultaneously in several indivuals, pollen exchanges might occur and initiate speciation. To reinforce the attraction of the new pollinator and secure prezygotic isolation, the following step is directional selection on flower phenotypes (shape, colour and hairiness) towards a better match with the body of the pollinator's female. Pollinator shift and the resulting prezygotic isolation is adaptive for new Ophrys species because they may benefit from competitor-free space for limited pollinators. We end our review by proritizing several critical research avenues.
Collapse
Affiliation(s)
- Michel Baguette
- Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, F-75005, Paris, France.,Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, F-09200, Moulis, France
| | - Joris A M Bertrand
- LGDP (Laboratoire Génome et Développement des Plantes) UMR5096, Université de Perpignan Via Domitia -CNRS, F-66860, Perpignan, France
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, F-09200, Moulis, France
| | - Bertrand Schatz
- CEFE (Centre d'Ecologie Fonctionnelle et Evolutive) UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry - EPHE, 1919 Route de Mende, 34293, Montpellier, France
| |
Collapse
|
26
|
Preussger D, Giri S, Muhsal LK, Oña L, Kost C. Reciprocal Fitness Feedbacks Promote the Evolution of Mutualistic Cooperation. Curr Biol 2020; 30:3580-3590.e7. [PMID: 32707067 DOI: 10.1016/j.cub.2020.06.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Mutually beneficial interactions are ubiquitous in nature and have played a pivotal role for the evolution of life on earth. However, the factors facilitating their emergence remain poorly understood. Here, we address this issue both experimentally and by mathematical modeling using cocultures of auxotrophic strains of Escherichia coli, whose growth depends on a reciprocal exchange of amino acids. Coevolving auxotrophic pairs in a spatially heterogeneous environment for less than 150 generations transformed the initial interaction that was merely based on an exchange of metabolic byproducts into a costly metabolic cooperation, in which both partners increased the amounts of metabolites they produced to benefit their corresponding partner. The observed changes were afforded by the formation of multicellular clusters, within which increased cooperative investments were favored by positive fitness feedbacks among interacting genotypes. Under these conditions, non-cooperative individuals were less fit than cooperative mutants. Together, our results highlight the ease with which mutualistic cooperation can evolve, suggesting similar mechanisms likely operate in natural communities. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Daniel Preussger
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll Str. 8, Jena 07745, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück 49076, Germany
| | - Samir Giri
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll Str. 8, Jena 07745, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück 49076, Germany
| | - Linéa K Muhsal
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück 49076, Germany
| | - Leonardo Oña
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück 49076, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll Str. 8, Jena 07745, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück 49076, Germany.
| |
Collapse
|
27
|
Simmonds SE, Fritts‐Penniman AL, Cheng SH, Mahardika GN, Barber PH. Genomic signatures of host-associated divergence and adaptation in a coral-eating snail, Coralliophila violacea (Kiener, 1836). Ecol Evol 2020; 10:1817-1837. [PMID: 32128119 PMCID: PMC7042750 DOI: 10.1002/ece3.5977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
The fluid nature of the ocean, combined with planktonic dispersal of marine larvae, lowers physical barriers to gene flow. However, divergence can still occur despite gene flow if strong selection acts on populations occupying different ecological niches. Here, we examined the population genomics of an ectoparasitic snail, Coralliophila violacea (Kiener 1836), that specializes on Porites corals in the Indo-Pacific. Previous genetic analyses revealed two sympatric lineages associated with different coral hosts. In this study, we examined the mechanisms promoting and maintaining the snails' adaptation to their coral hosts. Genome-wide single nucleotide polymorphism (SNP) data from type II restriction site-associated DNA (2b-RAD) sequencing revealed two differentiated clusters of C. violacea that were largely concordant with coral host, consistent with previous genetic results. However, the presence of some admixed genotypes indicates gene flow from one lineage to the other. Combined, these results suggest that differentiation between host-associated lineages of C. violacea is occurring in the face of ongoing gene flow, requiring strong selection. Indeed, 2.7% of all SNP loci were outlier loci (73/2,718), indicative of divergence with gene flow, driven by adaptation of each C. violacea lineage to their specific coral hosts.
