1
|
Yang L, Qin W, Wei X, Liu R, Yang J, Wang Z, Yan Q, Zhang Y, Hu W, Han X, Gao C, Zhan J, Gao B, Ge X, Li F, Yang Z. Regulatory networks of coresident subgenomes during rapid fiber cell elongation in upland cotton. PLANT COMMUNICATIONS 2024:101130. [PMID: 39257006 DOI: 10.1016/j.xplc.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Cotton, an intriguing plant species shaped by polyploidization, evolution, and domestication, holds particular interest due to the complex mechanisms governing fiber traits across its two subgenomes. However, the regulatory elements or transcriptional networks between subgenomes during fiber elongation remain to be fully clarified. Here, we analyzed 1462 cotton fiber samples to reconstruct the gene-expression regulatory networks that influence fiber cell elongation. Inter-subgenome expression quantitative trait loci (eQTLs) largely dictate gene transcription, with a notable tendency for the D subgenome to regulate A-subgenome eGenes. This regulation reveals synchronized homoeologous gene expression driven by co-localized eQTLs and divergent patterns that diminish genetic correlations, thus leading to preferential expression in the A and D subgenomes. Hotspot456 emerged as a key regulator of fiber initiation and elongation, and artificial selection of trans-eQTLs in hotspot456 that positively regulate KCS1 has facilitated cell elongation. Experiments designed to clarify the roles of trans-eQTLs in improved fiber breeding confirmed the inhibition of GhTOL9 by a specific trans-eQTL via GhWRKY28, which negatively affects fiber elongation. We propose a model in which the GhWRKY28-GhTOL9 module regulates this process through the ESCRT (endosomal sorting complex required for transport) pathway. This research significantly advances our understanding of cotton's evolutionary and domestication processes and the intricate regulatory mechanisms that underlie significant plant traits.
Collapse
Affiliation(s)
- Lan Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenqiang Qin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xi Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Rui Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jiaxiang Yang
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China
| | - Zhi Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qingdi Yan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yihao Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China
| | - Wei Hu
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China
| | - Xiao Han
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Chenxu Gao
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China
| | - Jingjing Zhan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Baibai Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyang Ge
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China.
| | - Fuguang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China.
| | - Zhaoen Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China.
| |
Collapse
|
2
|
Conover JL, Grover CE, Sharbrough J, Sloan DB, Peterson DG, Wendel JF. Little evidence for homoeologous gene conversion and homoeologous exchange events in Gossypium allopolyploids. AMERICAN JOURNAL OF BOTANY 2024; 111:e16386. [PMID: 39107998 DOI: 10.1002/ajb2.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
PREMISE A complicating factor in analyzing allopolyploid genomes is the possibility of physical interactions between homoeologous chromosomes during meiosis, resulting in either crossover (homoeologous exchanges) or non-crossover products (homoeologous gene conversion). Homoeologous gene conversion was first described in cotton by comparing SNP patterns in sequences from two diploid progenitors with those from the allopolyploid subgenomes. These analyses, however, did not explicitly consider other evolutionary scenarios that may give rise to similar SNP patterns as homoeologous gene conversion, creating uncertainties about the reality of the inferred gene conversion events. METHODS Here, we use an expanded phylogenetic sampling of high-quality genome assemblies from seven allopolyploid Gossypium species (all derived from the same polyploidy event), four diploid species (two closely related to each subgenome), and a diploid outgroup to derive a robust method for identifying potential genomic regions of gene conversion and homoeologous exchange. RESULTS We found little evidence for homoeologous gene conversion in allopolyploid cottons, and that only two of the 40 best-supported events were shared by more than one species. We did, however, reveal a single, shared homoeologous exchange event at one end of chromosome 1, which occurred shortly after allopolyploidization but prior to divergence of the descendant species. CONCLUSIONS Overall, our analyses demonstrated that homoeologous gene conversion and homoeologous exchanges are uncommon in Gossypium, affecting between zero and 24 genes per subgenome (0.0-0.065%) across the seven species. More generally, we highlighted the potential problems of using simple four-taxon tests to investigate patterns of homoeologous gene conversion in established allopolyploids.
