1
|
Mahai R, Sheng S, Wang X, Yuan J, Mu Z. Comparative analysis of complete chloroplast genomes of 14 Asteraceae species. Mol Biol Rep 2024; 51:1094. [PMID: 39460814 DOI: 10.1007/s11033-024-10030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND The Asteraceae family, the largest and one of the most diverse families of angiosperms, presents significant challenges in taxonomic classification and systematic research due to its vast species diversity and morphological complexity. A comprehensive understanding of the chloroplast genomes within this family is essential for refining taxonomic classifications and advancing phylogenetic studies. METHODS AND RESULTS In this study, we sequenced the complete chloroplast genomes of 14 Asteraceae species and conducted a thorough bioinformatic analysis of their characteristics. The chloroplast genomes, ranging from 150,907 bp to 152,858 bp, exhibit a typical quadripartite structure: a large single-copy (LSC) region (83,044 bp to 84,625 bp), a small single-copy (SSC) region (18,223 bp to 18,673 bp), and a pair of inverted repeats (IRs) (24,806 bp to 25,201 bp). These genomes encode 87 to 89 protein-coding genes (PCGs), 36 to 37 tRNA genes, and 8 rRNA genes, with high conservation in size, structure, gene content, and order. Comparative analysis with other Asteraceae species' chloroplast genomes revealed notable similarities and structural variations, particularly in the IR regions. Nucleotide polymorphism analysis identified four genes-trnY-GUA, trnE-UUC, ycf1, and rrn23-with higher Pi values, suggesting potential hotspots for evolutionary studies. Phylogenetic analysis using maximum likelihood (ML) and Bayesian inference (BI) approaches provided new insights, proposing the reclassification of Himalaiella auriculata and Jacobaea raphanifolia as independent genera, distinct from Saussurea and Senecio. CONCLUSIONS This study presents a comprehensive analysis of the chloroplast genome structures and phylogenetic relationships of 14 Asteraceae species, offering critical data for future molecular identification, evolutionary biology, and population genetics research. The findings hold significant implications for the ongoing refinement of Asteraceae taxonomic classifications and enhance our understanding of the evolutionary dynamics within this complex family.
Collapse
Affiliation(s)
- Riwa Mahai
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shasha Sheng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xiaoyun Wang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Jun Yuan
- College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Zejing Mu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
2
|
Zhou YR, Li Y, Yang LH, Kozlowski G, Yi LT, Liu MH, Zheng SS, Song YG. The adaptive evolution of Quercus section Ilex using the chloroplast genomes of two threatened species. Sci Rep 2024; 14:20577. [PMID: 39232239 PMCID: PMC11375091 DOI: 10.1038/s41598-024-71838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Chloroplast (cp) genome sequences have been extensively used for phylogenetic and evolutionary analyses, as many have been sequenced in recent years. Identification of Quercus is challenging because many species overlap phenotypically owing to interspecific hybridization, introgression, and incomplete lineage sorting. Therefore, we wanted to gain a better understanding of this genus at the level of the maternally inherited chloroplast genome. Here, we sequenced, assembled, and annotated the cp genomes of the threatened Quercus marlipoensis (160,995 bp) and Q. kingiana (161,167 bp), and mined these genomes for repeat sequences and codon usage bias. Comparative genomic analyses, phylogenomics, and selection pressure analysis were also performed in these two threatened species along with other species of Quercus. We found that the guanine and cytosine content of the two cp genomes were similar. All 131 annotated genes, including 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes, had the same order in the two species. A strong A/T bias was detected in the base composition of simple sequence repeats. Among the 59 synonymous codons, the codon usage pattern of the cp genomes in these two species was more inclined toward the A/U ending. Comparative genomic analyses indicated that the cp genomes of Quercus section Ilex are highly conserved. We detected eight highly variable regions that could be used as molecular markers for species identification. The cp genome structure was consistent and different within and among the sections of Quercus. The phylogenetic analysis showed that section Ilex was not monophyletic and was divided into two groups, which were respectively nested with section Cerris and section Cyclobalanopsis. The two threatened species sequenced in this study were grouped into the section Cyclobalanopsis. In conclusion, the analyses of cp genomes of Q. marlipoensis and Q. kingiana promote further study of the taxonomy, phylogeny and evolution of these two threatened species and Quercus.
Collapse
Affiliation(s)
- Yu-Ren Zhou
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Liang-Hai Yang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, 1700, Fribourg, Switzerland
- Natural History Museum Fribourg, 1700, Fribourg, Switzerland
| | - Li-Ta Yi
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Mei-Hua Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China.
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Yi-Gang Song
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| |
Collapse
|
3
|
Hu L, Wang J, Wang X, Zhang D, Sun Y, Lu T, Shi W. Development of SSR Markers and Evaluation of Genetic Diversity of Endangered Plant Saussurea involucrata. Biomolecules 2024; 14:1010. [PMID: 39199397 PMCID: PMC11353235 DOI: 10.3390/biom14081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
The conservation biology field underscores the importance of understanding genetic diversity and gene flow within plant populations and the factors that influence them. This study employs Simple Sequence Repeat (SSR) molecular markers to investigate the genetic diversity of the endangered plant species Saussurea involucrata, offering a theoretical foundation for its conservation efforts. Utilizing sequencing results to screen SSR loci, we designed and scrutinized 18 polymorphic microsatellite primers across 112 samples from 11 populations in the Bayinbuluke region. Our findings reveal high genetic diversity (I = 0.837, He = 0.470) and substantial gene flow (Nm = 1.390) among S. involucrata populations (China, Xinjiang), potentially attributed to efficient pollen and seed dispersal mechanisms. Principal Coordinate Analysis (PCoA) indicates a lack of distinct genetic structuring within the Bayinbuluke populations. The cluster analysis using STRUCTURE reflected the genetic structure of S. involucrata to a certain extent compared with PCoA. The results showed that all samples were divided into four groups. To safeguard this species, we advocate for the in situ conservation of all S. involucrata populations in the area. The SSR markers developed in this study provide a valuable resource for future genetic research on S. involucrata.
Collapse
Affiliation(s)
- Lin Hu
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830011, China;
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (J.W.); (X.W.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Jiancheng Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (J.W.); (X.W.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Xiyong Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (J.W.); (X.W.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (J.W.); (X.W.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Yanxia Sun
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Ting Lu
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830011, China;
| | - Wei Shi
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (J.W.); (X.W.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| |
Collapse
|
4
|
Zhan Q, Huang Y, Xue X, Chen Y. Comparative chloroplast genomics and phylogenetic analysis of Oreomecon nudicaulis (Papaveraceae). BMC Genom Data 2024; 25:49. [PMID: 38816818 PMCID: PMC11141030 DOI: 10.1186/s12863-024-01236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
Oreomecon nudicaulis, commonly known as mountain poppy, is a significant perennial herb. In 2022, the species O. nudicaulis, which was previously classified under the genus Papaver, was reclassified within the genus Oreomecon. Nevertheless, the phylogenetic status and chloroplast genome within the genus Oreomecon have not yet been reported. This study elucidates the chloroplast genome sequence and structural features of O. nudicaulis and explores its evolutionary relationships within Papaveraceae. Using Illumina sequencing technology, the chloroplast genome of O. nudicaulis was sequenced, assembled, and annotated. The results indicate that the chloroplast genome of O. nudicaulis exhibits a typical circular quadripartite structure. The chloroplast genome is 153,903 bp in length, with a GC content of 38.87%, containing 84 protein-coding genes, 8 rRNA genes, 38 tRNA genes, and 2 pseudogenes. The genome encodes 25,815 codons, with leucine (Leu) being the most abundant codon, and the most frequently used codon is AUU. Additionally, 129 microsatellite markers were identified, with mononucleotide repeats being the most abundant (53.49%). Our phylogenetic analysis revealed that O. nudicaulis has a relatively close relationship with the genus Meconopsis within the Papaveraceae family. The phylogenetic analysis supported the taxonomic status of O. nudicaulis, as it did not form a clade with other Papaver species, consistent with the revised taxonomy of Papaveraceae. This is the first report of a phylogenomic study of the complete chloroplast genome in the genus Oreomecon, which is a significant genus worldwide. This analysis of the O. nudicaulis chloroplast genome provides a theoretical basis for research on genetic diversity, molecular marker development, and species identification, enriching genetic information and supporting the evolutionary relationships among Papaveraceae.
Collapse
Affiliation(s)
- Qingbin Zhan
- College of Criminal Science and Technology, Nanjing Police University, Nanjing, China
- Key Laboratory of State Forestry and Grassland Administration on Wildlife Evidence Technology, Nanjing, China
| | - Yalin Huang
- College of Criminal Science and Technology, Nanjing Police University, Nanjing, China
- Key Laboratory of State Forestry and Grassland Administration on Wildlife Evidence Technology, Nanjing, China
| | - Xiaoming Xue
- College of Criminal Science and Technology, Nanjing Police University, Nanjing, China
- Key Laboratory of State Forestry and Grassland Administration on Wildlife Evidence Technology, Nanjing, China
| | - Yunxia Chen
- College of Criminal Science and Technology, Nanjing Police University, Nanjing, China.
- Key Laboratory of State Forestry and Grassland Administration on Wildlife Evidence Technology, Nanjing, China.
| |
Collapse
|
5
|
Wu L, Fan P, Cai J, Zang C, Lin Y, Xu Z, Wu Z, Gao W, Song J, Yao H. Comparative genomics and phylogenomics of the genus Glycyrrhiza (Fabaceae) based on chloroplast genomes. Front Pharmacol 2024; 15:1371390. [PMID: 38515836 PMCID: PMC10955637 DOI: 10.3389/fphar.2024.1371390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Glycyrrhiza (Fabaceae) species are rich in metabolites and widely used in medicine. Research on the chloroplast genome of Glycyrrhiza is important for understanding its phylogenetics, biogeography, genetic diversity, species identification, and medicinal properties. In this study, comparative genomics and phylogenomics of Glycyrrhiza were analyzed based on the chloroplast genome. The chloroplast genomes of six Glycyrrhiza species were obtained using various assembly and annotation tools. The final assembled chloroplast genome sizes for the six Glycyrrhiza species ranged from 126,380 bp to 129,115 bp, with a total of 109-110 genes annotated. Comparative genomics results showed that the chloroplast genomes of Glycyrrhiza showed typically lacking inverted repeat regions, and the genome length, structure, GC content, codon usage, and gene distribution were highly similar. Bioinformatics analysis revealed the presence of 69-96 simple sequence repeats and 61-138 long repeats in the chloroplast genomes. Combining the results of mVISTA and nucleotide diversity, four highly variable regions were screened for species identification and relationship studies. Selection pressure analysis indicated overall purifying selection in the chloroplast genomes of Glycyrrhiza, with a few positively selected genes potentially linked to environmental adaptation. Phylogenetic analyses involving all tribes of Fabaceae with published chloroplast genomes elucidated the evolutionary relationships, and divergence time estimation estimated the chronological order of species differentiations within the Fabaceae family. The results of phylogenetic analysis indicated that species from the six subfamilies formed distinct clusters, consistent with the classification scheme of the six subfamilies. In addition, the inverted repeat-lacking clade in the subfamily Papilionoideae clustered together, and it was the last to differentiate. Co-linear analysis confirmed the conserved nature of Glycyrrhiza chloroplast genomes, and instances of gene rearrangements and inversions were observed in the subfamily Papilionoideae.