Collapse
Affiliation(s)
- Sara E. Simmonds
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | | | - Samantha H. Cheng
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
- Center for Biodiversity and ConservationAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Gusti Ngurah Mahardika
- Animal Biomedical and Molecular Biology LaboratoryFaculty of Veterinary MedicineUdayana University BaliDenpasarIndonesia
| | - Paul H. Barber
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| |
Collapse
|
28
|
Titus BM, Laroche R, Rodríguez E, Wirshing H, Meyer CP. Host identity and symbiotic association affects the taxonomic and functional diversity of the clownfish-hosting sea anemone microbiome. Biol Lett 2020; 16:20190738. [PMID: 32019466 PMCID: PMC7058955 DOI: 10.1098/rsbl.2019.0738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
All eukaryotic life engages in symbioses with a diverse community of bacteria that are essential for performing basic life functions. In many cases, eukaryotic organisms form additional symbioses with other macroscopic eukaryotes. The tightly linked physical interactions that characterize many macroscopic symbioses create opportunities for microbial transfer, which likely affects the diversity and function of individual microbiomes, and may ultimately lead to microbiome convergence between distantly related taxa. Here, we sequence the microbiomes of five species of clownfish-hosting sea anemones that co-occur on coral reefs in the Maldives. We test the importance of evolutionary history, clownfish symbiont association, and habitat on the taxonomic and predicted functional diversity of the microbiome, and explore signals of microbiome convergence in anemone taxa that have evolved symbioses with clownfishes independently. Our data indicate that host identity and clownfish association shapes the majority of the taxonomic diversity of the clownfish-hosting sea anemone microbiome, and predicted functional microbial diversity analyses demonstrate a convergence among host anemone microbiomes, which reflect increased functional diversity over individuals that do not host clownfishes. Further, we identify upregulated predicted microbial functions that are likely affected by clownfish presence. Taken together our study potentially reveals an even deeper metabolic coupling between clownfishes and their host anemones, and what could be a previously unknown mutualistic benefit to anemones that are symbiotic with clownfishes.
Collapse
Affiliation(s)
- Benjamin M. Titus
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Robert Laroche
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Herman Wirshing
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
| | - Christopher P. Meyer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
| |
Collapse
|
29
|
Loiseau O, Weigand A, Noben S, Rolland J, Silvestro D, Kessler M, Lehnert M, Salamin N. Slowly but surely: gradual diversification and phenotypic evolution in the hyper-diverse tree fern family Cyatheaceae. ANNALS OF BOTANY 2020; 125:93-103. [PMID: 31562744 PMCID: PMC6948215 DOI: 10.1093/aob/mcz145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/26/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS The tremendously unbalanced distribution of species richness across clades in the tree of life is often interpreted as the result of variation in the rates of diversification, which may themselves respond to trait evolution. Even though this is likely a widespread pattern, not all diverse groups of organisms exhibit heterogeneity in their dynamics of diversification. Testing and characterizing the processes driving the evolution of clades with steady rates of diversification over long periods of time are of importance in order to have a full understanding of the build-up of biodiversity through time. METHODS We studied the macroevolutionary history of the species-rich tree fern family Cyatheaceae and inferred a time-calibrated phylogeny of the family including extinct and extant species using the recently developed fossilized birth-death method. We tested whether the high diversity of Cyatheaceae is the result of episodes of rapid diversification associated with phenotypic and ecological differentiation or driven by stable but low rates of diversification. We compared the rates of diversification across clades, modelled the evolution of body size and climatic preferences and tested for trait-dependent diversification. KEY RESULTS This ancient group diversified at a low and constant rate during its long evolutionary history. Morphological and climatic niche evolution were found to be overall highly conserved, although we detected several shifts in the rates of evolution of climatic preferences, linked to changes in elevation. The diversification of the family occurred gradually, within limited phenotypic and ecological boundaries, and yet resulted in a remarkable species richness. CONCLUSIONS Our study indicates that Cyatheaceae is a diverse clade which slowly accumulated morphological, ecological and taxonomic diversity over a long evolutionary period and provides a compelling example of the tropics as a museum of biodiversity.
Collapse
Affiliation(s)
- Oriane Loiseau
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anna Weigand
- Institute for Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Sarah Noben
- Institute for Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Jonathan Rolland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, B.C., Canada
| | - Daniele Silvestro
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Global Gothenburg Biodiversity Center, Gothenburg, Sweden
| | - Michael Kessler
- Institute for Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland
| | - Marcus Lehnert
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
- Department of Geobotany and Botanical Garden, Herbarium, Martin-Luther-University Halle-Wittenberg, Neuwerk 21, 06108 Halle, Germany
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Apprill A. The Role of Symbioses in the Adaptation and Stress Responses of Marine Organisms. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:291-314. [PMID: 31283425 DOI: 10.1146/annurev-marine-010419-010641] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ocean ecosystems are experiencing unprecedented rates of climate and anthropogenic change, which can often initiate stress in marine organisms. Symbioses, or associations between different organisms, are plentiful in the ocean and could play a significant role in facilitating organismal adaptations to stressful ocean conditions. This article reviews current knowledge about the role of symbiosis in marine organismal acclimation and adaptation. It discusses stress and adaptations in symbioses from coral reef ecosystems, which are among the most affected environments in the ocean, including the relationships between corals and microalgae, corals and bacteria, anemones and clownfish, and cleaner fish and client fish. Despite the importance of this subject, knowledge of how marine organisms adapt to stress is still limited, and there are vast opportunities for research and technological development in this area. Attention to this subject will enhance our understanding of the capacity of symbioses to alleviate organismal stress in the oceans.
