1
|
Reinprecht Y, Schram L, Perry GE, Morneau E, Smith TH, Pauls KP. Mapping yield and yield-related traits using diverse common bean germplasm. Front Genet 2024; 14:1246904. [PMID: 38234999 PMCID: PMC10791882 DOI: 10.3389/fgene.2023.1246904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
Common bean (bean) is one of the most important legume crops, and mapping genes for yield and yield-related traits is essential for its improvement. However, yield is a complex trait that is typically controlled by many loci in crop genomes. The objective of this research was to identify regions in the bean genome associated with yield and a number of yield-related traits using a collection of 121 diverse bean genotypes with different yields. The beans were evaluated in replicated trials at two locations, over two years. Significant variation among genotypes was identified for all traits analyzed in the four environments. The collection was genotyped with the BARCBean6K_3 chip (5,398 SNPs), two yield/antiyield gene-based markers, and seven markers previously associated with resistance to common bacterial blight (CBB), including a Niemann-Pick polymorphism (NPP) gene-based marker. Over 90% of the single-nucleotide polymorphisms (SNPs) were polymorphic and separated the panel into two main groups of small-seeded and large-seeded beans, reflecting their Mesoamerican and Andean origins. Thirty-nine significant marker-trait associations (MTAs) were identified between 31 SNPs and 15 analyzed traits on all 11 bean chromosomes. Some of these MTAs confirmed genome regions previously associated with the yield and yield-related traits in bean, but a number of associations were not reported previously, especially those with derived traits. Over 600 candidate genes with different functional annotations were identified for the analyzed traits in the 200-Kb region centered on significant SNPs. Fourteen SNPs were identified within the gene model sequences, and five additional SNPs significantly associated with five different traits were located at less than 0.6 Kb from the candidate genes. The work confirmed associations between two yield/antiyield gene-based markers (AYD1m and AYD2m) on chromosome Pv09 with yield and identified their association with a number of yield-related traits, including seed weight. The results also confirmed the usefulness of the NPP marker in screening for CBB resistance. Since disease resistance and yield measurements are environmentally dependent and labor-intensive, the three gene-based markers (CBB- and two yield-related) and quantitative trait loci (QTL) that were validated in this work may be useful tools for simplifying and accelerating the selection of high-yielding and CBB-resistant bean cultivars.
Collapse
Affiliation(s)
| | - Lyndsay Schram
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Gregory E. Perry
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Emily Morneau
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON, Canada
| | - Thomas H. Smith
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - K. Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Izquierdo P, Kelly JD, Beebe SE, Cichy K. Combination of meta-analysis of QTL and GWAS to uncover the genetic architecture of seed yield and seed yield components in common bean. THE PLANT GENOME 2023:e20328. [PMID: 37082832 DOI: 10.1002/tpg2.20328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Increasing seed yield in common bean could help to improve food security and reduce malnutrition globally due to the high nutritional quality of this crop. However, the complex genetic architecture and prevalent genotype by environment interactions for seed yield makes increasing genetic gains challenging. The aim of this study was to identify the most consistent genomic regions related with seed yield components and phenology reported in the last 20 years in common bean. A meta-analysis of quantitative trait locus (QTL) for seed yield components and phenology (MQTL-YC) was performed for 394 QTL reported in 21 independent studies under sufficient water and drought conditions. In total, 58 MQTL-YC over different genetic backgrounds and environments were identified, reducing threefold on average the confidence interval (CI) compared with the CI for the initial QTL. Furthermore, 40 MQTL-YC identified were co-located with 210 SNP peak positions reported via genome-wide association (GWAS), guiding the identification of candidate genes. Comparative genomics among these MQTL-YC with MQTL-YC reported in soybean and pea allowed the identification of 14 orthologous MQTL-YC shared across species. The integration of MQTL-YC, GWAS, and comparative genomics used in this study is useful to uncover and refine the most consistent genomic regions related with seed yield components for their use in plant breeding.
Collapse
Affiliation(s)
- Paulo Izquierdo
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - James D Kelly
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Stephen E Beebe
- Bean Program, Crops for Health and Nutrition Area, Alliance Bioversity International-CIAT, Cali, Colombia
| | - Karen Cichy
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- USDA-ARS, Sugarbeet and Bean Research Unit, East Lansing, MI, USA
| |
Collapse
|
3
|
Grosser MR, Sites SK, Murata MM, Lopez Y, Chamusco KC, Love Harriage K, Grosser JW, Graham JH, Gmitter FG, Chase CD. Plant mitochondrial introns as genetic markers - conservation and variation. FRONTIERS IN PLANT SCIENCE 2023; 14:1116851. [PMID: 37021319 PMCID: PMC10067590 DOI: 10.3389/fpls.2023.1116851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Plant genomes are comprised of nuclear, plastid and mitochondrial components characterized by different patterns of inheritance and evolution. Genetic markers from the three genomes provide complementary tools for investigations of inheritance, genetic relationships and phenotypic contributions. Plant mitochondrial genomes are challenging for universal marker development because they are highly variable in terms of size, gene order and intergenic sequences and highly conserved with respect to protein-coding sequences. PCR amplification of introns with primers that anneal to conserved, flanking exons is effective for the development of polymorphic nuclear genome markers. The potential for plant mitochondrial intron polymorphisms to distinguish between congeneric species or intraspecific varieties has not been systematically investigated and is possibly constrained by requirements for intron secondary structure and interactions with co-evolved organelle intron splicing factors. To explore the potential for broadly applicable plant mitochondrial intron markers, PCR primer sets based upon conserved sequences flanking 11 introns common to seven angiosperm species were tested across a range of plant orders. PCR-amplified introns were screened for indel polymorphisms among a group of cross-compatible Citrus species and relatives; two Raphanus sativus mitotypes; representatives of the two Phaseolus vulgaris gene pools; and congeneric pairs of Cynodon, Cenchrus, Solanum, and Vaccinium species. All introns were successfully amplified from each plant entry. Length polymorphisms distinguishable by gel electrophoresis were common among genera but infrequent within genera. Sequencing of three introns amplified from 16 entries identified additional short indel polymorphisms and nucleotide substitutions that separated Citrus, Cynodon, Cenchrus and Vaccinium congeners, but failed to distinguish Solanum congeners or representatives of the Phaseolus vulgaris major gene pools. The ability of primer sets to amplify a wider range of plant species' introns and the presence of intron polymorphisms that distinguish congeners was confirmed by in silico analysis. While mitochondrial intron variation is limited in comparison to nuclear introns, these exon-based primer sets provide robust tools for the amplification of mitochondrial introns across a wide range of plant species wherein useful polymorphisms can be identified.
Collapse
Affiliation(s)
- Melinda R. Grosser
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Samantha K. Sites
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Mayara M. Murata
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Yolanda Lopez
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Karen C. Chamusco
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Kyra Love Harriage
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - James H. Graham
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Fred G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Christine D. Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Li X, Tang Y, Wang L, Chang Y, Wu J, Wang S. QTL mapping and identification of genes associated with the resistance to Acanthoscelides obtectus in cultivated common bean using a high-density genetic linkage map. BMC PLANT BIOLOGY 2022; 22:260. [PMID: 35610573 PMCID: PMC9131570 DOI: 10.1186/s12870-022-03635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is an important agricultural product with large nutritional value, and the insect pest Acanthoscelides obtectus (Say) seriously affects its product quality and commodity quality during storage. Few researches on genes of bruchid resistance have investigated in common bean cultivars. RESULTS In this study, a bruchid-resistant cultivar black kidney bean and a highly susceptible accession Longyundou3 from different gene banks were crossed to construct a recombinant inbred line population. The genetic analysis indicated a quantitative inheritance of the bruchid resistance trait controlled by polygenes. A high-density genetic map of a total map distance of 1283.68 cM with an average interval of 0.61 cM between each marker was constructed using an F6 population of 157 recombinant inbred lines. The map has 3106 bin markers, containing 2,234,769 SNPs. Using the high-density genetic map, a new quantitative trait locus for the resistance to Acanthoscelides obtectus was identified on chromosome 6. New molecular markers based on the candidate region were developed, and this locus was further delimited to an interval of 122.3 kb between SSR markers I6-4 and I6-16 using an F2 population. This region comprised five genes. Phvul.006G003700, which encodes a bifunctional inhibitor, may be a potential candidate gene for bruchid resistance. Sequencing analysis of candidate gene identified a 5 bp insertion-deletion in promoter of gene Phvul.006G003700 between two parents. Expression analysis of candidate gene revealed that the expression level of Phvul.006G003700 in bruchid-resistant parent was markedly higher than that in bruchid-susceptible parent both in dry seeds and leaves. CONCLUSIONS A high-density genetic linkage map was constructed utilizing whole-genome resequencing and one new QTL for bruchid resistance was identified on chromosome 6 in common bean cultivar. Phvul.006G003700 (encoding a bifunctional inhibitor) may be a potential candidate gene. These results may form the basis for further research to reveal the bruchid resistance molecular mechanism of common bean.
Collapse
Affiliation(s)
- Xiaoming Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongsheng Tang
- Qujing Academy of Agricultural Sciences, Qujing, 655000, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujie Chang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Rohilla V, Yadav RK, Poonia A, Sheoran R, Kumari G, Shanmugavadivel PS, Pratap A. Association Mapping for Yield Attributing Traits and Yellow Mosaic Disease Resistance in Mung Bean [ Vigna radiata (L.) Wilczek]. FRONTIERS IN PLANT SCIENCE 2022; 12:749439. [PMID: 35111171 PMCID: PMC8801447 DOI: 10.3389/fpls.2021.749439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Mung bean [Vigna radiata (L.) Wilczek] is an important short-duration grain legume widely known for its nutritional, soil ameliorative, and cropping system intensification properties. This study aims at evaluating genetic diversity among mung bean genotypes and detecting genomic regions associated with various yield attributing traits and yellow mosaic disease (YMD) resistance by association mapping. A panel of 80 cultivars and advanced breeding lines was evaluated for 10 yield-related and YMD resistance traits during kharif (monsoon) and summer seasons of 2018-2019 and 2019-2020. A total of 164 genome-wide simple sequence repeat (SSR) markers were initially screened, out of which 89 were found polymorphic which generated 317 polymorphic alleles with an average of 3.56 alleles per SSR locus. The number of alleles at each locus varied from 2 to 7. The population genetic structure analysis grouped different genotypes in three major clusters and three genetically distinct subpopulations (SPs) (i.e., SP-1, SP-2, and SP-3) with one admixture subpopulation (SP-4). Both cluster and population genetic structure analysis categorized the advanced mung bean genotypes in a single group/SP and the released varieties in other groups/SPs, suggesting that the studied genotypes may have common ancestral history at some level. The population genetic structure was also in agreement with the genetic diversity analysis. The estimate of the average degree of linkage disequilibrium (LD) present at the genome level in 80 mung bean genotypes unveiled significant LD blocks. Over the four seasons, 10 marker-trait associations were observed significant for YMD and four seed yield (SY)-related traits viz., days to flowering, days to maturity, plant height, and number of pods per plant using the mixed linear model (MLM) method. These associations may be useful for marker-assisted mung bean yield improvement programs and YMD resistance.