Collapse
Affiliation(s)
- Liwei Wu
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Panhui Fan
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaying Cai
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxi Zang
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Lin
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhengjun Wu
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, China
| | - Wei Gao
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, China
| | - Jingyuan Song
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, China
| | - Hui Yao
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, China
| |
Collapse
|
6
|
Xie J, Miao Y, Zhang X, Zhang G, Guo B, Luo G, Huang L. Comparative complete chloroplast genome of Geum japonicum: evolution and phylogenetic analysis. JOURNAL OF PLANT RESEARCH 2024; 137:37-48. [PMID: 37917204 DOI: 10.1007/s10265-023-01502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Geum japonicum (Rosaceae) has been widely used in China as a traditional herbal medicine due to its high economic and medicinal value. However, the appearance of Geum species is relatively similar, making identification difficult by conventional phenotypic methods, and the studies of genomics and species evolution are lacking. To better distinguish the medicinal varieties and fill this gap, we carried out relevant research on the chloroplast genome of G. japonicum. Results show a typical quadripartite structure of the chloroplast genome of G. japonicum with a length of 156,042 bp. There are totally 131 unique genes in the genome, including 87 protein-coding genes, 36 tRNA genes, and 8 rRNA genes, and there were also 87 SSRs identified and mostly mononucleotide Adenine-Thymine. We next compared the plastid genomes among four Geum species and obtained 14 hypervariable regions, including ndhF, psbE, trnG-UCC, ccsA, trnQ-UUG, rps16, psbK, trnL-UAA, ycf1, ndhD, atpA, petN, rps14, and trnK-UUU. Phylogenetic analysis revealed that G. japonicum is most closely related to Geum aleppicum, and possibly has some evolutionary relatedness with an ancient relic plant Taihangia rupestris. This research enriched the genome resources and provided fundamental insights for evolutionary studies and the phylogeny of Geum.
Collapse
Affiliation(s)
- Junbo Xie
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xinke Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Guoshuai Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Baolin Guo
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Guangming Luo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
7
|
Liu H, Liu X, Sun C, Li HL, Li ZX, Guo Y, Fu XQ, Liao QH, Zhang WL, Liu YQ. Chloroplast Genome Comparison and Phylogenetic Analysis of the Commercial Variety Actinidia chinensis 'Hongyang'. Genes (Basel) 2023; 14:2136. [PMID: 38136958 PMCID: PMC10743354 DOI: 10.3390/genes14122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Actinidia chinensis 'Hongyang', also known as red yangtao (red heart kiwifruit), is a vine fruit tree native to China possessing significant nutritional and economic value. However, information on its genetic diversity and phylogeny is still very limited. The first chloroplast (cp) genome of A. chinensis 'Hongyang' cultivated in China was sequenced using de novo technology in this study. A. chinensis 'Hongyang' possesses a cp genome that spans 156,267 base pairs (bp), exhibiting an overall GC content of 37.20%. There were 132 genes that were annotated, with 85 of them being protein-coding genes, 39 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. A total of 49 microsatellite sequences (SSRs) were detected, mainly single nucleotide repeats, mostly consisting of A or T base repeats. Compared with 14 other species, the cp genomes of A. chinensis 'Hongyang' were biased towards the use of codons containing A/U, and the non-protein coding regions in the A. chinensis 'Hongyang' cpDNA showed greater variation than the coding regions. The nucleotide polymorphism analysis (Pi) yielded nine highly variable region hotspots, most in the large single copy (LSC) region. The cp genome boundary analysis revealed a conservative order of gene arrangement in the inverted repeats (IRs) region of the cp genomes of 15 Actinidia plants, with small expansions and contractions of the boundaries. Furthermore, phylogenetic tree indicated that A. chinensis 'Hongyang' was the closest relative to A. indochinensis. This research provides a useful basis for future genetic and evolutionary studies of A. chinensis 'Hongyang', and enriches the biological information of Actinidia species.
Collapse
Affiliation(s)
- Han Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Xia Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Chong Sun
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, China;
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Zhe-Xin Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Yuan Guo
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Xue-Qian Fu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Qin-Hong Liao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Wen-Lin Zhang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Yi-Qing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, China;
| |
Collapse
|
8
|
Singh J, Sharma A, Sharma V, Gaikwad PN, Sidhu GS, Kaur G, Kaur N, Jindal T, Chhuneja P, Rattanpal HS. Comprehensive genome-wide identification and transferability of chromosome-specific highly variable microsatellite markers from citrus species. Sci Rep 2023; 13:10919. [PMID: 37407627 DOI: 10.1038/s41598-023-37024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Citrus species among the most important and widely consumed fruit in the world due to Vitamin C, essential oil glands, and flavonoids. Highly variable simple sequence repeats (SSR) markers are one of the most informative and versatile molecular markers used in perennial tree genetic research. SSR survey of Citrus sinensis and Citrus maxima were identified perfect SSRs spanning nine chromosomes. Furthermore, we categorized all SSR motifs into three major classes based on their tract lengths. We designed and validated a class I SSRs in the C. sinensis and C. maxima genome through electronic polymerase chain reaction (ePCR) and found 83.89% in C. sinensis and 78.52% in C. maxima SSRs producing a single amplicon. Then, we selected extremely variable SSRs (> 40 nt) from the ePCR-verified class I SSRs and in silico validated across seven draft genomes of citrus, which provided us a subset of 84.74% in C. sinensis and 77.53% in C. maxima highly polymorphic SSRs. Out of these, 129 primers were validated on 24 citrus genotypes through wet-lab experiment. We found 127 (98.45%) polymorphic HvSSRs on 24 genotypes. The utility of the developed HvSSRs was demonstrated by analysing genetic diversity of 181 citrus genotypes using 17 HvSSRs spanning nine citrus chromosomes and were divided into 11 main groups through 17 HvSSRs. These chromosome-specific SSRs will serve as a powerful genomic tool used for future QTL mapping, molecular breeding, investigation of population genetic diversity, comparative mapping, and evolutionary studies among citrus and other relative genera/species.
Collapse
Affiliation(s)
- Jagveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
- Department of Fruit Science, College of Horticulture & Forestry, Acharya Narendra Deva University of Agricultural & Technology, Kumarganj, 224229, India
| | - Ankush Sharma
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Vishal Sharma
- National Agri-Food Biotechnology Institute, Sector-81, SAS Nagar, Mohali, Punjab, 140308, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, India
| | - Popat Nanaso Gaikwad
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Gurupkar Singh Sidhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Nimarpreet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Taveena Jindal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - H S Rattanpal
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
9
|
Zhou P, Zhang Q, Li J, Li F, Huang J, Zhang M. A first insight into the genomic background of Ilex pubescens (Aquifoliaceae) by flow cytometry and genome survey sequencing. BMC Genomics 2023; 24:270. [PMID: 37208610 DOI: 10.1186/s12864-023-09359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Ilex pubescens is an important traditional Chinese medicinal plant with many naturally occurring compounds and multiple pharmacological effects. However, the lack of reference genomic information has led to tardiness in molecular biology research and breeding programs of this plant. RESULTS To obtain knowledge on the genomic information of I. pubescens, a genome survey was performed for the first time by next generation sequencing (NGS) together with genome size estimation using flow cytometry. The whole genome survey of I. pubescens generated 46.472 Gb of sequence data with approximately 82.2 × coverage. K-mer analysis indicated that I. pubescens has a small genome of approximately 553 Mb with 1.93% heterozygosity rate and 39.1% repeat rate. Meanwhile, the genome size was estimated to be 722 Mb using flow cytometry, which was possibly more precise for assessment of genome size than k-mer analysis. A total of 45.842 Gb clean reads were assembled into 808,938 scaffolds with a relatively short N50 of 760 bp. The average guanine and cytosine (GC) content was 37.52%. In total, 197,429 microsatellite motifs were detected with a frequency of 2.8 kb, among which mononucleotide motifs were the most abundant (up to 62.47% of the total microsatellite motifs), followed by dinucleotide and trinucleotide motifs. CONCLUSION In summary, the genome of I. pubescens is small but complex with a high level of heterozygosity. Even though not successfully applied for estimation of genome size due to its complex genome, the survey sequences will help to design whole genome sequencing strategies and provide genetic information support for resource protection, genetic diversity analysis, genetic improvement and artificial breeding of I. pubescens.
Collapse
Affiliation(s)
- Peng Zhou
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China
| | - Qiang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jiao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Fei Li
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China
| | - Jing Huang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China
| | - Min Zhang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China.
| |
Collapse
|
10
|
Zhang D, Ren J, Jiang H, Wanga VO, Dong X, Hu G. Comparative and phylogenetic analysis of the complete chloroplast genomes of six Polygonatum species (Asparagaceae). Sci Rep 2023; 13:7237. [PMID: 37142659 PMCID: PMC10160070 DOI: 10.1038/s41598-023-34083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Polygonatum Miller belongs to the tribe Polygonateae of Asparagaceae. The horizontal creeping fleshy roots of several species in this genus serve as traditional Chinese medicine. Previous studies have mainly reported the size and gene contents of the plastomes, with little information on the comparative analysis of the plastid genomes of this genus. Additionally, there are still some species whose chloroplast genome information has not been reported. In this study, the complete plastomes of six Polygonatum were sequenced and assembled, among them, the chloroplast genome of P. campanulatum was reported for the first time. Comparative and phylogenetic analyses were then conducted with the published plastomes of three related species. Results indicated that the whole plastome length of the Polygonatum species ranged from 154,564 bp (P. multiflorum) to 156,028 bp (P. stenophyllum) having a quadripartite structure of LSC and SSC separated by two IR regions. A total of 113 unique genes were detected in each of the species. Comparative analysis revealed that gene content and total GC content in these species were highly identical. No significant contraction or expansion was observed in the IR boundaries among all the species except P. sibiricum1, in which the rps19 gene was pseudogenized owing to incomplete duplication. Abundant long dispersed repeats and SSRs were detected in each genome. There were five remarkably variable regions and 14 positively selected genes were identified among Polygonatum and Heteropolygonatum. Phylogenetic results based on chloroplast genome strongly supported the placement of P. campanulatum with alternate leaves in sect. Verticillata, a group characterized by whorled leaves. Moreover, P. verticillatum and P. cyrtonema were displayed as paraphyletic. This study revealed that the characters of plastomes in Polygonatum and Heteropolygonatum maintained a high degree of similarity. Five highly variable regions were found to be potential specific DNA barcodes in Polygonatum. Phylogenetic results suggested that leaf arrangement was not suitable as a basis for delimitation of subgeneric groups in Polygonatum and the definitions of P. cyrtonema and P. verticillatum require further study.
Collapse
Affiliation(s)
- Dongjuan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Ren
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hui Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Wu L, Fan P, Zhou J, Li Y, Xu Z, Lin Y, Wang Y, Song J, Yao H. Gene Losses and Homology of the Chloroplast Genomes of Taxillus and Phacellaria Species. Genes (Basel) 2023; 14:genes14040943. [PMID: 37107701 PMCID: PMC10137875 DOI: 10.3390/genes14040943] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Research on the chloroplast genome of parasitic plants is limited. In particular, the homology between the chloroplast genomes of parasitic and hyperparasitic plants has not been reported yet. In this study, three chloroplast genomes of Taxillus (Taxillus chinensis, Taxillus delavayi, and Taxillus thibetensis) and one chloroplast genome of Phacellaria (Phacellaria rigidula) were sequenced and analyzed, among which T. chinensis is the host of P. rigidula. The chloroplast genomes of the four species were 119,941-138,492 bp in length. Compared with the chloroplast genome of the autotrophic plant Nicotiana tabacum, all of the ndh genes, three ribosomal protein genes, three tRNA genes and the infA gene were lost in the three Taxillus species. Meanwhile, in P. rigidula, the trnV-UAC gene and the ycf15 gene were lost, and only one ndh gene (ndhB) existed. The results of homology analysis showed that the homology between P. rigidula and its host T. chinensis was low, indicating that P. rigidula grows on its host T. chinensis but they do not share the chloroplast genome. In addition, horizontal gene transfer was not found between P. rigidula and its host T. chinensis. Several candidate highly variable regions in the chloroplast genomes of Taxillus and Phacellaria species were selected for species identification study. Phylogenetic analysis revealed that the species of Taxillus and Scurrula were closely related and supported that Scurrula and Taxillus should be treated as congeneric, while species in Phacellaria had a close relationship with that in Viscum.