Collapse
Affiliation(s)
- Amy Apprill
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
| |
Collapse
|
31
|
Cryptic ecological and geographic diversification in coral-associated nudibranchs. Mol Phylogenet Evol 2019; 144:106698. [PMID: 31812568 DOI: 10.1016/j.ympev.2019.106698] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/03/2019] [Accepted: 11/30/2019] [Indexed: 12/18/2022]
Abstract
Coral reefs are among the most biologically diverse ecosystems of the world, yet little is known about the processes creating and maintaining their diversity. Ecologically, corallivory in nudibranchs resembles phytophagy in insects- a process that for decades has served as a model for ecological speciation via host shifting. This study uses extensive field collections, DNA sequencing, and phylogenetic analyses to reconstruct the evolutionary history of coral-associated nudibranchs and assess the relative roles that host shifting and geography may have played in their diversification. We find that the number of species is three times higher than the number previously known to science, with evidence for both allopatric and ecological divergence through host shifting and host specialization. Results contribute to growing support for the importance of ecological diversification in marine environments and provide evidence for new species in the genus Tenellia.
Collapse
|
32
|
Titus BM, Benedict C, Laroche R, Gusmão LC, Van Deusen V, Chiodo T, Meyer CP, Berumen ML, Bartholomew A, Yanagi K, Reimer JD, Fujii T, Daly M, Rodríguez E. Phylogenetic relationships among the clownfish-hosting sea anemones. Mol Phylogenet Evol 2019; 139:106526. [DOI: 10.1016/j.ympev.2019.106526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023]
|
33
|
Chomicki G, Weber M, Antonelli A, Bascompte J, Kiers ET. The Impact of Mutualisms on Species Richness. Trends Ecol Evol 2019; 34:698-711. [DOI: 10.1016/j.tree.2019.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 11/28/2022]
|
34
|
Sahm A, Almaida-Pagán P, Bens M, Mutalipassi M, Lucas-Sánchez A, de Costa Ruiz J, Görlach M, Cellerino A. Analysis of the coding sequences of clownfish reveals molecular convergence in the evolution of lifespan. BMC Evol Biol 2019; 19:89. [PMID: 30975078 PMCID: PMC6460853 DOI: 10.1186/s12862-019-1409-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/10/2019] [Indexed: 01/12/2023] Open
Abstract
Background Standard evolutionary theories of aging postulate that reduced extrinsic mortality leads to evolution of longevity. Clownfishes of the genus Amphiprion live in a symbiotic relationship with sea anemones that provide protection from predators. We performed a survey and identified at least two species with a lifespan of over 20 years. Given their small size and ease of captive reproduction, clownfish lend themselves as experimental models of exceptional longevity. To identify genetic correlates of exceptional longevity, we sequenced the transcriptomes of Amphiprion percula and A. clarkii and performed a scan for positively-selected genes (PSGs). Results The PSGs that we identified in the last common clownfish ancestor were compared with PSGs detected in long-lived mole rats and short-lived killifishes revealing convergent evolution in processes such as mitochondrial biogenesis. Among individual genes, the Mitochondrial Transcription Termination Factor 1 (MTERF1), was positively-selected in all three clades, whereas the Glutathione S-Transferase Kappa 1 (GSTK1) was under positive selection in two independent clades. For the latter, homology modelling strongly suggested that positive selection targeted enzymatically important residues. Conclusions These results indicate that specific pathways were recruited in independent lineages evolving an exceptionally extended or shortened lifespan and point to mito-nuclear balance as a key factor. Electronic supplementary material The online version of this article (10.1186/s12862-019-1409-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arne Sahm
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Martin Bens
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | | | | | - Matthias Görlach
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Alessandro Cellerino
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany. .,Bio@SNS, Scuola Normale Superiore, Pisa, Italy.
