1
|
Wang H, Wu Z, Li T, Zhao J. Phylogenomics resolves the backbone of Poales and identifies signals of hybridization and polyploidy. Mol Phylogenet Evol 2024; 200:108184. [PMID: 39209045 DOI: 10.1016/j.ympev.2024.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Poales, as one of the largest orders of angiosperm, holds crucial economic and ecological importance. Nevertheless, achieving a consensus topology has been challenging in previous studies due to limited molecular data and sparse taxon sampling. The uneven distribution of species diversity among families and the factors leading to elevated species richness in certain lineages have also been subjects of ongoing discussion and investigation. In this study, we conducted a comprehensive sampling, including representatives from all 14 families and 85 taxa of Poales, along with five additional outgroups. To reconstruct the phylogeny of Poales, we employed a combination of coalescent and concatenation methods on three nuclear gene sets (1093, 491, 143) and one plastid gene set (53), which were inferenced from genomic data. We also conducted phylogenetic hypothesis analyses to evaluate two major conflicting nodes detected in phylogenetic analyses. As a result, we successfully resolved the backbone of Poales and provided a timeline for its evolutionary history. We recovered the sister relationship between Typhaceae and Bromeliaceae as the earliest diverging families within Poales. The clade consisting of Ecdeiocoleaceae and Joinvilleaceae was recovered as the sister group of Poaceae. Within the xyrid clade, Mayacaceae and Erioaculaceae + Xyridaceae successively diverged along the backbone of Poales. The topology of [Aristidoideae, ((Micrairoideae, Panicoideae), (Arundinoideae, (Chloridoideae, Danthonioideae)))] within the PACMAD clade has received strong support from multiple findings. We also delved into the underlying biological factors that contributed to the conflicting nodes observed in the phylogenetic analysis. Apart from the uncertainty regarding the sister group of Poaceae caused by cytonuclear discordance, frequent hybridization and polyploidy may have contributed to other conflicting nodes. We identified 26 putative whole-genome duplication (WGD) events within Poales. However, apart from the σ-WGD and the ρ-WGD, we did not observe any potential polyploid events that could be directly linked to the species diversification in specific lineages. Furthermore, there was a significant increase in the net diversification rate of Poales following the K-Pg boundary.
Collapse
Affiliation(s)
- Huijun Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhigang Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Tao Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jindong Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Shen C, Li H, Shu L, Huang WZ, Zhu RL. Ancient large-scale gene duplications and diversification in bryophytes illuminate the plant terrestrialization. THE NEW PHYTOLOGIST 2024. [PMID: 39449253 DOI: 10.1111/nph.20221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Large-scale gene duplications (LSGDs) are crucial for evolutionary adaptation and recurrent in vascular plants. However, the role of ancient LSGDs in the terrestrialization and diversification of bryophytes, the second most species-rich group of land plants, remains largely elusive due to limited sampling in bryophytes. Employing the most extensive nuclear gene dataset in bryophytes to date, we reconstructed a time-calibrated phylogenetic tree from 209 species, covering virtually all key bryophyte lineages, for phylogenomic analyses of LSGDs and diversification. We newly identified two ancient LSGDs: one in the most recent common ancestor (MRCA) of extant bryophytes and another in the MRCA of the majority of Jungermanniales s. lato. Duplicated genes from these two LSGDs show significant enrichment in photosynthesis-related processes and structures. Rhizoid-responsive ROOTHAIR DEFECTIVE SIX-LIKE (RSL) genes from ancient LSGDs are present in rhizoidless bryophytes, challenging assumptions about rhizoid absence mechanisms. We highlighted four major diversification rate upshifts, two of which slightly postdated LSGDs, potentially linked to the flourishing of gymnosperms and angiosperms and explaining over 80% of bryophyte diversity. Our findings, supported by extensive bryophyte sampling, highlight the significance of LSGDs in the early terrestrialization and diversification of bryophytes, offering new insights into land plant evolution.
Collapse
Affiliation(s)
- Chao Shen
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Li
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| | - Lei Shu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| | - Wen-Zhuan Huang
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| |
Collapse
|
3
|
Su ZH, Sasaki A, Minami H, Ozaki K. Arthropod Phylotranscriptomics With a Special Focus on the Basal Phylogeny of the Myriapoda. Genome Biol Evol 2024; 16:evae189. [PMID: 39219333 PMCID: PMC11436689 DOI: 10.1093/gbe/evae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Arthropoda represents the most diverse animal phylum, but clarifying the phylogenetic relationships among arthropod taxa remains challenging given the numerous arthropod lineages that diverged over a short period of time. In order to resolve the most controversial aspects of deep arthropod phylogeny, focusing on the Myriapoda, we conducted phylogenetic analyses based on ten super-matrices comprised of 751 to 1,233 orthologous genes across 64 representative arthropod species, including 28 transcriptomes that were newly generated in this study. Our findings provide unambiguous support for the monophyly of the higher arthropod taxa, Chelicerata, Mandibulata, Myriapoda, Pancrustacea, and Hexapoda, while the Crustacea are paraphyletic, with the class Remipedia supported as the lineage most closely related to hexapods. Within the Hexapoda, our results largely affirm previously proposed phylogenetic relationships among deep hexapod lineages, except that the Paraneoptera (Hemiptera, Thysanoptera, and Psocodea) was recovered as a monophyletic lineage in some analyses. The results corroborated the recently proposed phylogenetic framework of the four myriapod classes, wherein Symphyla and Pauropoda, as well as Chilopoda and Diplopoda, are each proposed to be sister taxa. The findings provide important insights into understanding the phylogeny and evolution of arthropods.
Collapse
Affiliation(s)
- Zhi-Hui Su
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ayako Sasaki
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
| | - Hiroaki Minami
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Katsuhisa Ozaki
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
4
|
Ning W, Meudt HM, Tate JA. A roadmap of phylogenomic methods for studying polyploid plant genera. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11580. [PMID: 39184196 PMCID: PMC11342234 DOI: 10.1002/aps3.11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 08/27/2024]
Abstract
Phylogenetic inference of polyploid species is the first step towards understanding their patterns of diversification. In this paper, we review the challenges and limitations of inferring species relationships of polyploid plants using traditional phylogenetic sequencing approaches, as well as the mischaracterization of the species tree from single or multiple gene trees. We provide a roadmap to infer interspecific relationships among polyploid lineages by comparing and evaluating the application of current phylogenetic, phylogenomic, transcriptomic, and whole-genome approaches using different sequencing platforms. For polyploid species tree reconstruction, we assess the following criteria: (1) the amount of prior information or tools required to capture the genetic region(s) of interest; (2) the probability of recovering homeologs for polyploid species; and (3) the time efficiency of downstream data analysis. Moreover, we discuss bioinformatic pipelines that can reconstruct networks of polyploid species relationships. In summary, although current phylogenomic approaches have improved our understanding of reticulate species relationships in polyploid-rich genera, the difficulties of recovering reliable orthologous genes and sorting all homeologous copies for allopolyploids remain a challenge. In the future, assembled long-read sequencing data will assist the recovery and identification of multiple gene copies, which can be particularly useful for reconstructing the multiple independent origins of polyploids.
Collapse
Affiliation(s)
- Weixuan Ning
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| | - Heidi M. Meudt
- Museum of New Zealand Te Papa TongarewaWellington6011New Zealand
| | - Jennifer A. Tate
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
5
|
Zhang G, Yang J, Zhang C, Jiao B, Panero JL, Cai J, Zhang ZR, Gao LM, Gao T, Ma H. Nuclear phylogenomics of Asteraceae with increased sampling provides new insights into convergent morphological and molecular evolution. PLANT COMMUNICATIONS 2024; 5:100851. [PMID: 38409784 PMCID: PMC11211554 DOI: 10.1016/j.xplc.2024.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Convergent morphological evolution is widespread in flowering plants, and understanding this phenomenon relies on well-resolved phylogenies. Nuclear phylogenetic reconstruction using transcriptome datasets has been successful in various angiosperm groups, but it is limited to taxa with available fresh materials. Asteraceae, which are one of the two largest angiosperm families and are important for both ecosystems and human livelihood, show multiple examples of convergent evolution. Nuclear Asteraceae phylogenies have resolved relationships among most subfamilies and many tribes, but many phylogenetic and evolutionary questions regarding subtribes and genera remain, owing to limited sampling. Here, we increased the sampling for Asteraceae phylogenetic reconstruction using transcriptomes and genome-skimming datasets and produced nuclear phylogenetic trees with 706 species representing two-thirds of recognized subtribes. Ancestral character reconstruction supports multiple convergent evolutionary events in Asteraceae, with gains and losses of bilateral floral symmetry correlated with diversification of some subfamilies and smaller groups, respectively. Presence of the calyx-related pappus may have been especially important for the success of some subtribes and genera. Molecular evolutionary analyses support the likely contribution of duplications of MADS-box and TCP floral regulatory genes to innovations in floral morphology, including capitulum inflorescences and bilaterally symmetric flowers, potentially promoting the diversification of Asteraceae. Subsequent divergences and reductions in CYC2 gene expression are related to the gain and loss of zygomorphic flowers. This phylogenomic work with greater taxon sampling through inclusion of genome-skimming datasets reveals the feasibility of expanded evolutionary analyses using DNA samples for understanding convergent evolution.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Department of Biology, the Huck Institute of the Life Sciences, the Pennsylvania State University, State College, PA 16801, USA; State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Junbo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Caifei Zhang
- Wuhan Botanical Garden and Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bohan Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - José L Panero
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Jie Cai
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhi-Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Lijiang National Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan 674100, China.
| | - Tiangang Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Hong Ma
- Department of Biology, the Huck Institute of the Life Sciences, the Pennsylvania State University, State College, PA 16801, USA.
| |
Collapse
|
6
|
Yu D, Ren Y, Uesaka M, Beavan AJS, Muffato M, Shen J, Li Y, Sato I, Wan W, Clark JW, Keating JN, Carlisle EM, Dearden RP, Giles S, Randle E, Sansom RS, Feuda R, Fleming JF, Sugahara F, Cummins C, Patricio M, Akanni W, D'Aniello S, Bertolucci C, Irie N, Alev C, Sheng G, de Mendoza A, Maeso I, Irimia M, Fromm B, Peterson KJ, Das S, Hirano M, Rast JP, Cooper MD, Paps J, Pisani D, Kuratani S, Martin FJ, Wang W, Donoghue PCJ, Zhang YE, Pascual-Anaya J. Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nat Ecol Evol 2024; 8:519-535. [PMID: 38216617 DOI: 10.1038/s41559-023-02299-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.
Collapse
Affiliation(s)
- Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Alan J S Beavan
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Jieyu Shen
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Iori Sato
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - James W Clark
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Joseph N Keating
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Emily M Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Richard P Dearden
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Sam Giles
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Emma Randle
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Robert S Sansom
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - James F Fleming
- Keio University Institute for Advanced Biosciences, Tsuruoka, Japan
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Fumiaki Sugahara
- Division of Biology, Hyogo Medical University, Nishinomiya, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
| | - Cristiano Bertolucci
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Naoki Irie
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jonathan P Rast
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jordi Paps
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.
- Department of Animal Biology, Faculty of Science, University of Málaga (UMA), Málaga, Spain.