Collapse
Affiliation(s)
- Versha Rohilla
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Rajesh Kumar Yadav
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Ravika Sheoran
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Gita Kumari
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | | | - Aditya Pratap
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| |
Collapse
|
6
|
Singh D, Chaudhary P, Taunk J, Singh CK, Singh D, Tomar RSS, Aski M, Konjengbam NS, Raje RS, Singh S, Sengar RS, Yadav RK, Pal M. Fab Advances in Fabaceae for Abiotic Stress Resilience: From 'Omics' to Artificial Intelligence. Int J Mol Sci 2021; 22:10535. [PMID: 34638885 PMCID: PMC8509049 DOI: 10.3390/ijms221910535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Legumes are a better source of proteins and are richer in diverse micronutrients over the nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic stresses, their overall productivity and quality are hugely impacted. Our limited understanding of genetic determinants and novel variants associated with the abiotic stress response in food legume crops restricts its amelioration. Therefore, it is imperative to understand different molecular approaches in food legume crops that can be utilized in crop improvement programs to minimize the economic loss. 'Omics'-based molecular breeding provides better opportunities over conventional breeding for diversifying the natural germplasm together with improving yield and quality parameters. Due to molecular advancements, the technique is now equipped with novel 'omics' approaches such as ionomics, epigenomics, fluxomics, RNomics, glycomics, glycoproteomics, phosphoproteomics, lipidomics, regulomics, and secretomics. Pan-omics-which utilizes the molecular bases of the stress response to identify genes (genomics), mRNAs (transcriptomics), proteins (proteomics), and biomolecules (metabolomics) associated with stress regulation-has been widely used for abiotic stress amelioration in food legume crops. Integration of pan-omics with novel omics approaches will fast-track legume breeding programs. Moreover, artificial intelligence (AI)-based algorithms can be utilized for simulating crop yield under changing environments, which can help in predicting the genetic gain beforehand. Application of machine learning (ML) in quantitative trait loci (QTL) mining will further help in determining the genetic determinants of abiotic stress tolerance in pulses.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut 250001, India
| | - Ram Sewak Singh Tomar
- College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India
| | - Muraleedhar Aski
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Noren Singh Konjengbam
- College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University, Imphal 793103, India
| | - Ranjeet Sharan Raje
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sanjay Singh
- ICAR- National Institute of Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Rakesh Singh Sengar
- College of Biotechnology, Sardar Vallabh Bhai Patel Agricultural University, Meerut 250001, India
| | - Rajendra Kumar Yadav
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur 208002, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
7
|
Zhang Q, Li M, Xia CY, Zhang WJ, Yin ZG, Zhang YL, Fang QX, Liu YC, Zhang MY, Zhang WH, Du JD, Du YL. Transcriptome-based analysis of salt-related genes during the sprout stage of common bean (Phaseolus vulgaris) under salt stress conditions. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1954091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Qi Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Ming Li
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Chun Yang Xia
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wen Jing Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Zhen Gong Yin
- Bean Crops Laboratory, Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - You Li Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Qing Xi Fang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Yang Cheng Liu
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Ming Yu Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wen Hui Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Ji Dao Du
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, PR China
| | - Yan Li Du
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, PR China
| |
Collapse
|
8
|
Shi A, Gepts P, Song Q, Xiong H, Michaels TE, Chen S. Genome-Wide Association Study and Genomic Prediction for Soybean Cyst Nematode Resistance in USDA Common Bean ( Phaseolus vulgaris) Core Collection. FRONTIERS IN PLANT SCIENCE 2021; 12:624156. [PMID: 34163495 PMCID: PMC8215670 DOI: 10.3389/fpls.2021.624156] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/14/2021] [Indexed: 05/16/2023]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) has become the major yield-limiting biological factor in soybean production. Common bean is also a good host of SCN, and its production is challenged by this emerging pest in many regions such as the upper Midwest USA. The use of host genetic resistance has been the most effective and environmentally friendly method to manage SCN. The objectives of this study were to evaluate the SCN resistance in the USDA common bean core collection and conduct a genome-wide association study (GWAS) of single nucleotide polymorphism (SNP) markers with SCN resistance. A total of 315 accessions of the USDA common bean core collection were evaluated for resistance to SCN HG Type 0 (race 6). The common bean core set was genotyped with the BARCBean6K_3 Infinium BeadChips, consisting of 4,654 SNPs. Results showed that 15 accessions were resistant to SCN with a Female Index (FI) at 4.8 to 9.4, and 62 accessions were moderately resistant (10 < FI < 30) to HG Type 0. The association study showed that 11 SNP markers, located on chromosomes Pv04, 07, 09, and 11, were strongly associated with resistance to HG Type 0. GWAS was also conducted for resistance to HG Type 2.5.7 and HG Type 1.2.3.5.6.7 based on the public dataset (N = 276), consisting of a diverse set of common bean accessions genotyped with the BARCBean6K_3 chip. Six SNPs associated with HG Type 2.5.7 resistance on Pv 01, 02, 03, and 07, and 12 SNPs with HG Type 1.2.3.5.6.7 resistance on Pv 01, 03, 06, 07, 09, 10, and 11 were detected. The accuracy of genomic prediction (GP) was 0.36 to 0.49 for resistance to the three SCN HG types, indicating that genomic selection (GS) of SCN resistance is feasible. This study provides basic information for developing SCN-resistant common bean cultivars, using the USDA core germ plasm accessions. The SNP markers can be used in molecular breeding in common beans through marker-assisted selection (MAS) and GS.
Collapse
Affiliation(s)
- Ainong Shi
- Department of Horticulture, PTSC316, University of Arkansas, Fayetteville, AR, United States
| | - Paul Gepts
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Qijian Song
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Haizheng Xiong
- Department of Horticulture, PTSC316, University of Arkansas, Fayetteville, AR, United States
| | - Thomas E. Michaels
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, United States
| | - Senyu Chen
- Southern Research and Outreach Center, University of Minnesota, Waseca, MN, United States
| |
Collapse
|
9
|
Xiong R, Liu S, Considine MJ, Siddique KHM, Lam HM, Chen Y. Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: A review. PHYSIOLOGIA PLANTARUM 2021; 172:405-418. [PMID: 32880966 DOI: 10.1111/ppl.13201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 05/24/2023]
Abstract
Drought stress is the main limiting factor for global soybean growth and production. Genetic improvement for water and nutrient uptake efficiency is critical to advance tolerance and enable more sustainable and resilient production, underpinning yield growth. The identification of quantitative traits and genes related to water and nutrient uptake will enhance our understanding of the mechanisms of drought tolerance in soybean. This review summarizes drought stress in the context of the physiological traits that enable effective acclimation, with a particular focus on roots. Genes controlling root system architecture play an important role in water and nutrient availability, and therefore important targets for breeding strategies to improve drought tolerance. This review highlights the candidate genes that have been identified as regulators of important root traits and responses to water stress. Progress in our understanding of the function of particular genes, including GmACX1, GmMS and GmPEPCK are discussed in the context of developing a system-based platform for genetic improvement of drought tolerance in soybean.
Collapse
Affiliation(s)
- Rentao Xiong
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, and Chinese Academy of Sciences, Yangling, Shaanxi, China
| | - Shuo Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, and Chinese Academy of Sciences, Yangling, Shaanxi, China
| | - Michael J Considine
- School of Molecular Sciences, The University of Western Australia, LB 5005, Perth, Western Australia, 6001, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, and UWA School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, Western Australia, 6001, Australia
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, and Chinese Academy of Sciences, Yangling, Shaanxi, China
- The UWA Institute of Agriculture, and UWA School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, Western Australia, 6001, Australia
| |
Collapse
|
10
|
Cortés AJ, López-Hernández F. Harnessing Crop Wild Diversity for Climate Change Adaptation. Genes (Basel) 2021; 12:783. [PMID: 34065368 PMCID: PMC8161384 DOI: 10.3390/genes12050783] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Warming and drought are reducing global crop production with a potential to substantially worsen global malnutrition. As with the green revolution in the last century, plant genetics may offer concrete opportunities to increase yield and crop adaptability. However, the rate at which the threat is happening requires powering new strategies in order to meet the global food demand. In this review, we highlight major recent 'big data' developments from both empirical and theoretical genomics that may speed up the identification, conservation, and breeding of exotic and elite crop varieties with the potential to feed humans. We first emphasize the major bottlenecks to capture and utilize novel sources of variation in abiotic stress (i.e., heat and drought) tolerance. We argue that adaptation of crop wild relatives to dry environments could be informative on how plant phenotypes may react to a drier climate because natural selection has already tested more options than humans ever will. Because isolated pockets of cryptic diversity may still persist in remote semi-arid regions, we encourage new habitat-based population-guided collections for genebanks. We continue discussing how to systematically study abiotic stress tolerance in these crop collections of wild and landraces using geo-referencing and extensive environmental data. By uncovering the genes that underlie the tolerance adaptive trait, natural variation has the potential to be introgressed into elite cultivars. However, unlocking adaptive genetic variation hidden in related wild species and early landraces remains a major challenge for complex traits that, as abiotic stress tolerance, are polygenic (i.e., regulated by many low-effect genes). Therefore, we finish prospecting modern analytical approaches that will serve to overcome this issue. Concretely, genomic prediction, machine learning, and multi-trait gene editing, all offer innovative alternatives to speed up more accurate pre- and breeding efforts toward the increase in crop adaptability and yield, while matching future global food demands in the face of increased heat and drought. In order for these 'big data' approaches to succeed, we advocate for a trans-disciplinary approach with open-source data and long-term funding. The recent developments and perspectives discussed throughout this review ultimately aim to contribute to increased crop adaptability and yield in the face of heat waves and drought events.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Km 7 Vía Rionegro, Las Palmas, Rionegro 054048, Colombia;
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia
| | - Felipe López-Hernández
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Km 7 Vía Rionegro, Las Palmas, Rionegro 054048, Colombia;
| |
Collapse
|
11
|
Allelic Diversity at Abiotic Stress Responsive Genes in Relationship to Ecological Drought Indices for Cultivated Tepary Bean, Phaseolus acutifolius A. Gray, and Its Wild Relatives. Genes (Basel) 2021; 12:genes12040556. [PMID: 33921270 PMCID: PMC8070098 DOI: 10.3390/genes12040556] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Some of the major impacts of climate change are expected in regions where drought stress is already an issue. Grain legumes are generally drought susceptible. However, tepary bean and its wild relatives within Phaseolus acutifolius or P. parvifolius are from arid areas between Mexico and the United States. Therefore, we hypothesize that these bean accessions have diversity signals indicative of adaptation to drought at key candidate genes such as: Asr2, Dreb2B, and ERECTA. By sequencing alleles of these genes and comparing to estimates of drought tolerance indices from climate data for the collection site of geo-referenced, tepary bean accessions, we determined the genotype x environmental association (GEA) of each gene. Diversity analysis found that cultivated and wild P. acutifolius were intermingled with var. tenuifolius and P. parvifolius, signifying that allele diversity was ample in the wild and cultivated clade over a broad sense (sensu lato) evaluation. Genes Dreb2B and ERECTA harbored signatures of directional selection, represented by six SNPs correlated with the environmental drought indices. This suggests that wild tepary bean is a reservoir of novel alleles at genes for drought tolerance, as expected for a species that originated in arid environments. Our study corroborated that candidate gene approach was effective for marker validation across a broad genetic base of wild tepary accessions.
Collapse
|
12
|
Mir RR, Choudhary N, Bawa V, Jan S, Singh B, Bhat MA, Paliwal R, Kumar A, Chitikineni A, Thudi M, Varshney RK. Allelic Diversity, Structural Analysis, and Genome-Wide Association Study (GWAS) for Yield and Related Traits Using Unexplored Common Bean ( Phaseolus vulgaris L.) Germplasm From Western Himalayas. Front Genet 2021; 11:609603. [PMID: 33584807 PMCID: PMC7876396 DOI: 10.3389/fgene.2020.609603] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
The north-western Indian Himalayas possesses vast diversity in common bean germplasm due to several years of natural adaptation and farmer's selection. Systematic efforts have been made for the first time for the characterization and use of this huge diversity for the identification of genes/quantitative trait loci (QTLs) for yield and yield-contributing traits in common bean in India. A core set of 96 diverse common bean genotypes was characterized using 91 genome-wide genomic and genic simple sequence repeat (SSR) markers. The study of genetic diversity led to the identification of 691 alleles ranging from 2 to 21 with an average of 7.59 alleles/locus. The gene diversity (expected heterozygosity, He) varied from 0.31 to 0.93 with an average of 0.73. As expected, the genic SSR markers detected less allelic diversity than the random genomic SSR markers. The traditional clustering and Bayesian clustering (structural analysis) analyses led to a clear cut separation of a core set of 96 genotypes into two distinct groups based on their gene pools (Mesoamerican and Andean genotypes). Genome-wide association mapping for pods/plant, seeds/pod, seed weight, and yield/plant led to the identification of 39 significant marker-trait associations (MTAs) including 15 major, 15 stable, and 13 both major and stable MTAs. Out of 39 MTAs detected, 29 were new MTAs reported for the first time, whereas the remaining 10 MTAs were already identified in earlier studies and therefore declared as validation of earlier results. A set of seven markers was such, which were found to be associated with multiple (two to four) different traits. The important MTAs will be used for common bean molecular breeding programs worldwide for enhancing common bean yield.