Collapse
Affiliation(s)
- Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Panhui Fan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianguo Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yonghua Li
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530004, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yulin Lin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
12
|
Wang Y, Xu J, Hu B, Dong C, Sun J, Li Z, Ye K, Deng F, Wang L, Aslam M, Lv W, Qin Y, Cheng Y. Assembly, annotation, and comparative analysis of Ipomoea chloroplast genomes provide insights into the parasitic characteristics of Cuscuta species. FRONTIERS IN PLANT SCIENCE 2023; 13:1074697. [PMID: 36733590 PMCID: PMC9887335 DOI: 10.3389/fpls.2022.1074697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
In the Convolvulaceae family, around 1650 species belonging to 60 genera are widely distributed globally, mainly in the tropical and subtropical regions of America and Asia. Although a series of chloroplast genomes in Convolvulaceae were reported and investigated, the evolutionary and genetic relationships among the chloroplast genomes of the Convolvulaceae family have not been extensively elucidated till now. In this study, we first reported the complete chloroplast genome sequence of Ipomoea pes-caprae, a widely distributed coastal plant with medical values. The chloroplast genome of I. pes-caprae is 161667 bp in length, and the GC content is 37.56%. The chloroplastic DNA molecule of I. pes-caprae is a circular structure composed of LSC (large-single-copy), SSC (small-single-copy), and IR (inverted repeat) regions, with the size of the three regions being 88210 bp, 12117 bp, and 30670 bp, respectively. The chloroplast genome of I. pes-caprae contains 141 genes, and 35 SSRs are identified in the chloroplast genome. Our research results provide important genomic information for the molecular phylogeny of I. pes-caprae. The Phylogenetic analysis of 28 Convolvulaceae chloroplast genomes showed that the relationship of I. pes-caprae with I. involucrata or I. obscura was much closer than that with other Convolvulaccae species. Further comparative analyses between the Ipomoea species and Cuscuta species revealed the mechanism underlying the formation of parasitic characteristics of Cuscuta species from the perspective of the chloroplast genome.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Xu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunxing Dong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zixian Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kangzhuo Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Mohammad Aslam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Wenliang Lv
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Jiao Y, Sha C, Xie R, Shu Q. Comparative analysis of the potential physiological and molecular mechanisms involved in the response to root zone hypoxia in two rootstock seedlings of the Chinese bayberry via transcriptomic analysis. Funct Integr Genomics 2022; 23:11. [PMID: 36542181 DOI: 10.1007/s10142-022-00944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The negative effects of waterlogging can be effectively improved through the use of waterlogging-resistant rootstocks. However, the underlying physiological and molecular mechanisms of Chinese bayberry (Morella rubra) rootstock tolerance to waterlogging have not yet been investigated. This study aims to unravel the molecular regulation mechanisms underlying waterlogging-tolerant rootstocks. Two rootstocks, Morella cerifera (tolerant) and Morella rubra (sensitive), were selected for root zone hypoxia treatments, assessments of hormone levels and antioxidant enzyme activity, and transcriptomic analysis. While the contents of abscisic acid (ABA) and brassinosteroid (BR) in the roots of M. rubra decreased significantly after root zone hypoxia treatment, there were no significant changes in M. cerifera. Both the superoxide dismutase (SOD) activity and malondialdehyde (MDA) content increased in M. cerifera but were decreased in M. rubra. Transcriptome sequencing identified 1,925 (928 up- and 997 downregulated) and 733 (278 up- and 455 downregulated) differentially expressed genes (DEGs) in the two rootstocks. The gene set enrichment analysis showed that 84 gene sets were enriched after root zone hypoxia treatment, including 57 (35 up- and 22 downregulated) and 14 (five up- and nine downregulated) gene sets derived from M. cerifera and M. rubra, respectively, while the remaining 13 gene sets were shared. KEGG pathway analysis showed specific enrichment in six pathways in M. cerifera, including the mitogen-activated protein kinase (MAPK), tyrosine metabolism, glycolysis/gluconeogenesis, ribosome, cyanoamino acid metabolism, and plant-pathogen interaction pathways. Overall, these results provide preliminary insights into the molecular mechanisms of Chinese bayberry tolerance to waterlogging.
Collapse
Affiliation(s)
- Yun Jiao
- Institute of Forestry, Ningbo Academy of Agricultural Science, Ningbo, 315040, China.
| | - Cunlong Sha
- Haishu District Agricultural Technology Management Service Station, Ningbo, 315100, China
| | - Rangjin Xie
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Qiaoyun Shu
- Institute of Forestry, Ningbo Academy of Agricultural Science, Ningbo, 315040, China
| |
Collapse
|
14
|
Lu Q, Luo W. The complete chloroplast genome of two Firmiana species and comparative analysis with other related species. Genetica 2022; 150:395-405. [DOI: 10.1007/s10709-022-00169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
|
15
|
Wang P, Mo Y, Wang Y, Fei Y, Huang J, Ni J, Xu ZF. Macadamia germplasm and genomic database (MacadamiaGGD): A comprehensive platform for germplasm innovation and functional genomics in Macadamia. FRONTIERS IN PLANT SCIENCE 2022; 13:1007266. [PMID: 36388568 PMCID: PMC9646992 DOI: 10.3389/fpls.2022.1007266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
As an important nut crop species, macadamia continues to gain increased amounts of attention worldwide. Nevertheless, with the vast increase in macadamia omic data, it is becoming difficult for researchers to effectively process and utilize the information. In this work, we developed the first integrated germplasm and genomic database for macadamia (MacadamiaGGD), which includes five genomes of four species; three chloroplast and mitochondrial genomes; genome annotations; transcriptomic data for three macadamia varieties, germplasm data for four species and 262 main varieties; nine genetic linkage maps; and 35 single-nucleotide polymorphisms (SNPs). The database serves as a valuable collection of simple sequence repeat (SSR) markers, including both markers that are based on macadamia genomic sequences and developed in this study and markers developed previously. MacadamiaGGD is also integrated with multiple bioinformatic tools, such as search, JBrowse, BLAST, primer designer, sequence fetch, enrichment analysis, multiple sequence alignment, genome alignment, and gene homology annotation, which allows users to conveniently analyze their data of interest. MacadamiaGGD is freely available online (http://MacadamiaGGD.net). We believe that the database and additional information of the SSR markers can help scientists better understand the genomic sequence information of macadamia and further facilitate molecular breeding efforts of this species.
Collapse
Affiliation(s)
- Pan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| | - Yi Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| | - Yuchong Fei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| | - Jianting Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| | - Jun Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, China
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, China
| |
Collapse
|
16
|
Li J, Fan R, Xu J, Hu L, Su F, Hao C. Comparative analysis of the chloroplast genomes of eight Piper species and insights into the utilization of structural variation in phylogenetic analysis. Front Genet 2022; 13:925252. [PMID: 36246585 PMCID: PMC9556897 DOI: 10.3389/fgene.2022.925252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
With more than 2000 species, Piper is regarded as having high medicinal, cosmetic, and edible value. There also remain some taxonomic and evolutionary uncertainties about the genus. This study performed chloroplast genome sequencing of eight poorly studied Piper species and a comparative analysis with black pepper (Piper nigrum). All examined species were highly similar in gene content, with 79 protein-coding genes, 24 tRNAs, and four rRNAs. They also harbored significant structural differences: The number of SSRs ranged from 63 to 87, over 10,000 SNPs were detected, and over 1,000 indels were found. The spatial distribution of structural differences was uneven, with the IR and LSC being relatively more conserved and the SSC region highly variable. Such structural variations of the chloroplast genome can help in evaluating the phylogenetic relationships between species, deciding some hard-to-distinguish evolutionary relationships, or eliminating improper markers. The SSC region may be evolving at high speed, and some species showed a high degree of sequence variation in the SSC region, which seriously affected marker sequence detection. Conversely, CDS sequences tended to lack variation, and some CDSs can serve as ideal markers for phylogenetic reconstruction. All told, this study provides an effective strategy for selecting chloroplast markers, analyzing difficult-to-distinguish phylogenetic relationships and avoiding the taxonomic errors caused by high degree of sequence variations.
Collapse
Affiliation(s)
- Jing Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
- Academician Soonliang Sim of Hainan Province Research Station, Wanning, Hainan, China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
- Academician Soonliang Sim of Hainan Province Research Station, Wanning, Hainan, China
| | - Jintao Xu
- Yangtze Normal University, Chongqing, China
| | - Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
- Academician Soonliang Sim of Hainan Province Research Station, Wanning, Hainan, China
| | - Fan Su
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
- Academician Soonliang Sim of Hainan Province Research Station, Wanning, Hainan, China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
- Academician Soonliang Sim of Hainan Province Research Station, Wanning, Hainan, China
- *Correspondence: Chaoyun Hao,
| |
Collapse
|
17
|
Zhao R, Yin S, Xue J, Liu C, Xing Y, Yin H, Ren X, Chen J, Jia D. Sequencing and comparative analysis of chloroplast genomes of three medicinal plants: Gentiana manshurica, G. scabra and G. triflora. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1421-1435. [PMID: 36051231 PMCID: PMC9424396 DOI: 10.1007/s12298-022-01217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Three species of Gentiana (Gentiana manshurica kitag., Gentiana scabra bunge., and Gentiana triflora pall.) were the main source for an important traditional Chinese medicine, "Longdan", which was first mentioned in " Shennong materia medica Sutra " 2000 years ago. Until recently, there were very few reports on taxonomic classification of these three traditional medicinal Gentiana species. In the current study, chloroplast genomes of the three Gentiana species were sequenced and the phylogenetic analyses were performed in combination with 31 NCBI downloaded Gentiana species sequences and two species of Swertia as outgroup. Based on the phylogenetic results, a new taxonomic classification for Gentiana was proposed, including 4 independent clades with 6 subdivisions (Group 1-Group 6). All the general features, SSR characteristics and gene composition of Gentiana chloroplast genomes strongly supported such a new classification system for Gentiana, which could lay a theoretical foundation for Gentiana in the molecular evolutionary research. Finally, phylogenetic analyisis also demonstrated that the three examined species from Gentiana could cluster together into one group (Group 6), which was far away from the evolutionary position of the medicinal species, Gentiana rigescens Franch, which was consistent with the traditional classification in traditional medicinal uses and taxonomy. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01217-0.
Collapse
Affiliation(s)
- Rong Zhao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Province, Dalian, People’s Republic of China
| | - Shuyue Yin
- Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Jianing Xue
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Province, Dalian, People’s Republic of China
| | - Chang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Province, Dalian, People’s Republic of China
| | - Yanping Xing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Province, Dalian, People’s Republic of China
| | - Haibo Yin
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Province, Dalian, People’s Republic of China
| | - Xue Ren
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Province, Dalian, People’s Republic of China
| | - Jixiang Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Province, Dalian, People’s Republic of China
| | - Dingding Jia
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Province, Dalian, People’s Republic of China
| |
Collapse
|
18
|
Wei XP, Zhang XY, Dong YQ, Cheng JL, Bai YJ, Liu JS, Qi YD, Zhang BG, Liu HT. Molecular Structure and Phylogenetic Analyses of the Complete Chloroplast Genomes of Three Medicinal Plants Conioselinum vaginatum, Ligusticum sinense, and Ligusticum jeholense. FRONTIERS IN PLANT SCIENCE 2022; 13:878263. [PMID: 35734262 PMCID: PMC9207526 DOI: 10.3389/fpls.2022.878263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Most plants of Ligusticum have an important medicinal and economic value with a long history, Ligusticum sinense and L. jeholense ("Gaoben") has long been used in traditional Chinese medicine for the treatment of carminative, dispelling cold, dehumidification, and analgesia. While in the market Conioselinum vaginatum (Xinjiang Gaoben) is substitution for Gaoben, and occupies a higher market share. These three Gaoben-related medicinal materials are similar in morphology, and are difficult to distinguish from each other by the commonly used DNA barcodes. The chloroplast genome has been widely used for molecular markers, evolutionary biology, and barcoding identification. In this study, the complete chloroplast genome sequences of C. vaginatum, L. sinense, and L. jeholense were reported. The results showed that the complete chloroplast genomes of these three species have typical quadripartite structures, which were comprised of 148,664, 148,539, and 148,497 bp. A total of 114 genes were identified, including 81 protein-coding genes (PCGs), 29 tRNA genes, and four rRNA genes. Our study indicated that highly variable region ycf2-trnL and accD-ycf4 that can be used as specific DNA barcodes to distinguish and identify C. vaginatum, L. sinense, and L. jeholense. In addition, phylogenetic study showed that C. vaginatum nested in Ligusticum and as a sister group of L. sinense and L. jeholense, which suggested these two genera are both in need of revision. This study offer valuable information for future research in the identification of Gaoben-related medicinal materials and will benefit for further phylogenetic study of Apiaceae.