- Edificio de Bioinnovación, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
7
|
Xiang Y, Zhang T, Zhao Y, Dong H, Chen H, Hu Y, Huang CH, Xiang J, Ma H. Angiosperm-wide analysis of fruit and ovary evolution aided by a new nuclear phylogeny supports association of the same ovary type with both dry and fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:228-251. [PMID: 38351714 DOI: 10.1111/jipb.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Fruit functions in seed protection and dispersal and belongs to many dry and fleshy types, yet their evolutionary pattern remains unclear in part due to uncertainties in the phylogenetic relationships among several orders and families. Thus we used nuclear genes of 502 angiosperm species representing 231 families to reconstruct a well supported phylogeny, with resolved relationships for orders and families with previously uncertain placements. Using this phylogeny as a framework, molecular dating supports a Triassic origin of the crown angiosperms, followed by the emergence of most orders in the Jurassic and Cretaceous and their rise to ecological dominance during the Cretaceous Terrestrial Revolution. The robust phylogeny allowed an examination of the evolutionary pattern of fruit and ovary types, revealing a trend of parallel carpel fusions during early diversifications in eudicots, monocots, and magnoliids. Moreover, taxa in the same order or family with the same ovary type can develop either dry or fleshy fruits with strong correlations between specific types of dry and fleshy fruits; such associations of ovary, dry and fleshy fruits define several ovary-fruit "modules" each found in multiple families. One of the frequent modules has an ovary containing multiple ovules, capsules and berries, and another with an ovary having one or two ovules, achenes (or other single-seeded dry fruits) and drupes. This new perspective of relationships among fruit types highlights the closeness of specific dry and fleshy fruit types, such as capsule and berry, that develop from the same ovary type and belong to the same module relative to dry and fleshy fruits of other modules (such as achenes and drupes). Further analyses of gene families containing known genes for ovary and fruit development identified phylogenetic nodes with multiple gene duplications, supporting a possible role of whole-genome duplications, in combination with climate changes and animal behaviors, in angiosperm fruit and ovary diversification.
Collapse
Affiliation(s)
- Yezi Xiang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, 27708, NC, USA
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hongjin Dong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Hongyi Chen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Yi Hu
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Hong Ma
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| |
Collapse
|
8
|
Lu B. Evolutionary Insights into the Relationship of Frogs, Salamanders, and Caecilians and Their Adaptive Traits, with an Emphasis on Salamander Regeneration and Longevity. Animals (Basel) 2023; 13:3449. [PMID: 38003067 PMCID: PMC10668855 DOI: 10.3390/ani13223449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The extant amphibians have developed uncanny abilities to adapt to their environment. I compared the genes of amphibians to those of other vertebrates to investigate the genetic changes underlying their unique traits, especially salamanders' regeneration and longevity. Using the well-supported Batrachia tree, I found that salamander genomes have undergone accelerated adaptive evolution, especially for development-related genes. The group-based comparison showed that several genes are under positive selection, rapid evolution, and unexpected parallel evolution with traits shared by distantly related species, such as the tail-regenerative lizard and the longer-lived naked mole rat. The genes, such as EEF1E1, PAFAH1B1, and OGFR, may be involved in salamander regeneration, as they are involved in the apoptotic process, blastema formation, and cell proliferation, respectively. The genes PCNA and SIRT1 may be involved in extending lifespan, as they are involved in DNA repair and histone modification, respectively. Some genes, such as PCNA and OGFR, have dual roles in regeneration and aging, which suggests that these two processes are interconnected. My experiment validated the time course differential expression pattern of SERPINI1 and OGFR, two genes that have evolved in parallel in salamanders and lizards during the regeneration process of salamander limbs. In addition, I found several candidate genes responsible for frogs' frequent vocalization and caecilians' degenerative vision. This study provides much-needed insights into the processes of regeneration and aging, and the discovery of the critical genes paves the way for further functional analysis, which could open up new avenues for exploiting the genetic potential of humans and improving human well-being.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
9
|
Chesters D, Ferrari RR, Lin X, Orr MC, Staab M, Zhu CD. Launching insectphylo.org; a new hub facilitating construction and use of synthesis molecular phylogenies of insects. Mol Ecol Resour 2023; 23:1556-1573. [PMID: 37265018 DOI: 10.1111/1755-0998.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
The Holy Grail of an Insect Tree of Life can only be 'discovered' through extensive collaboration among taxon specialists, phylogeneticists and centralized frameworks such as Open Tree of Life, but insufficient effort from stakeholders has so far hampered this promising approach. The resultant unavailability of synthesis phylogenies is an unfortunate situation given the numerous practical usages of phylogenies in the near term and against the backdrop of the ongoing biodiversity crisis. To resolve this issue, we establish a new online hub that centralizes the collation of relevant phylogenetic data and provides the resultant synthesis molecular phylogenies. This is achieved through key developments in a proposed pipeline for the construction of a species-level insect phylogeny. The functionality of the framework is demonstrated through the construction of a highly supported, species-comprehensive phylogeny of Diptera, built from integrated omics data, COI DNA barcodes, and a compiled database of over 100 standardized, published Diptera phylogenies. Machine-readable forms of the phylogeny (and subsets thereof) are publicly available at insectphylo.org, a new public repository for species-comprehensive phylogenies for biological research.
Collapse
Affiliation(s)
- Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Rafael R Ferrari
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaolong Lin
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Michael C Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Michael Staab
- Ecological Networks, Technische Universität Darmstadt, Darmstadt, Germany
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Hu R, Li X, Hu Y, Zhang R, Lv Q, Zhang M, Sheng X, Zhao F, Chen Z, Ding Y, Yuan H, Wu X, Xing S, Yan X, Bao F, Wan P, Xiao L, Wang X, Xiao W, Decker EL, van Gessel N, Renault H, Wiedemann G, Horst NA, Haas FB, Wilhelmsson PKI, Ullrich KK, Neumann E, Lv B, Liang C, Du H, Lu H, Gao Q, Cheng Z, You H, Xin P, Chu J, Huang CH, Liu Y, Dong S, Zhang L, Chen F, Deng L, Duan F, Zhao W, Li K, Li Z, Li X, Cui H, Zhang YE, Ma C, Zhu R, Jia Y, Wang M, Hasebe M, Fu J, Goffinet B, Ma H, Rensing SA, Reski R, He Y. Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet. Cell 2023; 186:3558-3576.e17. [PMID: 37562403 DOI: 10.1016/j.cell.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.
Collapse
Affiliation(s)
- Ruoyang Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuedong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yong Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Runjie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Qiang Lv
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xianyong Sheng
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Feng Zhao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Zhijia Chen
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yuhan Ding
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Huan Yuan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaofeng Wu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Shuang Xing
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaoyu Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Fang Bao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Ping Wan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Lihong Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiaoqin Wang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hugues Renault
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Nelly A Horst
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; MetaSystems Hard & Software GmbH, 68804 Altlussheim, Germany
| | - Fabian B Haas
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | | | - Kristian K Ullrich
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Eva Neumann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Bin Lv
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Chengzhi Liang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Hongwei Lu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiang Gao
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhukuan Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hanli You
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010031, China
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA; Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518085, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei Chen
- Sanya Nanfan Research Institute from Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Lei Deng
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Fuzhou Duan
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Wenji Zhao
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Zhongfeng Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Xingru Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Hengjian Cui
- School of Mathematical Sciences, CNU, Beijing 100048, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiliang Zhu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Meizhi Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stefan A Rensing
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.
| | - Yikun He
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China.
| |
Collapse
|
11
|
Iruegas R, Pfefferle K, Göttig S, Averhoff B, Ebersberger I. Feature architecture aware phylogenetic profiling indicates a functional diversification of type IVa pili in the nosocomial pathogen Acinetobacter baumannii. PLoS Genet 2023; 19:e1010646. [PMID: 37498819 PMCID: PMC10374093 DOI: 10.1371/journal.pgen.1010646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.
Collapse
Affiliation(s)
- Ruben Iruegas
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katharina Pfefferle
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
12
|
Zhang G, Hu Y, Huang MZ, Huang WC, Liu DK, Zhang D, Hu H, Downing JL, Liu ZJ, Ma H. Comprehensive phylogenetic analyses of Orchidaceae using nuclear genes and evolutionary insights into epiphytism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1204-1225. [PMID: 36738233 DOI: 10.1111/jipb.13462] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/03/2023] [Indexed: 05/13/2023]
Abstract
Orchidaceae (with >28,000 orchid species) are one of the two largest plant families, with economically and ecologically important species, and occupy global and diverse niches with primary distribution in rainforests. Among orchids, 70% grow on other plants as epiphytes; epiphytes contribute up to ~50% of the plant diversity in rainforests and provide food and shelter for diverse animals and microbes, thereby contributing to the health of these ecosystems. Orchids account for over two-thirds of vascular epiphytes and provide an excellent model for studying evolution of epiphytism. Extensive phylogenetic studies of Orchidaceae and subgroups have ;been crucial for understanding relationships among many orchid lineages, although some uncertainties remain. For example, in the largest subfamily Epidendroideae with nearly all epiphytic orchids, relationships among some tribes and many subtribes are still controversial, hampering evolutionary analyses of epiphytism. Here we obtained 1,450 low-copy nuclear genes from 610 orchid species, including 431 with newly generated transcriptomes, and used them for the reconstruction of robust Orchidaceae phylogenetic trees with highly supported placements of tribes and subtribes. We also provide generally well-supported phylogenetic placements of 131 genera and 437 species that were not sampled by previous plastid and nuclear phylogenomic studies. Molecular clock analyses estimated the Orchidaceae origin at ~132 million years ago (Ma) and divergences of most subtribes from 52 to 29 Ma. Character reconstruction supports at least 14 parallel origins of epiphytism; one such origin was placed at the most recent common ancestor of ~95% of epiphytic orchids and linked to modern rainforests. Ten occurrences of rapid increase in the diversification rate were detected within Epidendroideae near and after the K-Pg boundary, contributing to ~80% of the Orchidaceae diversity. This study provides a robust and the largest family-wide Orchidaceae nuclear phylogenetic tree thus far and new insights into the evolution of epiphytism in vascular plants.
Collapse
Affiliation(s)
- Guojin Zhang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Yi Hu
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ming-Zhong Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei-Chang Huang
- Shanghai Chenshan Botanical Garden, Songjiang, Shanghai, 201602, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haihua Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jason L Downing
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, 33156, USA
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
13
|
Huang J, Xu W, Zhai J, Hu Y, Guo J, Zhang C, Zhao Y, Zhang L, Martine C, Ma H, Huang CH. Nuclear phylogeny and insights into whole-genome duplications and reproductive development of Solanaceae plants. PLANT COMMUNICATIONS 2023:100595. [PMID: 36966360 PMCID: PMC10363554 DOI: 10.1016/j.xplc.2023.100595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Solanaceae, the nightshade family, have ∼2700 species, including the important crops potato and tomato, ornamentals, and medicinal plants. Several sequenced Solanaceae genomes show evidence for whole-genome duplication (WGD), providing an excellent opportunity to investigate WGD and its impacts. Here, we generated 93 transcriptomes/genomes and combined them with 87 public datasets, for a total of 180 Solanaceae species representing all four subfamilies and 14 of 15 tribes. Nearly 1700 nuclear genes from these transcriptomic/genomic datasets were used to reconstruct a highly resolved Solanaceae phylogenetic tree with six major clades. The Solanaceae tree supports four previously recognized subfamilies (Goetzeioideae, Cestroideae, Nicotianoideae, and Solanoideae) and the designation of three other subfamilies (Schizanthoideae, Schwenckioideae, and Petunioideae), with the placement of several previously unassigned genera. We placed a Solanaceae-specific whole-genome triplication (WGT1) at ∼81 million years ago (mya), before the divergence of Schizanthoideae from other Solanaceae subfamilies at ∼73 mya. In addition, we detected two gene duplication bursts (GDBs) supporting proposed WGD events and four other GDBs. An investigation of the evolutionary histories of homologs of carpel and fruit developmental genes in 14 gene (sub)families revealed that 21 gene clades have retained gene duplicates. These were likely generated by the Solanaceae WGT1 and may have promoted fleshy fruit development. This study presents a well-resolved Solanaceae phylogeny and a new perspective on retained gene duplicates and carpel/fruit development, providing an improved understanding of Solanaceae evolution.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Weibin Xu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Caifei Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | | | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, State College, PA 16802, USA.