Collapse
Affiliation(s)
- Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Sopore, India
| | - Neeraj Choudhary
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Vanya Bawa
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Sofora Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Sopore, India
| | - Bikram Singh
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Mohd Ashraf Bhat
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Sopore, India
| | - Rajneesh Paliwal
- The International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Rajeev Kumar Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| |
Collapse
|
13
|
Gunjača J, Carović-Stanko K, Lazarević B, Vidak M, Petek M, Liber Z, Šatović Z. Genome-Wide Association Studies of Mineral Content in Common Bean. FRONTIERS IN PLANT SCIENCE 2021; 12:636484. [PMID: 33763096 PMCID: PMC7982862 DOI: 10.3389/fpls.2021.636484] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/09/2021] [Indexed: 05/15/2023]
Abstract
Micronutrient malnutrition is one of the main public health problems in many parts of the world. This problem raises the attention of all valuable sources of micronutrients for the human diet, such as common bean (Phaseolus vulgaris L.). In this research, a panel of 174 accessions representing Croatian common bean landraces was phenotyped for seed content of eight nutrients (N, P, K, Ca, Mg, Fe, Zn, and Mn), and genotyped using 6,311 high-quality DArTseq-derived SNP markers. A genome-wide association study (GWAS) was then performed to identify new genetic sources for improving seed mineral content. Twenty-two quantitative trait nucleotides (QTN) associated with seed nitrogen content were discovered on chromosomes Pv01, Pv02, Pv03, Pv05, Pv07, Pv08, and Pv10. Five QTNs were associated with seed phosphorus content, four on chromosome Pv07, and one on Pv08. A single significant QTN was found for seed calcium content on chromosome Pv09 and for seed magnesium content on Pv08. Finally, two QTNs associated with seed zinc content were identified on Pv06 while no QTNs were found to be associated with seed potassium, iron, or manganese content. Our results demonstrate the utility of GWAS for understanding the genetic architecture of seed nutritional traits in common bean and have utility for future enrichment of seed with macro- and micronutrients through genomics-assisted breeding.
Collapse
Affiliation(s)
- Jerko Gunjača
- Department of Plant Breeding, Genetics and Biometrics, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
| | - Klaudija Carović-Stanko
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- *Correspondence: Klaudija Carović-Stanko,
| | - Boris Lazarević
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
- Department of Plant Nutrition, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Monika Vidak
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
| | - Marko Petek
- Department of Plant Nutrition, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Zlatko Liber
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Zlatko Šatović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
14
|
Reyes-Herrera PH, Muñoz-Baena L, Velásquez-Zapata V, Patiño L, Delgado-Paz OA, Díaz-Diez CA, Navas-Arboleda AA, Cortés AJ. Inheritance of Rootstock Effects in Avocado ( Persea americana Mill.) cv. Hass. FRONTIERS IN PLANT SCIENCE 2020; 11:555071. [PMID: 33424874 PMCID: PMC7785968 DOI: 10.3389/fpls.2020.555071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/17/2020] [Indexed: 05/16/2023]
Abstract
Grafting is typically utilized to merge adapted seedling rootstocks with highly productive clonal scions. This process implies the interaction of multiple genomes to produce a unique tree phenotype. However, the interconnection of both genotypes obscures individual contributions to phenotypic variation (rootstock-mediated heritability), hampering tree breeding. Therefore, our goal was to quantify the inheritance of seedling rootstock effects on scion traits using avocado (Persea americana Mill.) cv. Hass as a model fruit tree. We characterized 240 diverse rootstocks from 8 avocado cv. Hass orchards with similar management in three regions of the province of Antioquia, northwest Andes of Colombia, using 13 microsatellite markers simple sequence repeats (SSRs). Parallel to this, we recorded 20 phenotypic traits (including morphological, biomass/reproductive, and fruit yield and quality traits) in the scions for 3 years (2015-2017). Relatedness among rootstocks was inferred through the genetic markers and inputted in a "genetic prediction" model to calculate narrow-sense heritabilities (h 2) on scion traits. We used three different randomization tests to highlight traits with consistently significant heritability estimates. This strategy allowed us to capture five traits with significant heritability values that ranged from 0.33 to 0.45 and model fits (r) that oscillated between 0.58 and 0.73 across orchards. The results showed significance in the rootstock effects for four complex harvest and quality traits (i.e., total number of fruits, number of fruits with exportation quality, and number of fruits discarded because of low weight or thrips damage), whereas the only morphological trait that had a significant heritability value was overall trunk height (an emergent property of the rootstock-scion interaction). These findings suggest the inheritance of rootstock effects, beyond root phenotype, on a surprisingly wide spectrum of scion traits in "Hass" avocado. They also reinforce the utility of polymorphic SSRs for relatedness reconstruction and genetic prediction of complex traits. This research is, up to date, the most cohesive evidence of narrow-sense inheritance of rootstock effects in a tropical fruit tree crop. Ultimately, our work highlights the importance of considering the rootstock-scion interaction to broaden the genetic basis of fruit tree breeding programs while enhancing our understanding of the consequences of grafting.
Collapse
Affiliation(s)
- Paula H. Reyes-Herrera
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI Tibaitatá, Mosquera, Colombia
| | - Laura Muñoz-Baena
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Valeria Velásquez-Zapata
- Department of Plant Pathology and Microbiology, Interdepartmental Bioinformatics and Computational Biology, Iowa State University, Ames, IA, United States
| | - Laura Patiño
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI La Selva, Rionegro, Colombia
| | - Oscar A. Delgado-Paz
- Facultad de Ingenierías, Universidad Católica de Oriente—UCO, Rionegro, Antioquia
| | - Cipriano A. Díaz-Diez
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI La Selva, Rionegro, Colombia
| | | | - Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—CI La Selva, Rionegro, Colombia
| |
Collapse
|
15
|
Nkhata W, Shimelis H, Melis R, Chirwa R, Mzengeza T, Mathew I, Shayanowako A. Population structure and genetic diversity analyses of common bean germplasm collections of East and Southern Africa using morphological traits and high-density SNP markers. PLoS One 2020; 15:e0243238. [PMID: 33338076 PMCID: PMC7748271 DOI: 10.1371/journal.pone.0243238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022] Open
Abstract
Knowledge of genetic diversity in plant germplasm and the relationship between genetic factors and phenotypic expression is vital for crop improvement. This study's objectives were to understand the extent of genetic diversity and population structure in 60 common bean genotypes from East and Southern Africa. The common bean genotypes exhibited significant (p<0.05) levels of variability for traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield per hectare in kilograms (GYD). About 47.82 per cent of the variation among the genotypes was explained by seven principal components (PC) associated with the following agronomic traits: NPP, NFF (nodes to first flower), DTF, GH (growth habit) and GYD. The SNP markers revealed mean gene diversity and polymorphic information content values of 0.38 and 0.25, respectively, which suggested the presence of considerable genetic variation among the assessed genotypes. Analysis of molecular variance showed that 51% of the genetic variation were between the gene pools, while 49% of the variation were within the gene pools. The genotypes were delineated into two distinct groups through the population structure, cluster and phylogenetic analyses. Genetically divergent genotypes such as DRK57, MW3915, NUA59, and VTTT924/4-4 with high yield and agronomic potential were identified, which may be useful for common bean improvement.
Collapse
Affiliation(s)
- Wilson Nkhata
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Hussein Shimelis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Rob Melis
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Rowland Chirwa
- International Centre for Tropical Agriculture, Chitedze Agricultural Research Station, Lilongwe, Malawi
| | - Tenyson Mzengeza
- Department of Agricultural Research Service, Chitedze Agricultural Research Station, Lilongwe, Malawi
| | - Isack Mathew
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Admire Shayanowako
- African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
16
|
Cortés AJ, Restrepo-Montoya M, Bedoya-Canas LE. Modern Strategies to Assess and Breed Forest Tree Adaptation to Changing Climate. FRONTIERS IN PLANT SCIENCE 2020; 11:583323. [PMID: 33193532 PMCID: PMC7609427 DOI: 10.3389/fpls.2020.583323] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 05/02/2023]
Abstract
Studying the genetics of adaptation to new environments in ecologically and industrially important tree species is currently a major research line in the fields of plant science and genetic improvement for tolerance to abiotic stress. Specifically, exploring the genomic basis of local adaptation is imperative for assessing the conditions under which trees will successfully adapt in situ to global climate change. However, this knowledge has scarcely been used in conservation and forest tree improvement because woody perennials face major research limitations such as their outcrossing reproductive systems, long juvenile phase, and huge genome sizes. Therefore, in this review we discuss predictive genomic approaches that promise increasing adaptive selection accuracy and shortening generation intervals. They may also assist the detection of novel allelic variants from tree germplasm, and disclose the genomic potential of adaptation to different environments. For instance, natural populations of tree species invite using tools from the population genomics field to study the signatures of local adaptation. Conventional genetic markers and whole genome sequencing both help identifying genes and markers that diverge between local populations more than expected under neutrality, and that exhibit unique signatures of diversity indicative of "selective sweeps." Ultimately, these efforts inform the conservation and breeding status capable of pivoting forest health, ecosystem services, and sustainable production. Key long-term perspectives include understanding how trees' phylogeographic history may affect the adaptive relevant genetic variation available for adaptation to environmental change. Encouraging "big data" approaches (machine learning-ML) capable of comprehensively merging heterogeneous genomic and ecological datasets is becoming imperative, too.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, Rionegro, Colombia
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia – Sede Medellín, Medellín, Colombia
| | - Manuela Restrepo-Montoya
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia – Sede Medellín, Medellín, Colombia
| | - Larry E. Bedoya-Canas
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia – Sede Medellín, Medellín, Colombia
| |
Collapse
|
17
|
Cortés AJ, López-Hernández F, Osorio-Rodriguez D. Predicting Thermal Adaptation by Looking Into Populations' Genomic Past. Front Genet 2020; 11:564515. [PMID: 33101385 PMCID: PMC7545011 DOI: 10.3389/fgene.2020.564515] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular evolution offers an insightful theory to interpret the genomic consequences of thermal adaptation to previous events of climate change beyond range shifts. However, disentangling often mixed footprints of selective and demographic processes from those due to lineage sorting, recombination rate variation, and genomic constrains is not trivial. Therefore, here we condense current and historical population genomic tools to study thermal adaptation and outline key developments (genomic prediction, machine learning) that might assist their utilization for improving forecasts of populations' responses to thermal variation. We start by summarizing how recent thermal-driven selective and demographic responses can be inferred by coalescent methods and in turn how quantitative genetic theory offers suitable multi-trait predictions over a few generations via the breeder's equation. We later assume that enough generations have passed as to display genomic signatures of divergent selection to thermal variation and describe how these footprints can be reconstructed using genome-wide association and selection scans or, alternatively, may be used for forward prediction over multiple generations under an infinitesimal genomic prediction model. Finally, we move deeper in time to comprehend the genomic consequences of thermal shifts at an evolutionary time scale by relying on phylogeographic approaches that allow for reticulate evolution and ecological parapatric speciation, and end by envisioning the potential of modern machine learning techniques to better inform long-term predictions. We conclude that foreseeing future thermal adaptive responses requires bridging the multiple spatial scales of historical and predictive environmental change research under modern cohesive approaches such as genomic prediction and machine learning frameworks.