Collapse
Affiliation(s)
- Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
- Ecology and Evolutionary Biology Department, University of Arizona, Tucson, 85718, AZ, USA
- Molecular and Cellular Biology Department, University of Arizona, Tucson, 85718, AZ, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, 87801, NM, USA
| | - Daniel B Sloan
- Biology Department, Colorado State University, Fort Collins, 80521, CO, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, 39762, MS, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
| |
Collapse
|
3
|
Aufiero G, Fruggiero C, D’Angelo D, D’Agostino N. Homoeologs in Allopolyploids: Navigating Redundancy as Both an Evolutionary Opportunity and a Technical Challenge-A Transcriptomics Perspective. Genes (Basel) 2024; 15:977. [PMID: 39202338 PMCID: PMC11353593 DOI: 10.3390/genes15080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Allopolyploidy in plants involves the merging of two or more distinct parental genomes into a single nucleus, a significant evolutionary process in the plant kingdom. Transcriptomic analysis provides invaluable insights into allopolyploid plants by elucidating the fate of duplicated genes, revealing evolutionary novelties and uncovering their environmental adaptations. By examining gene expression profiles, scientists can discern how duplicated genes have evolved to acquire new functions or regulatory roles. This process often leads to the development of novel traits and adaptive strategies that allopolyploid plants leverage to thrive in diverse ecological niches. Understanding these molecular mechanisms not only enhances our appreciation of the genetic complexity underlying allopolyploidy but also underscores their importance in agriculture and ecosystem resilience. However, transcriptome profiling is challenging due to genomic redundancy, which is further complicated by the presence of multiple chromosomes sets and the variations among homoeologs and allelic genes. Prior to transcriptome analysis, sub-genome phasing and homoeology inference are essential for obtaining a comprehensive view of gene expression. This review aims to clarify the terminology in this field, identify the most challenging aspects of transcriptome analysis, explain their inherent difficulties, and suggest reliable analytic strategies. Furthermore, bulk RNA-seq is highlighted as a primary method for studying allopolyploid gene expression, focusing on critical steps like read mapping and normalization in differential gene expression analysis. This approach effectively captures gene expression from both parental genomes, facilitating a comprehensive analysis of their combined profiles. Its sensitivity in detecting low-abundance transcripts allows for subtle differences between parental genomes to be identified, crucial for understanding regulatory dynamics and gene expression balance in allopolyploids.
Collapse
Affiliation(s)
| | | | | | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (G.A.); (C.F.); (D.D.)
| |
Collapse
|
4
|
Tian Y, Fang Y, Zhang K, Zhai Z, Yang Y, He M, Cao X. Applications of Virus-Induced Gene Silencing in Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:272. [PMID: 38256825 PMCID: PMC10819639 DOI: 10.3390/plants13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technique that has become an effective tool to investigate gene function in plants. Cotton is one of the most important economic crops globally. In the past decade, VIGS has been successfully applied in cotton functional genomic studies, including those examining abiotic and biotic stress responses and vegetative and reproductive development. This article summarizes the traditional vectors used in the cotton VIGS system, the visible markers used for endogenous gene silencing, the applications of VIGS in cotton functional genomics, and the limitations of VIGS and how they can be addressed in cotton.