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
14
|
Watanabe T, Kure A, Horiike T. OrthoPhy: A Program to Construct Ortholog Data Sets Using Taxonomic Information. Genome Biol Evol 2023; 15:7044703. [PMID: 36799928 PMCID: PMC9991595 DOI: 10.1093/gbe/evad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Species phylogenetic trees represent the evolutionary processes of organisms, and they are fundamental in evolutionary research. Therefore, new methods have been developed to obtain more reliable species phylogenetic trees. A highly reliable method is the construction of an ortholog data set based on sequence information of genes, which is then used to infer the species phylogenetic tree. However, although methods for constructing an ortholog data set for species phylogenetic analysis have been developed, they cannot remove some paralogs, which is necessary for reliable species phylogenetic inference. To address the limitations of current methods, we developed OrthoPhy, a program that excludes paralogs and constructs highly accurate ortholog data sets using taxonomic information dividing analyzed species into monophyletic groups. OrthoPhy can remove paralogs, detecting inconsistencies between taxonomic information and phylogenetic trees of candidate ortholog groups clustered by sequence similarity. Performance tests using evolutionary simulated sequences and real sequences of 40 bacteria revealed that the precision of ortholog inference by OrthoPhy is higher than that of existing programs. Additionally, the phylogenetic analysis of species was more accurate when performed using ortholog data sets constructed by OrthoPhy than that performed using data sets constructed by existing programs. Furthermore, we performed a benchmark test of the Quest for Orthologs using real sequence data and found that the concordance rate between the phylogenetic trees of orthologs inferred by OrthoPhy and those of species was higher than the rates obtained by other ortholog inference programs. Therefore, ortholog data sets constructed using OrthoPhy enabled a more accurate phylogenetic analysis of species than those constructed using the existing programs, and OrthoPhy can be used for the phylogenetic analysis of species even for distantly related species that have experienced many evolutionary events.
Collapse
Affiliation(s)
- Tomoaki Watanabe
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Akinori Kure
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Tokumasa Horiike
- Department of Bioresource Sciences, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
15
|
Goodheart JA, Collins AG, Cummings MP, Egger B, Rawlinson KA. A phylogenomic approach to resolving interrelationships of polyclad flatworms, with implications for life-history evolution. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220939. [PMID: 36998763 PMCID: PMC10049750 DOI: 10.1098/rsos.220939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Platyhelminthes (flatworms) are a diverse invertebrate phylum useful for exploring life-history evolution. Within Platyhelminthes, only two clades develop through a larval stage: free-living polyclads and parasitic neodermatans. Neodermatan larvae are considered evolutionarily derived, whereas polyclad larvae are hypothesized to be ancestral due to ciliary band similarities among polyclad and other spiralian larvae. However, larval evolution has been challenging to investigate within polyclads due to low support for deeper phylogenetic relationships. To investigate polyclad life-history evolution, we generated transcriptomic data for 21 species of polyclads to build a well-supported phylogeny for the group. The resulting tree provides strong support for deeper nodes, and we recover a new monophyletic clade of early branching cotyleans. We then used ancestral state reconstructions to investigate ancestral modes of development within Polycladida and more broadly within flatworms. In polyclads, we were unable to reconstruct the ancestral state of deeper nodes with significant support because early branching clades show diverse modes of development. This suggests a complex history of larval evolution in polyclads that likely includes multiple losses and/or multiple gains. However, our ancestral state reconstruction across a previously published platyhelminth phylogeny supports a direct developing prorhynchid/polyclad ancestor, which suggests that a larval stage in the life cycle evolved along the polyclad stem lineage or within polyclads.
Collapse
Affiliation(s)
- Jessica A. Goodheart
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Allen G. Collins
- NMFS, National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, MRC-153, PO Box 37012, Washington, DC 20013, USA
| | - Michael P. Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Bernhard Egger
- Universität Innsbruck, Department of Zoology, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Kate A. Rawlinson
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543
| |
Collapse
|
16
|
Cheng L, Li M, Wang Y, Han Q, Hao Y, Qiao Z, Zhang W, Qiu L, Gong A, Zhang Z, Li T, Luo S, Tang L, Liu D, Yin H, Lu S, Balbuena TS, Zhao Y. Transcriptome-based variations effectively untangling the intraspecific relationships and selection signals in Xinyang Maojian tea population. FRONTIERS IN PLANT SCIENCE 2023; 14:1114284. [PMID: 36890899 PMCID: PMC9986275 DOI: 10.3389/fpls.2023.1114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
As one of the world's top three popular non-alcoholic beverages, tea is economically and culturally valuable. Xinyang Maojian, this elegant green tea, is one of the top ten famous tea in China and has gained prominence for thousands of years. However, the cultivation history of Xinyang Maojian tea population and selection signals of differentiation from the other major variety Camellia sinensis var. assamica (CSA) remain unclear. We newly generated 94 Camellia sinensis (C. sinensis) transcriptomes including 59 samples in the Xinyang area and 35 samples collected from 13 other major tea planting provinces in China. Comparing the very low resolution of phylogeny inferred from 1785 low-copy nuclear genes with 94 C. sinensis samples, we successfully resolved the phylogeny of C. sinensis samples by 99,115 high-quality SNPs from the coding region. The sources of tea planted in the Xinyang area were extensive and complex. Specifically, Shihe District and Gushi County were the two earliest tea planting areas in Xinyang, reflecting a long history of tea planting. Furthermore, we identified numerous selection sweeps during the differentiation of CSA and CSS and these positive selection genes are involved in many aspects such as regulation of secondary metabolites synthesis, amino acid metabolism, photosynthesis, etc. Numerous specific selective sweeps of modern cultivars were annotated with functions in various different aspects, indicating the CSS and CSA populations possibly underwent independent specific domestication processes. Our study indicated that transcriptome-based SNP-calling is an efficient and cost-effective method in untangling intraspecific phylogenetic relationships. This study provides a significant understanding of the cultivation history of the famous Chinese tea Xinyang Maojian and unravels the genetic basis of physiological and ecological differences between the two major tea subspecies.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Yachao Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Zhen Qiao
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Lin Qiu
- Institute of Forestry Science, Xinyang Forestry Bureau, Xinyang, Henan, China
| | - Andong Gong
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Zhihan Zhang
- College of Engineering and Technology, Northeast Forestry University, Harbin, China
| | - Tao Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Shanshan Luo
- College of Agriculture, Guizhou University, Guiyang, China
| | - Linshuang Tang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Daliang Liu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Hao Yin
- College of Agriculture, Guizhou University, Guiyang, China
| | - Song Lu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, Sao Paulo State University, Jaboticabal, Brazil
| | - Yiyong Zhao
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Zhao L, Yang YY, Qu XJ, Ma H, Hu Y, Li HT, Yi TS, Li DZ. Phylotranscriptomic analyses reveal multiple whole-genome duplication events, the history of diversification and adaptations in the Araceae. ANNALS OF BOTANY 2023; 131:199-214. [PMID: 35671385 PMCID: PMC9904356 DOI: 10.1093/aob/mcac062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The Araceae are one of the most diverse monocot families with numerous morphological and ecological novelties. Plastid and mitochondrial genes have been used to investigate the phylogeny and to interpret shifts in the pollination biology and biogeography of the Araceae. In contrast, the role of whole-genome duplication (WGD) in the evolution of eight subfamilies remains unclear. METHODS New transcriptomes or low-depth whole-genome sequences of 65 species were generated through Illumina sequencing. We reconstructed the phylogenetic relationships of Araceae using concatenated and species tree methods, and then estimated the age of major clades using TreePL. We inferred the WGD events by Ks and gene tree methods. We investigated the diversification patterns applying time-dependent and trait-dependent models. The expansions of gene families and functional enrichments were analysed using CAFE and InterProScan. KEY RESULTS Gymnostachydoideae was the earliest diverging lineage followed successively by Orontioideae, Lemnoideae and Lasioideae. In turn, they were followed by the clade of 'bisexual climbers' comprised of Pothoideae and Monsteroideae, which was resolved as the sister to the unisexual flowers clade of Zamioculcadoideae and Aroideae. A special WGD event ψ (psi) shared by the True-Araceae clade occurred in the Early Cretaceous. Net diversification rates first declined and then increased through time in the Araceae. The best diversification rate shift along the stem lineage of the True-Araceae clade was detected, and net diversification rates were enhanced following the ψ-WGD. Functional enrichment analyses revealed that some genes, such as those encoding heat shock proteins, glycosyl hydrolase and cytochrome P450, expanded within the True-Araceae clade. CONCLUSIONS Our results improve our understanding of aroid phylogeny using the large number of single-/low-copy nuclear genes. In contrast to the Proto-Araceae group and the lemnoid clade adaption to aquatic environments, our analyses of WGD, diversification and functional enrichment indicated that WGD may play a more important role in the evolution of adaptations to tropical, terrestrial environments in the True-Araceae clade. These insights provide us with new resources to interpret the evolution of the Araceae.
Collapse
Affiliation(s)
- Lei Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ying-Ying Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong 250014, China
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Yi Hu
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | | |
Collapse
|
18
|
Yuan ML, Chen WT, Zhang QL, Li M, Zhang L, Tang PA. Transcriptomic data recover a new superfamily-level phylogeny of Cucujiformia (Coleoptera, Polyphaga). Mol Phylogenet Evol 2023; 179:107679. [PMID: 36539017 DOI: 10.1016/j.ympev.2022.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Cucujiformia, the largest taxon in the order Coleoptera, exhibits extraordinary morphological, ecological, and behavioral diversity. This infraorder is currently divided into seven superfamilies, but considerably incongruent relationships among superfamilies have been reported by recent phylogenomic studies. Here, we combined the 21 newly sequenced transcriptomes representing six superfamilies with nine previously published cucujiform genomes/transcriptomes to elucidate the phylogeny and evolution of Cucujiformia. The monophyly of each of five superfamilies were consistently supported by all phylogenetic analyses based on the twelve datasets (matrix occupancy, amino acid and nucleotide data) and the two analytical methods (maximum likelihood method and Bayesian inference). Both the amino acid datasets and the RY recoded nucleotide datasets recovered the monophyly of Cucujoidea. Topology test results statistically supported the following robust superfamily-level phylogeny in Cucujiformia: (Coccinelloidea, (Cleroidea, (Tenebrionoidea, (Cucujoidea, (Chrysomeloidea, Curculionoidea))))). Our divergence time analyses recovered a Permian origin of Cucujiformia and a Jurassic-Cretaceous origin of most superfamilies. The diversification of phytophagous beetles that occurred in the Cretaceous can be attributed to its co-evolution with angiosperms, supporting the hypothesis of a Cretaceous Terrestrial Revolution.