Collapse
Affiliation(s)
- Andrés J Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia.,Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia - Sede Medellín, Medellín, Colombia
| | - Felipe López-Hernández
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology (Caltech), Pasadena, CA, United States
| |
Collapse
|
18
|
Valencia JB, Mesa J, León JG, Madriñán S, Cortés AJ. Climate Vulnerability Assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.565708] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Gupta N, Zargar SM, Singh R, Nazir M, Mahajan R, Salgotra RK. Marker association study of yield attributing traits in common bean (Phaseolus vulgaris L.). Mol Biol Rep 2020; 47:6769-6783. [PMID: 32852680 DOI: 10.1007/s11033-020-05735-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/20/2020] [Indexed: 01/20/2023]
Abstract
Common bean is gaining acceptance as one of the most valuable major food consumed worldwide owing to innumerable nutritional and therapeutic benefits. Comparatively less productivity in underdeveloped countries encouraged us to proceed for QTL mining of yield traits in common bean. Heretofore, multiple yield associated markers have been detected all over the world; even so, the present work is looked on as the first report on identification of novel/new potent markers by exploiting the germplasm of Northern India. A panel of one hundred and thirty five genotypes was used for morphological studies and based on preliminary molecular evaluation; a set of ninety six diverse common bean genotypes (core set) was selected for association analysis. Molecular data generated by a total of ninety eight microsatellite markers (53 genomic and 45 genic SSRs) revealed high estimation of polymorphism among the genotypes that were observed to be divided into two major sub-populations and varying levels of admixtures based on population structure analyses. By employing both MLM and GLM analysis approaches, we identified 46 and 16 significant marker-trait associations (p ≤ 0.005) respectively, few of which have already been reported and hence validate our results. PVBR213 marker was found to be strongly associated with days to bud initiation trait when analyzed with both the approaches. Phenotypic variation of identified significant markers ranged from 3.1% to 32.7% where PVBR87, PVBR213, X96999 and X57022 explain more than 30% of phenotypic variation for 100 seed weight, days to bud initiation, pods per plant and pod length traits respectively. These findings introduce highly informative markers to aid marker-assisted selection program in common bean for high yield performance along with good agronomic merit.
Collapse
Affiliation(s)
- Nancy Gupta
- School of Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, Jammu and Kashmir, 180009, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Srinagar, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| | - Ravinder Singh
- School of Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, Jammu and Kashmir, 180009, India
| | - Muslima Nazir
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Srinagar, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Srinagar, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - R K Salgotra
- School of Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, Jammu and Kashmir, 180009, India
| |
Collapse
|
20
|
Erdogmus S, Ates D, Nemli S, Yagmur B, Asciogul TK, Ozkuru E, Karaca N, Yilmaz H, Esiyok D, Tanyolac MB. Genome-wide association studies of Ca and Mn in the seeds of the common bean (Phaseolus vulgaris L.). Genomics 2020; 112:4536-4546. [PMID: 32763354 DOI: 10.1016/j.ygeno.2020.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
SNP markers linked to genes controlling Ca and Mn uptake were identified in the common bean seeds using DArT-based association mapping (AM). The Ca concentration in the seeds varied between 475 and 3,100 mg kg-1 with an average of 1,280.9 mg kg-1 and the Mn concentration ranged from 4.87 to 27.54 mg kg-1 with a mean of 11.76 mg kg-1. A total of 19,204 SNP markers were distributed across 11 chromosomes that correspond to the haploid genome number of the common bean. The highest value of ΔK was determined as K = 2, and 173 common bean genotypes were split into two main subclusters as POP1 (Mesoamerican) and POP2 (Andean). The results of the UPGMA dendrogram and PCA confirmed those of STRUCTURE analysis. MLM based on the Q + K model identified a large number of markers-trait associations. Of the 19,204 SNPs, five (on Pv2, 3, 8, 10 and 11) and four (on Pv2, 3, 8 and 11) SNPs were detected to be significantly related to the Ca content of the beans grown in Bornova and Menemen, respectively in 2015. In 2016, six SNPs (on Pv1-4, 8 and 10) were identified to be significantly associated with the Ca content of the seeds obtained from Bornova and six SNPs (on Pv1-4, 8 and 10) from Menemen. Eight (on Pv3, 5 and 11) and four (on Pv2, 5 and 11) SNPs had a significant association with Mn content in Bornova in 2015 and 2016, respectively. In Menemen, eight (on Pv3, 5, 8 and 11) and 11 (on Pv1, 2, 5, 10 and 11) SNPs had a significant correlation with Mn content in 2015 and 2016, respectively.
Collapse
Affiliation(s)
- Semih Erdogmus
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Duygu Ates
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Seda Nemli
- Ege University, Faculty of Fisheries, Bornova-Izmir 35100, Turkey
| | - Bulent Yagmur
- Ege University, Department of Soil Science and Plant Nutrition, Bornova-Izmir 35100, Turkey
| | | | - Esin Ozkuru
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Nur Karaca
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Hasan Yilmaz
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Dursun Esiyok
- Ege University, Department of Horticulture, Bornova-Izmir, 35040, Turkey
| | | |
Collapse
|
21
|
Lei L, Wang L, Wang S, Wu J. Marker-Trait Association Analysis of Seed Traits in Accessions of Common Bean ( Phaseolus vulgaris L.) in China. Front Genet 2020; 11:698. [PMID: 32714377 PMCID: PMC7344293 DOI: 10.3389/fgene.2020.00698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023] Open
Abstract
Seed weight and seed size are the key agronomic traits that determine yield in common bean. To investigate the genetic architecture of four seed traits (100-seed weight, seed length, seed width, and seed height) of common bean in China, marker-trait association analysis of these seed traits was performed in a nationwide population of 395 common bean accessions using 116 polymorphic SSR markers. The four seed traits were evaluated in six trials across three environments. Seed size varied among the environments. Population structure was evaluated based on SSR markers and phaseolin, which divided the accessions into two main subpopulations representing the two known gene pools. Seed weight and seed size had a strong relationship with population clustering. In addition, in a Genome-wide association studies (GWAS), 21 significantly associated markers were identified for the four seed traits with two models, namely, general linear model (GLM) and mixed linear model (MLM). Some markers had pleiotropic effects, i.e., controlled more than one trait. The significant quantitative trait loci identified in this study could be used in marker-assisted breeding to accelerate the genetic improvement of yield in common bean.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Beijing, China
| |
Collapse
|
22
|
Pipan B, Meglič V. Diversification and genetic structure of the western-to-eastern progression of European Phaseolus vulgaris L. germplasm. BMC PLANT BIOLOGY 2019; 19:442. [PMID: 31646962 PMCID: PMC6813049 DOI: 10.1186/s12870-019-2051-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is the most important food legume for direct human consumption around the world, as it represents a valuable source of components with nutritional and health benefits. RESULTS We conducted a study to define and explain the genetic relatedness and diversification level of common bean (Phaseolus vulgaris L.) germplasm from Portugal to Ukraine, along a western-to-eastern line of southern European countries, including Poland. This was based on the P. vulgaris genetic structure, and was designed to better describe its distribution and domestication pathways in Europe. Using the multi-crop passport descriptors that include geographic origin and different phaseolin types (corresponding to the Mesoamerican and Andean gene pools), 782 accessions were obtained from nine gene banks and 12 geographic origins. We selected 33 genome/ gene-related/ gene-pool-related nuclear simple sequence repeat markers that covered the genetic diversity across the P. vulgaris genome. The overall polymorphic information content was 0.800. Without specifying geographic origin, global structure cluster analysis generated 10 genetic clusters. Among the PvSHP1 markers, the most informative for gene pool assignment of the European P. vulgaris germplasm was PvSHP1-B. Results of AMOVA show that 89% of the molecular variability is shared within the 782 accessions, with 4% molecular variability among the different geographic origins along this western-to-eastern line of southern Europe (including Poland). CONCLUSIONS This study shows that the diversification line of the European P. vulgaris germplasm followed from the western areas of southern Europe (Portugal, Spain, Italy, Slovenia) to the more eastern areas of southern Europe. This progression defines three geographically separated subgroups, as the northern (Poland, Ukraine, Romania), southern (Albania, Bulgaria), and central (Bosnia and Herzegovina, Serbia, Hungary) areas of eastern Europe.
Collapse
Affiliation(s)
- Barbara Pipan
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Vladimir Meglič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Hernandez J, Steffenson BJ, Filichkin T, Fisk SP, Helgerson L, Meints B, Vining KJ, Marshall D, Del Blanco A, Chen X, Hayes PM. Introgression of rpg4/ Rpg5 Into Barley Germplasm Provides Insights Into the Genetics of Resistance to Puccinia graminis f. sp. tritici Race TTKSK and Resources for Developing Resistant Cultivars. PHYTOPATHOLOGY 2019; 109:1018-1028. [PMID: 30714882 DOI: 10.1094/phyto-09-18-0350-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stem rust (incited by Puccinia graminis f. sp. tritici) is a devastating disease of wheat and barley in many production areas. The widely virulent African P. graminis f. sp. tritici race TTKSK is of particular concern, because most cultivars are susceptible. To prepare for the possible arrival of race TTKSK in North America, we crossed a range of barley germplasm-representing different growth habits and end uses-with donors of stem rust resistance genes Rpg1 and rpg4/Rpg5. The former confers resistance to prevalent races of P. graminis f. sp. tritici in North America, and the latter confers resistance to TTKSK and other closely related races from Africa. We produced doubled haploids from these crosses and determined their allele type at the Rpg loci and haplotype at 7,864 single-nucleotide polymorphism loci. The doubled haploids were phenotyped for TTKSK resistance at the seedling stage. Integration of genotype and phenotype data revealed that (i) Rpg1 was not associated with TTKSK resistance, (ii) rpg4/Rpg5 was necessary but was not sufficient for resistance, and (iii) specific haplotypes at two quantitative trait loci were required for rpg4/Rpg5 to confer resistance to TTKSK. To confirm whether lines found resistant to TTKSK at the seedling resistance were also resistant at the adult plant stage, a subset of doubled haploids was evaluated in Kenya. Additionally, adult plant resistance to leaf rust and stripe rust (incited by Puccinia hordei and Puccinia striiformis f. sp. hordei, respectively) was also assessed on the doubled haploids in field trials at three locations in the United States over a 2-year period. Doubled haploids were identified with adult plant resistance to all three rusts, and this germplasm is available to the research and breeding communities.
Collapse
Affiliation(s)
- Javier Hernandez
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Brian J Steffenson
- 2 Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Tanya Filichkin
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Scott P Fisk
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Laura Helgerson
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Brigid Meints
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Kelly J Vining
- 3 Department of Horticulture, Oregon State University, Corvallis, OR 97331
| | - David Marshall
- 4 U.S. Department of Agriculture Agricultural Research Service, Raleigh, NC 27695
| | - Alicia Del Blanco
- 5 Department of Plant Sciences, University of California, Davis, CA 95616
| | - Xianming Chen
- 6 U.S. Department of Agriculture Agricultural Research Service Wheat Health, Genetics, and Quality Research Unit and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Patrick M Hayes
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
24
|
Diniz AL, Giordani W, Costa ZP, Margarido GRA, Perseguini JMKC, Benchimol-Reis LL, Chiorato AF, Garcia AAF, Vieira MLC. Evidence for Strong Kinship Influence on the Extent of Linkage Disequilibrium in Cultivated Common Beans. Genes (Basel) 2018; 10:E5. [PMID: 30583474 PMCID: PMC6356217 DOI: 10.3390/genes10010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023] Open
Abstract
Phaseolus vulgaris is an important grain legume for human consumption. Recently, association mapping studies have been performed for the species aiming to identify loci underlying quantitative variation of traits. It is now imperative to know whether the linkage disequilibrium (LD) reflects the true association between a marker and causative loci. The aim of this study was to estimate and analyze LD on a diversity panel of common beans using ordinary r² and r2 extensions which correct bias due to population structure (rS²), kinship (rV²), and both (rVS²). A total of 10,362 single nucleotide polymorphisms (SNPs) were identified by genotyping by sequencing (GBS), and polymorphisms were found to be widely distributed along the 11 chromosomes. In terms of r2, high values of LD (over 0.8) were identified between SNPs located at opposite chromosomal ends. Estimates for rV² were lower than those for rS². Results for rV² and rVS² were similar, suggesting that kinship may also include information on population structure. Over genetic distance, LD decayed to 0.1 at a distance of 1 Mb for rVS². Inter-chromosomal LD was also evidenced. This study showed that LD estimates decay dramatically according to the population structure, and especially the degree of kinship. Importantly, the LD estimates reported herein may influence our ability to perform association mapping studies on P. vulgaris.