Collapse
Affiliation(s)
- Yue Tian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yao Fang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Kaixin Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Zeyang Zhai
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yujie Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Meiyu He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Xu Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| |
Collapse
|
5
|
Gu H, Zhao Z, Wei Y, Li P, Lu Q, Liu Y, Wang T, Hu N, Wan S, Zhang B, Hu S, Peng R. Genome-Wide Identification and Functional Analysis of RF2 Gene Family and the Critical Role of GhRF2-32 in Response to Drought Stress in Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:2613. [PMID: 37514228 PMCID: PMC10385120 DOI: 10.3390/plants12142613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Cotton is an important natural fiber crop. The RF2 gene family is a member of the bZIP transcription factor superfamily, which plays an important role in plant resistance to environmental stresses. In this paper, the RF2 gene family of four cotton species was analyzed genome-wide, and the key gene RF2-32 was cloned for functional verification. A total of 113 RF2 genes were identified in the four cotton species, and the RF2 family was relatively conserved during the evolution of cotton. Chromosome mapping and collinear analysis indicated that fragment replication was the main expansion mode of RF2 gene family during evolution. Cis-element analysis showed that there were many elements related to light response, hormone response and abiotic stress response in the promoters of RF2 genes. The transcriptome and qRT-PCR analysis of RF2 family genes in upland cotton showed that RF2 family genes responded to salt stress and drought stress. GhRF2-32 protein was localized in the cell nucleus. Silencing the GhRF2-32 gene showed less leaf wilting and increased total antioxidant capacity under drought and salt stress, decreased malondialdehyde content and increased drought and salt tolerance. This study revealed the evolutionary and functional diversity of the RF2 gene family, which laid a foundation for the further study of stress-resistant genes in cotton.
Collapse
Affiliation(s)
- Haonan Gu
- College of Agriculture, Tarim University, Alar 843300, China
- Anyang Institute of Technology, Anyang 455000, China
| | - Zilin Zhao
- College of Agriculture, Tarim University, Alar 843300, China
- Anyang Institute of Technology, Anyang 455000, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang 455000, China
| | - Pengtao Li
- Anyang Institute of Technology, Anyang 455000, China
| | - Quanwei Lu
- Anyang Institute of Technology, Anyang 455000, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang 455000, China
| | - Tao Wang
- Anyang Institute of Technology, Anyang 455000, China
| | - Nan Hu
- Anyang Institute of Technology, Anyang 455000, China
| | - Sumei Wan
- College of Agriculture, Tarim University, Alar 843300, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Shoulin Hu
- College of Agriculture, Tarim University, Alar 843300, China
| | - Renhai Peng
- College of Agriculture, Tarim University, Alar 843300, China
- Anyang Institute of Technology, Anyang 455000, China
| |
Collapse
|
6
|
Kim HJ, Liu Y, Thyssen GN, Naoumkina M, Frelichowski J. Phenomics and transcriptomics analyses reveal deposition of suberin and lignin in the short fiber cell walls produced from a wild cotton species and two mutants. PLoS One 2023; 18:e0282799. [PMID: 36893139 PMCID: PMC9997941 DOI: 10.1371/journal.pone.0282799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023] Open
Abstract
Fiber length is one of the major properties determining the quality and commercial value of cotton. To understand the mechanisms regulating fiber length, genetic variations of cotton species and mutants producing short fibers have been compared with cultivated cottons generating long and normal fibers. However, their phenomic variation other than fiber length has not been well characterized. Therefore, we compared physical and chemical properties of the short fibers with the long fibers. Fiber characteristics were compared in two sets: 1) wild diploid Gossypium raimondii Ulbrich (short fibers) with cultivated diploid G. arboreum L and tetraploid G. hirsutum L. (long fibers); 2) G. hirsutum short fiber mutants, Ligon-lintless 1 (Li1) and 2 (Li2) with their near isogenic line (NIL), DP-5690 (long fibers). Chemical analyses showed that the short fibers commonly consisted of greater non-cellulosic components, including lignin and suberin, than the long fibers. Transcriptomic analyses also identified up-regulation of the genes related to suberin and lignin biosynthesis in the short fibers. Our results may provide insight on how high levels of suberin and lignin in cell walls can affect cotton fiber length. The approaches combining phenomic and transcriptomic analyses of multiple sets of cotton fibers sharing a common phenotype would facilitate identifying genes and common pathways that significantly influence cotton fiber properties.