| |
Collapse
|
35
|
Marcionetti A, Rossier V, Roux N, Salis P, Laudet V, Salamin N. Insights into the Genomics of Clownfish Adaptive Radiation: Genetic Basis of the Mutualism with Sea Anemones. Genome Biol Evol 2019; 11:869-882. [PMID: 30830203 PMCID: PMC6430985 DOI: 10.1093/gbe/evz042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Clownfishes are an iconic group of coral reef fishes, especially known for their mutualism with sea anemones. This mutualism is particularly interesting as it likely acted as the key innovation that triggered clownfish adaptive radiation. Indeed, after the acquisition of the mutualism, clownfishes diversified into multiple ecological niches linked with host and habitat use. However, despite the importance of this mutualism, the genetic mechanisms allowing clownfishes to interact with sea anemones are still unclear. Here, we used a comparative genomics and molecular evolutionary analyses to investigate the genetic basis of clownfish mutualism with sea anemones. We assembled and annotated the genome of nine clownfish species and one closely related outgroup. Orthologous genes inferred between these species and additional publicly available teleost genomes resulted in almost 16,000 genes that were tested for positively selected substitutions potentially involved in the adaptation of clownfishes to live in sea anemones. We identified 17 genes with a signal of positive selection at the origin of clownfish radiation. Two of them (Versican core protein and Protein O-GlcNAse) show particularly interesting functions associated with N-acetylated sugars, which are known to be involved in sea anemone discharge of toxins. This study provides the first insights into the genetic mechanisms of clownfish mutualism with sea anemones. Indeed, we identified the first candidate genes likely to be associated with clownfish protection form sea anemones, and thus the evolution of their mutualism. Additionally, the genomic resources acquired represent a valuable resource for further investigation of the genomic basis of clownfish adaptive radiation.
Collapse
Affiliation(s)
- Anna Marcionetti
- Department of Computational Biology, Génopode, University of Lausanne, Switzerland
| | - Victor Rossier
- Department of Computational Biology, Génopode, University of Lausanne, Switzerland
| | - Natacha Roux
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne University, Banyuls-sur-Mer, France
| | - Pauline Salis
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne University, Banyuls-sur-Mer, France
| | - Vincent Laudet
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne University, Banyuls-sur-Mer, France
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, Switzerland
| |
Collapse
|
36
|
Skeels A, Cardillo M. Reconstructing the Geography of Speciation from Contemporary Biodiversity Data. Am Nat 2019; 193:240-255. [DOI: 10.1086/701125] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Rolland J, Silvestro D, Litsios G, Faye L, Salamin N. Clownfishes evolution below and above the species level. Proc Biol Sci 2019; 285:rspb.2017.1796. [PMID: 29467260 PMCID: PMC5832698 DOI: 10.1098/rspb.2017.1796] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/29/2018] [Indexed: 12/26/2022] Open
Abstract
The difference between rapid morphological evolutionary changes observed in populations and the long periods of stasis detected in the fossil record has raised a decade-long debate about the exact role played by intraspecific mechanisms at the interspecific level. Although they represent different scales of the same evolutionary process, micro- and macroevolution are rarely studied together and few empirical studies have compared the rates of evolution and the selective pressures between both scales. Here, we analyse morphological, genetic and ecological traits in clownfishes at different evolutionary scales and demonstrate that the tempo of molecular and morphological evolution at the species level can be, to some extent, predicted from parameters estimated below the species level, such as the effective population size or the rate of evolution within populations. We also show that similar codons in the gene of the rhodopsin RH1, a light-sensitive receptor protein, are under positive selection at the intra and interspecific scales, suggesting that similar selective pressures are acting at both levels.
Collapse
Affiliation(s)
- Jonathan Rolland
- Department of Computational Biology, University of Lausanne, Biophore, Quartier-Sorge, 1015 Lausanne, Switzerland .,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland.,Department of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, BC, Canada
| | - Daniele Silvestro
- Department of Computational Biology, University of Lausanne, Biophore, Quartier-Sorge, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland.,Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| | - Glenn Litsios
- Department of Computational Biology, University of Lausanne, Biophore, Quartier-Sorge, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Laurélène Faye
- Department of Computational Biology, University of Lausanne, Biophore, Quartier-Sorge, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland.,Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Biophore, Quartier-Sorge, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Feeney WE, Brooker RM, Johnston LN, Gilbert JDJ, Besson M, Lecchini D, Dixson DL, Cowman PF, Manica A. Predation drives recurrent convergence of an interspecies mutualism. Ecol Lett 2018; 22:256-264. [DOI: 10.1111/ele.13184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/17/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- William E. Feeney
- School of Biological Sciences University of Queensland Brisbane Australia
- School of Marine Sciences and Policy University of Delaware Newark DE USA
| | - Rohan M. Brooker