Collapse
Affiliation(s)
- Augusto Lima Diniz
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Willian Giordani
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Zirlane Portugal Costa
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Gabriel R A Margarido
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Juliana Morini K C Perseguini
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná 85660-000, Brazil.
- Centro de Recursos Genéticos, Instituto Agronômico de Campinas, Campinas, São Paulo 13075-630, Brazil.
| | - Luciana L Benchimol-Reis
- Centro de Recursos Genéticos, Instituto Agronômico de Campinas, Campinas, São Paulo 13075-630, Brazil.
| | - Alisson F Chiorato
- Centro de Grãos e Fibras, Instituto Agronômico de Campinas, Campinas, São Paulo 13075-630, Brazil.
| | - Antônio Augusto F Garcia
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil.
| |
Collapse
|
25
|
Cortés AJ, Skeen P, Blair MW, Chacón-Sánchez MI. Does the Genomic Landscape of Species Divergence in Phaseolus Beans Coerce Parallel Signatures of Adaptation and Domestication? FRONTIERS IN PLANT SCIENCE 2018; 9:1816. [PMID: 30619396 PMCID: PMC6306030 DOI: 10.3389/fpls.2018.01816] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/22/2018] [Indexed: 05/10/2023]
Abstract
Exploring the genomic architecture of species and populations divergence aids understanding how lineages evolve and adapt, and ultimately can show the repeatability of evolutionary processes. Yet, the genomic signatures associated with divergence are still relatively unexplored, leading to a knowledge gap on whether species divergence ultimately differs in its genetic architecture from divergence at other spatial scales (i.e., populations, ecotypes). Our goal in this research was to determine whether genomic islands of speciation are more prone to harbor within-species differentiation due to genomic features, suppressed recombination, smaller effective population size or increased drift, across repeated hierarchically nested levels of divergence. We used two species of Phaseolus beans with strong genepool and population sub-structure produced by multiple independent domestications each especially in Andean and Mesoamerican / Middle American geographies. We genotyped 22,531 GBS-derived SNP markers in 209 individuals of wild and cultivated Phaseolus vulgaris and Phaseolus lunatus. We identified six regions for species-associated divergence. Out of these divergence peaks, 21% were recovered in the four within-species between-genepool comparisons and in the five within-genepool wild-cultivated comparisons (some of the latter did retrieve genuine signatures of the well described multiple domestication syndromes). However, genomic regions with overall high relative differentiation (measured by FST) coincided with regions of low SNP density and regions of elevated delta divergence between-genepools (ΔDiv), independent of the scale of divergence. The divergence in chromosome Pv10 further coincided with a between-species pericentric inversion. These convergences suggest that shared variants are being recurrently fixed at replicated regions of the genome, and in a similar manner across different hierarchically nested levels of divergence, likely as result of genomic features that make certain regions more prone to accumulate islands of speciation and within-species divergence. In summary, neighboring signatures of speciation, adaptation and domestication in Phaseolus beans are influenced by ubiquitous genomic constrains, which may continue to fortuitously shape genomic differentiation at various others scales of divergence.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia) – Centro de Investigación La Selva, Rionegro, Colombia
- Universidad Nacional de Colombia – Sede Medellín, Facultad de Ciencias Agrarias – Departamento de Ciencias
Forestales, Medellín, Colombia
| | - Paola Skeen
- Universidad Nacional de Colombia – Bogotá, Facultad de Ciencias Agrarias – Departamento de Agronomía, Bogotá, Colombia
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Matthew W. Blair
- Department of Agricultural and Environmental Science, Tennessee State University, Nashville, TN, United States
| | - María I. Chacón-Sánchez
- Universidad Nacional de Colombia – Bogotá, Facultad de Ciencias Agrarias – Departamento de Agronomía, Bogotá, Colombia
| |
Collapse
|
26
|
Cortés AJ, Garzón LN, Valencia JB, Madriñán S. On the Causes of Rapid Diversification in the Páramos: Isolation by Ecology and Genomic Divergence in Espeletia. FRONTIERS IN PLANT SCIENCE 2018; 9:1700. [PMID: 30581444 PMCID: PMC6294130 DOI: 10.3389/fpls.2018.01700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/01/2018] [Indexed: 05/10/2023]
Abstract
How diversity arises and what is the relative role of allopatric and ecological divergence are among the most persistent questions in evolution and ecology. Here, we assessed whether ecological divergence has enhanced the diversification of the Neotropical alpine plant complex Espeletia, also known as frailejones. This genus has one of the highest diversification rates ever reported and is distributed in the world's fastest evolving biodiversity hotspot, the Páramo (Neotropical alpine grasslands at elevations of c. 2800-4700 m). Our goal was to determine whether ecology plays a role in divergence within the Espeletia complex by quantifying genome-wide patterns of ecological divergence. We characterized 162 samples of the three most common and contrasting ecotypes (distinct morphotypes occupying particular habitats) co-occurring in six localities in the northern Andes using Genotyping by Sequencing. Contrasting ecotypes were caulescent cloud forest populations, caulescent populations from wind-sheltered and well-irrigated depressions and acaulescent populations from wind-exposed drier slopes. We found high polymorphism with a total of 1,273 single nucleotide polymorphisms (SNPs) that defined the relationships among nine genetic clusters. We quantified allelic associations of these markers with localities and habitats using 18 different general and mixed-effects statistical models that accounted for phylogenetic distance. Despite that these models always yielded more SNPs associated with the localities, markers associated with the habitat types were recovered too. We found strong evidence for isolation-by-distance (IBD) across populations despite rampant gene flow, as expected for plant groups with limited seed dispersal. Contrasts between populations of different habitat types showed that an isolation-by-environment (IBE) trend emerged and masked the IBD signal. Maximum likelihood estimation of the number of migrants per generation (Nem) among ecotypes confirmed the IBE pattern. This result illustrates the importance of mountains' environmental variation at a local scale in generating rapid morphological radiations and maintaining multiple adaptations in a fast-evolving ecosystem like the Páramo.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Luz N. Garzón
- Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jhon B. Valencia
- Facultad de Ingeniera y Administracin, Universidad Nacional de Colombia - Sede Palmira, Palmira, Colombia
| | - Santiago Madriñán
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
- Jardín Botánico de Cartagena “Guillermo Piñeres”, Turbaco, Colombia
| |
Collapse
|
27
|
Blair MW, Cortés AJ, Farmer AD, Huang W, Ambachew D, Penmetsa RV, Carrasquilla-Garcia N, Assefa T, Cannon SB. Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.). PLoS One 2018; 13:e0189597. [PMID: 29522524 PMCID: PMC5844515 DOI: 10.1371/journal.pone.0189597] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Recombination (R) rate and linkage disequilibrium (LD) analyses are the basis for plant breeding. These vary by breeding system, by generation of inbreeding or outcrossing and by region in the chromosome. Common bean (Phaseolus vulgaris L.) is a favored food legume with a small sequenced genome (514 Mb) and n = 11 chromosomes. The goal of this study was to describe R and LD in the common bean genome using a 768-marker array of single nucleotide polymorphisms (SNP) based on Trans-legume Orthologous Group (TOG) genes along with an advanced-generation Recombinant Inbred Line reference mapping population (BAT93 x Jalo EEP558) and an internationally available diversity panel. A whole genome genetic map was created that covered all eleven linkage groups (LG). The LGs were linked to the physical map by sequence data of the TOGs compared to each chromosome sequence of common bean. The genetic map length in total was smaller than for previous maps reflecting the precision of allele calling and mapping with SNP technology as well as the use of gene-based markers. A total of 91.4% of TOG markers had singleton hits with annotated Pv genes and all mapped outside of regions of resistance gene clusters. LD levels were found to be stronger within the Mesoamerican genepool and decay more rapidly within the Andean genepool. The recombination rate across the genome was 2.13 cM / Mb but R was found to be highly repressed around centromeres and frequent outside peri-centromeric regions. These results have important implications for association and genetic mapping or crop improvement in common bean.
Collapse
Affiliation(s)
- Matthew W. Blair
- Department of Agricultural & Environmental Science, Tennessee State University (TSU), Nashville, Tennessee, United States of America
| | - Andrés J. Cortés
- Colombian Corporation for Agricultural Research (CORPOICA), C.I. La Selva, Rionegro, Department of Antioquia, Colombia
| | - Andrew D. Farmer
- National Center for Genome Resources (NCGR), Santa Fe, New Mexico, United States of America
| | - Wei Huang
- Iowa State University (ISU), Ames, Iowa, United States of America
| | - Daniel Ambachew
- Department of Agricultural & Environmental Science, Tennessee State University (TSU), Nashville, Tennessee, United States of America
| | - R. Varma Penmetsa
- University of California, Davis (US-D), California, United States of America
| | | | - Teshale Assefa
- Iowa State University (ISU), Ames, Iowa, United States of America
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa, United States of America
| | - Steven B. Cannon
- Iowa State University (ISU), Ames, Iowa, United States of America
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa, United States of America
| |
Collapse
|
28
|
Do TD, Vuong TD, Dunn D, Smothers S, Patil G, Yungbluth DC, Chen P, Scaboo A, Xu D, Carter TE, Nguyen HT, Grover Shannon J. Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:513-524. [PMID: 29151146 DOI: 10.1007/s00122-017-3015-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/04/2017] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE The confirmation of a major locus associated with salt tolerance and mapping of a new locus, which could be beneficial for improving salt tolerance in soybean. Breeding soybean for tolerance to high salt conditions is important in some regions of the USA and world. Soybean cultivar Fiskeby III (PI 438471) in maturity group 000 has been reported to be highly tolerant to multiple abiotic stress conditions, including salinity. In this study, a mapping population of 132 F2 families derived from a cross of cultivar Williams 82 (PI 518671, moderately salt sensitive) and Fiskeby III (salt tolerant) was analyzed to map salt tolerance genes. The evaluation for salt tolerance was performed by analyzing leaf scorch score (LSS), chlorophyll content ratio (CCR), leaf sodium content (LSC), and leaf chloride content (LCC) after treatment with 120 mM NaCl under greenhouse conditions. Genotypic data for the F2 population were obtained using the SoySNP6K Illumina Infinium BeadChip assay. A major allele from Fiskeby III was significantly associated with LSS, CCR, LSC, and LCC on chromosome (Chr.) 03 with LOD scores of 19.1, 11.0, 7.7 and 25.6, respectively. In addition, a second locus associated with salt tolerance for LSC was detected and mapped on Chr. 13 with an LOD score of 4.6 and an R 2 of 0.115. Three gene-based polymorphic molecular markers (Salt-20, Salt14056 and Salt11655) on Chr.03 showed a strong predictive association with phenotypic salt tolerance in the present mapping population. These molecular markers will be useful for marker-assisted selection to improve salt tolerance in soybean.