Collapse
Affiliation(s)
- Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
- * E-mail:
| | - Yongliang Liu
- USDA-ARS, Southern Regional Research Center, Cotton Structure and Quality Research Unit, New Orleans, LA, United States of America
| | - Gregory N. Thyssen
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
| | - Marina Naoumkina
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
| | - James Frelichowski
- USDA-ARS-SPARC, Crop Germplasm Research Unit, College Station, TX, United States of America
| |
Collapse
|
7
|
Khan D, Ziegler DJ, Kalichuk JL, Hoi V, Huynh N, Hajihassani A, Parkin IAP, Robinson SJ, Belmonte MF. Gene expression profiling reveals transcription factor networks and subgenome bias during Brassica napus seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:477-489. [PMID: 34786793 DOI: 10.1111/tpj.15587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 05/22/2023]
Abstract
We profiled the global gene expression landscape across the reproductive lifecycle of Brassica napus. Comparative analysis of this nascent amphidiploid revealed the contribution of each subgenome to plant reproduction. Whole-genome transcription factor networks identified BZIP11 as a transcriptional regulator of early B. napus seed development. Knockdown of BZIP11 using RNA interference resulted in a similar reduction in gene activity of predicted gene targets, and a reproductive-lethal phenotype. Global mRNA profiling revealed lower accumulation of Cn subgenome transcripts relative to the An subgenome. Subgenome-specific transcription factor networks identified distinct transcription factor families enriched in each of the An and Cn subgenomes early in seed development. Analysis of laser-microdissected seed subregions further reveal subgenome expression dynamics in the embryo, endosperm and seed coat of early stage seeds. Transcription factors predicted to be regulators encoded by the An subgenome are expressed primarily in the seed coat, whereas regulators encoded by the Cn subgenome were expressed primarily in the embryo. Data suggest subgenome bias are characteristic features of the B. napus seed throughout development, and that such bias might not be universal across the embryo, endosperm and seed coat of the developing seed. Transcriptional networks spanning both the An and Cn genomes of the whole B. napus seed can identify valuable targets for seed development research and that -omics level approaches to studying gene regulation in B. napus can benefit from both broad and high-resolution analyses.
Collapse
Affiliation(s)
- Deirdre Khan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Dylan J Ziegler
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jenna L Kalichuk
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Vanessa Hoi
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Nina Huynh
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Abolfazl Hajihassani
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
8
|
Conover JL, Wendel JF. Deleterious Mutations Accumulate Faster in Allopolyploid than Diploid Cotton (Gossypium) and Unequally between Subgenomes. Mol Biol Evol 2022; 39:6517786. [PMID: 35099532 PMCID: PMC8841602 DOI: 10.1093/molbev/msac024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Whole genome duplication (polyploidization) is among the most dramatic mutational processes in nature, so understanding how natural selection differs in polyploids relative to diploids is an important goal. Population genetics theory predicts that recessive deleterious mutations accumulate faster in allopolyploids than diploids due to the masking effect of redundant gene copies, but this prediction is hitherto unconfirmed. Here, we use the cotton genus (Gossypium), which contains seven allopolyploids derived from a single polyploidization event 1-2 million years ago, to investigate deleterious mutation accumulation. We use two methods of identifying deleterious mutations at the nucleotide and amino acid level, along with whole-genome resequencing of 43 individuals spanning six allopolyploid species and their two diploid progenitors, to demonstrate that deleterious mutations accumulate faster in allopolyploids than in their diploid progenitors. We find that, unlike what would be expected under models of demographic changes alone, strongly deleterious mutations show the biggest difference between ploidy levels, and this effect diminishes for moderately and mildly deleterious mutations. We further show that the proportion of nonsynonymous mutations that are deleterious differs between the two co-resident subgenomes in the allopolyploids, suggesting that homoeologous masking acts unequally between subgenomes. Our results provide a genome-wide perspective on classic notions of the significance of gene duplication that likely are broadly applicable to allopolyploids, with implications for our understanding of the evolutionary fate of deleterious mutations. Finally, we note that some measures of selection (e.g. dN/dS, πN/πS) may be biased when species of different ploidy levels are compared.