Collapse
Affiliation(s)
- Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China.
| | - Wen-Ting Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Min Li
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Pei-An Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China.
| |
Collapse
|
19
|
Tong C, Avilés L, Rayor LS, Mikheyev AS, Linksvayer TA. Genomic signatures of recent convergent transitions to social life in spiders. Nat Commun 2022; 13:6967. [PMID: 36414623 PMCID: PMC9681848 DOI: 10.1038/s41467-022-34446-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The transition from solitary to social life is a major phenotypic innovation, but its genetic underpinnings are largely unknown. To identify genomic changes associated with this transition, we compare the genomes of 22 spider species representing eight recent and independent origins of sociality. Hundreds of genes tend to experience shifts in selection during the repeated transition to social life. These genes are associated with several key functions, such as neurogenesis, behavior, and metabolism, and include genes that previously have been implicated in animal social behavior and human behavioral disorders. In addition, social species have elevated genome-wide rates of molecular evolution associated with relaxed selection caused by reduced effective population size. Altogether, our study provides unprecedented insights into the genomic signatures of social evolution and the specific genetic changes that repeatedly underpin the evolution of sociality. Our study also highlights the heretofore unappreciated potential of transcriptomics using ethanol-preserved specimens for comparative genomics and phylotranscriptomics.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Leticia Avilés
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Linda S Rayor
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander S Mikheyev
- Evolutionary Genomics Group, Research School of Biology, Australian National University, Canberra, 0200, Australia
| | - Timothy A Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
20
|
Cheng L, Han Q, Chen F, Li M, Balbuena TS, Zhao Y. Phylogenomics as an effective approach to untangle cross-species hybridization event: A case study in the family Nymphaeaceae. Front Genet 2022; 13:1031705. [PMID: 36406110 PMCID: PMC9670182 DOI: 10.3389/fgene.2022.1031705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Hybridization is common and considered as an important evolutionary force to increase intraspecific genetic diversity. Detecting hybridization events is crucial for understanding the evolutionary history of species and further improving molecular breeding. The studies on identifying hybridization events through the phylogenomic approach are still limited. We proposed the conception and method of identifying allopolyploidy events by phylogenomics. The reconciliation and summary of nuclear multi-labeled gene family trees were adopted to untangle hybridization events from next-generation data in our novel phylogenomic approach. Given horticulturalists’ relatively clear cultivated crossbreeding history, the water lily family is a suitable case for examining recent allopolyploidy events. Here, we reconstructed and confirmed the well-resolved nuclear phylogeny for the Nymphaeales family in the context of geological time as a framework for identifying hybridization signals. We successfully identified two possible allopolyploidy events with the parental lineages for the hybrids in the family Nymphaeaceae based on summarization from multi-labeled gene family trees of Nymphaeales. The lineages where species Nymphaea colorata and Nymphaea caerulea are located may be the progenitors of horticultural cultivated species Nymphaea ‘midnight’ and Nymphaea ‘Woods blue goddess’. The proposed hybridization hypothesis is also supported by horticultural breeding records. Our methodology can be widely applied to identify hybridization events and theoretically facilitate the genome breeding design of hybrid plants.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Fei Chen
- College of Tropical Crops, Hainan University, Haikou, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, UNESP, São Paulo, Brazil
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- College of Agriculture, Guizhou University, Guiyang, China
- *Correspondence: Yiyong Zhao, ,
| |
Collapse
|
21
|
Finding a home for the ram’s horn squid: phylogenomic analyses support Spirula spirula (Cephalopoda: Decapodiformes) as a close relative of Oegopsida. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Wu Q, Zhang X, Li J, Deng L, Wang D, Liao M, Guo Z, Huang X, Chen D, Wang Y, Yang S, Du Z, Luo W. Comparative transcriptome and adaptive evolution analysis on the main liver and attaching liver of Pareuchiloglanis macrotrema. J Appl Genet 2022; 63:743-761. [PMID: 35931930 DOI: 10.1007/s13353-022-00712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/27/2022] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
Abstract
Pareuchiloglanis macrotrema is a glyptosternoid fish belonging to the Siluriform family and is endemic to the Qinghai-Tibet Plateau tributaries. P. macrotrema is an ideal model for studying the adaptive evolution of fish at high altitudes. P. macrotrema has two attaching livers connected to the main liver, a common feature in most Sisoridae fishes but is a special phenomenon relative to other vertebrates. Using RNA-Seq, 42 differentially expressed genes were found between the main liver and attaching liver, of which 31 were upregulated and 11 were downregulated in the main liver. The major differentially expressed genes between the main liver and attaching liver of P. macrotrema are related to metabolism, immunity, and digestive processes. Meanwhile, a comparative transcriptome analysis was carried out on P. macrotrema fish and six non-plateau Siluriformes fishes. We found 268 positively selected genes in P. macrotrema that are related to energy metabolism, immunity, and hypoxic responses. The findings of this study highlight the gene expression differences between the main liver and attaching livers of Sisoridae fishes and provide greater insight into the evolution of Tibetan fishes.
Collapse
Affiliation(s)
- Qing Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoyang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Li
- Sichuan Runjie Hongda Aquatic Products Technology Co. Ltd, Chengdu, China
| | - Longjun Deng
- Yalong River Hydropower Development Co. Ltd, Chengdu, China
| | - Dongjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhonggang Guo
- Agriculture and Rural Bureau of Chongzhou City, Chongzhou, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiyong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
23
|
Drábková M, Kocot KM, Halanych KM, Oakley TH, Moroz LL, Cannon JT, Kuris A, Garcia-Vedrenne AE, Pankey MS, Ellis EA, Varney R, Štefka J, Zrzavý J. Different phylogenomic methods support monophyly of enigmatic 'Mesozoa' (Dicyemida + Orthonectida, Lophotrochozoa). Proc Biol Sci 2022; 289:20220683. [PMID: 35858055 PMCID: PMC9257288 DOI: 10.1098/rspb.2022.0683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dicyemids and orthonectids were traditionally classified in a group called Mesozoa, but their placement in a single clade has been contested and their position(s) within Metazoa is uncertain. Here, we assembled a comprehensive matrix of Lophotrochozoa (Metazoa) and investigated the position of Dicyemida (= Rhombozoa) and Orthonectida, employing multiple phylogenomic approaches. We sequenced seven new transcriptomes and one draft genome from dicyemids (Dicyema, Dicyemennea) and two transcriptomes from orthonectids (Rhopalura). Using these and published data, we assembled and analysed contamination-filtered datasets with up to 987 genes. Our results recover Mesozoa monophyletic and as a close relative of Platyhelminthes or Gnathifera. Because of the tendency of the long-branch mesozoans to group with other long-branch taxa in our analyses, we explored the impact of approaches purported to help alleviate long-branch attraction (e.g. taxon removal, coalescent inference, gene targeting). None of these were able to break the association of Orthonectida with Dicyemida in the maximum-likelihood trees. Contrastingly, the Bayesian analysis and site-specific frequency model in maximum-likelihood did not recover a monophyletic Mesozoa (but only when using a specific 50 gene matrix). The classic hypothesis on monophyletic Mesozoa is possibly reborn and should be further tested.
Collapse
Affiliation(s)
- Marie Drábková
- Department of Parasitology, University of South Bohemia, České Budějovice 37005, Czech Republic,Laboratory of Molecular Ecology and Evolution, Institute of Parasitology, Biology Centre CAS, České Budějovice 37005, Czech Republic
| | - Kevin M. Kocot
- Department of Biological Sciences, The University of Alabama, Campus Box 870344, Tuscaloosa, AL 35487, USA
| | - Kenneth M. Halanych
- The Centre for Marine Science, University of North Carolina, Wilmington, 57000 Marvin K. Moss Lane, Wilmington, NC 28409, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Leonid L. Moroz
- Department of Neuroscience, and the Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | - Johanna T. Cannon
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Armand Kuris
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ana Elisa Garcia-Vedrenne
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - M. Sabrina Pankey
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Emily A. Ellis
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Rebecca Varney
- Department of Biological Sciences, The University of Alabama, Campus Box 870344, Tuscaloosa, AL 35487, USA,Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jan Štefka
- Department of Parasitology, University of South Bohemia, České Budějovice 37005, Czech Republic,Laboratory of Molecular Ecology and Evolution, Institute of Parasitology, Biology Centre CAS, České Budějovice 37005, Czech Republic
| | - Jan Zrzavý
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice 37005, Czech Republic
| |
Collapse
|
24
|
Cheng L, Li M, Han Q, Qiao Z, Hao Y, Balbuena TS, Zhao Y. Phylogenomics Resolves the Phylogeny of Theaceae by Using Low-Copy and Multi-Copy Nuclear Gene Makers and Uncovers a Fast Radiation Event Contributing to Tea Plants Diversity. BIOLOGY 2022; 11:biology11071007. [PMID: 36101388 PMCID: PMC9311850 DOI: 10.3390/biology11071007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The Theaceae includes more than 300 species of great morphological diversity and has immense economic, cultural, and ornamental values. However, the evolutionary history of this family remains elusive. We integrated 91 genomes and transcriptome datasets of Theaceae and successfully resolved the phylogeny of Theaceae including relatives of cultivated tea plants from both extensive low-copy and multi-copy nuclear gene markers. Bayes-based molecular dating revealed that the ancestor of the tea family originated slightly earlier than the K-Pg boundary (Mass extinction events including the extinction of dinosaurs) with early diversification of three tribes associated with the Early Eocene Climatic Optimum. Further speciation analysis suggested a sole significant diversification shift rate in the common ancestor of Camellia associated with the Mid-Miocene Climatic Optimum. Collectively, polyploidy events, and key morphological innovation characters, such as pericarp with seed coat hardening, could possibly contribute to the Theaceae species diversity. Abstract Tea is one of the three most popular nonalcoholic beverages globally and has extremely high economic and cultural value. Currently, the classification, taxonomy, and evolutionary history of the tea family are largely elusive, including phylogeny, divergence, speciation, and diversity. For understanding the evolutionary history and dynamics of species diversity in Theaceae, a robust phylogenetic framework based on 1785 low-copy and 79,103 multi-copy nuclear genes from 91 tea plant genomes and transcriptome datasets had been reconstructed. Our results maximumly supported that the tribes Stewartieae and Gordonieae are successive sister groups to the tribe Theeae from both coalescent and super matrix ML tree analyses. Moreover, in the most evolved tribe, Theeae, the monophyletic genera Pyrenaria, Apterosperma, and Polyspora are the successive sister groups of Camellia. We also yield a well-resolved relationship of Camellia, which contains the vast majority of Theaceae species richness. Molecular dating suggests that Theaceae originated in the late L-Cretaceous, with subsequent early radiation under the Early Eocene Climatic Optimal (EECO) for the three tribes. A diversification rate shift was detected in the common ancestors of Camellia with subsequent acceleration in speciation rate under the climate optimum in the early Miocene. These results provide a phylogenetic framework and new insights into factors that likely have contributed to the survival of Theaceae, especially a successful radiation event of genus Camellia members to subtropic/tropic regions. These novel findings will facilitate the efficient conservation and utilization of germplasm resources for breeding cultivated tea and oil-tea. Collectively, these results provide a foundation for further morphological and functional evolutionary analyses across Theaceae.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Mengge Li
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Zhen Qiao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, Sao Paulo State University, Jaboticabal 14884-900, Brazil;
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
25
|
Huang W, Zhang L, Columbus JT, Hu Y, Zhao Y, Tang L, Guo Z, Chen W, McKain M, Bartlett M, Huang CH, Li DZ, Ge S, Ma H. A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C 4 photosynthesis. MOLECULAR PLANT 2022; 15:755-777. [PMID: 35093593 DOI: 10.1016/j.molp.2022.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/09/2021] [Accepted: 01/24/2022] [Indexed: 05/11/2023]
Abstract
Poaceae (the grasses) includes rice, maize, wheat, and other crops, and is the most economically important angiosperm family. Poaceae is also one of the largest plant families, consisting of over 11 000 species with a global distribution that contributes to diverse ecosystems. Poaceae species are classified into 12 subfamilies, with generally strong phylogenetic support for their monophyly. However, many relationships within subfamilies, among tribes and/or subtribes, remain uncertain. To better resolve the Poaceae phylogeny, we generated 342 transcriptomic and seven genomic datasets; these were combined with other genomic and transcriptomic datasets to provide sequences for 357 Poaceae species in 231 genera, representing 45 tribes and all 12 subfamilies. Over 1200 low-copy nuclear genes were retrieved from these datasets, with several subsets obtained using additional criteria, and used for coalescent analyses to reconstruct a Poaceae phylogeny. Our results strongly support the monophyly of 11 subfamilies; however, the subfamily Puelioideae was separated into two non-sister clades, one for each of the two previously defined tribes, supporting a hypothesis that places each tribe in a separate subfamily. Molecular clock analyses estimated the crown age of Poaceae to be ∼101 million years old. Ancestral character reconstruction of C3/C4 photosynthesis supports the hypothesis of multiple independent origins of C4 photosynthesis. These origins are further supported by phylogenetic analysis of the ppc gene family that encodes the phosphoenolpyruvate carboxylase, which suggests that members of three paralogous subclades (ppc-aL1a, ppc-aL1b, and ppc-B2) were recruited as functional C4ppc genes. This study provides valuable resources and a robust phylogenetic framework for evolutionary analyses of the grass family.