- School of Marine Sciences and Policy University of Delaware Newark DE USA
- School of Life and Environmental Sciences, Centre for Integrative Ecology Deakin University Geelong Vic. Australia
| | - Lane N. Johnston
- School of Marine Sciences and Policy University of Delaware Newark DE USA
| | | | - Marc Besson
- PSL Research University CRIOBE USR3278‐CNRS‐EPHE‐UPVD, Laboratoire d'Excellence “CORAIL” Moorea French Polynesia
- BIOM Observatoire Océanologique de Banyuls‐sur‐Mer Université Pierre et Marie Curie Banyuls‐sur‐Mer France
| | - David Lecchini
- PSL Research University CRIOBE USR3278‐CNRS‐EPHE‐UPVD, Laboratoire d'Excellence “CORAIL” Moorea French Polynesia
| | - Danielle L. Dixson
- School of Marine Sciences and Policy University of Delaware Newark DE USA
| | - Peter F. Cowman
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Andrea Manica
- Department of Zoology University of Cambridge Cambridge UK
| |
Collapse
|
39
|
Salis P, Roux N, Soulat O, Lecchini D, Laudet V, Frédérich B. Ontogenetic and phylogenetic simplification during white stripe evolution in clownfishes. BMC Biol 2018; 16:90. [PMID: 30180844 PMCID: PMC6123960 DOI: 10.1186/s12915-018-0559-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background Biologists have long been fascinated by the striking diversity of complex color patterns in tropical reef fishes. However, the origins and evolution of this diversity are still poorly understood. Disentangling the evolution of simple color patterns offers the opportunity to dissect both ultimate and proximate causes underlying color diversity. Results Here, we study clownfishes, a tribe of 30 species within the Pomacentridae that displays a relatively simple color pattern made of zero to three vertical white stripes on a dark body background. Mapping the number of white stripes on the evolutionary tree of clownfishes reveals that their color pattern diversification results from successive caudal to rostral losses of stripes. Moreover, we demonstrate that stripes always appear with a rostral to caudal stereotyped sequence during larval to juvenile transition. Drug treatments (TAE 684) during this period leads to a dose-dependent loss of stripes, demonstrating that white stripes are made of iridophores and that these cells initiate the stripe formation. Surprisingly, juveniles of several species (e.g., Amphiprion frenatus) have supplementary stripes when compared to their respective adults. These stripes disappear caudo-rostrally during the juvenile phase leading to the definitive color pattern. Remarkably, the reduction of stripe number over ontogeny matches the sequences of stripe losses during evolution, showing that color pattern diversification among clownfish lineages results from changes in developmental processes. Finally, we reveal that the diversity of striped patterns plays a key role for species recognition. Conclusions Overall, our findings illustrate how developmental, ecological, and social processes have shaped the diversification of color patterns during the radiation of an emblematic coral reef fish lineage. Electronic supplementary material The online version of this article (10.1186/s12915-018-0559-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pauline Salis
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université Paris, 1, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - Natacha Roux
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université Paris, 1, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - Olivier Soulat
- Aquarium de Canet-en-Roussillon, 2 Boulevard de la Jetée, 66140, Canet-en-Roussillon, France
| | - David Lecchini
- EPHE-UPVD-CNRS, USR3278 CRIOBE, PSL Research University, BP 1013, 98729, Papetoai, Moorea, French Polynesia
| | - Vincent Laudet
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université Paris, 1, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France.
| | - Bruno Frédérich
- Laboratory of Functional and Evolutionary Morphology, FOCUS, University of Liège, Liège, Belgium
| |
Collapse
|
40
|
Kodandaramaiah U, Murali G. What affects power to estimate speciation rate shifts? PeerJ 2018; 6:e5495. [PMID: 30155369 PMCID: PMC6108317 DOI: 10.7717/peerj.5495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 07/30/2018] [Indexed: 02/04/2023] Open
Abstract
The development of methods to estimate rates of speciation and extinction from time-calibrated phylogenies has revolutionized evolutionary biology by allowing researchers to correlate diversification rate shifts with causal factors. A growing number of researchers are interested in testing whether the evolution of a trait or a trait variant has influenced speciation rate, and three modelling methods-BiSSE, MEDUSA and BAMM-have been widely used in such studies. We simulated phylogenies with a single speciation rate shift each, and evaluated the power of the three methods to detect these shifts. We varied the degree of increase in speciation rate (speciation rate asymmetry), the number of tips, the tip-ratio bias (ratio of number of tips with each character state) and the relative age in relation to overall tree age when the rate shift occurred. All methods had good power to detect rate shifts when the rate asymmetry was strong and the sizes of the two lineages with the distinct speciation rates were large. Even when lineage size was small, power was good when rate asymmetry was high. In our simulated scenarios, small lineage sizes appear to affect BAMM most strongly. Tip-ratio influenced the accuracy of speciation rate estimation but did not have a strong effect on power to detect rate shifts. Based on our results, we provide suggestions to users of these methods.
Collapse
Affiliation(s)
- Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Gopal Murali
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| |
Collapse
|
41
|
Abstract
Feeney and Brooker introduce sea-anemone associated fish.