Collapse
Affiliation(s)
- Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
9
|
Hou J, Lu D, Mason AS, Li B, An S, Li G, Cai D. Distribution of MITE family Monkey King in rapeseed (Brassica napus L) and its influence on gene expression. Genomics 2021; 113:2934-2943. [PMID: 34182079 DOI: 10.1016/j.ygeno.2021.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are a group of class II transposable elements. The MITE Monkey King (MK) was first discovered upstream of BnFLC.A10. In this study, genome resequencing of four selected B. napus accessions, revealed more than 4000 distributed copies of MKs constituting ~2.4 Mb of the B. napus genomic sequence and caused 677 polymorphisms among the four accessions. MK -polymorphism-related markers across 128 natural and 58 synthetic accessions revealed more polymorphic MKs in natural than synthetic accessions. Ten MK -induced indels significantly affected the expression levels of the nearest gene based on RNAseq analysis, six of these effects were subsequently confirmed using qRT-PCR. Decreased expression pattern of MK -derived miRNA-bna-miR6031 was also observed under various stress treatments. Further research focused on the MITE families should promote not only our understanding of gene regulatory networks but also inform crop improvement efforts.
Collapse
Affiliation(s)
- Jinna Hou
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Dandan Lu
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Annaliese S Mason
- Chair of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.
| | - Baoquan Li
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Sufang An
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaoyuan Li
- Bioinformatic Institute, Huazhong Agricultural University, Wuhan 430071, China.
| | - Dongfang Cai
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| |
Collapse
|
10
|
Schiavinato M, Bodrug‐Schepers A, Dohm JC, Himmelbauer H. Subgenome evolution in allotetraploid plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:672-688. [PMID: 33547826 PMCID: PMC8251528 DOI: 10.1111/tpj.15190] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 05/02/2023]
Abstract
Polyploidization is a well-known speciation and adaptation mechanism. Traces of former polyploidization events were discovered within many genomes, and especially in plants. Allopolyploidization by interspecific hybridization between two species is common. Among hybrid plants, many are domesticated species of agricultural interest and many of their genomes and of their presumptive parents have been sequenced. Hybrid genomes remain challenging to analyse because of the presence of multiple subgenomes. The genomes of hybrids often undergo rearrangement and degradation over time. Based on 10 hybrid plant genomes from six different genera, with hybridization dating from 10,000 to 5 million years ago, we assessed subgenome degradation, subgenomic intermixing and biased subgenome fractionation. The restructuring of hybrid genomes does not proceed proportionally with the age of the hybrid. The oldest hybrids in our data set display completely different fates: whereas the subgenomes of the tobacco plant Nicotiana benthamiana are in an advanced stage of degradation, the subgenomes of quinoa (Chenopodium quinoa) are exceptionally well conserved by structure and sequence. We observed statistically significant biased subgenome fractionation in seven out of 10 hybrids, which had different ages and subgenomic intermixing levels. Hence, we conclude that no correlation exists between biased fractionation and subgenome intermixing. Lastly, domestication may encourage or hinder subgenome intermixing, depending on the evolutionary context. In summary, comparative analysis of hybrid genomes and their presumptive parents allowed us to determine commonalities and differences between their evolutionary fates. In order to facilitate the future analysis of further hybrid genomes, we automated the analysis steps within manticore, which is publicly available at https://github.com/MatteoSchiavinato/manticore.git.
Collapse
Affiliation(s)
- Matteo Schiavinato
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)Institute of Computational BiologyMuthgasse 18Vienna1190Austria
| | - Alexandrina Bodrug‐Schepers
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)Institute of Computational BiologyMuthgasse 18Vienna1190Austria
| | - Juliane C. Dohm
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)Institute of Computational BiologyMuthgasse 18Vienna1190Austria
| | - Heinz Himmelbauer
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)Institute of Computational BiologyMuthgasse 18Vienna1190Austria
| |
Collapse
|
11
|
Higgins EE, Howell EC, Armstrong SJ, Parkin IAP. A major quantitative trait locus on chromosome A9, BnaPh1, controls homoeologous recombination in Brassica napus. THE NEW PHYTOLOGIST 2021; 229:3281-3293. [PMID: 33020949 PMCID: PMC7984352 DOI: 10.1111/nph.16986] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/23/2020] [Indexed: 05/09/2023]
Abstract
Ensuring faithful homologous recombination in allopolyploids is essential to maintain optimal fertility of the species. Variation in the ability to control aberrant pairing between homoeologous chromosomes in Brassica napus has been identified. The current study exploited the extremes of such variation to identify genetic factors that differentiate newly resynthesised B. napus, which is inherently unstable, and established B. napus, which has adapted to largely control homoeologous recombination. A segregating B. napus mapping population was analysed utilising both cytogenetic observations and high-throughput genotyping to quantify the levels of homoeologous recombination. Three quantitative trait loci (QTL) were identified that contributed to the control of homoeologous recombination in the important oilseed crop B. napus. One major QTL on BnaA9 contributed between 32 and 58% of the observed variation. This study is the first to assess homoeologous recombination and map associated QTLs resulting from deviations in normal pairing in allotetraploid B. napus. The identified QTL regions suggest candidate meiotic genes that could be manipulated in order to control this important trait and further allow the development of molecular markers to utilise this trait to exploit homoeologous recombination in a crop.