Collapse
Affiliation(s)
- Xue-Ping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao-Yi Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu-Qing Dong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ji-Long Cheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yun-Jun Bai
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiu-Shi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yao-Dong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ben-Gang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hai-Tao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Genetic diversity of Prunus armeniaca L. var. ansu Maxim. germplasm revealed by simple sequence repeat (SSR) markers. PLoS One 2022; 17:e0269424. [PMID: 35657925 PMCID: PMC9165866 DOI: 10.1371/journal.pone.0269424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
The genetic diversity and genetic structure of P. armeniaca var. ansu were analyzed based on SSR markers. The aim was to provide scientific basis for conservation, efficient utilization, molecular marker assisted breeding and improved variety selection of P. armeniaca var. ansu germplasm resources. The results showed that the level of genetic diversity within the population was high. Among the 30 SSR markers, the mean number of observed alleles was 11.433, the mean number of effective alleles was 4.433, the mean of Shannon information index was 1.670, and the mean of polymorphic information content was 0.670. Among the eight provenances, Tuanjie Township, Xinyuan County, Xinjiang had the highest genetic diversity. The observed alleles, effective alleles, Shannon information index and Nei’s gene diversity index among provenances were higher than those within provenances. Based on Bayesian mathematical modeling and UPGMA cluster analysis, 86 P. armeniaca var. ansu accessions were divided into three subpopulations and four groups, which reflected individual differences in provenances. Subpopulations classified by Bayesian mathematical modeling and groups classified by UPGMA cluster analysis were significantly correlated with geographical provenance (Sig<0.01) and the provenances significantly impacted classification of groups. The provenances played an important role in classification of groups. The genetic distance between Tuanjie Township of Xinyuan County and Alemale Township of Xinyuan County was the smallest, while the genetic relationship between them was the closest and the degree of genetic differentiation was small.
Collapse
|
20
|
Xia C, Wang M, Guan Y, Li J. Comparative Analysis of the Chloroplast Genome for Aconitum Species: Genome Structure and Phylogenetic Relationships. Front Genet 2022; 13:878182. [PMID: 35711937 PMCID: PMC9194378 DOI: 10.3389/fgene.2022.878182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aconitum is an important medicinal group of the Ranunculaceae family and has been used as conventional medicine in Bai, Yi, and other ethnic groups of China. There are about 350 Aconitum species globally and about 170 species in China. It is challenging to identify the species in morphology, and the lack of molecular biology information hinders the identification and rational utilization of the germplasm of this genus. Therefore, it is necessary to increase the molecular data of Aconitum species. This paper acquired the complete chloroplast (CP) genome sequence of ten medicinal plants of Aconitum species from Yunnan by Illumina paired-end (PE) sequencing technology and compared it with other species in the same family and genus. These CP genomes exhibited typical circular quadripartite structure, and their sizes ranged from 155,475 (A. stylosum) to 155,921 bp (A. vilmoinianum), including a large single-copy region (LSC), a small single-copy region (SSC), and two inverted repeat regions (IRs). Their gene content, order, and GC content (38.1%) were similar. Moreover, their number of genes ranged from 129 (A. vilmoinianum) to 132 (A. ramulosum), including 83 to 85 protein-coding genes (PCGs), 37 tRNA genes (tRNAs), eight rRNA genes (rRNAs), and two pseudogenes. In addition, we performed repeated sequence analysis, genomic structure, and comparative analysis using 42 Aconitum chloroplast genomes, including ten Aconitum chloroplast genomes and other sequenced Aconitum species. A total of 48-79 simple sequence repeats (SSRs) and 17 to 77 long repeat sequences were identified. IR regions showed higher variability than the SSC region and LSC region. Seven mutational hotspots were screened out, including trnK-UUU-trnQ-UGG, psbD, ndhJ-ndhK, clpP, psbH-petB, ycf1, and trnA-UGC-trnI-GAU, respectively. The phylogenetic trees of ten Aconitum species and other Aconitum species revealed that the complete CP genome was beneficial in determining the complex phylogenetic relationships among Aconitum species. This study provides a potential molecular marker and genomic resource for phylogeny and species identification of Aconitum species and an important reference and basis for Ranunculaceae species identification and phylogeny.
Collapse
Affiliation(s)
- Conglong Xia
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
- College of Pharmacy, Dali University, Dali, China
| | - Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
| | - Yunhui Guan
- College of Pharmacy, Dali University, Dali, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
- College of Pharmacy, Dali University, Dali, China
| |
Collapse
|
21
|
Li F, Liu Y, Wang J, Xin P, Zhang J, Zhao K, Zhang M, Yun H, Ma W. Comparative Analysis of Chloroplast Genome Structure and Phylogenetic Relationships Among Six Taxa Within the Genus Catalpa (Bignoniaceae). Front Genet 2022; 13:845619. [PMID: 35368674 PMCID: PMC8966708 DOI: 10.3389/fgene.2022.845619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Species within the Genus Catalpa are mostly semievergreen or deciduous trees with opposite or whorled leaves. C. bungei, C. fargesii f. duclouxii and C. fargesii are sources of traditional precious wood in China, known as the “kings of wood”. Due to a lack of phenotypic and molecular studies and insufficient sequence information, intraspecific morphological differences, common DNA barcodes and partial sequence fragments cannot clearly reveal the phylogenetic or intraspecific relationships within Catalpa. Therefore, we sequenced the complete chloroplast genomes of six taxa of the genus Catalpa and analyzed their basic structure and evolutionary relationships. The chloroplast genome of Catalpa shows a typical tetrad structure with a total length ranging from 157,765 bp (C. fargesii) to 158,355 bp (C. ovata). The length of the large single-copy (LSC) region ranges from 84,599 bp (C. fargesii) to 85,004 bp (C. ovata), that of the small single-copy (SSC) region ranges from 12,662 bp (C. fargesii) to 12,675 bp (C. ovata), and that of the inverted repeat (IR) regions ranges from 30,252 bp (C. fargesii) to 30,338 bp (C. ovata). The GC content of the six chloroplast genomes were 38.1%. In total, 113 unique genes were detected, and there were 19 genes in IR regions. The 113 genes included 79 protein-coding genes, 30 tRNA genes and four rRNA genes. Five hypervariable regions (trnH-psbA, rps2-rpoC2, rpl22, ycf15-trnl-CAA and rps15) were identified by analyzing chloroplast nucleotide polymorphisms, which might be serve as potential DNA barcodes for the species. Comparative analysis showed that single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) were highly diverse in the six species. Codon usage patterns were highly similar among the taxa included in the present study. In addition to the stop codons, all codons showed a preference for ending in A or T. Phylogenetic analysis of the entire chloroplast genome showed that all taxa within the genus Catalpa formed a monophyletic group, clearly reflecting the relationships within the genus. This study provides information on the chloroplast genome sequence, structural variation, codon bias and phylogeny of Catalpa, which will facilitate future research efforts.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, National Innovation Alliance of Catalpa Bungei, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | - Ying Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, National Innovation Alliance of Catalpa Bungei, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, National Innovation Alliance of Catalpa Bungei, Beijing, China
| | - Peiyao Xin
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | | | - Kun Zhao
- Luoyang Academy of Agriculture and Forestry Sciences, Luoyang, China
| | | | - Huiling Yun
- Research Institute of Forestry of Xiaolongshan, Tianshui, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, National Innovation Alliance of Catalpa Bungei, Beijing, China
- *Correspondence: Wenjun Ma,
| |
Collapse
|
22
|
Wang Y, Yang Q, Zhu Y, Zhao L, Ju P, Wang G, Zhou C, Zhu C, Jia H, Jiao Y, Jia H, Gao Z. MrTPS3 and MrTPS20 Are Responsible for β-Caryophyllene and α-Pinene Production, Respectively, in Red Bayberry ( Morella rubra). FRONTIERS IN PLANT SCIENCE 2022; 12:798086. [PMID: 35069655 PMCID: PMC8777192 DOI: 10.3389/fpls.2021.798086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 05/24/2023]
Abstract
Red bayberry is a sweet, tart fruit native to China and grown widely in the south. The key organic compounds forming the distinctive aroma in red bayberry, are terpenoids, mainly β-caryophyllene and α-pinene. However, the key genes responsible for different terpenoids are still unknown. Here, transcriptome analysis on samples from four cultivars, during fruit development, with different terpenoid production, provided candidate genes for volatile organic compound (VOC) production. Terpene synthases (TPS) are key enzymes regulating terpenoid biosynthesis, and 34 TPS family members were identified in the red bayberry genome. MrTPS3 in chromosome 2 and MrTPS20 in chromosome 7 were identified as key genes regulating β-caryophyllene and α-pinene synthesis, respectively, by qRT-PCR. Subcellular localization and enzyme activity assay showed that MrTPS3 was responsible for β-caryophyllene (sesquiterpenes) production and MrTPS20 for α-pinene (monoterpenes). Notably, one amino acid substitution between dark color cultivars and light color cultivars resulted in the loss of function of MrTPS3, causing the different β-caryophyllene production. Our results lay the foundation to study volatile organic compounds (VOCs) in red bayberry and provide potential genes for molecular breeding.
Collapse
Affiliation(s)
- Yan Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qinsong Yang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Yifan Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lan Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Pengju Ju
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoyun Wang
- Yuyao Agriculture Technology Extension Center, Ningbo, China
| | - Chaochao Zhou
- Yuyao Agriculture Technology Extension Center, Ningbo, China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Huijuan Jia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Jiao
- Institute of Forestry, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Huimin Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Zhongshan Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Xi J, Lv S, Zhang W, Zhang J, Wang K, Guo H, Hu J, Yang Y, Wang J, Xia G, Fan G, Wang X, Xiao L. Comparative plastomes of Carya species provide new insights into the plastomes evolution and maternal phylogeny of the genus. FRONTIERS IN PLANT SCIENCE 2022; 13:990064. [PMID: 36407576 PMCID: PMC9667483 DOI: 10.3389/fpls.2022.990064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 05/03/2023]
Abstract
Carya, in the Juglandiodeae subfamily, is to a typical temperate-subtropical forest-tree genus for studying the phylogenetic evolution and intercontinental disjunction between eastern Asia (EA) and North America (NA). Species of the genus have high economic values worldwide for their high-quality wood and the rich healthy factors of their nuts. Although previous efforts based on multiple molecular markers or genome-wide SNPs supported the monophyly of Carya and its two EA and NA major subclades, the maternal phylogeny of Carya still need to be comprehensively evaluated. The variation of Carya plastome has never been thoroughly characterized. Here, we novelly present 19 newly generated plastomes of congeneric Carya species, including the recently rediscovered critically endangered C. poilanei. The overall assessment of plastomes revealed highly conservative in the general structures. Our results indicated that remarkable differences in several plastome features are highly consistent with the EA-NA disjunction and showed the relatively diverse matrilineal sources among EA Carya compared to NA Carya. The maternal phylogenies were conducted with different plastome regions and full-length plastome datasets from 30 plastomes, representing 26 species in six genera of Juglandoideae and Myrica rubra (as root). Six out of seven phylogenetic topologies strongly supported the previously reported relationships among genera of Juglandoideae and the two subclades of EA and NA Carya, but displayed significant incongruencies between species within the EA and NA subclades. The phylogenetic tree generated from full-length plastomes demonstrated the optimal topology and revealed significant geographical maternal relationships among Carya species, especially for EA Carya within overlapping distribution areas. The full-length plastome-based phylogenetic topology also strongly supported the taxonomic status of five controversial species as separate species of Carya. Historical and recent introgressive hybridization and plastid captures might contribute to plastome geographic patterns and inconsistencies between topologies built from different datasets, while incomplete lineage sorting could account for the discordance between maternal topology and the previous nuclear genome data-based phylogeny. Our findings highlight full-length plastomes as an ideal tool for exploring maternal relationships among the subclades of Carya, and potentially in other outcrossing perennial woody plants, for resolving plastome phylogenetic relationships.