Collapse
Affiliation(s)
- Tuyen D Do
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Tri D Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - David Dunn
- Division of Plant Sciences, University of Missouri, Delta Research Center, Portageville, MO, 63873, USA
| | - Scotty Smothers
- Division of Plant Sciences, University of Missouri, Delta Research Center, Portageville, MO, 63873, USA
| | - Gunvant Patil
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dennis C Yungbluth
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Pengyin Chen
- Division of Plant Sciences, University of Missouri, Delta Research Center, Portageville, MO, 63873, USA
| | - Andrew Scaboo
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dong Xu
- Department of Electric Engineering and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas E Carter
- Soybean and Nitrogen Fixation Unit, USDA-ARS, Raleigh, NC, 27607, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - J Grover Shannon
- Division of Plant Sciences, University of Missouri, Delta Research Center, Portageville, MO, 63873, USA.
| |
Collapse
|
29
|
Cortés AJ, Blair MW. Genotyping by Sequencing and Genome-Environment Associations in Wild Common Bean Predict Widespread Divergent Adaptation to Drought. FRONTIERS IN PLANT SCIENCE 2018; 9:128. [PMID: 29515597 PMCID: PMC5826387 DOI: 10.3389/fpls.2018.00128] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/23/2018] [Indexed: 05/18/2023]
Abstract
Drought will reduce global crop production by >10% in 2050 substantially worsening global malnutrition. Breeding for resistance to drought will require accessing crop genetic diversity found in the wild accessions from the driest high stress ecosystems. Genome-environment associations (GEA) in crop wild relatives reveal natural adaptation, and therefore can be used to identify adaptive variation. We explored this approach in the food crop Phaseolus vulgaris L., characterizing 86 geo-referenced wild accessions using genotyping by sequencing (GBS) to discover single nucleotide polymorphisms (SNPs). The wild beans represented Mesoamerica, Guatemala, Colombia, Ecuador/Northern Peru and Andean groupings. We found high polymorphism with a total of 22,845 SNPs across the 86 accessions that confirmed genetic relationships for the groups. As a second objective, we quantified allelic associations with a bioclimatic-based drought index using 10 different statistical models that accounted for population structure. Based on the optimum model, 115 SNPs in 90 regions, widespread in all 11 common bean chromosomes, were associated with the bioclimatic-based drought index. A gene coding for an ankyrin repeat-containing protein and a phototropic-responsive NPH3 gene were identified as potential candidates. Genomic windows of 1 Mb containing associated SNPs had more positive Tajima's D scores than windows without associated markers. This indicates that adaptation to drought, as estimated by bioclimatic variables, has been under natural divergent selection, suggesting that drought tolerance may be favorable under dry conditions but harmful in humid conditions. Our work exemplifies that genomic signatures of adaptation are useful for germplasm characterization, potentially enhancing future marker-assisted selection and crop improvement.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Matthew W. Blair
- Department of Agricultural and Environmental Science, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
30
|
Choudhary N, Bawa V, Paliwal R, Singh B, Bhat MA, Mir JI, Gupta M, Sofi PA, Thudi M, Varshney RK, Mir RR. Gene/QTL discovery for Anthracnose in common bean (Phaseolus vulgaris L.) from North-western Himalayas. PLoS One 2018; 13:e0191700. [PMID: 29389971 PMCID: PMC5794095 DOI: 10.1371/journal.pone.0191700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/09/2018] [Indexed: 02/01/2023] Open
Abstract
Common bean (Phaseolus vulgaris L.) is one of the most important grain legume crops in the world. The beans grown in north-western Himalayas possess huge diversity for seed color, shape and size but are mostly susceptible to Anthracnose disease caused by seed born fungus Colletotrichum lindemuthianum. Dozens of QTLs/genes have been already identified for this disease in common bean world-wide. However, this is the first report of gene/QTL discovery for Anthracnose using bean germplasm from north-western Himalayas of state Jammu & Kashmir, India. A core set of 96 bean lines comprising 54 indigenous local landraces from 11 hot-spots and 42 exotic lines from 10 different countries were phenotyped at two locations (SKUAST-Jammu and Bhaderwah, Jammu) for Anthracnose resistance. The core set was also genotyped with genome-wide (91) random and trait linked SSR markers. The study of marker-trait associations (MTAs) led to the identification of 10 QTLs/genes for Anthracnose resistance. Among the 10 QTLs/genes identified, two MTAs are stable (BM45 & BM211), two MTAs (PVctt1 & BM211) are major explaining more than 20% phenotypic variation for Anthracnose and one MTA (BM211) is both stable and major. Six (06) genomic regions are reported for the first time, while as four (04) genomic regions validated the already known QTL/gene regions/clusters for Anthracnose. The major, stable and validated markers reported during the present study associated with Anthracnose resistance will prove useful in common bean molecular breeding programs aimed at enhancing Anthracnose resistance of local bean landraces grown in north-western Himalayas of state Jammu and Kashmir.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu (SKUAST-J), Chatha, Jammu, Jammu & Kashmir, India
| | - Vanya Bawa
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu (SKUAST-J), Chatha, Jammu, Jammu & Kashmir, India
| | - Rajneesh Paliwal
- The International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Bikram Singh
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu (SKUAST-J), Chatha, Jammu, Jammu & Kashmir, India
| | - Mohd. Ashraf Bhat
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Wadoora Campus, Sopore, Jammu & Kashmir, India
| | - Javid Iqbal Mir
- Plant Biotechnology Center, Central Institute of Temperate Horticulture (CITH), Rangreth, Srinagar, Jammu & Kashmir, India
| | - Moni Gupta
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu (SKUAST-J), Chatha, Jammu, Jammu & Kashmir, India
| | - Parvaze A. Sofi
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Wadoora Campus, Sopore, Jammu & Kashmir, India
| | - Mahendar Thudi
- Research Program Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana State, India
| | - Rajeev K. Varshney
- Research Program Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana State, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Wadoora Campus, Sopore, Jammu & Kashmir, India
| |
Collapse
|
31
|
Bai B, Wang L, Zhang YJ, Lee M, Rahmadsyah R, Alfiko Y, Ye BQ, Purwantomo S, Suwanto A, Chua NH, Yue GH. Developing genome-wide SNPs and constructing an ultrahigh-density linkage map in oil palm. Sci Rep 2018; 8:691. [PMID: 29330432 PMCID: PMC5766616 DOI: 10.1038/s41598-017-18613-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Oil palm (Elaeis guineensis Jacq.) is the leading oil-producing crops and the most important edible oil resource worldwide. DNA markers and genetic linkage maps are essential resources for marker-assisted selection to accelerate genetic improvement. We conducted RAD-seq on an Illumina NextSeq500 to discover genome-wide SNPs, and used the SNPs to construct a linkage map for an oil palm (Tenera) population derived from a cross between a Deli Dura and an AVROS Pisifera. The RAD-seq produced 1,076 million single-end reads across the breeding population containing 155 trees. Mining this dataset detected 510,251 loci. After filtering out loci with low accuracy and more than 20% missing data, 11,394 SNPs were retained. Using these SNPs, in combination with 188 anchor SNPs and 123 microsatellites, we constructed a linkage map containing 10,023 markers covering 16 chromosomes. The map length is 2,938.2 cM with an average marker space of 0.29 cM. The large number of SNPs will supply ample choices of DNA markers in analysing the genetic diversity, population structure and evolution of oil palm. This high-density linkage map will contribute to mapping quantitative trait loci (QTL) for important traits, thus accelerating oil palm genetic improvement.
Collapse
Affiliation(s)
- Bin Bai
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Le Wang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Ying Jun Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - May Lee
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | | | - Yuzer Alfiko
- Biotech Lab, Wilmar International, Cikarang, Bekasi, 17530, Indonesia
| | - Bao Qing Ye
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Sigit Purwantomo
- Biotech Lab, Wilmar International, Cikarang, Bekasi, 17530, Indonesia
| | - Antonius Suwanto
- Biotech Lab, Wilmar International, Cikarang, Bekasi, 17530, Indonesia.,Bogor Agricultural University, Bogor, Jawa Barat, 16680, Indonesia
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Laboratory of Plant Molecular Biology, The Rockefeller University, New York, 10065, USA
| | - Gen Hua Yue
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore. .,School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
32
|
Singh A, Sharma V, Dikshit HK, Aski M, Kumar H, Thirunavukkarasu N, Patil BS, Kumar S, Sarker A. Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris). PLoS One 2017; 12:e0188296. [PMID: 29161321 PMCID: PMC5697819 DOI: 10.1371/journal.pone.0188296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/04/2017] [Indexed: 11/18/2022] Open
Abstract
Lentil is a major cool-season grain legume grown in South Asia, West Asia, and North Africa. Populations in developing countries of these regions have micronutrient deficiencies; therefore, breeding programs should focus more on improving the micronutrient content of food. In the present study, a set of 96 diverse germplasm lines were evaluated at three different locations in India to examine the variation in iron (Fe) and zinc (Zn) concentration and identify simple sequence repeat (SSR) markers that associate with the genetic variation. The genetic variation among genotypes of the association mapping (AM) panel was characterized using a genetic distance-based and a general model-based clustering method. The model-based analysis identified six subpopulations, which satisfactorily explained the genetic structure of the AM panel. AM analysis identified three SSRs (PBALC 13, PBALC 206, and GLLC 563) associated with grain Fe concentration explaining 9% to 11% of phenotypic variation and four SSRs (PBALC 353, SSR 317-1, PLC 62, and PBALC 217) were associated with grain Zn concentration explaining 14%, to 21% of phenotypic variation. These identified SSRs exhibited consistent performance across locations. These candidate SSRs can be used in marker-assisted genetic improvement for developing Fe and Zn fortified lentil varieties. Favorable alleles and promising genotypes identified in this study can be utilized for lentil biofortification.
Collapse
Affiliation(s)
- Akanksha Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, Rajasthan, India
| | - Vinay Sharma
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, Rajasthan, India
| | - Harsh Kumar Dikshit
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Muraleedhar Aski
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Harish Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Punjab Agriculture University, RRS, Faridkot, Punjab, India
| | | | | | - Shiv Kumar
- ICARDA, B.P. 6299, Station Experiment, INRA-Quich, Rue Hafiane Cherkaoui Agdal, Rabat-Institutes, Rabat, Morocco
| | - Ashutosh Sarker
- South Asia and China Program (ICARDA), NASC Complex, New Delhi, India
| |
Collapse
|
33
|
Zargar SM, Mahajan R, Nazir M, Nagar P, Kim ST, Rai V, Masi A, Ahmad SM, Shah RA, Ganai NA, Agrawal GK, Rakwal R. Common bean proteomics: Present status and future strategies. J Proteomics 2017; 169:239-248. [DOI: 10.1016/j.jprot.2017.03.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 11/30/2022]
|
34
|
Mahajan R, Zargar SM, Salgotra RK, Singh R, Wani AA, Nazir M, Sofi PA. Linkage disequilibrium based association mapping of micronutrients in common bean ( Phaseolus vulgaris L.): a collection of Jammu & Kashmir, India. 3 Biotech 2017; 7:295. [PMID: 28868222 DOI: 10.1007/s13205-017-0928-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Micronutrient deficiencies are of major concern in human health and plant metabolism. Iron (Fe), zinc (Zn), iodine (I), selenium (Se) are regarded as micronutrients having major impact on human health. More than 50% of populations mainly from developing countries are suffering from one or the other micronutrient malnutrition. Ensuring adequate supply of these micronutrients through diet consisting of staple foods, such as common bean (Phaseolus vulgaris L.) is must. Here, we evaluated common bean genotypes that were collected from various regions of Jammu and Kashmir, India for Fe, Zn and protein contents and used SSRs to identify the markers associated with these traits. We found significant variation among genotypes for Fe, Zn and protein contents. Genotype R2 was having 7.22 mg 100 g-1 of Fe content, genotype K15 with 1.93 mg 100 g-1 of Zn content and genotype KS6 with 31.6% of protein content. Diversity study was done using both cluster and structure based approach. Further, association mapping analysis using General Linear Method (GLM) approach was done to identify SSRs associated with accumulation of Fe, Zn and protein. 13 SSRs were identified that significantly (p < 0.05) showed association with Fe, Zn and protein contents in common bean. The markers associated with Fe were located on chromosome no. 2, 5, 6, 7, 9 and 10, markers associated with Zn were located on chromosome no. 1, 3, 5, 7 and 10 whereas only one marker located on chromosome no. 4 was found associated with protein content. These findings will provide potential opportunity to improve Fe and Zn concentrations in common bean, through molecular breeding.