Collapse
Affiliation(s)
- William E Feeney
- School of Biological Sciences, University of Queensland, Australia; School of Integrative Biology, University of California, Berkeley, USA.
| | - Rohan M Brooker
- School of Marine Science and Policy, University of Delaware, USA
| |
Collapse
|
42
|
Liu SYV, Frédérich B, Lavoué S, Chang J, Erdmann MV, Mahardika GN, Barber PH. Buccal venom gland associates with increased of diversification rate in the fang blenny fish Meiacanthus (Blenniidae; Teleostei). Mol Phylogenet Evol 2018; 125:138-146. [PMID: 29597008 DOI: 10.1016/j.ympev.2018.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/18/2022]
Abstract
At the macroevolutionary level, many mechanisms have been proposed to explain explosive species diversification. Among them morphological and/or physiological novelty is considered to have a great impact on the tempo and the mode of diversification. Meiacanthus is a genus of Blenniidae possessing a unique buccal venom gland at the base of an elongated canine tooth. This unusual trait has been hypothesized to aid escape from predation and thus potentially play an important role in their pattern of diversification. Here, we produce the first time-calibrated phylogeny of Blenniidae and we test the impact of two morphological novelties on their diversification, i.e. the presence of swim bladder and buccal venom gland, using various comparative methods. We found an increase in the tempo of lineage diversification at the root of the Meiacanthus clade, associated with the evolution of the buccal venom gland, but not the swim bladder. Neither morphological novelty was associated with the pattern of size disparification in blennies. Our results support the hypothesis that the buccal venom gland has contributed to the explosive diversification of Meiacanthus, but further analyses are needed to fully understand the factors sustaining this burst of speciation.
Collapse
Affiliation(s)
- Shang-Yin Vanson Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Bruno Frédérich
- Laboratoire d'Océanologie, UR FOCUS, Université de Liège, 4000 Liège, Belgium
| | - Sébastien Lavoué
- Institute of Oceanography, National Taiwan University, Roosevelt Road, Taipei 10617, Taiwan
| | - Jonathan Chang
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Mark V Erdmann
- Conservation International Indonesia Marine Program, 80235 Bali, Indonesia
| | - Gusti Ngurah Mahardika
- The Indonesian Biodiversity Research Centre, The Animal Biomedical and Molecular Biology Laboratory of Udayana University, Jl Sesetan-Markisa 6, Denpasar, Bali, Indonesia
| | - Paul H Barber
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA
| |
Collapse
|
43
|
Davis KE, De Grave S, Delmer C, Wills MA. Freshwater transitions and symbioses shaped the evolution and extant diversity of caridean shrimps. Commun Biol 2018; 1:16. [PMID: 30271903 PMCID: PMC6123698 DOI: 10.1038/s42003-018-0018-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/02/2018] [Indexed: 01/08/2023] Open
Abstract
Understanding the processes that shaped the strikingly irregular distribution of species richness across the Tree of Life is a major research agenda. Changes in ecology may go some way to explain the often strongly asymmetrical fates of sister clades, and we test this in the caridean shrimps. First appearing in the Lower Jurassic, there are now ~3500 species worldwide. Carideans experienced several independent transitions to freshwater from marine habitats, while many of the marine species have also evolved a symbiotic lifestyle. Here we use diversification rate analyses to test whether these ecological traits promote or inhibit diversity within a phylogenetic framework. We demonstrate that speciation rates are more than twice as high in freshwater clades, whilst symbiotic ecologies are associated with lower speciation rates. These lower rates amongst symbiotic species are of concern given that symbioses often occur in some of the most diverse, delicately balanced and threatened marine ecosystems. Katie Davis et al. test the hypothesis that ecological traits are linked to diversification in caridean shrimps. They find that transitions from marine to freshwater habitats contributed to higher diversification rates, whereas symbiosis is associated with a slight decrease in diversification rates.
Collapse
Affiliation(s)
- Katie E Davis
- Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK.
| | - Sammy De Grave
- Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, UK
| | - Cyrille Delmer
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AX, UK
| | - Matthew A Wills
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AX, UK
| |
Collapse
|
44
|
Marcionetti A, Rossier V, Bertrand JAM, Litsios G, Salamin N. First draft genome of an iconic clownfish species (Amphiprion frenatus). Mol Ecol Resour 2018; 18:1092-1101. [PMID: 29455459 DOI: 10.1111/1755-0998.12772] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 11/30/2022]
Abstract
Clownfishes (or anemonefishes) form an iconic group of coral reef fishes, principally known for their mutualistic interaction with sea anemones. They are characterized by particular life history traits, such as a complex social structure and mating system involving sequential hermaphroditism, coupled with an exceptionally long lifespan. Additionally, clownfishes are considered to be one of the rare groups to have experienced an adaptive radiation in the marine environment. Here, we assembled and annotated the first genome of a clownfish species, the tomato clownfish (Amphiprion frenatus). We obtained 17,801 assembled scaffolds, containing a total of 26,917 genes. The completeness of the assembly and annotation was satisfying, with 96.5% of the Actinopterygii Benchmarking Universal Single-Copy Orthologs (BUSCOs) being retrieved in A. frenatus assembly. The quality of the resulting assembly is comparable to other bony fish assemblies. This resource is valuable for advancing studies of the particular life history traits of clownfishes, as well as being useful for population genetic studies and the development of new phylogenetic markers. It will also open the way to comparative genomics. Indeed, future genomic comparison among closely related fishes may provide means to identify genes related to the unique adaptations to different sea anemone hosts, as well as better characterize the genomic signatures of an adaptive radiation.