Collapse
Affiliation(s)
- Jianwei Xi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Saibin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Weiping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingbo Zhang
- Department of Biological Sciences, St. John’s University - Queens, NY, United States
- *Correspondence: Lihong Xiao, ; Jingbo Zhang,
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Haobing Guo
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Jie Hu
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Yang Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jianhua Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Guohua Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Guangyi Fan
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Xinwang Wang
- Pecan Breeding and Genetics, Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, United States
| | - Lihong Xiao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Lihong Xiao, ; Jingbo Zhang,
| |
Collapse
|
24
|
Hu H, Zhang D. Complete chloroplast genome of Dactylicapnos torulosa (Hook. & Thoms.) Hutch., a medicinal plant from southwest China and its phylogeny. Mitochondrial DNA B Resour 2021; 6:3423-3425. [PMID: 34805520 PMCID: PMC8604533 DOI: 10.1080/23802359.2021.1999868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Haisu Hu
- College of Pharmacy, Dali University, Dali, China
| | - Dequan Zhang
- College of Pharmacy, Dali University, Dali, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali, China
| |
Collapse
|
25
|
Ma L, Wang X, Yan M, Liu F, Zhang S, Wang X. Genome survey sequencing of common vetch (Vicia sativa L.) and genetic diversity analysis of Chinese germplasm with genomic SSR markers. Mol Biol Rep 2021; 49:313-320. [PMID: 34741708 PMCID: PMC8748366 DOI: 10.1007/s11033-021-06875-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 12/04/2022]
Abstract
Background Common vetch (Vicia sativa L.) is an annual legume with excellent suitability in cold and dry regions. Despite its great applied potential, the genomic information regarding common vetch currently remains unavailable. Methods and results In the present study, the whole genome survey of common vetch was performed using the next-generation sequencing (NGS). A total of 79.84 Gbp high quality sequence data were obtained and assembled into 3,754,145 scaffolds with an N50 length of 3556 bp. According to the K-mer analyses, the genome size, heterozygosity rate and GC content of common vetch genome were estimated to be 1568 Mbp, 0.4345 and 35%, respectively. In addition, a total of 76,810 putative simple sequence repeats (SSRs) were identified. Among them, dinucleotide was the most abundant SSR type (44.94%), followed by Tri- (35.82%), Tetra- (13.22%), Penta- (4.47%) and Hexanucleotide (1.54%). Furthermore, a total of 58,175 SSR primer pairs were designed and ten of them were validated in Chinese common vetch. Further analysis showed that Chinese common vetch harbored high genetic diversity and could be clustered into two main subgroups. Conclusion This is the first report about the genome features of common vetch, and the information will help to design whole genome sequencing strategies. The newly identified SSRs in this study provide basic molecular markers for germplasm characterization, genetic diversity and QTL mapping studies for common vetch. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-021-06875-z.
Collapse
Affiliation(s)
- Lin Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Min Yan
- National Animal Husbandry Station, Ministry of Agriculture Sciences, Beijing, 100125, China
| | - Fang Liu
- National Animal Husbandry Station, Ministry of Agriculture Sciences, Beijing, 100125, China
| | - Shuxing Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
26
|
Xu J, Liu C, Song Y, Li M. Comparative Analysis of the Chloroplast Genome for Four Pennisetum Species: Molecular Structure and Phylogenetic Relationships. Front Genet 2021; 12:687844. [PMID: 34386040 PMCID: PMC8354216 DOI: 10.3389/fgene.2021.687844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
The genus Pennisetum (Poaceae) is both a forage crop and staple food crop in the tropics. In this study, we obtained chloroplast genome sequences of four species of Pennisetum (P. alopecuroides, P. clandestinum, P. glaucum, and P. polystachion) using Illumina sequencing. These chloroplast genomes have circular structures of 136,346–138,119 bp, including a large single-copy region (LSC, 79,380–81,186 bp), a small single-copy region (SSC, 12,212–12,409 bp), and a pair of inverted repeat regions (IRs, 22,284–22,372 bp). The overall GC content of these chloroplast genomes was 38.6–38.7%. The complete chloroplast genomes contained 110 different genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analysis of nucleotide variability identified nine intergenic spacer regions (psbA-matK, matK-rps16, trnN-trnT, trnY-trnD-psbM, petN-trnC, rbcL-psaI, petA-psbJ, psbE-petL, and rpl32-trnL), which may be used as potential DNA barcodes in future species identification and evolutionary analysis of Pennisetum. The phylogenetic analysis revealed a close relationship between P. polystachion and P. glaucum, followed by P. clandestinum and P. alopecuroides. The completed genomes of this study will help facilitate future research on the phylogenetic relationships and evolution of Pennisetum species.
Collapse
Affiliation(s)
- Jin Xu
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Chen Liu
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yun Song
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Mingfu Li
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
27
|
Comparative and phylogenetic analyses of the chloroplast genomes of species of Paeoniaceae. Sci Rep 2021; 11:14643. [PMID: 34282194 PMCID: PMC8289817 DOI: 10.1038/s41598-021-94137-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Plants belonging to family Paeoniaceae are not only economically important ornamental plants but also medicinal plants used as an important source of traditional Chinese medicine. Owing to the complex network evolution and polyploidy evolution of this family, its systematics and taxonomy are controversial and require a detailed investigation. In this study, three complete chloroplast genomes of sect. Paeonia, one of the sections of Paeonia, were sequenced and then analysed together with 16 other published chloroplast genomes of Paeoniaceae species. The total lengths of the chloroplast genomes of these species were 152,153–154,405 bp. A total of 82–87 protein-coding genes, 31–40 tRNA genes and 8 rRNA genes were annotated. Bioinformatics analysis revealed 61–74 simple sequence repeats (SSRs) in the chloroplast genomes, most of which have A/T base preference. Codon usage analysis showed that A/U-ending codons were more positive than C/G-ending codons, and a slight bias in codon usage was observed in these species. A comparative analysis of these 19 species of Paeoniaceae was then conducted. Fourteen highly variable regions were selected for species relationship study. Phylogenetic analysis revealed that the species of sect. Paeonia gathered in one branch and then divided into different small branches. P. lactiflora, P. anomala, P. anomala subsp. veitchii and P. mairei clustered together. P. intermedia was related to P. obovata and P. obovata subsp. willmottiae. P. emodi was the sister to all other species in the sect. Paeonia.
Collapse
|
28
|
Wu L, Wu M, Cui N, Xiang L, Li Y, Li X, Chen S. Plant super-barcode: a case study on genome-based identification for closely related species of Fritillaria. Chin Med 2021; 16:52. [PMID: 34225754 PMCID: PMC8256587 DOI: 10.1186/s13020-021-00460-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/26/2021] [Indexed: 12/21/2022] Open
Abstract
Background Although molecular analysis offers a wide range of options for species identification, a universal methodology for classifying and distinguishing closely related species remains elusive. This study validated the effectiveness of utilizing the entire chloroplast (cp) genome as a super-barcode to help identify and classify closely related species. Methods We here compared 26 complete cp genomes of ten Fritillaria species including 18 new sequences sequenced in this study. Each species had repeats and the cp genomes were used as a whole DNA barcode to test whether they can distinguish Fritillaria species. Results The cp genomes of Fritillaria medicinal plants were conserved in genome structure, gene type, and gene content. Comparison analysis of the Fritillaria cp genomes revealed that the intergenic spacer regions were highly divergent compared with other regions. By constructing the phylogenetic tree by the maximum likelihood and maximum parsimony methods, we found that the entire cp genome showed a high discrimination power for Fritillaria species with individuals of each species in a monophyletic clade. These results indicate that cp genome can be used to effectively differentiate medicinal plants from the genus Fritillaria at the species level. Conclusions This study implies that cp genome can provide distinguishing differences to help identify closely related Fritillaria species, and has the potential to be served as a universal super-barcode for plant identification. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00460-z.
Collapse
Affiliation(s)
- Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mingli Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ning Cui
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiwen Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
29
|
Wu L, Cui Y, Wang Q, Xu Z, Wang Y, Lin Y, Song J, Yao H. Identification and phylogenetic analysis of five Crataegus species (Rosaceae) based on complete chloroplast genomes. PLANTA 2021; 254:14. [PMID: 34180013 DOI: 10.1007/s00425-021-03667-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The chloroplast genomes of the five Crataegus species were shown to have a conserved genome structure. Complete chloroplast genome sequences were more suitable than highly variable regions for the identification and phylogenetic analysis of Crataegus species. Hawthorn, which is commonly used as a traditional Chinese medicine, is one of the most popular sour fruits and has high economic value. Crataegus pinnatifida var. pinnatifida and C. pinnatifida var. major are frequently adulterated with other Crataegus species on the herbal medicine market. However, most Crataegus plants are difficult to identify using traditional morphological methods. Here, we compared five Crataegus chloroplast (CP) genomes comprising two newly sequenced (i.e., C. pinnatifida var. pinnatifida and C. pinnatifida var. major) and three previously published CP genomes. The CP genomes of the five Crataegus species had a conserved genome structure, gene content and codon usage. The total length of the CP genomes was 159,654-159,865 bp. A total of 129-130 genes, including 84-85 protein-coding genes, 37 tRNA genes and 8 rRNA genes, were annotated. Bioinformatics analysis revealed 96-103 simple sequence repeats (SSRs) and 48-70 long repeats in the five CP genomes. Combining the results of mVISTA and nucleotide diversity, five highly variable regions were screened for species identification and relationship studies. Maximum likelihood trees were constructed on the basis of complete CP genome sequences and highly variable regions. The results showed that the former had higher discriminatory power for Crataegus species, indicating that the complete CP genome could be used as a super-barcode to accurately authenticate the five Crataegus species.
Collapse
Affiliation(s)
- Liwei Wu
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, 100193, China
| | - Yingxian Cui
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, 100193, China
| | - Qing Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, 100193, China
| | - Zhichao Xu
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, 100193, China
| | - Yu Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yulin Lin
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jingyuan Song
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, 100193, China
| | - Hui Yao
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
30
|
Zhang S, Yu Z, Qi X, Wang Z, Zheng Y, Ren H, Liang S, Zheng X. Construction of a High-Density Genetic Map and Identification of Leaf Trait-Related QTLs in Chinese Bayberry ( Myrica rubra). FRONTIERS IN PLANT SCIENCE 2021; 12:675855. [PMID: 34194452 PMCID: PMC8238045 DOI: 10.3389/fpls.2021.675855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Chinese bayberry (Myrica rubra) is an economically important fruit tree that is grown in southern China. Owing to its over 10-year seedling period, the crossbreeding of bayberry is challenging. The characteristics of plant leaves are among the primary factors that control plant architecture and potential yields, making the analysis of leaf trait-related genetic factors crucial to the hybrid breeding of any plant. In the present study, molecular markers associated with leaf traits were identified via a whole-genome re-sequencing approach, and a genetic map was thereby constructed. In total, this effort yielded 902.11 Gb of raw data that led to the identification of 2,242,353 single nucleotide polymorphisms (SNPs) in 140 F1 individuals and parents (Myrica rubra cv. Biqizhong × Myrica rubra cv. 2012LXRM). The final genetic map ultimately incorporated 31,431 SNPs in eight linkage groups, spanning 1,351.85 cM. This map was then used to assemble and update previous scaffold genomic data at the chromosomal level. The genome size of M. rubra was thereby established to be 275.37 Mb, with 94.98% of sequences being assembled into eight pseudo-chromosomes. Additionally, 18 quantitative trait loci (QTLs) associated with nine leaf and growth-related traits were identified. Two QTL clusters were detected (the LG3 and LG5 clusters). Functional annotations further suggested two chlorophyll content-related candidate genes being identified in the LG5 cluster. Overall, this is the first study on the QTL mapping and identification of loci responsible for the regulation of leaf traits in M. rubra, offering an invaluable scientific for future marker-assisted selection breeding and candidate gene analyses.