Collapse
Affiliation(s)
- Reetika Mahajan
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir India
| | - Sajad Majeed Zargar
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir India
| | - R K Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir India
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir India
| | - Aijaz Ahmad Wani
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir India
| | - Muslima Nazir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir India
| | - Parvaze A Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Science and Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir India
| |
Collapse
|
35
|
Muñoz-Azcarate O, González AM, Santalla M. Natural rhizobial diversity helps to reveal genes and QTLs associated with biological nitrogen fixation in common bean. AIMS Microbiol 2017; 3:435-466. [PMID: 31294170 PMCID: PMC6604995 DOI: 10.3934/microbiol.2017.3.435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/25/2017] [Indexed: 11/18/2022] Open
Abstract
Common bean is one of the most important crops for human feed, and the most important legume for direct consumption by millions of people, especially in developing countries. It is a promiscuous host legume in terms of nodulation, able to associate with a broad and diverse range of rhizobia, although the competitiveness for nodulation and the nitrogen fixation capacity of most of these strains is generally low. As a result, common bean is very inefficient for symbiotic nitrogen fixation, and nitrogen has to be supplied with chemical fertilizers. In the last years, symbiotic nitrogen fixation has received increasing attention as a sustainable alternative to nitrogen fertilizers, and also as a more economic and available one in poor countries. Therefore, optimization of nitrogen fixation of bean-rhizobia symbioses and selection of efficient rhizobial strains should be a priority, which begins with the study of the natural diversity of the symbioses and the rhizobial populations associated. Natural rhizobia biodiversity that nodulates common bean may be a source of adaptive alleles acting through phenotypic plasticity. Crosses between accessions differing for nitrogen fixation may combine alleles that never meet in nature. Another way to discover adaptive genes is to use association genetics to identify loci that common bean plants use for enhanced biological nitrogen fixation and, in consequence, for marker assisted selection for genetic improvement of symbiotic nitrogen fixation. In this review, rhizobial biodiversity resources will be discussed, together with what is known about the loci that underlie such genetic variation, and the potential candidate genes that may influence the symbiosis' fitness benefits, thus achieving an optimal nitrogen fixation capacity in order to help reduce reliance on nitrogen fertilizers in common bean.
Collapse
Affiliation(s)
- Olaya Muñoz-Azcarate
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC. P.O. Box 28. 36080 Pontevedra, Spain
| | - Ana M González
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC. P.O. Box 28. 36080 Pontevedra, Spain
| | - Marta Santalla
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC. P.O. Box 28. 36080 Pontevedra, Spain
| |
Collapse
|
36
|
Ferro AM, Ramos P, Guerreiro O, Jerónimo E, Pires I, Capel C, Capel J, Lozano R, Duarte MF, Oliveira MM, Gonçalves S. Impact of novel SNPs identified in Cynara cardunculus genes on functionality of proteins regulating phenylpropanoid pathway and their association with biological activities. BMC Genomics 2017; 18:183. [PMID: 28212611 PMCID: PMC5314637 DOI: 10.1186/s12864-017-3534-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 02/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cynara cardunculus L. offers a natural source of phenolic compounds with the predominant molecule being chlorogenic acid. Chlorogenic acid is gaining interest due to its involvement in various biological properties such as, antibacterial, antifungal, antioxidant, hepatoprotective, and anticarcinogenic activities. RESULTS In this work we screened a Cynara cardunculus collection for new allelic variants in key genes involved in the chlorogenic acid biosynthesis pathway. The target genes encode p-coumaroyl ester 3'-hydroxylase (C3'H) and hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase (HQT), both participating in the synthesis of chlorogenic acid. Using high-resolution melting, the C3'H gene proved to be highly conserved with only 4 haplotypes while, for HQT, 17 haplotypes were identified de novo. The putative influence of the identified polymorphisms in C3'H and HQT proteins was further evaluated using bioinformatics tools. We could identify some polymorphisms that may lead to protein conformational changes. Chlorogenic acid content, antioxidant and antithrombin activities were also evaluated in Cc leaf extracts and an association analysis was performed to assess a putative correlation between these traits and the identified polymorphisms. CONCLUSION In this work we identified allelic variants with putative impact on C3'H and HQT proteins which are significantly associated with chlorogenic acid content and antioxidant activity. Further study of these alleles should be explored to assess putative relevance as genetic markers correlating with Cynara cardunculus biological properties with further confirmation by functional analysis.
Collapse
Affiliation(s)
- Ana Margarida Ferro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2781-901 Oeiras, Portugal
| | - Patrícia Ramos
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
- Centre for Research in Ceramics and Composite Materials (CICECO) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olinda Guerreiro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Eliana Jerónimo
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
| | - Inês Pires
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2781-901 Oeiras, Portugal
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almeria, Spain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almeria, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almeria, Spain
| | - Maria F. Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2781-901 Oeiras, Portugal
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB101SA Cambridge, UK
| |
Collapse
|
37
|
Pavan S, Marcotrigiano AR, Ciani E, Mazzeo R, Zonno V, Ruggieri V, Lotti C, Ricciardi L. Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genomics 2017; 18:59. [PMID: 28068911 PMCID: PMC5223370 DOI: 10.1186/s12864-016-3429-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/16/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Melon (Cucumis melo L.) is one of the most important horticultural species, which includes several taxonomic groups. With the advent of next-generation sequencing, single nucleotide polymorphism (SNP) markers are widely used in the study of genetic diversity and genomics. RESULTS We report the first successful application of genotyping-by-sequencing (GBS) technology in melon. We detected 25,422 SNPs by the analysis of 72 accessions collected in Apulia, a secondary centre of diversity in Southern Italy. Analyses of genetic structure, principal components, and hierarchical clustering support the identification of three distinct subpopulations. One of them includes accessions known with the folk name of 'carosello', referable to the chate taxonomic group. This is one of the oldest domesticated forms of C. melo, once widespread in Europe and now exposed to the risk of genetic erosion. The second subpopulation contains landraces of 'barattiere', a regional vegetable production that was never characterized at the DNA level and we show was erroneously considered another form of chate melon. The third subpopulation includes genotypes of winter melon (C. melo var. inodorus). Genetic analysis within each subpopulation revealed patterns of diversity associated with fruit phenotype and geographical origin. We used SNP data to describe, for each subpopulation, the average linkage disequilibrium (LD) decay, and to highlight genomic regions possibly resulting from directional selection and associated with phenotypic variation. CONCLUSIONS We used GBS to characterize patterns of genetic diversity and genomic features within C. melo. We provide useful information to preserve endangered gene pools and to guide the use of germplasm in breeding. Finally, our findings lay a foundation for molecular breeding approaches and the identification of genes underlying phenotypic traits.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy.
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | - Rosa Mazzeo
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | - Vito Zonno
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | | | - Concetta Lotti
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, via Napoli 25, I-71100, Foggia, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|
38
|
Quantitative trait locus analysis of body shape divergence in nine-spined sticklebacks based on high-density SNP-panel. Sci Rep 2016; 6:26632. [PMID: 27226078 PMCID: PMC4880927 DOI: 10.1038/srep26632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/06/2016] [Indexed: 12/26/2022] Open
Abstract
Heritable phenotypic differences between populations, caused by the selective effects of distinct environmental conditions, are of commonplace occurrence in nature. However, the actual genomic targets of this kind of selection are still poorly understood. We conducted a quantitative trait locus (QTL) mapping study to identify genomic regions responsible for morphometric differentiation between genetically and phenotypically divergent marine and freshwater nine-spined stickleback (Pungitius pungitius) populations. Using a dense panel of SNP-markers obtained by restriction site associated DNA sequencing of an F2 recombinant cross, we found 22 QTL that explained 3.5-12.9% of phenotypic variance in the traits under investigation. We detected one fairly large-effect (PVE = 9.6%) QTL for caudal peduncle length-a trait with a well-established adaptive function showing clear differentiation among marine and freshwater populations. We also identified two large-effect QTL for lateral plate numbers, which are different from the lateral plate QTL reported in earlier studies of this and related species. Hence, apart from identifying several large-effect QTL in shape traits showing adaptive differentiation in response to different environmental conditions, the results suggest intra- and interspecific heterogeneity in the genomic basis of lateral plate number variation.
Collapse
|
39
|
Association Mapping in Turkish Olive Cultivars Revealed Significant Markers Related to Some Important Agronomic Traits. Biochem Genet 2016; 54:506-533. [PMID: 27209034 DOI: 10.1007/s10528-016-9738-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
Olive (Olea europaea L.) is one of the most important fruit trees especially in the Mediterranean countries due to high consumption of table olive and olive oil. In olive breeding, the phenotypic traits associated to fruit are the key factors that determine productivity. Association mapping has been used in some tree species and a lot of crop plant species, and here, we perform an initial effort to detect marker-trait associations in olive tree. In the current study, a total of 96 olive genotypes, including both oil and table olive genotypes from Turkish Olive GenBank Resources, were used to examine marker-trait associations. For olive genotyping, SNP, AFLP, and SSR marker data were selected from previously published study and association analysis was performed between these markers and 5 yield-related traits. Three different approaches were used to check for false-positive results in association tests, and association results obtained from these models were compared. Using the model utilizing both population structure and relative kinship, eleven associations were significant with FDR ≤ 0.05. The largest number of significant associations was detected for fruit weight and stone weight. Our results suggested that association mapping could be an effective approach for identifying marker-trait associations in olive genotypes, without the development of mapping populations. This study shows for the first time the use of association mapping for identifying molecular markers linked to important traits in olive tree.
Collapse
|
40
|
Genome-Wide Association Studies of Anthracnose and Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.). PLoS One 2016; 11:e0150506. [PMID: 26930078 PMCID: PMC4773255 DOI: 10.1371/journal.pone.0150506] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/14/2016] [Indexed: 12/27/2022] Open
Abstract
The common bean (Phaseolus vulgaris L.) is the world’s most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more effective screening of elite germplasm to find resistance alleles for marker-assisted selection in breeding programs.
Collapse
|
41
|
Blair MW, Cortés AJ, This D. Identification of an ERECTA gene and its drought adaptation associations with wild and cultivated common bean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:250-259. [PMID: 26566842 DOI: 10.1016/j.plantsci.2015.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 05/25/2023]
Abstract
In this research, we cloned and accessed nucleotide diversity in the common bean ERECTA gene which has been implicated in drought tolerance and stomatal patterning. The homologous gene segment was isolated with degenerate primer and was found to be located on Chromosome 1. The gene had at least one paralog on Chromosome 9 and duplicate copies in soybean for each homolog. ERECTA-like genes were also discovered but the function of these was of less interest due to low similarity with the ERECTA gene from Arabidopsis. The diversity of the 5' end of the large Chr. 1 PvERECTA gene was evaluated in a collection of 145 wild and cultivated common beans that were also characterized by geographic source and drought tolerance, respectively. Our wild population sampled a range of wet to dry habitats, while our cultivated samples were representative of landrace diversity and the patterns of nucleotide variation differed between groups. The 5' region exhibited lower levels of diversity in the cultivated collection, which was indicative of population bottlenecks associated with the domestication process, compared to the wild collection where diversity was associated with ecological differences. We discuss associations of nucleotide diversity at PvERECTA with drought tolerance prediction for the genotypes.
Collapse
Affiliation(s)
- Matthew W Blair
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, USA
| | - Andrés J Cortés
- Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Dominique This
- Montpellier SupAgro, UMR AGAP, CIRAD, TA96/03. Ave Agropolis, 34398 Montpellier cedex 5, France
| |
Collapse
|
42
|
Villordo-Pineda E, González-Chavira MM, Giraldo-Carbajo P, Acosta-Gallegos JA, Caballero-Pérez J. Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris). FRONTIERS IN PLANT SCIENCE 2015; 6:546. [PMID: 26257755 PMCID: PMC4508514 DOI: 10.3389/fpls.2015.00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/06/2015] [Indexed: 05/05/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition and a very important agricultural product. Production of common bean is constrained by environmental stresses such as drought. Although conventional plant selection has been used to increase production yield and stress tolerance, drought tolerance selection based on phenotype is complicated by associated physiological, anatomical, cellular, biochemical, and molecular changes. These changes are modulated by differential gene expression. A common method to identify genes associated with phenotypes of interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them to specific functions. In this work, we selected two drought-tolerant parental lines from Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate a population of 282 families (F3:5) and characterized by 169 SNPs. We associated the segregation of the molecular markers in our population with phenotypes including flowering time, physiological maturity, reproductive period, plant, seed and total biomass, reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni correction) with our quantified phenotypes. Phenotypes most associated were days to flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven out of the 83 SNPs were annotated to a gene with a potential function related to drought tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is related to proline biosynthesis, another well-known osmotic protector.