Collapse
Affiliation(s)
- Weichen Huang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Lin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - J Travis Columbus
- Rancho Santa Ana Botanic Garden and Claremont Graduate University, 1500 North College Avenue, Claremont, CA 91711, USA
| | - Yi Hu
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Yiyong Zhao
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lin Tang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhenhua Guo
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
| | - Wenli Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Michael McKain
- Department of Biological Sciences, University of Alabama, 411 Mary Harmon Bryant Hall, Tuscaloosa, AL 35487, USA
| | - Madelaine Bartlett
- Biology Department, University of Massachusetts Amherst, 611 North Pleasant Street, 221 Morrill 3, Amherst, MA 01003 USA
| | - Chien-Hsun Huang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA.
| |
Collapse
|
26
|
Zhang L, Zhu X, Zhao Y, Guo J, Zhang T, Huang W, Huang J, Hu Y, Huang CH, Ma H. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution. Mol Biol Evol 2022; 39:6521033. [PMID: 35134207 PMCID: PMC8844509 DOI: 10.1093/molbev/msac026] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adaptation to cool climates has occurred several times in different angiosperm groups. Among them, Pooideae, the largest grass subfamily with ∼3,900 species including wheat and barley, have successfully occupied many temperate regions and play a prominent role in temperate ecosystems. To investigate possible factors contributing to Pooideae adaptive evolution to cooling climates, we performed phylogenetic reconstruction using five gene sets (with 1,234 nuclear genes and their subsets) from 157 transcriptomes/genomes representing all 15 tribes and 24 of 26 subtribes. Our phylogeny supports the monophyly of all tribes (except Diarrheneae) and all subtribes with at least two species, with strongly supported resolution of their relationships. Molecular dating suggests that Pooideae originated in the late Cretaceous, with subsequent divergences under cooling conditions first among many tribes from the early middle to late Eocene and again among genera in the middle Miocene and later periods. We identified a cluster of gene duplications (CGD5) shared by the core Pooideae (with 80% Pooideae species) near the Eocene–Oligocene transition, coinciding with the transition from closed to open habitat and an upshift of diversification rate. Molecular evolutionary analyses homologs of CBF for cold resistance uncovered tandem duplications during the core Pooideae history, dramatically increasing their copy number and possibly promoting adaptation to cold habitats. Moreover, duplication of AP1/FUL-like genes before the Pooideae origin might have facilitated the regulation of the vernalization pathway under cold environments. These and other results provide new insights into factors that likely have contributed to the successful adaptation of Pooideae members to temperate regions.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xinxin Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Weichen Huang
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Jie Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
27
|
Ahmed M, Roberts NG, Adediran F, Smythe AB, Kocot KM, Holovachov O. Phylogenomic Analysis of the Phylum Nematoda: Conflicts and Congruences With Morphology, 18S rRNA, and Mitogenomes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.769565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Phylogenetic relationships within many lineages of the phylum Nematoda remain unresolved, despite numerous morphology-based and molecular analyses. We performed several phylogenomic analyses using 286 published genomes and transcriptomes and 19 new transcriptomes by focusing on Trichinellida, Spirurina, Rhabditina, and Tylenchina separately, and by analyzing a selection of species from the whole phylum Nematoda. The phylogeny of Trichinellida supported the division of Trichinella into encapsulated and non-encapsulated species and placed them as sister to Trichuris. The Spirurina subtree supported the clades formed by species from Ascaridomorpha and Spiruromorpha respectively, but did not support Dracunculoidea. The analysis of Tylenchina supported a clade that included all sampled species from Tylenchomorpha and placed it as sister to clades that included sampled species from Cephalobomorpha and Panagrolaimomorpha, supporting the hypothesis that postulates the single origin of the stomatostylet. The Rhabditina subtree placed a clade composed of all sampled species from Diplogastridae as sister to a lineage consisting of paraphyletic Rhabditidae, a single representative of Heterorhabditidae and a clade composed of sampled species belonging to Strongylida. It also strongly supported all suborders within Strongylida. In the phylum-wide analysis, a clade composed of all sampled species belonging to Enoplia were consistently placed as sister to Dorylaimia + Chromadoria. The topology of the Nematoda backbone was consistent with previous studies, including polyphyletic placement of sampled representatives of Monhysterida and Araeolaimida.
Collapse
|
28
|
Guo Q, Whipps CM, Zhai Y, Li D, Gu Z. Quantitative Insights into the Contribution of Nematocysts to the Adaptive Success of Cnidarians Based on Proteomic Analysis. BIOLOGY 2022; 11:91. [PMID: 35053089 PMCID: PMC8773148 DOI: 10.3390/biology11010091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Nematocysts are secretory organelles in cnidarians that play important roles in predation, defense, locomotion, and host invasion. However, the extent to which nematocysts contribute to adaptation and the mechanisms underlying nematocyst evolution are unclear. Here, we investigated the role of the nematocyst in cnidarian evolution based on eight nematocyst proteomes and 110 cnidarian transcriptomes/genomes. We detected extensive species-specific adaptive mutations in nematocyst proteins (NEMs) and evidence for decentralized evolution, in which most evolutionary events involved non-core NEMs, reflecting the rapid diversification of NEMs in cnidarians. Moreover, there was a 33-55 million year macroevolutionary lag between nematocyst evolution and the main phases of cnidarian diversification, suggesting that the nematocyst can act as a driving force in evolution. Quantitative analysis revealed an excess of adaptive changes in NEMs and enrichment for positively selected conserved NEMs. Together, these findings suggest that nematocysts may be key to the adaptive success of cnidarians and provide a reference for quantitative analyses of the roles of phenotypic novelties in adaptation.
Collapse
Affiliation(s)
- Qingxiang Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Christopher M Whipps
- SUNY-ESF, College of Environmental Science and Forestry, State University of New York, 246 Illick Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Yanhua Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Dan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
29
|
Smith ML, Hahn MW. The Frequency and Topology of Pseudoorthologs. Syst Biol 2021; 71:649-659. [PMID: 34951639 DOI: 10.1093/sysbio/syab097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/12/2022] Open
Abstract
Phylogenetics has long relied on the use of orthologs, or genes related through speciation events, to infer species relationships. However, identifying orthologs is difficult because gene duplication can obscure relationships among genes. Researchers have been particularly concerned with the insidious effects of pseudoorthologs-duplicated genes that are mistaken for orthologs because they are present in a single copy in each sampled species. Because gene tree topologies of pseudoorthologs may differ from the species tree topology, they have often been invoked as the cause of counterintuitive results in phylogenetics. Despite these perceived problems, no previous work has calculated the probabilities of pseudoortholog topologies, or has been able to circumscribe the regions of parameter space in which pseudoorthologs are most likely to occur. Here, we introduce a model for calculating the probabilities and branch lengths of orthologs and pseudoorthologs, including concordant and discordant pseudoortholog topologies, on a rooted three-taxon species tree. We show that the probability of orthologs is high relative to the probability of pseudoorthologs across reasonable regions of parameter space. Furthermore, the probabilities of the two discordant topologies are equal and never exceed that of the concordant topology, generally being much lower. We describe the species tree topologies most prone to generating pseudoorthologs, finding that they are likely to present problems to phylogenetic inference irrespective of the presence of pseudoorthologs. Overall, our results suggest that pseudoorthologs are unlikely to mislead inferences of species relationships under the biological scenarios considered here.
Collapse
Affiliation(s)
- Megan L Smith
- Department of Biology and Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| | - Matthew W Hahn
- Department of Biology and Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
30
|
Chen L, Jin WT, Liu XQ, Wang XQ. New insights into the phylogeny and evolution of Podocarpaceae inferred from transcriptomic data. Mol Phylogenet Evol 2021; 166:107341. [PMID: 34740782 DOI: 10.1016/j.ympev.2021.107341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Phylogenies of an increasing number of taxa have been resolved with the development of phylogenomics. However, the intergeneric relationships of Podocarpaceae, the second largest family of conifers comprising 19 genera and approximately 187 species mainly distributed in the Southern Hemisphere, have not been well disentangled in previous studies, even when genome-scale data sets were used. Here we used 993 nuclear orthologous groups (OGs) and 54 chloroplast OGs (genes), which were generated from 47 transcriptomes of Podocarpaceae and its sister group Araucariaceae, to reconstruct the phylogeny of Podocarpaceae. Our study completely resolved the intergeneric relationships of Podocarpaceae represented by all extant genera and revealed that topological conflicts among phylogenetic trees could be attributed to synonymous substitutions. Moreover, we found that two morphological traits, fleshy seed cones and flattened leaves, might be important for Podocarpaceae to adapt to angiosperm-dominated forests and thus could have promoted its species diversification. In addition, our results indicate that Podocarpaceae originated in Gondwana in the late Triassic and both vicariance and dispersal have contributed to its current biogeographic patterns. Our study provides the first robust transcriptome-based phylogeny of Podocarpaceae, an evolutionary framework important for future studies of this family.
Collapse
Affiliation(s)
- Luo Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Tao Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin-Quan Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Xia XM, Yang MQ, Li CL, Huang SX, Jin WT, Shen TT, Wang F, Li XH, Yoichi W, Zhang LH, Zheng YR, Wang XQ. Spatiotemporal evolution of the global species diversity of Rhododendron. Mol Biol Evol 2021; 39:6413646. [PMID: 34718707 PMCID: PMC8760938 DOI: 10.1093/molbev/msab314] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Evolutionary radiation is a widely recognized mode of species diversification, but its underlying mechanisms have not been unambiguously resolved for species-rich cosmopolitan plant genera. In particular, it remains largely unknown how biological and environmental factors have jointly driven its occurrence in specific regions. Here, we use Rhododendron, the largest genus of woody plants in the Northern Hemisphere, to investigate how geographic and climatic factors, as well as functional traits, worked together to trigger plant evolutionary radiations and shape the global patterns of species richness based on a solid species phylogeny. Using 3,437 orthologous nuclear genes, we reconstructed the first highly supported and dated backbone phylogeny of Rhododendron comprising 200 species that represent all subgenera, sections, and nearly all multispecies subsections, and found that most extant species originated by evolutionary radiations when the genus migrated southward from circumboreal areas to tropical/subtropical mountains, showing rapid increases of both net diversification rate and evolutionary rate of environmental factors in the Miocene. We also found that the geographically uneven diversification of Rhododendron led to a much higher diversity in Asia than in other continents, which was mainly driven by two environmental variables, that is, elevation range and annual precipitation, and were further strengthened by the adaptation of leaf functional traits. Our study provides a good example of integrating phylogenomic and ecological analyses in deciphering the mechanisms of plant evolutionary radiations, and sheds new light on how the intensification of the Asian monsoon has driven evolutionary radiations in large plant genera of the Himalaya-Hengduan Mountains.