Collapse
Affiliation(s)
| | | | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
31
|
Yan Y, Wu X, Wang M, Li Z, Yuan M, Dai M, Wen Y. Complete chloroplast genomes of wild and cultivated Cryptomeria japonica var. sinensis. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1932592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Yadan Yan
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| | - Xingtong Wu
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| | - Minqiu Wang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| | - Zeqing Li
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| | - Meiling Yuan
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| | - Minjun Dai
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| | - Yafeng Wen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, PR China
| |
Collapse
|
32
|
Zhang Y, Wang Z, Guo Y, Chen S, Xu X, Wang R. Complete chloroplast genomes of Leptodermis scabrida complex: Comparative genomic analyses and phylogenetic relationships. Gene 2021; 791:145715. [PMID: 33984444 DOI: 10.1016/j.gene.2021.145715] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
Leptodermis scabrida complex is one of the important components of genus Leptodermis, which is mainly distributed in the Himalaya Mountains. It includes species of L. gracilis, L. hirsutiflora, L. hirsutiflora var. ciliata, L. kumaonensis, L. pilosa var. acanthoclada and L. scabrida. However, species boundaries and relationships within this complex are unclear based on current morphological and molecular evidence. We sequenced 13 complete chloroplast (cp) genomes representing seven taxa of the complex and two non-Leptodermis scabrida complex taxa. After de novo assembly and annotation, we performed comparative genomic analysis. All cp genomes showed highly conserved structures, and the genome sizes ranged from 154,369 bp to 154,885 bp and possessed the same GC content (37.5%). A total of 113 unique genes were identified in each cp sample, including 79 protein coding genes, 30 tRNAs, and four rRNAs. Repeat sequences and SSRs were detected, showing great similarity among all taxa in this complex. Six highly variable regions, including trnS-trnG, rps2-rpoC2, ndhF, rpl32-ccsA, ccsA-ndhD, and ndhA, were screened as potential molecular markers for phylogenetic reconstruction. Based on a total of 27 complete cp genome sequences, the consistent and robust phylogenetic relationships were firstly constructed and the same species within L. scabrida complex clustered into a group. The divergence time of Leptodermis from ancestral taxa occurred at the middle Eocene, which might be due to geological and climatic changes. The 13 complete cp genome sequences reported will provide new clues for phylogeny elucidation, species identification and evolutionary history speculation of Leptodermis, as well as in Rubiaceae.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengfeng Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yanan Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Sheng Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xianyi Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ruijiang Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
33
|
Liu S, Feng S, Huang Y, An W, Yang Z, Xie C, Zheng X. Characterization of the Complete Chloroplast Genome of Buddleja Lindleyana. J AOAC Int 2021; 105:202-210. [PMID: 33944934 DOI: 10.1093/jaoacint/qsab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Buddleja lindleyana Fort., which belongs to the Loganiaceae with a distribution throughout the tropics, is widely used as an ornamental plant in China. Buddleja contains several morphologically similar species, which need to be identified by molecular identification. But there is little molecular research on the genus Buddleja. OBJECTIVE Using molecular biology techniques to sequence and analyze the complete chloroplast (cp) genome of B. lindleyana. METHODS According to next-generation sequencing to sequence the genome data, a series of bioinformatics software were used to assembly and analysis the molecular structure of cp genome of B. lindleyana. RESULTS The complete cp genome of B. lindleyana is a circular 154,487-bp-long molecule with a GC content of 38.1%. It has a familiar quadripartite structure, including a large single-copy region (LSC; 85,489 bp), a small single-copy region (SSC; 17,898bp) and a pair of inverted repeats (IRs; 25,550 bp). A total of 133 genes were identified in the genome, including 86 protein-coding genes, 37 tRNA genes, 8 rRNA genes and 2 pseudogenes. CONCLUSIONS These results suggested that B. lindelyana cp genome could be used as a potential genomic resource to resolve the phylogenetic positions and relationships of Loganiaceae, and will offer valuable information for future research in the identification of Buddleja species and will conduce to genomic investigations of these species.
Collapse
Affiliation(s)
- Shanshan Liu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shiyin Feng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405
| | - Yuying Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wenli An
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zerui Yang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Chunzhu Xie
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiasheng Zheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
34
|
Szabo L, Molnar R, Tomesz A, Deutsch A, Darago R, Nowrasteh G, Varjas T, Nemeth B, Budan F, Kiss I. The effects of flavonoids, green tea polyphenols and coffee on DMBA induced LINE-1 DNA hypomethylation. PLoS One 2021; 16:e0250157. [PMID: 33878138 PMCID: PMC8057585 DOI: 10.1371/journal.pone.0250157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
The intake of carcinogenic and chemopreventive compounds are important nutritional factors related to the development of malignant tumorous diseases. Repetitive long interspersed element-1 (LINE-1) DNA methylation pattern plays a key role in both carcinogenesis and chemoprevention. In our present in vivo animal model, we examined LINE-1 DNA methylation pattern as potential biomarker in the liver, spleen and kidney of mice consuming green tea (Camellia sinensis) extract (catechins 80%), a chinese bayberry (Morella rubra) extract (myricetin 80%), a flavonoid extract (with added resveratrol) and coffee (Coffee arabica) extract. In the organs examined, carcinogen 7,12-dimethylbenz(a)anthracene (DMBA)-induced hypomethylation was prevented by all test materials except chinese bayberry extract in the kidneys. Moreover, the flavonoid extract caused significant hypermethylation in the liver compared to untreated controls and to other test materials. The tested chemopreventive substances have antioxidant, anti-inflammatory properties and regulate molecular biological signaling pathways. They increase glutathione levels, induce antioxidant enzymes, which decrease free radical damage caused by DMBA, and ultimately, they are able to increase the activity of DNA methyltransferase enzymes. Furthermore, flavonoids in the liver may inhibit the procarcinogen to carcinogen activation of DMBA through the inhibition of CYP1A1 enzyme. At the same time, paradoxically, myricetin can act as a prooxidant as a result of free radical damage, which can explain that it did not prevent hypomethylation in the kidneys. Our results demonstrated that LINE-1 DNA methylation pattern is a useful potential biomarker for detecting and monitoring carcinogenic and chemopreventive effects of dietary compounds.
Collapse
Affiliation(s)
- Laszlo Szabo
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Richard Molnar
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andras Tomesz
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Arpad Deutsch
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Richard Darago
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Balazs Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Ferenc Budan
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Environmental Engineering, Faculty of Engineering, University of Pannonia, Veszprém, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Istvan Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
35
|
Ahmed T, Ren H, Noman M, Shahid M, Liu M, Ali MA, Zhang J, Tian Y, Qi X, Li B. Green synthesis and characterization of zirconium oxide nanoparticles by using a native Enterobacter sp. and its antifungal activity against bayberry twig blight disease pathogen Pestalotiopsis versicolor. NANOIMPACT 2021; 21:100281. [PMID: 35559773 DOI: 10.1016/j.impact.2020.100281] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 05/11/2023]
Abstract
Pestalotiopsis versicolor is a most destructive fungal pathogen that causes twig blight disease in bayberry. For the last seven years, it is difficult to control this pathogen due to its latent infestation mode and its control through chemical fungicides is environmentally corrosive in addition to being costly. In this study, we reported the fungicidal potential of biologically synthesized zirconium oxide nanoparticles (ZrONPs) against P. versicolor for the first time. The strain used for green synthesis of ZrONPs was taxonomically identified as Enterobacter sp. strain RNT10. The production of ZrONPs in reaction mixture was confirmed through UV-vis spectroscopy analysis. Moreover, FTIR, XRD, SEM and TEM analysis showed the presence of capping proteins and crystalline nature of spherical shaped ZrONPs with particle size ranging from 33 to 75 nm. EDX spectra revealed an elemental profile of ZrONPs comprising of Zr (54.40%) and oxygen (43.49%). Biogenic ZrONPs showed substantial antifungal inhibition zones (25.18 ± 1.52 mm) at 20 μg mL-1 concentration against P. versicolor strain XJ27. Moreover, the treatment of 20 μg mL-1 ZrONPs significantly inhibited twig blight in detached leaf assay. Furthermore, imaging through SEM and TEM showed the adverse effects of ZrONPs against P. versicolor in terms of extracellular leakage of DNA and proteins. Overall, this study suggested that biogenic ZrONPs could substitute chemically synthesized antifungal agents with the specific application towards control of twig blight disease in bayberry.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Mengju Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Md Arshad Ali
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Jiannan Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Ye Tian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
36
|
citSATdb: Genome-Wide Simple Sequence Repeat (SSR) Marker Database of Citrus Species for Germplasm Characterization and Crop Improvement. Genes (Basel) 2020; 11:genes11121486. [PMID: 33321957 PMCID: PMC7764524 DOI: 10.3390/genes11121486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
Microsatellites or simple sequence repeats (SSRs) are popular co-dominant markers that play an important role in crop improvement. To enhance genomic resources in general horticulture, we identified SSRs in the genomes of eight citrus species and characterized their frequency and distribution in different genomic regions. Citrus is the world's most widely cultivated fruit crop. We have implemented a microsatellite database, citSATdb, having the highest number (~1,296,500) of putative SSR markers from the genus Citrus, represented by eight species. The database is based on a three-tier approach using MySQL, PHP, and Apache. The markers can be searched using multiple search parameters including chromosome/scaffold number(s), motif types, repeat nucleotides (1-6), SSR length, patterns of repeat motifs and chromosome/scaffold location. The cross-species transferability of selected markers can be checked using e-PCR. Further, the markers can be visualized using the Jbrowse feature. These markers can be used for distinctness, uniformity, and stability (DUS) tests of variety identification, marker-assisted selection (MAS), gene discovery, QTL mapping, and germplasm characterization. citSATdb represents a comprehensive source of markers for developing/implementing new approaches for molecular breeding, required to enhance Citrus productivity. The potential polymorphic SSR markers identified by cross-species transferability could be used for genetic diversity and population distinction in other species.
Collapse
|
37
|
Chloroplast genomes elucidate diversity, phylogeny, and taxonomy of Pulsatilla (Ranunculaceae). Sci Rep 2020; 10:19781. [PMID: 33188288 PMCID: PMC7666119 DOI: 10.1038/s41598-020-76699-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Pulsatilla (Ranunculaceae) consists of about 40 species, and many of them have horticultural and/or medicinal value. However, it is difficult to recognize and identify wild Pulsatilla species. Universal molecular markers have been used to identify these species, but insufficient phylogenetic signal was available. Here, we compared the complete chloroplast genomes of seven Pulsatilla species. The chloroplast genomes of Pulsatilla were very similar and their length ranges from 161,501 to 162,669 bp. Eight highly variable regions and potential sources of molecular markers such as simple sequence repeats, large repeat sequences, and single nucleotide polymorphisms were identified, which are valuable for studies of infra- and inter-specific genetic diversity. The SNP number differentiating any two Pulsatilla chloroplast genomes ranged from 112 to 1214, and provided sufficient data for species delimitation. Phylogenetic trees based on different data sets were consistent with one another, with the IR, SSC regions and the barcode combination rbcL + matK + trnH-psbA produced slightly different results. Phylogenetic relationships within Pulsatilla were certainly resolved using the complete cp genome sequences. Overall, this study provides plentiful chloroplast genomic resources, which will be helpful to identify members of this taxonomically challenging group in further investigation.
Collapse
|
38
|
Characteristic and Phylogenetic Analysis of the Complete Chloroplast Genomes of Three Medicinal Plants of Schisandraceae. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3536761. [PMID: 33123569 PMCID: PMC7586179 DOI: 10.1155/2020/3536761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022]
Abstract
Schisandra chinensis, which has a high development value, has long been used as medicine. Its mature fruits (called Wuweizi in Chinese) have long been used in the famous traditional Chinese medicine (TCM) recorded in the “Chinese Pharmacopoeia.” Chloroplasts (CP) are the highly conserved primitive organelles in plants, which can serve as the foundation for plant classification and identification. This study introduced the structures of the CP genomes of three Schisandraceae species and analyzed their phylogenetic relationships. Comparative analyses on the three complete chloroplast genomes can provide us with useful knowledge to identify the three plants. In this study, approximately 5 g fresh leaves were harvested for chloroplast DNA isolation according to the improved extraction method. A total of three chloroplast DNAs were extracted. Afterwards, the chloroplast genomes were reconstructed using denovo combined with reference-guided assemblies. General characteristics of the chloroplast genome and genome comparison with three Schisandraceae species was analyzed by corresponding software. The total sizes of complete chloroplast genomes of S. chinensis, S. sphenanthera, and Kadsura coccinea were 146875 bp, 146842 bp, and 145399 bp, respectively. Altogether, 124 genes were annotated, including 82 protein-coding genes, 34 tRNAs, and 8 rRNAs of all 3 species. In SSR analysis, only S. chinensis was annotated to hexanucleotides. Moreover, comparative analysis of chloroplast Schisandraceae genome sequences revealed that the gene order and gene content were slightly different among Schisandraceae species. Finally, phylogenetic trees were reconstructed, based on the genome-wide SNPs of 38 species. The method can be used to identify and differentially analyze Schisandraceae plants and offer useful information for phylogenetics as well as further studies on traditional medicinal plants.