Collapse
Affiliation(s)
- Anna Marcionetti
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Victor Rossier
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joris A M Bertrand
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Glenn Litsios
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
45
|
Li J, Ó Foighil D, Strong EE. Commensal associations and benthic habitats shape macroevolution of the bivalve clade Galeommatoidea. Proc Biol Sci 2017; 283:rspb.2016.1006. [PMID: 27383818 DOI: 10.1098/rspb.2016.1006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/13/2016] [Indexed: 11/12/2022] Open
Abstract
The great diversity of marine life has been shaped by the interplay between abiotic and biotic factors. Among different biotic interactions, symbiosis is an important yet less studied phenomenon. Here, we tested how symbiotic associations affected marine diversification, using the bivalve superfamily Galeommatoidea as a study system. This superfamily contains large numbers of obligate commensal as well as free-living species and is therefore amenable to comparative approaches. We constructed a global molecular phylogeny of Galeommatoidea and compared macroevolutionary patterns between free-living and commensal lineages. Our analyses inferred that commensalism/sediment-dwelling is likely to be the ancestral condition of Galeommatoidea and that secondary invasions of hard-bottom habitats linked to the loss of commensalism. One major clade containing most of the free-living species exhibits a 2-4 times higher diversification rate than that of the commensals, likely driven by frequent niche partitioning in highly heterogeneous hard-bottom habitats. However, commensal clades show much higher within-clade morphological disparity, likely promoted by their intimate associations with diverse hosts. Our study highlights the importance of interactions between different ecological factors in shaping marine macroevolution and that biotic factors cannot be ignored if we wish to fully understand processes that generate marine biodiversity.
Collapse
Affiliation(s)
- Jingchun Li
- Museum of Zoology and Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Diarmaid Ó Foighil
- Museum of Zoology and Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Ellen E Strong
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
46
|
Pellissier L, Kostikova A, Litsios G, Salamin N, Alvarez N. High Rate of Protein Coding Sequence Evolution and Species Diversification in the Lycaenids. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Floeter SR, Bender MG, Siqueira AC, Cowman PF. Phylogenetic perspectives on reef fish functional traits. Biol Rev Camb Philos Soc 2017; 93:131-151. [PMID: 28464469 DOI: 10.1111/brv.12336] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 01/13/2023]
Abstract
Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef-associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid-sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait-environment interactions as well as by species and trait-trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a phylogenetic and a functional approach will improve the understanding of the mechanisms of species assembly in extraordinarily rich coral reef communities.
Collapse
Affiliation(s)
- Sergio R Floeter
- Depto. de Ecologia e Zoologia, Marine Macroecology and Biogeography Laboratory, CCB, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Mariana G Bender
- Depto. de Ecologia e Zoologia, Marine Macroecology and Biogeography Laboratory, CCB, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Alexandre C Siqueira
- Depto. de Ecologia e Zoologia, Marine Macroecology and Biogeography Laboratory, CCB, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Peter F Cowman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, U.S.A.,Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, Australia
| |
Collapse
|
48
|
Sato H, Tanabe AS, Toju H. Host shifts enhance diversification of ectomycorrhizal fungi: diversification rate analysis of the ectomycorrhizal fungal genera Strobilomyces and Afroboletus with an 80-gene phylogeny. THE NEW PHYTOLOGIST 2017; 214:443-454. [PMID: 27918625 DOI: 10.1111/nph.14368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Mutualisms with new host lineages can provide symbionts with novel ecological opportunities to expand their geographical distribution, thereby leading to evolutionary diversification. Because ectomycorrhizal (ECM) fungi provide ideal opportunities to test the relationship between host shifts and diversification, we tested whether mutualism with new host lineages could increase the diversification rates of ECM fungi. Using a Bayesian tree inferred from 23 027-base nucleotide sequences of 80 single-copy genes, we tested whether the diversification rate had changed through host-shift events in the monophyletic clade containing the ECM fungal genera Strobilomyces and Afroboletus. The results indicated that these fungi were initially associated with Caesalpinioideae/Monotoideae in Africa, acquired associations with Dipterocarpoideae in tropical Asia, and then switched to Fagaceae/Pinaceae and Nothofagaceae/Eucalyptus. Fungal lineages associated with Fagaceae/Pinaceae were inferred to have approximately four-fold and two-fold greater diversification rates than those associated with Caesalpinioideae/Monotoideae and Dipterocarpoideae or Nothofagaceae/Eucalyptus, respectively. Moreover, the diversification rate shift was inferred to follow the host shift to Fagaceae/Pinaceae. Our study suggests that host-shift events, particularly those occurring with respect to Fagaceae/Pinaceae, can provide ecological opportunities for the rapid diversification of Strobilomyces-Afroboletus. Although further studies are needed for generalization, we propose a possible diversification scenario of ECM fungi.