Collapse
Affiliation(s)
- Xiao-Mei Xia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao-Qin Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cong-Li Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Xin Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Tao Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting-Ting Shen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fei Wang
- West China Subalpine Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Sichuan 611834, China
| | - Xiao-Hua Li
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiangxi 332900, China
| | - Watanabe Yoichi
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan
| | - Le-Hua Zhang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiangxi 332900, China
| | - Yuan-Run Zheng
- West China Subalpine Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Sichuan 611834, China.,State Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Qian Y, Zhang Y, Zhang J. Alignment-Free Sequence Comparison With Multiple k Values. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1841-1849. [PMID: 31765317 DOI: 10.1109/tcbb.2019.2955081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alignment-free sequence comparison approaches have become increasingly popular in computational biology, because alignment-based approaches are inefficient to process large-scale datasets. Still, there is no way to determine the optimal value of the critical parameter k for alignment-free approaches in general. In this article, we tried to solve the problem by involving multiple k values simultaneously. The method counts the occurrence of each k-mer with different k values in a sequence. Two weighting schemes, based on maximizing deviation method and genetic algorithm, are then used on these counts. We applied the method to enhance the three common alignment-free approaches D2, D2S, and D2*, and evaluated its performance on similarity search and functionally related regulatory sequences recognition. The enhanced approaches achieve better performance than the original approaches in all cases, and much better performance than some other common measures, such as Pcc, Eu, Ma, Ch, Kld, and Cos.
Collapse
|
33
|
Abstract
Phylogenomics, the study of phylogenetic relationships among taxa based on their genome sequences, has emerged as the preferred phylogenetic method because of the wealth of phylogenetic information contained in genome sequences. Genome sequencing, however, can be prohibitively expensive, especially for taxa with huge genomes and when many taxa need sequencing. Consequently, the less costly phylotranscriptomics has seen an increased use in recent years. Phylotranscriptomics reconstructs phylogenies using DNA sequences derived from transcriptomes, which are often orders of magnitude smaller than genomes. However, in the absence of corresponding genome sequences, comparative analyses of transcriptomes can be challenging and it is unclear whether phylotranscriptomics is as reliable as phylogenomics. Here, we respectively compare the phylogenomic and phylotranscriptomic trees of 22 mammals and 15 plants that have both sequenced nuclear genomes and publicly available RNA sequencing data from multiple tissues. We found that phylotranscriptomic analysis can be sensitive to orthologous gene identification. When a rigorous method for identifying orthologs is employed, phylogenomic and phylotranscriptomic trees are virtually identical to each other, regardless of the tissue of origin of the transcriptomes and whether the same tissue is used across species. These findings validate phylotranscriptomics, brighten its prospect, and illustrate the criticality of reliable ortholog detection in such practices.
Collapse
Affiliation(s)
- Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
34
|
Zhao Y, Zhang R, Jiang KW, Qi J, Hu Y, Guo J, Zhu R, Zhang T, Egan AN, Yi TS, Huang CH, Ma H. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. MOLECULAR PLANT 2021; 14:748-773. [PMID: 33631421 DOI: 10.1016/j.molp.2021.02.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/31/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Fabaceae are the third largest angiosperm family, with 765 genera and ∼19 500 species. They are important both economically and ecologically, and global Fabaceae crops are intensively studied in part for their nitrogen-fixing ability. However, resolution of the intrasubfamilial Fabaceae phylogeny and divergence times has remained elusive, precluding a reconstruction of the evolutionary history of symbiotic nitrogen fixation in Fabaceae. Here, we report a highly resolved phylogeny using >1500 nuclear genes from newly sequenced transcriptomes and genomes of 391 species, along with other datasets, for a total of 463 legumes spanning all 6 subfamilies and 333 of 765 genera. The subfamilies are maximally supported as monophyletic. The clade comprising subfamilies Cercidoideae and Detarioideae is sister to the remaining legumes, and Duparquetioideae and Dialioideae are successive sisters to the clade of Papilionoideae and Caesalpinioideae. Molecular clock estimation revealed an early radiation of subfamilies near the K/Pg boundary, marked by mass extinction, and subsequent divergence of most tribe-level clades within ∼15 million years. Phylogenomic analyses of thousands of gene families support 28 proposed putative whole-genome duplication/whole-genome triplication events across Fabaceae, including those at the ancestors of Fabaceae and five of the subfamilies, and further analyses supported the Fabaceae ancestral polyploidy. The evolution of rhizobial nitrogen-fixing nodulation in Fabaceae was probed by ancestral character reconstruction and phylogenetic analyses of related gene families and the results support the hypotheses of one or two switch(es) to rhizobial nodulation followed by multiple losses. Collectively, these results provide a foundation for further morphological and functional evolutionary analyses across Fabaceae.
Collapse
Affiliation(s)
- Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China; Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China
| | - Kai-Wen Jiang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, PR China; Ningbo Botanical Garden Herbarium, Ningbo 315201, PR China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Yi Hu
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Renbin Zhu
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, PR China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Ashley N Egan
- Department of Biology, Utah Valley University, Orem, UT 84058, USA
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China.
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China.
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
35
|
Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proc Natl Acad Sci U S A 2021; 118:2022302118. [PMID: 33941644 PMCID: PMC8157994 DOI: 10.1073/pnas.2022302118] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
How coniferous forests evolved in the Northern Hemisphere remains largely unknown. Unlike most groups of organisms that generally follow a latitudinal diversity gradient, most conifer species in the Northern Hemisphere are distributed in mountainous areas at middle latitudes. It is of great interest to know whether the midlatitude region has been an evolutionary cradle or museum for conifers and how evolutionary and ecological factors have driven their spatiotemporal evolution. Here, we investigated the macroevolution of Pinus, the largest conifer genus and characteristic of northern temperate coniferous forests, based on nearly complete species sampling. Using 1,662 genes from transcriptome sequences, we reconstructed a robust species phylogeny and reestimated divergence times of global pines. We found that ∼90% of extant pine species originated in the Miocene in sharp contrast to the ancient origin of Pinus, indicating a Neogene rediversification. Surprisingly, species at middle latitudes are much older than those at other latitudes. This finding, coupled with net diversification rate analysis, indicates that the midlatitude region has provided an evolutionary museum for global pines. Analyses of 31 environmental variables, together with a comparison of evolutionary rates of niche and phenotypic traits with a net diversification rate, found that topography played a primary role in pine diversification, and the aridity index was decisive for the niche rate shift. Moreover, fire has forced diversification and adaptive evolution of Pinus Our study highlights the importance of integrating phylogenomic and ecological approaches to address evolution of biological groups at the global scale.
Collapse
|
36
|
Knyshov A, Gordon ERL, Weirauch C. New alignment-based sequence extraction software (ALiBaSeq) and its utility for deep level phylogenetics. PeerJ 2021; 9:e11019. [PMID: 33850647 PMCID: PMC8019319 DOI: 10.7717/peerj.11019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/06/2021] [Indexed: 01/03/2023] Open
Abstract
Despite many bioinformatic solutions for analyzing sequencing data, few options exist for targeted sequence retrieval from whole genomic sequencing (WGS) data with the ultimate goal of generating a phylogeny. Available tools especially struggle at deep phylogenetic levels and necessitate amino-acid space searches, which may increase rates of false positive results. Many tools are also difficult to install and may lack adequate user resources. Here, we describe a program that uses freely available similarity search tools to find homologs in assembled WGS data with unparalleled freedom to modify parameters. We evaluate its performance compared to other commonly used bioinformatics tools on two divergent insect species (>200 My) for which annotated genomes exist, and on one large set each of highly conserved and more variable loci. Our software is capable of retrieving orthologs from well-curated or unannotated, low or high depth shotgun, and target capture assemblies as well or better than other software as assessed by recovering the most genes with maximal coverage and with a low rate of false positives throughout all datasets. When assessing this combination of criteria, ALiBaSeq is frequently the best evaluated tool for gathering the most comprehensive and accurate phylogenetic alignments on all types of data tested. The software (implemented in Python), tutorials, and manual are freely available at https://github.com/AlexKnyshov/alibaseq.
Collapse
Affiliation(s)
- Alexander Knyshov
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Eric R L Gordon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Christiane Weirauch
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
37
|
Zhang C, Zhang T, Luebert F, Xiang Y, Huang CH, Hu Y, Rees M, Frohlich MW, Qi J, Weigend M, Ma H. Asterid Phylogenomics/Phylotranscriptomics Uncover Morphological Evolutionary Histories and Support Phylogenetic Placement for Numerous Whole-Genome Duplications. Mol Biol Evol 2021; 37:3188-3210. [PMID: 32652014 DOI: 10.1093/molbev/msaa160] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Asterids are one of the most successful angiosperm lineages, exhibiting extensive morphological diversity and including a number of important crops. Despite their biological prominence and value to humans, the deep asterid phylogeny has not been fully resolved, and the evolutionary landscape underlying their radiation remains unknown. To resolve the asterid phylogeny, we sequenced 213 transcriptomes/genomes and combined them with other data sets, representing all accepted orders and nearly all families of asterids. We show fully supported monophyly of asterids, Berberidopsidales as sister to asterids, monophyly of all orders except Icacinales, Aquifoliales, and Bruniales, and monophyly of all families except Icacinaceae and Ehretiaceae. Novel taxon placements benefited from the expanded sampling with living collections from botanical gardens, resolving hitherto uncertain relationships. The remaining ambiguous placements here are likely due to limited sampling and could be addressed in the future with relevant additional taxa. Using our well-resolved phylogeny as reference, divergence time estimates support an Aptian (Early Cretaceous) origin of asterids and the origin of all orders before the Cretaceous-Paleogene boundary. Ancestral state reconstruction at the family level suggests that the asterid ancestor was a woody terrestrial plant with simple leaves, bisexual, and actinomorphic flowers with free petals and free anthers, a superior ovary with a style, and drupaceous fruits. Whole-genome duplication (WGD) analyses provide strong evidence for 33 WGDs in asterids and one in Berberidopsidales, including four suprafamilial and seven familial/subfamilial WGDs. Our results advance the understanding of asterid phylogeny and provide numerous novel evolutionary insights into their diversification and morphological evolution.