Collapse
|
39
|
Transcriptome wide SSR discovery cross-taxa transferability and development of marker database for studying genetic diversity population structure of Lilium species. Sci Rep 2020; 10:18621. [PMID: 33122761 PMCID: PMC7596044 DOI: 10.1038/s41598-020-75553-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023] Open
Abstract
Lily belongs to family liliaceae, which mainly propagates vegetatively. Therefore, sufficient number of polymorphic, informative, and functional molecular markers are essential for studying a wide range of genetic parameters in Lilium species. We attempted to develop, characterize and design SSR (simple sequence repeat) markers using online genetic resources for analyzing genetic diversity and population structure of Lilium species. We found di-nucleotide repeat motif were more frequent (4684) within 0.14 gb (giga bases) transcriptome than other repeats, of which was two times higher than tetra-repeat motifs. Frequency of di-(AG/CT), tri-(AGG/CTT), tetra-(AAAT), penta-(AGAGG), and hexa-(AGAGGG) repeats was 34.9%, 7.0%, 0.4%, 0.3%, and 0.2%, respectively. A total of 3607 non-redundant SSR primer pairs was designed based on the sequences of CDS, 5'-UTR and 3'-UTR region covering 34%, 14%, 23%, respectively. Among them, a sub set of primers (245 SSR) was validated using polymerase chain reaction (PCR) amplification, of which 167 primers gave expected PCR amplicon and 101 primers showed polymorphism. Each locus contained 2 to 12 alleles on average 0.82 PIC (polymorphic information content) value. A total of 87 lily accessions was subjected to genetic diversity analysis using polymorphic SSRs and found to separate into seven groups with 0.73 to 0.79 heterozygosity. Our data on large scale SSR based genetic diversity and population structure analysis may help to accelerate the breeding programs of lily through utilizing different genomes, understanding genetics and characterizing germplasm with efficient manner.
Collapse
|
40
|
Abbate L, Mercati F, Di Noto G, Heuertz M, Carimi F, Fatta del Bosco S, Schicchi R. Genetic Distinctiveness Highlights the Conservation Value of a Sicilian Manna Ash Germplasm Collection Assigned to Fraxinus angustifolia (Oleaceae). PLANTS 2020; 9:plants9081035. [PMID: 32824084 PMCID: PMC7463994 DOI: 10.3390/plants9081035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
The cosmopolitan genus Fraxinus comprises about 40 species occupying several habitats in the Northern Hemisphere. With some species hybridizing and sharing genetic variants, questions remain on the species assignment of germplasm within the genus Fraxinus despite numerous species-specific assessments. A multidisciplinary approach was employed to provide a definitive insight into the genetics of an endangered Fraxinus “manna ash” collection, located in a rich plant biodiversity hotspot of the Madonie Mountains (Sicily). Although the collection size was small, genetic diversity, assessed by chloroplast (cpSSR) and nuclear (nSSR) microsatellites (SSR—Simple Sequence Repeats), allowed identifying three different chloroplast haplotypes, with one (H5) dominant, and several polymorphic loci, able to discriminate most of the local accessions studied. Molecular data were linked to cytofluorimetric and phenotypic evaluations and, contrary to popular belief that manna ash is Fraxinus ornus L., the germplasm currently used for manna production belongs to Fraxinus angustifolia Vahl. Interestingly, joint analysis of our genetic panel with a large European dataset of Fraxinus spp. suggested the presence of a possible glacial refuge in Sicily, confirming its importance as biodiversity source. Our results will be helpful for the design of long-term conservation programs for genetic resources, such as in situ and ex situ conservation, seed collection and tree reintroduction.
Collapse
Affiliation(s)
- Loredana Abbate
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Corso Calatafimi 414, 90129 Palermo, Italy; (L.A.); (F.C.); (S.F.d.B.)
| | - Francesco Mercati
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Corso Calatafimi 414, 90129 Palermo, Italy; (L.A.); (F.C.); (S.F.d.B.)
- Correspondence: ; Tel.: +39-091-6574578
| | - Giuseppe Di Noto
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Via Archirafi 38, 90123 Palermo, Italy; (G.D.N.); (R.S.)
| | - Myriam Heuertz
- Institut National de Recherche Pour l’agriculture, l’alimentation et l’environnement (INRAE), Univ. Bordeaux, BIOGECO, 69 route d’Arcachon, F-33610 Cestas, France;
| | - Francesco Carimi
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Corso Calatafimi 414, 90129 Palermo, Italy; (L.A.); (F.C.); (S.F.d.B.)
| | - Sergio Fatta del Bosco
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Corso Calatafimi 414, 90129 Palermo, Italy; (L.A.); (F.C.); (S.F.d.B.)
| | - Rosario Schicchi
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Via Archirafi 38, 90123 Palermo, Italy; (G.D.N.); (R.S.)
| |
Collapse
|
41
|
Yang CH, Liu X, Cui YX, Nie LP, Lin YL, Wei XP, Wang Y, Yao H. Molecular structure and phylogenetic analyses of the complete chloroplast genomes of three original species of Pyrrosiae Folium. Chin J Nat Med 2020; 18:573-581. [PMID: 32768164 DOI: 10.1016/s1875-5364(20)30069-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Pyrrosia petiolosa, Pyrrosia lingua and Pyrrosia sheareri are recorded as original plants of Pyrrosiae Folium (PF) and commonly used as Chinese herbal medicines. Due to the similar morphological features of PF and its adulterants, common DNA barcodes cannot accurately distinguish PF species. Knowledge of the chloroplast (cp) genome is widely used in species identification, molecular marker and phylogenetic analyses. Herein, we determined the complete cp genomes of three original species of PF via high-throughput sequencing technologies. The three cp genomes exhibited a typical quadripartite structure with sizes ranging from 158 165 to 163 026 bp. The cp genomes of P. petiolosa and P. lingua encoded 130 genes, whilst that of P. sheareri encoded 131 genes. The complete cp genomes were compared, and five highly divergent regions of petA-psbJ, matK-rps16, ndhC-trnM, psbM-petN and psaC-ndhE were screened as potential DNA barcodes for identification of Pyrrosia genus species. The phylogenetic tree we obtained indicated that P. petiolosa and P. lingua are clustered in a single clade and, thus, share a close relationship. This study provides invaluable information for further studies on the species identification, taxonomy and phylogeny of Pyrrosia genus species.
Collapse
Affiliation(s)
- Chu-Hong Yang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Ying-Xian Cui
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
| | - Li-Ping Nie
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
| | - Yu-Lin Lin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xue-Ping Wei
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China.
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
42
|
Vu DD, Shah SNM, Pham MP, Bui VT, Nguyen MT, Nguyen TPT. De novo assembly and Transcriptome characterization of an endemic species of Vietnam, Panax vietnamensis Ha et Grushv., including the development of EST-SSR markers for population genetics. BMC PLANT BIOLOGY 2020; 20:358. [PMID: 32727354 PMCID: PMC7391578 DOI: 10.1186/s12870-020-02571-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/23/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Understanding the genetic diversity in endangered species that occur inforest remnants is necessary to establish efficient strategies for the species conservation, restoration and management. Panax vietnamensis Ha et Grushv. is medicinally important, endemic and endangered species of Vietnam. However, genetic diversity and structure of population are unknown due to lack of efficient molecular markers. RESULTS In this study, we employed Illumina HiSeq™ 4000 sequencing to analyze the transcriptomes of P. vietnamensis (roots, leaves and stems). Raw reads total of 23,741,783 was obtained and then assembled, from which the generated unigenes were 89,271 (average length = 598.3191 nt). The 31,686 unigenes were annotated in different databases i.e. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Nucleotide Collection (NR/NT) and Swiss-Prot for functional annotation. Further, 11,343 EST-SSRs were detected. From 7774 primer pairs, 101 were selected for polymorphism validation, in which; 20 primer pairs were successfully amplified to DNA fragments and significant amounts of polymorphism was observed within population. The nine polymorphic microsatellite loci were used for population structure and diversity analyses. The obtained results revealed high levels of genetic diversity in populations, the average observed and expected heterozygosity were HO = 0.422 and HE = 0.479, respectively. During the Bottleneck analysis using TPM and SMM models (p < 0.01) shows that targeted population is significantly heterozygote deficient. This suggests sign of the bottleneck in all populations. Genetic differentiation between populations was moderate (FST = 0.133) and indicating slightly high level of gene flow (Nm = 1.63). Analysis of molecular variance (AMOVA) showed 63.17% of variation within individuals and 12.45% among populations. Our results shows two genetic clusters related to geographical distances. CONCLUSION Our study will assist conservators in future conservation management, breeding, production and habitats restoration of the species.
Collapse
Affiliation(s)
- Dinh Duy Vu
- Vietnam - Russia Tropical Centre, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Department of Experimental Taxonomy & Genetic Diversity, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Syed Noor Muhammad Shah
- Department of Horticulture, Faculty of Agriculture, Gomal University Dera Ismail Khan, Dera Ismail Khan, Pakistan
| | - Mai Phuong Pham
- Vietnam - Russia Tropical Centre, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
| | - Van Thang Bui
- College of Forestry Biotechnology, Vietnam National University of Forestry, Xuan Mai, Hanoi, Vietnam
| | - Minh Tam Nguyen
- Department of Experimental Taxonomy & Genetic Diversity, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Phuong Trang Nguyen
- Institute of Ecology and Biological Resource, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, , Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
43
|
Liang H, Zhang Y, Deng J, Gao G, Ding C, Zhang L, Yang R. The Complete Chloroplast Genome Sequences of 14 Curcuma Species: Insights Into Genome Evolution and Phylogenetic Relationships Within Zingiberales. Front Genet 2020; 11:802. [PMID: 32849804 PMCID: PMC7396571 DOI: 10.3389/fgene.2020.00802] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Zingiberaceae is taxonomically complex family where species are perennial herb. However, lack of chloroplast genomic information severely hinders our understanding of Zingiberaceae species in the research of evolution and phylogenetic relationships. In this study, the complete chloroplast (cp) genomes of fourteen Curcuma species were assembled and characterized using next-generation sequencing. We compared the genome features, repeat sequences, sequence divergence, and constructed the phylogenetic relationships of the 25 Zingiberaceae species. In each Zingiberaceae species, the 25 complete chloroplast genomes ranging from 155,890 bp (Zingiber spectabile) to 164,101 bp (Lanxangia tsaoko) contained 111 genes consisting of 77 protein coding genes, 4 ribosomal RNAs and 30 transfer RNAs. These chloroplast genomes are similar to most angiosperm that consisted of a four-part circular DNA molecules. Moreover, the characteristics of the long repeats sequences and simple sequence repeats (SSRs) were found. Six divergent hotspots regions (matK-trnk, Rps16-trnQ, petN-psbM, rpl32, ndhA, and ycf1) were identified in the 25 Zingiberaceae chloroplast genomes, which could be potential molecular markers. In addition to Wurfbainia longiligularis, the ψycf1 was discovered among the 25 Zingiberaceae species. The shared protein coding genes from 52 Zingiberales plants and four other family species as out groups were used to construct phylogenetic trees distinguished by maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) and showed that Musaceae was the basal group in Zingiberales, and Curcuma had a close relationship with Stahlianthu. Besides this, Curcuma flaviflora was clustered together with Zingiber. Its distribution area (Southeast Asia) overlaps with the latter. Maybe hybridization occur in related groups within the same region. This may explain why Zingiberaceae species have a complex phylogeny, and more samples and genetic data were necessary to confirm their relationship. This study provide the reliable information and high-quality chloroplast genomes and genome resources for future Zingiberaceae research.