Collapse
Affiliation(s)
- Emiliano Villordo-Pineda
- Campo Experimental Bajío-Instituto Nacional de Investigaciones Forestales, Agrícolas y PecuariasCelaya, México
- Unidad de Genética, Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de MadridMadrid, Spain
| | - Mario M. González-Chavira
- Campo Experimental Bajío-Instituto Nacional de Investigaciones Forestales, Agrícolas y PecuariasCelaya, México
| | - Patricia Giraldo-Carbajo
- Unidad de Genética, Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de MadridMadrid, Spain
| | - Jorge A. Acosta-Gallegos
- Campo Experimental Bajío-Instituto Nacional de Investigaciones Forestales, Agrícolas y PecuariasCelaya, México
| | | |
Collapse
|
43
|
|
44
|
Ruggieri V, Francese G, Sacco A, D’Alessandro A, Rigano MM, Parisi M, Milone M, Cardi T, Mennella G, Barone A. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC PLANT BIOLOGY 2014; 14:337. [PMID: 25465385 PMCID: PMC4266912 DOI: 10.1186/s12870-014-0337-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/17/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Genome Wide Association Studies (GWAS) have been recently used to dissect complex quantitative traits and identify candidate genes affecting phenotype variation of polygenic traits. In order to map loci controlling variation in tomato marketable and nutritional fruit traits, we used a collection of 96 cultivated genotypes, including Italian, Latin American, and other worldwide-spread landraces and varieties. Phenotyping was carried out by measuring ten quality traits and metabolites in red ripe fruits. In parallel, genotyping was carried out by using the Illumina Infinium SolCAP array, which allows data to be collected from 7,720 single nucleotide polymorphism (SNP) markers. RESULTS The Mixed Linear Model used to detect associations between markers and traits allowed population structure and relatedness to be evidenced within our collection, which have been taken into consideration for association analysis. GWAS identified 20 SNPs that were significantly associated with seven out of ten traits considered. In particular, our analysis revealed two markers associated with phenolic compounds, three with ascorbic acid, β-carotene and trans-lycopene, six with titratable acidity, and only one with pH and fresh weight. Co-localization of a group of associated loci with candidate genes/QTLs previously reported in other studies validated the approach. Moreover, 19 putative genes in linkage disequilibrium with markers were found. These genes might be involved in the biosynthetic pathways of the traits analyzed or might be implied in their transcriptional regulation. Finally, favourable allelic combinations between associated loci were identified that could be pyramided to obtain new improved genotypes. CONCLUSIONS Our results led to the identification of promising candidate loci controlling fruit quality that, in the future, might be transferred into tomato genotypes by Marker Assisted Selection or genetic engineering, and highlighted that intraspecific variability might be still exploited for enhancing tomato fruit quality.
Collapse
Affiliation(s)
- Valentino Ruggieri
- />Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Gianluca Francese
- />Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Centro di Ricerca per l’Orticoltura (CRA-ORT), Via Cavalleggeri 25, 84098 Pontecagnano, SA Italy
| | - Adriana Sacco
- />Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Antonietta D’Alessandro
- />Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Centro di Ricerca per l’Orticoltura (CRA-ORT), Via Cavalleggeri 25, 84098 Pontecagnano, SA Italy
| | - Maria Manuela Rigano
- />Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Mario Parisi
- />Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Centro di Ricerca per l’Orticoltura (CRA-ORT), Via Cavalleggeri 25, 84098 Pontecagnano, SA Italy
| | - Marco Milone
- />Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Centro di Ricerca per l’Orticoltura (CRA-ORT), Via Cavalleggeri 25, 84098 Pontecagnano, SA Italy
| | - Teodoro Cardi
- />Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Centro di Ricerca per l’Orticoltura (CRA-ORT), Via Cavalleggeri 25, 84098 Pontecagnano, SA Italy
| | - Giuseppe Mennella
- />Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Centro di Ricerca per l’Orticoltura (CRA-ORT), Via Cavalleggeri 25, 84098 Pontecagnano, SA Italy
| | - Amalia Barone
- />Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
45
|
Nemli S, Asciogul TK, Kaya HB, Kahraman A, Eşiyok D, Tanyolac B. Association mapping for five agronomic traits in the common bean (Phaseolus vulgaris L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:3141-51. [PMID: 24659306 DOI: 10.1002/jsfa.6664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 05/28/2023]
Abstract
BACKGROUND The common bean is the most important grain legume and a major source of protein in many developing countries. We analysed the following traits: pod fibre (PF), seeds per pod (SPP), plant type (PT), growth habit (GH), and days to flowering (DF) for a set of diverse common bean accessions and determined whether such traits were associated with amplified fragment length polymorphism (AFLP), simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. RESULTS In this study, 66 common bean genotypes were used and genotyped with 233 AFLP, 105 SNP and 80 SSR markers. The association analysis between markers and five traits was performed using a General Linear Model (GLM) in Trait Analysis by aSSociation, Evolution and Linkage (TASSEL). The population structure was determined using the STRUCTURE software, and seven groups (K = 7) were identified among genotypes. The associations for such traits were identified and quantified; 62 markers were associated with the five traits. CONCLUSION This study demonstrated that association mapping using a reasonable number of markers, distributed across the genome and with the appropriate number of individuals harboured to detect DNA markers linked to the traits of PF, SPP, PT, GH and DF in common bean.
Collapse
Affiliation(s)
- Seda Nemli
- Ege University -, Department of Bioengineering, Bornova-Izmir, 35100, Turkey
| | | | | | | | | | | |
Collapse
|
46
|
Müller BSDF, Sakamoto T, de Menezes IPP, Prado GS, Martins WS, Brondani C, de Barros EG, Vianello RP. Analysis of BAC-end sequences in common bean (Phaseolus vulgaris L.) towards the development and characterization of long motifs SSRs. PLANT MOLECULAR BIOLOGY 2014; 86:455-470. [PMID: 25164100 DOI: 10.1007/s11103-014-0240-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The increasing volume of genomic data on the Phaseolus vulgaris species have contributed to its importance as a model genetic species and positively affected the investigation of other legumes of scientific and economic value. To expand and gain a more in-depth knowledge of the common bean genome, the ends of a number of bacterial artificial chromosome (BAC) were sequenced, annotated and the presence of repetitive sequences was determined. In total, 52,270 BESs (BAC-end sequences), equivalent to 32 Mbp (~6 %) of the genome, were processed. In total, 3,789 BES-SSRs were identified, with a distribution of one SSR (simple sequence repeat) per 8.36 kbp and 2,000 were suitable for the development of SSRs, of which 194 were evaluated in low-resolution screening. From 40 BES-SSRs based on long motifs SSRs (≥ trinucleotides) analyzed in high-resolution genotyping, 34 showed an equally good amplification for the Andean and for the Mesoamerican genepools, exhibiting an average gene diversity (H E) of 0.490 and 5.59 alleles/locus, of which six classified as Class I showed a H E ≥ 0.7. The PCoA and structure analysis allowed to discriminate the gene pools (K = 2, FST = 0.733). From the 52,270 BESs, 2 % corresponded to transcription factors and 3 % to transposable elements. Putative functions for 24,321 BESs were identified and for 19,363 were assigned functional categories (gene ontology). This study identified highly polymorphic BES-SSRs containing tri- to hexanucleotides motifs and bringing together relevant genetic characteristics useful for breeding programs. Additionally, the BESs were incorporated into the international genome-sequencing project for the common bean.
Collapse
Affiliation(s)
- Bárbara Salomão de Faria Müller
- Laboratório de Genética Molecular de Plantas, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK. Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1263-91. [PMID: 24710822 PMCID: PMC4035543 DOI: 10.1007/s00122-014-2301-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/17/2014] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Given recent advances in pulse molecular biology, genomics-driven breeding has emerged as a promising approach to address the issues of limited genetic gain and low productivity in various pulse crops. The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324 India
| | - Uday C. Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi, 110012 India
| | - Indra P. Singh
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Dibendu Datta
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | | | - N. Nadarajan
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324 India
- The University of Western Australia (UWA), Crawley, 6009 Australia
| |
Collapse
|
48
|
Mukeshimana G, Butare L, Cregan PB, Blair MW, Kelly JD. Quantitative Trait Loci Associated with Drought Tolerance in Common Bean. CROP SCIENCE 2014; 54:923-938. [PMID: 0 DOI: 10.2135/cropsci2013.06.0427] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Gerardine Mukeshimana
- Dep. of Plant, Soil and Microbial SciencesMichigan State Univ.1066 Bogue St.East LansingMI48824
| | | | - Perry B. Cregan
- USDA, ARS, Soybean Genomics and Improvement Laboratory, BARCBeltsvilleMD
| | - Matthew W. Blair
- Dep. of Agriculture and Environmental SciencesTennessee State Univ.3500 John A. Merritt Blvd.NashvilleTN37209
| | - James D. Kelly
- Dep. of Plant, Soil and Microbial SciencesMichigan State Univ.1066 Bogue St.East LansingMI48824
| |
Collapse
|
49
|
Goretti D, Bitocchi E, Bellucci E, Rodriguez M, Rau D, Gioia T, Attene G, McClean P, Nanni L, Papa R. Development of single nucleotide polymorphisms in Phaseolus vulgaris and related Phaseolus spp. MOLECULAR BREEDING 2014; 33:531-544. [PMID: 0 DOI: 10.1007/s11032-013-9970-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
50
|
Cortés AJ, Monserrate FA, Ramírez-Villegas J, Madriñán S, Blair MW. Drought tolerance in wild plant populations: the case of common beans (Phaseolus vulgaris L.). PLoS One 2013; 8:e62898. [PMID: 23658783 PMCID: PMC3643911 DOI: 10.1371/journal.pone.0062898] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 03/27/2013] [Indexed: 01/26/2023] Open
Abstract
Reliable estimations of drought tolerance in wild plant populations have proved to be challenging and more accessible alternatives are desirable. With that in mind, an ecological diversity study was conducted based on the geographical origin of 104 wild common bean accessions to estimate drought tolerance in their natural habitats. Our wild population sample covered a range of mesic to very dry habitats from Mexico to Argentina. Two potential evapotranspiration models that considered the effects of temperature and radiation were coupled with the precipitation regimes of the last fifty years for each collection site based on geographical information system analysis. We found that wild accessions were distributed among different precipitation regimes following a latitudinal gradient and that habitat ecological diversity of the collection sites was associated with natural sub-populations. We also detected a broader geographic distribution of wild beans across ecologies compared to cultivated common beans in a reference collection of 297 cultivars. Habitat drought stress index based on the Thornthwaite potential evapotranspiration model was equivalent to the Hamon estimator. Both ecological drought stress indexes would be useful together with population structure for the genealogical analysis of gene families in common bean, for genome-wide genetic-environmental associations, and for postulating the evolutionary history and diversification processes that have occurred for the species. Finally, we propose that wild common bean should be taken into account to exploit variation for drought tolerance in cultivated common bean which is generally considered susceptible as a crop to drought stress.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
- Laboratorio de Botánica y Sistemática, Universidad de los Andes, Bogotá, Colombia
- * E-mail: (AJC); (MWB)
| | | | - Julián Ramírez-Villegas
- School of Earth and Environment, University of Leeds, Leeds, United Kingdom
- CGIAR Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia
| | - Santiago Madriñán
- Laboratorio de Botánica y Sistemática, Universidad de los Andes, Bogotá, Colombia
| | - Matthew W. Blair
- Department of Plant Breeding, Cornell University, Ithaca, NY, United States
- * E-mail: (AJC); (MWB)
| |
Collapse
|