Collapse
Affiliation(s)
- Caifei Zhang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Taikui Zhang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Federico Luebert
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany.,Department of Silviculture and Nature Conservation, University of Chile, Santiago, Chile
| | - Yezi Xiang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Chien-Hsun Huang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Hu
- Department of Biology, The Eberly College of Science, and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Mathew Rees
- Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | | | - Ji Qi
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Maximilian Weigend
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | - Hong Ma
- Department of Biology, The Eberly College of Science, and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
38
|
Foley S, Krehenwinkel H, Cheng DQ, Piel WH. Phylogenomic analyses reveal a Gondwanan origin and repeated out of India colonizations into Asia by tarantulas (Araneae: Theraphosidae). PeerJ 2021; 9:e11162. [PMID: 33868819 PMCID: PMC8034372 DOI: 10.7717/peerj.11162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 12/23/2022] Open
Abstract
The study of biogeography seeks taxa that share a key set of characteristics, such as timescale of diversification, dispersal ability, and ecological lability. Tarantulas are ideal organisms for studying evolution over continental-scale biogeography given their time period of diversification, their mostly long-lived sedentary lives, low dispersal rate, and their nevertheless wide circumtropical distribution. In tandem with a time-calibrated transcriptome-based phylogeny generated by PhyloBayes, we estimate the ancestral ranges of ancient tarantulas using two methods, DEC+j and BBM, in the context of their evolution. We recover two ecologically distinct tarantula lineages that evolved on the Indian Plate before it collided with Asia, emphasizing the evolutionary significance of the region, and show that both lineages diversified across Asia at different times. The most ancestral tarantulas emerge on the Americas and Africa 120 Ma-105.5 Ma. We provide support for a dual colonization of Asia by two different tarantula lineages that occur at least 20 million years apart, as well as a Gondwanan origin for the group. We determine that their current distributions are attributable to a combination of Gondwanan vicariance, continental rafting, and geographic radiation. We also discuss emergent patterns in tarantula habitat preferences through time.
Collapse
Affiliation(s)
- Saoirse Foley
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biological Science, National University of Singapore, Singapore, Singapore
- Division of Science, Yale-NUS College, Singapore, Singapore
| | | | | | - William H. Piel
- Department of Biological Science, National University of Singapore, Singapore, Singapore
- Division of Science, Yale-NUS College, Singapore, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Linard B, Ebersberger I, McGlynn SE, Glover N, Mochizuki T, Patricio M, Lecompte O, Nevers Y, Thomas PD, Gabaldón T, Sonnhammer E, Dessimoz C, Uchiyama I. Ten Years of Collaborative Progress in the Quest for Orthologs. Mol Biol Evol 2021; 38:3033-3045. [PMID: 33822172 PMCID: PMC8321534 DOI: 10.1093/molbev/msab098] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/07/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Accurate determination of the evolutionary relationships between genes is a foundational challenge in biology. Homology-evolutionary relatedness-is in many cases readily determined based on sequence similarity analysis. By contrast, whether or not two genes directly descended from a common ancestor by a speciation event (orthologs) or duplication event (paralogs) is more challenging, yet provides critical information on the history of a gene. Since 2009, this task has been the focus of the Quest for Orthologs (QFO) Consortium. The sixth QFO meeting took place in Okazaki, Japan in conjunction with the 67th National Institute for Basic Biology conference. Here, we report recent advances, applications, and oncoming challenges that were discussed during the conference. Steady progress has been made toward standardization and scalability of new and existing tools. A feature of the conference was the presentation of a panel of accessible tools for phylogenetic profiling and several developments to bring orthology beyond the gene unit-from domains to networks. This meeting brought into light several challenges to come: leveraging orthology computations to get the most of the incoming avalanche of genomic data, integrating orthology from domain to biological network levels, building better gene models, and adapting orthology approaches to the broad evolutionary and genomic diversity recognized in different forms of life and viruses.
Collapse
Affiliation(s)
- Benjamin Linard
- LIRMM, University of Montpellier, CNRS, Montpellier, France.,SPYGEN, Le Bourget-du-Lac, France
| | - Ingo Ebersberger
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt, Germany.,LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Natasha Glover
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Tomohiro Mochizuki
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Yannis Nevers
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Paul D Thomas
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Jordi Girona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Erik Sonnhammer
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Christophe Dessimoz
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Department of Computer Science, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ikuo Uchiyama
- Department of Theoretical Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | | |
Collapse
|
40
|
Liedtke HC, Harney E, Gomez-Mestre I. Cross-species transcriptomics uncovers genes underlying genetic accommodation of developmental plasticity in spadefoot toads. Mol Ecol 2021; 30:2220-2234. [PMID: 33730392 DOI: 10.1111/mec.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/29/2021] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
That hardcoded genomes can manifest as plastic phenotypes responding to environmental perturbations is a fascinating feature of living organisms. How such developmental plasticity is regulated at the molecular level is beginning to be uncovered aided by the development of -omic techniques. Here, we compare the transcriptome-wide responses of two species of spadefoot toads with differing capacity for developmental acceleration of their larvae in the face of a shared environmental risk: pond drying. By comparing gene expression profiles over time and performing cross-species network analyses, we identified orthologues and functional gene pathways whose environmental sensitivity in expression have diverged between species. Genes related to lipid, cholesterol and steroid biosynthesis and metabolism make up most of a module of genes environmentally responsive in one species, but canalized in the other. The evolutionary changes in the regulation of the genes identified through these analyses may have been key in the genetic accommodation of developmental plasticity in this system.
Collapse
Affiliation(s)
- Hans Christoph Liedtke
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana, CSIC, Seville, Spain
| | - Ewan Harney
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana, CSIC, Seville, Spain
| |
Collapse
|
41
|
Rossier V, Warwick Vesztrocy A, Robinson-Rechavi M, Dessimoz C. OMAmer: tree-driven and alignment-free protein assignment to subfamilies outperforms closest sequence approaches. Bioinformatics 2021; 37:2866-2873. [PMID: 33787851 PMCID: PMC8479680 DOI: 10.1093/bioinformatics/btab219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/18/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION Assigning new sequences to known protein families and subfamilies is a prerequisite for many functional, comparative and evolutionary genomics analyses. Such assignment is commonly achieved by looking for the closest sequence in a reference database, using a method such as BLAST. However, ignoring the gene phylogeny can be misleading because a query sequence does not necessarily belong to the same subfamily as its closest sequence. For example, a hemoglobin which branched out prior to the hemoglobin alpha/beta duplication could be closest to a hemoglobin alpha or beta sequence, whereas it is neither. To overcome this problem, phylogeny-driven tools have emerged but rely on gene trees, whose inference is computationally expensive. RESULTS Here, we first show that in multiple animal and plant datasets, 18-62% of assignments by closest sequence are misassigned, typically to an over-specific subfamily. Then, we introduce OMAmer, a novel alignment-free protein subfamily assignment method, which limits over-specific subfamily assignments and is suited to phylogenomic databases with thousands of genomes. OMAmer is based on an innovative method using evolutionarily informed k-mers for alignment-free mapping to ancestral protein subfamilies. Whilst able to reject non-homologous family-level assignments, we show that OMAmer provides better and quicker subfamily-level assignments than approaches relying on the closest sequence, whether inferred exactly by Smith-Waterman or by the fast heuristic DIAMOND. AVAILABILITYAND IMPLEMENTATION OMAmer is available from the Python Package Index (as omamer), with the source code and a precomputed database available at https://github.com/DessimozLab/omamer. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Victor Rossier
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland,Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Alex Warwick Vesztrocy
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland,Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland,Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland,To whom correspondence should be addressed. or
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland,Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland,Department of Genetics, Evolution, and Environment, University College London, London, WC1E 6BT, UK,Department of Computer Science, University College London, London, WC1E 6BT, UK,To whom correspondence should be addressed. or
| |
Collapse
|
42
|
Smith CH. A High-Quality Reference Genome for a Parasitic Bivalve with Doubly Uniparental Inheritance (Bivalvia: Unionida). Genome Biol Evol 2021; 13:evab029. [PMID: 33570560 PMCID: PMC7937423 DOI: 10.1093/gbe/evab029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
From a genomics perspective, bivalves (Mollusca: Bivalvia) have been poorly explored with the exception for those of high economic value. The bivalve order Unionida, or freshwater mussels, has been of interest in recent genomic studies due to their unique mitochondrial biology and peculiar life cycle. However, genomic studies have been hindered by the lack of a high-quality reference genome. Here, I present a genome assembly of Potamilus streckersoni using Pacific Bioscience single-molecule real-time long reads and 10X Genomics-linked read sequencing. Further, I use RNA sequencing from multiple tissue types and life stages to annotate the reference genome. The final assembly was far superior to any previously published freshwater mussel genome and was represented by 2,368 scaffolds (2,472 contigs) and 1,776,755,624 bp, with a scaffold N50 of 2,051,244 bp. A high proportion of the assembly was comprised of repetitive elements (51.03%), aligning with genomic characteristics of other bivalves. The functional annotation returned 52,407 gene models (41,065 protein, 11,342 tRNAs), which was concordant with the estimated number of genes in other freshwater mussel species. This genetic resource, along with future studies developing high-quality genome assemblies and annotations, will be integral toward unraveling the genomic bases of ecologically and evolutionarily important traits in this hyper-diverse group.
Collapse
Affiliation(s)
- Chase H Smith
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
- Biology Department, Baylor University, Waco, Texas, USA
| |
Collapse
|
43
|
Schoville SD, Simon S, Bai M, Beethem Z, Dudko RY, Eberhard MJB, Frandsen PB, Küpper SC, Machida R, Verheij M, Willadsen PC, Zhou X, Wipfler B. Comparative transcriptomics of ice-crawlers demonstrates cold specialization constrains niche evolution in a relict lineage. Evol Appl 2021; 14:360-382. [PMID: 33664782 PMCID: PMC7896716 DOI: 10.1111/eva.13120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/25/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Key changes in ecological niche space are often critical to understanding how lineages diversify during adaptive radiations. However, the converse, or understanding why some lineages are depauperate and relictual, is more challenging, as many factors may constrain niche evolution. In the case of the insect order Grylloblattodea, highly conserved thermal breadth is assumed to be closely tied to their relictual status, but has not been formerly tested. Here, we investigate whether evolutionary constraints in the physiological tolerance of temperature can help explain relictualism in this lineage. Using a comparative transcriptomics approach, we investigate gene expression following acute heat and cold stress across members of Grylloblattodea and their sister group, Mantophasmatodea. We additionally examine patterns of protein evolution, to identify candidate genes of positive selection. We demonstrate that cold specialization in Grylloblattodea has been accompanied by the loss of the inducible heat shock response under both acute heat and cold stress. Additionally, there is widespread evidence of selection on protein-coding genes consistent with evolutionary constraints due to cold specialization. This includes positive selection on genes involved in trehalose transport, metabolic function, mitochondrial function, oxygen reduction, oxidative stress, and protein synthesis. These patterns of molecular adaptation suggest that Grylloblattodea have undergone evolutionary trade-offs to survive in cold habitats and should be considered highly vulnerable to climate change. Finally, our transcriptomic data provide a robust backbone phylogeny for generic relationships within Grylloblattodea and Mantophasmatodea. Major phylogenetic splits in each group relate to arid conditions driving biogeographical patterns, with support for a sister-group relationship between North American Grylloblatta and Altai-Sayan Grylloblattella, and a range disjunction in Namibia splitting major clades within Mantophasmatodea.