Collapse
Affiliation(s)
- Heng Liang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Yan Zhang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Jiabin Deng
- School of Geography and Tourism, Guizhou Education University, Guiyang, China
| | - Gang Gao
- College of Life Sciences and Food Engineering, Yibin University, Yibin, China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
44
|
Feng LY, Liu J, Gao CW, Wu HB, Li GH, Gao LZ. Higher Genomic Variation in Wild Than Cultivated Rubber Trees, Hevea brasiliensis, Revealed by Comparative Analyses of Chloroplast Genomes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Androsiuk P, Jastrzębski JP, Paukszto Ł, Makowczenko K, Okorski A, Pszczółkowska A, Chwedorzewska KJ, Górecki R, Giełwanowska I. Evolutionary dynamics of the chloroplast genome sequences of six Colobanthus species. Sci Rep 2020; 10:11522. [PMID: 32661280 PMCID: PMC7359349 DOI: 10.1038/s41598-020-68563-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/25/2020] [Indexed: 11/08/2022] Open
Abstract
The complete plastome sequences of six species were sequenced to better understand the evolutionary relationships and mutation patterns in the chloroplast genome of the genus Colobanthus. The length of the chloroplast genome sequences of C. acicularis, C. affinis, C. lycopodioides, C. nivicola, C. pulvinatus and C. subulatus ranged from 151,050 to 151,462 bp. The quadripartite circular structure of these genome sequences has the same overall organization and gene content with 73 protein-coding genes, 30 tRNA genes, four rRNA genes and five conserved chloroplast open reading frames. A total of 153 repeat sequences were revealed. Forward repeats were dominant, whereas complementary repeats were found only in C. pulvinatus. The mononucleotide SSRs composed of A/T units were most common, and hexanucleotide SSRs were detected least often. Eleven highly variable regions which could be utilized as potential markers for phylogeny reconstruction, species identification or phylogeography were identified within Colobanthus chloroplast genomes. Seventy-three protein-coding genes were used in phylogenetic analyses. Reconstructed phylogeny was consistent with the systematic position of the studied species, and the representatives of the same genus were grouped in one clade. All studied Colobanthus species formed a single group and C. lycopodioides was least similar to the remaining species.
Collapse
Affiliation(s)
- Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Karol Makowczenko
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | - Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | | | - Ryszard Górecki
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Irena Giełwanowska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| |
Collapse
|
46
|
Wang Y, Jia HM, Shen YT, Zhao HB, Yang QS, Zhu CQ, Sun DL, Wang GY, Zhou CC, Jiao Y, Chai CY, Yan LJ, Li XW, Jia HJ, Gao ZS. Construction of an anchoring SSR marker genetic linkage map and detection of a sex-linked region in two dioecious populations of red bayberry. HORTICULTURE RESEARCH 2020; 7:53. [PMID: 32257239 PMCID: PMC7109115 DOI: 10.1038/s41438-020-0276-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/02/2020] [Accepted: 02/12/2020] [Indexed: 05/21/2023]
Abstract
Red bayberry (Morella rubra) is an evergreen fruit tree found in southern China whose whole-genome sequence has recently been published. We updated the linkage map of the species by adding 118 SSR markers and the female-specific marker MrFT2_BD-SEX. The integrated map included eight linkage groups and spanned 491 cM. Eleven sex-associated markers were identified, six of which were located in linkage group 8, in agreement with the previously reported location of the sex-determining region. The MrFT2_BD-SEX marker was genotyped in 203 cultivated accessions. Among the females of the accessions, we found two female-specific alleles, designated W-b (151 bp) and W-d (129 bp). We previously found that 'Dongkui', a female cultivar, could produce viable pollen (we refer to such plants 'Dongkui-male') and serve as the paternal parent in crosses. The genotypes of the MrFT2_BD-SEX marker were W-b/Z in 'Biqi' and W-d/Z in 'Dongkui-male'. The progeny of a cross between these parents produced a 3:1 female (W-) to male (ZZ) ratio and the expected 1:1:1:1 ratio of W-b/W-d: W-b/Z: W-d/Z: Z/Z. In addition, the flowering and fruiting phenotypes of all the F1 progeny fit their genotypes. Our results confirm the existence of ZW sex determination and show that the female phenotype is controlled by a single dominant locus (W) in a small genomic region (59 kb and less than 3.3 cM). Furthermore, we have produced a homozygous "super female" (WW) that should produce all-female offspring in the F2 generation, providing a foundation for commercial use and presenting great potential for use in modern breeding programs.
Collapse
Affiliation(s)
- Yan Wang
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Hui-Min Jia
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Yu-Tong Shen
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Hai-Bo Zhao
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Qin-Song Yang
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Chang-Qing Zhu
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - De-Li Sun
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Guo-Yun Wang
- Yuyao Forestry Technology Extension Center, 315400 Ningbo, China
| | - Chao-Chao Zhou
- Yuyao Forestry Technology Extension Center, 315400 Ningbo, China
| | - Yun Jiao
- Institute of Forestry, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Chun-Yan Chai
- Cixi Forestry Technology Extension Center, 315300 Cixi, China
| | - Li-Ju Yan
- Linhai Forestry Technology Extension Center, 317000 Taizhou, China
| | - Xiong-Wei Li
- Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, 201403 Shanghai, China
| | - Hui-Juan Jia
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Zhong-Shan Gao
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
47
|
Lin E, Zhuang H, Yu J, Liu X, Huang H, Zhu M, Tong Z. Genome survey of Chinese fir (Cunninghamia lanceolata): Identification of genomic SSRs and demonstration of their utility in genetic diversity analysis. Sci Rep 2020; 10:4698. [PMID: 32170167 PMCID: PMC7070021 DOI: 10.1038/s41598-020-61611-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/27/2020] [Indexed: 12/22/2022] Open
Abstract
Chinese fir (Cunninghamia lanceolata) is an important coniferous species that accounts for 20–30% of the total commercial timber production in China. Though traditional breeding of Chinese fir has achieved remarkable success, molecular-assisted breeding has made little progress due to limited availability of genomic information. In this study, a survey of Chinese fir genome was performed using the Illumina HiSeq Xten sequencing platform. K-mer analysis indicated that Chinese fir has a large genome of approximately 11.6 Gb with 74.89% repetitive elements and is highly heterozygous. Meanwhile, its genome size was estimated to be 13.2 Gb using flow cytometry. A total of 778.02 Gb clean reads were assembled into 10,982,272 scaffolds with an N50 of 1.57 kb. In total, 362,193 SSR loci were detected with a frequency of 13.18 kb. Dinucleotide repeats were the most abundant (up to 73.6% of the total SSRs), followed by trinucleotide and tetranucleotide repeats. Forty-six polymorphic pairs were developed, and 298 alleles were successfully amplified from 199 Chinese fir clones. The average PIC value was 0.53, indicating that the identified genomic SSR (gSSR) markers have a high degree of polymorphism. In addition, these breeding resources were divided into three groups, and a limited gene flow existed among these inferred groups.
Collapse
Affiliation(s)
- Erpei Lin
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Hebi Zhuang
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jinjian Yu
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Xueyu Liu
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Huahong Huang
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| | - Muyuan Zhu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zaikang Tong
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
48
|
Carrubba A, Abbate L, Sarno M, Sunseri F, Mauceri A, Lupini A, Mercati F. Characterization of Sicilian rosemary (Rosmarinus officinalis L.) germplasm through a multidisciplinary approach. PLANTA 2020; 251:37. [PMID: 31907671 DOI: 10.1007/s00425-019-03327-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
In Sicily, small differences exist between wild and cultivated rosemary biotypes; VOCs and genetic profiles may be a useful tool to distinguish them. A germplasm collection of Rosmarinus officinalis L. was harvested from 15 locations in Sicily. Eleven wild and four cultivated populations were collected and, due to the surveyed area covered, they can be considered as a representative panel of Sicilian genetic background of the species. Ex situ plant collection was transferred to the field cultivation in homogeneous conditions for characterizing through a multidisciplinary approach. The study included morphological traits observations (growth habitus, flower color, number and size of leaves, length and number of internodes), VOC profiles using HS-SPME, genome size by flow cytometry analysis, and genetic characterization by means of DNA and nuclear microsatellite (nSSR) investigation. To detect any pattern within- and among-populations variability, all morphological and chemical data were submitted to ANOVA, while clustering and structure population analysis were carried out using genetic profiles. The present work allowed us to distinguish rather well between wild and cultivated genotypes and to underline the biodiversity richness among rosemary Sicilian germplasm, never highlighted, useful for future breeding programs addressed to exploit this important resource.
Collapse
Affiliation(s)
- Alessandra Carrubba
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Palermo, Italy.
| | - Loredana Abbate
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy
| | - Mauro Sarno
- Department of Agriculture, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Francesco Sunseri
- Dipartimento AGRARIA, Località Feo di Vito snc, 89121, Reggio Calabria, Italy
| | - Antonio Mauceri
- Dipartimento AGRARIA, Località Feo di Vito snc, 89121, Reggio Calabria, Italy
| | - Antonio Lupini
- Dipartimento AGRARIA, Località Feo di Vito snc, 89121, Reggio Calabria, Italy
| | - Francesco Mercati
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy
| |
Collapse
|
49
|
Wu B, Zhong Y, Wu Q, Chen F, Zhong G, Cui Y. Genetic Diversity, Pedigree Relationships, and A Haplotype-Based DNA Fingerprinting System of Red Bayberry Cultivars. FRONTIERS IN PLANT SCIENCE 2020; 11:563452. [PMID: 33013982 PMCID: PMC7509436 DOI: 10.3389/fpls.2020.563452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/24/2020] [Indexed: 05/16/2023]
Abstract
High throughput sequencing was used to reveal the distribution of whole-genome variations in cultivated Morella rubra (Sieb. et Zucc.). A total of 3,151,123 SNPs, 371,757 small indels, and 15,904 SVs were detected in 52 accessions. Verification by Sanger sequencing demonstrated that the positive rate of the SNPs was approximately 97.3%. Search for more genetic variations was expanded to 141 red bayberry accessions, most of which were cultivars, by sequencing 19 selected genomic segments (SEG1-19). The results showed that each segment harbored, on average, 7.8 alleles (haplotypes), a haplotype diversity of 0.42, and a polymorphic information content (PIC) of 0.40. Seventy-two different genotypes were identified from the 141 accessions, and statistical analysis showed that the accessions with duplicated genotypes were either somatic mutants or simply synonyms. Core set selection results showed that a minimum of 34 genotypes could already have covered all the alleles on the segments. A DNA fingerprinting system was developed for red bayberry, which used the diversity information of only 8 DNA segments yet still achieved a very high efficiency without losing robustness. No large clade was robustly supported by hierarchical clustering, and well-supported small clusters mainly included close relatives. These results should lead to an improved understanding of the genetic diversity of red bayberry and be valuable for future molecular breeding and variety protection.
Collapse
Affiliation(s)
- Bo Wu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, & Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences (IFTR-GDAAS), Guangzhou, China
| | - Yun Zhong
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, & Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences (IFTR-GDAAS), Guangzhou, China
| | - Qianqian Wu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, & Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences (IFTR-GDAAS), Guangzhou, China
| | - Fangyong Chen
- Citrus Research Institute of Zhejiang, Huangyan, China
- *Correspondence: Fangyong Chen, ; Guangyan Zhong,
| | - Guangyan Zhong
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, & Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences (IFTR-GDAAS), Guangzhou, China
- *Correspondence: Fangyong Chen, ; Guangyan Zhong,
| | - Yiping Cui
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, & Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
50
|
Cui Y, Zhou J, Chen X, Xu Z, Wang Y, Sun W, Song J, Yao H. Complete chloroplast genome and comparative analysis of three Lycium (Solanaceae) species with medicinal and edible properties. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|