Collapse
Affiliation(s)
- Hirotoshi Sato
- Center for Ecological Research, Kyoto University, 509-3, 2-chome, Hirano, Otsu, Shiga, 520-2113, Japan
- Department of Environmental Solution Technology, Facility of Science & Technology, Ryukoku University, Seta-Oe, Otsu, 520-2194, Shiga, Japan
| | - Akifumi S Tanabe
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Hirokazu Toju
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyoku Kyoto, 606-8501, Japan
| |
Collapse
|
49
|
Bertrand JAM, Borsa P, Chen WJ. Phylogeography of the sergeants Abudefduf sexfasciatus and A. vaigiensis reveals complex introgression patterns between two widespread and sympatric Indo-West Pacific reef fishes. Mol Ecol 2017; 26:2527-2542. [PMID: 28160340 DOI: 10.1111/mec.14044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 01/02/2023]
Abstract
On evolutionary timescales, sea level oscillations lead to recurrent spatio-temporal variation in species distribution and population connectivity. In this situation, applying classical concepts of biogeography is challenging yet necessary to understand the mechanisms underlying biodiversity in highly diverse marine ecosystems such as coral reefs. We aimed at studying the outcomes of such complex biogeographic dynamics on reproductive isolation by sampling populations across a wide spatial range of a species-rich fish genus: the sergeants (Pomacentridae: Abudefduf). We generated a mutlilocus data set that included ten morpho-species from 32 Indo-West Pacific localities. We observed a pattern of mito-nuclear discordance in two common and widely distributed species: Abudefduf sexfasciatus and Abudefduf vaigiensis. The results showed three regional sublineages (Indian Ocean, Coral Triangle region, western Pacific) in A. sexfasciatus (0.6-1.5% divergence at cytb). The other species, A. vaigiensis, is polyphyletic and consists of three distinct genetic lineages (A, B and C) (9% divergence at cytb) whose geographic ranges overlap. Although A. vaigiensis A and A. sexfasciatus were found to be distinct based on nuclear information, A. vaigiensis A was found to be nested within A. sexfasciatus in the mitochondrial gene tree. A. sexfasciatus from the Coral Triangle region and A. vaigiensis A were not differentiated from each other at the mitochondrial locus. We then used coalescent-based simulation to characterize a spatially widespread but weak gene flow between the two species. We showed that these fishes are good candidates to investigate the evolutionary complexity of the discrepancies between phenotypic and genetic similarity in closely related species.
Collapse
Affiliation(s)
- Joris A M Bertrand
- Institute of Oceanography, National Taiwan University, N°1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Philippe Borsa
- Institut de recherche pour le développement, UMR 250 'Ecologie marine tropicale des océans Pacifique et Indien', 101 promenade Roger-Laroque Anse Vata, BP A5, 98848 Nouméa cedex, New Caledonia
| | - Wei-Jen Chen
- Institute of Oceanography, National Taiwan University, N°1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
50
|
Cowman PF, Parravicini V, Kulbicki M, Floeter SR. The biogeography of tropical reef fishes: endemism and provinciality through time. Biol Rev Camb Philos Soc 2017; 92:2112-2130. [DOI: 10.1111/brv.12323] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Peter F. Cowman
- Department of Ecology and Evolutionary Biology; Yale University; New Haven CT 06511 U.S.A
- Centre of Excellence for Coral Reef Studies; James Cook University; Townsville 4811 Australia
| | - Valeriano Parravicini
- Ecole Pratique des Hautes Etudes, USR 3278 EPHE-CNRS-UPVD, Labex Corail, CRIOBE; 66860 Perpignan France
| | - Michel Kulbicki
- Institut de Recherche pour le développement (IRD), UMR Entropie-Labex CORAIL; Université de Perpignan; 66000 Perpignan France
| | - Sergio R. Floeter
- Depto. de Ecologia e Zoologia, Marine Macroecology and Biogeography Laboratory, CCB; Universidade Federal de Santa Catarina; Florianópolis 88040-900 Brazil
| |
Collapse
|