Collapse
Affiliation(s)
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchPB WageningenThe Netherlands
| | - Ming Bai
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zachary Beethem
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Department of Biomedical SciencesSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roman Y. Dudko
- Institute of Systematics and Ecology of AnimalsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
- Tomsk State UniversityTomskRussia
| | - Monika J. B. Eberhard
- Zoological Institute and MuseumGeneral Zoology and Zoological SystematicsUniversity of GreifswaldGreifswaldGermany
| | - Paul B. Frandsen
- Department of Plant & Wildlife SciencesBrigham Young UniversityProvoUTUSA
- Data Science LabOffice of the Chief Information OfficerSmithsonian InstitutionWashingtonDCU.S.A
| | - Simon C. Küpper
- Zoological Institute and MuseumGeneral Zoology and Zoological SystematicsUniversity of GreifswaldGreifswaldGermany
| | - Ryuichiro Machida
- Sugadaira Research StationMountain Science CenterUniversity of TsukubaUeda, NaganoJapan
| | - Max Verheij
- Biosystematics GroupWageningen University & ResearchPB WageningenThe Netherlands
| | - Peter C. Willadsen
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Department of Entomology and Plant PathologyNorth Carolina State UniversityCampus Box 7613RaleighNCUSA
| | - Xin Zhou
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | | |
Collapse
|
44
|
Pattabiraman S, Warnow T. Profile Hidden Markov Models Are Not Identifiable. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:162-172. [PMID: 31425043 DOI: 10.1109/tcbb.2019.2933821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Profile Hidden Markov Models (HMMs) are graphical models that can be used to produce finite length sequences from a distribution. In fact, although they were only introduced for bioinformatics 25 years ago (by Haussler et al., Hawaii International Conference on Systems Science, 1993), they are arguably the most commonly used statistical model in bioinformatics, with multiple applications, including protein structure and function prediction, classifications of novel proteins into existing protein families and superfamilies, metagenomics, and multiple sequence alignment. The standard use of profile HMMs in bioinformatics has two steps: first a profile HMM is built for a collection of molecular sequences (which may not be in a multiple sequence alignment), and then the profile HMM is used in some subsequent analysis of new molecular sequences. The construction of the profile thus is itself a statistical estimation problem, since any given set of sequences might potentially fit more than one model well. Hence, a basic question about profile HMMs is whether they are statistically identifiable, which means that no two profile HMMs can produce the same distribution on finite length sequences. Indeed, statistical identifiability is a fundamental aspect of any statistical model, and yet it is not known whether profile HMMs are statistically identifiable. In this paper, we report on preliminary results towards characterizing the statistical identifiability of profile HMMs in one of the standard forms used in bioinformatics.
Collapse
|
45
|
Shekhovtsov SV, Shipova AA, Poluboyarova TV, Vasiliev GV, Golovanova EV, Geraskina AP, Bulakhova NA, Szederjesi T, Peltek SE. Species Delimitation of the Eisenia nordenskioldi Complex (Oligochaeta, Lumbricidae) Using Transcriptomic Data. Front Genet 2020; 11:598196. [PMID: 33365049 PMCID: PMC7750196 DOI: 10.3389/fgene.2020.598196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023] Open
Abstract
Eisenia nordenskioldi (Eisen, 1879) is the only autochthonous Siberian earthworm with a large distribution that ranges from tundra to steppe and broadleaved forests. This species has a very high morphological, ecological, karyological, and genetic diversity, so it was proposed that E. nordenskioldi should be split into several species. However, the phylogeny of the complex was unclear due to the low resolution of the methods used and the high diversity that should have been taken into account. We investigated this question by (1) studying the diversity of the COI gene of E. nordenskioldi throughout its range and (2) sequencing transcriptomes of different genetic lineages to infer its phylogeny. We found that E. nordenskioldi is monophyletic and is split into two clades. The first one includes the pigmented genetic lineages widespread in the northern and western parts of the distribution, and the second one originating from the southern and southeastern part of the species' range and representing both pigmented and non-pigmented forms. We propose to split the E. nordenskioldi complex into two species, E. nordenskioldi and Eisenia sp. 1 (aff. E. nordenskioldi), corresponding to these two clades. The currently recognized non-pigmented subspecies E. n. pallida will be abolished as a polyphyletic and thus a non-natural taxon, while Eisenia sp. 1 will be expanded to include several lineages earlier recognized as E. n. nordenskioldi and E. n. pallida.
Collapse
Affiliation(s)
- Sergei V Shekhovtsov
- Department of Molecular Biotechnology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Kurchatov Genomic Center, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Laboratory of Biocenology, Institute of Biological Problems of the North of the Far Eastern Branch of the Russian Academy of Sciences, Magadan, Russia
| | - Aleksandra A Shipova
- Department of Molecular Biotechnology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Kurchatov Genomic Center, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatiana V Poluboyarova
- Department of Molecular Biotechnology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Kurchatov Genomic Center, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Laboratory of Biocenology, Institute of Biological Problems of the North of the Far Eastern Branch of the Russian Academy of Sciences, Magadan, Russia
| | - Gennady V Vasiliev
- Department of Molecular Biotechnology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena V Golovanova
- Laboratory of Systematics and Ecology of Invertebrates, Omsk State Pedagogical University, Omsk, Russia
| | - Anna P Geraskina
- Center for Forest Ecology and Productivity of the Russian Academy of Sciences, Moscow, Russia
| | - Nina A Bulakhova
- Laboratory of Biocenology, Institute of Biological Problems of the North of the Far Eastern Branch of the Russian Academy of Sciences, Magadan, Russia.,Laboratory of Biodiversity and Ecology, Tomsk State University, Tomsk, Russia
| | - Tímea Szederjesi
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
| | - Sergei E Peltek
- Department of Molecular Biotechnology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Kurchatov Genomic Center, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
46
|
Phylogenomic analyses recover a clade of large-bodied decapodiform cephalopods. Mol Phylogenet Evol 2020; 156:107038. [PMID: 33285289 DOI: 10.1016/j.ympev.2020.107038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Phylogenetic relationships among the squids and cuttlefishes (Cephalopoda:Decapodiformes) have resisted clarification for decades, despite multiple analyses of morphological, molecular and combined data sets. More recently, analyses of complete mitochondrial genomes and hundreds of nuclear loci have yielded similarly ambiguous results. In this study, we re-evaluate hypotheses of decapodiform relationships by increasing taxonomic breadth and utilizing higher-quality genome and transcriptome data for several taxa. We also employ analytical approaches to (1) identify contamination in transcriptome data, (2) better assess model adequacy, and (3) account for potential biases. Using this larger data set, we consistently recover a clade comprising Myopsida (closed-eye squid), Sepiida (cuttlefishes), and Oegopsida (open-eye squid) that is sister to a Sepiolida (bobtail and bottletail squid) clade. Idiosepiida (pygmy squid) is consistently recovered as the sister group to all sampled decapodiform lineages. Further, a weighted Shimodaira-Hasegawa test applied to one of our larger data matrices rejects all alternatives to these ordinal-level relationships. At present, available nuclear genome-scale data support nested clades of relatively large-bodied decapodiform cephalopods to the exclusion of pygmy squids, but improved taxon sampling and additional genomic data will be needed to test these novel hypotheses rigorously.
Collapse
|
47
|
Tikhonenkov DV, Mikhailov KV, Hehenberger E, Karpov SA, Prokina KI, Esaulov AS, Belyakova OI, Mazei YA, Mylnikov AP, Aleoshin VV, Keeling PJ. New Lineage of Microbial Predators Adds Complexity to Reconstructing the Evolutionary Origin of Animals. Curr Biol 2020; 30:4500-4509.e5. [PMID: 32976804 DOI: 10.1016/j.cub.2020.08.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 02/05/2023]
Abstract
The origin of animals is one of the most intensely studied evolutionary events, and our understanding of this transition was greatly advanced by analyses of unicellular relatives of animals, which have shown many "animal-specific" genes actually arose in protistan ancestors long before the emergence of animals [1-3]. These genes have complex distributions, and the protists have diverse lifestyles, so understanding their evolutionary significance requires both a robust phylogeny of animal relatives and a detailed understanding of their biology [4, 5]. But discoveries of new animal-related lineages are rare and historically biased to bacteriovores and parasites. Here, we characterize the morphology and transcriptome content of a new animal-related lineage, predatory flagellate Tunicaraptor unikontum. Tunicaraptor is an extremely small (3-5 μm) and morphologically simple cell superficially resembling some fungal zoospores, but it survives by preying on other eukaryotes, possibly using a dedicated but transient "mouth," which is unique for unicellular opisthokonts. The Tunicaraptor transcriptome encodes a full complement of flagellar genes and the flagella-associated calcium channel, which is only common to predatory animal relatives and missing in microbial parasites and grazers. Tunicaraptor also encodes several major classes of animal cell adhesion molecules, as well as transcription factors and homologs of proteins involved in neurodevelopment that have not been found in other animal-related lineages. Phylogenomics, including Tunicaraptor, challenges the existing framework used to reconstruct the evolution of animal-specific genes and emphasizes that the diversity of animal-related lineages may be better understood only once the smaller, more inconspicuous animal-related lineages are better studied. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Kirill V Mikhailov
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia.
| | - Elisabeth Hehenberger
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrookerweg 20, 24105 Kiel, Germany
| | - Sergei A Karpov
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg 199034, Russia; Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Kristina I Prokina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia; Zoological Institute, Russian Academy of Sciences, Saint Petersburg 199034, Russia
| | - Anton S Esaulov
- Department of Zoology and Ecology, Penza State University, Penza 440026, Russia
| | - Olga I Belyakova
- Department of Zoology and Ecology, Penza State University, Penza 440026, Russia
| | - Yuri A Mazei
- Department of General Ecology and Hydrobiology, Lomonosov Moscow State University, Moscow 119991, Russia; A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexander P Mylnikov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia
| | - Vladimir V Aleoshin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
48
|
Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00458-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Feng Y, Comes HP, Qiu YX. Phylogenomic insights into the temporal-spatial divergence history, evolution of leaf habit and hybridization in Stachyurus (Stachyuraceae). Mol Phylogenet Evol 2020; 150:106878. [DOI: 10.1016/j.ympev.2020.106878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
|
50
|
Weidensdorfer M, Ishikawa M, Hori K, Linke D, Djahanschiri B, Iruegas R, Ebersberger I, Riedel-Christ S, Enders G, Leukert L, Kraiczy P, Rothweiler F, Cinatl J, Berger J, Hipp K, Kempf VAJ, Göttig S. The Acinetobacter trimeric autotransporter adhesin Ata controls key virulence traits of Acinetobacter baumannii. Virulence 2020; 10:68-81. [PMID: 31874074 PMCID: PMC6363060 DOI: 10.1080/21505594.2018.1558693] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen that causes a multitude of nosocomial infections. The Acinetobacter trimeric autotransporter adhesin (Ata) belongs to the superfamily of trimeric autotransporter adhesins which are important virulence factors in many Gram-negative species. Phylogenetic profiling revealed that ata is present in 78% of all sequenced A. baumannii isolates but only in 2% of the closely related species A. calcoaceticus and A. pittii. Employing a markerless ata deletion mutant of A. baumannii ATCC 19606 we show that adhesion to and invasion into human endothelial and epithelial cells depend on Ata. Infection of primary human umbilical cord vein endothelial cells (HUVECs) with A. baumannii led to the secretion of interleukin (IL)-6 and IL-8 in a time- and Ata-dependent manner. Furthermore, infection of HUVECs by WT A. baumannii was associated with higher rates of apoptosis via activation of caspases-3 and caspase-7, but not necrosis, in comparison to ∆ata. Ata deletion mutants were furthermore attenuated in their ability to kill larvae of Galleria mellonella and to survive in larvae when injected at sublethal doses. This indicates that Ata is an important multifunctional virulence factor in A. baumannii that mediates adhesion and invasion, induces apoptosis and contributes to pathogenicity in vivo.
Collapse
Affiliation(s)
- Marko Weidensdorfer
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Masahito Ishikawa
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Katsutoshi Hori
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Dirk Linke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Bardya Djahanschiri
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Ruben Iruegas
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre Frankfurt (BIK-F), Frankfurt, Germany
| | - Sara Riedel-Christ
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Giulia Enders
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Laura Leukert
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Peter Kraiczy
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Florian Rothweiler
- Institute of Medical Virology, University Hospital, Goethe University, Frankfurt, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital, Goethe University, Frankfurt, Germany
| | - Jürgen Berger
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|