Collapse
Affiliation(s)
- Erin E. Higgins
- Agriculture and Agri‐Food Canada107 Science PlaceSaskatoonSKS7N 0X2Canada
| | - Elaine C. Howell
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Susan J. Armstrong
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | |
Collapse
|
12
|
Ali F, Qanmber G, Wei Z, Yu D, Li YH, Gan L, Li F, Wang Z. Genome-wide characterization and expression analysis of geranylgeranyl diphosphate synthase genes in cotton (Gossypium spp.) in plant development and abiotic stresses. BMC Genomics 2020; 21:561. [PMID: 32799801 PMCID: PMC7430837 DOI: 10.1186/s12864-020-06970-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/03/2020] [Indexed: 11/12/2022] Open
Abstract
Background GGPP (geranylgeranyl diphosphate) is produced in the isoprenoid pathway and mediates the function of various plant metabolites, which is synthesized by GGPPS (GGPP synthases) in plants. GGPPS characterization has not been performed in any plant species except Arabidopsis thaliana. Here, we performed a complete computational and bioinformatics analysis of GGPPS and detected their transcription expression pattern in Gossypium hirsutum for the first time so that to explore their evolutionary relationship and potential functions. Finally, we unravelled evolutionary relationship, conserved sequence logos, gene duplication and potential involvement in plant development and abiotic stresses tolerance of GGPPS genes in G. hirsutum and other plant species. Results A total of 159 GGPPS genes from 18 plant species were identified and evolutionary analysis divided these GGPPS genes into five groups to indicate their divergence from a common ancestor. Further, GGPPS family genes were conserved during evolution and underwent segmental duplication. The identified 25 GhGGPPS genes showed diverse expression pattern particularly in ovule and fiber development indicating their vital and divers roles in the fiber development. Additionally, GhGGPPS genes exhibited wide range of responses when subjected to abiotic (heat, cold, NaCl and PEG) stresses and hormonal (BL, GA, IAA, SA and MeJA) treatments, indicating their potential roles in various biotic and abiotic stresses tolerance. Conclusions The GGPPS genes are evolutionary conserved and might be involve in different developmental stages and stress response. Some potential key genes (e.g. GhGGPP4, GhGGPP9, and GhGGPP15) were suggested for further study and provided valuable source for cotton breeding to improve fiber quality and resistant to various stresses.
Collapse
Affiliation(s)
- Faiza Ali
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhenzhen Wei
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Daoqian Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Hui Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lei Gan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China. .,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China. .,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
13
|
Hu G, Grover CE, Arick MA, Liu M, Peterson DG, Wendel JF. Homoeologous gene expression and co-expression network analyses and evolutionary inference in allopolyploids. Brief Bioinform 2020; 22:1819-1835. [PMID: 32219306 PMCID: PMC7986634 DOI: 10.1093/bib/bbaa035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 12/29/2022] Open
Abstract
Polyploidy is a widespread phenomenon throughout eukaryotes. Due to the coexistence of duplicated genomes, polyploids offer unique challenges for estimating gene expression levels, which is essential for understanding the massive and various forms of transcriptomic responses accompanying polyploidy. Although previous studies have explored the bioinformatics of polyploid transcriptomic profiling, the causes and consequences of inaccurate quantification of transcripts from duplicated gene copies have not been addressed. Using transcriptomic data from the cotton genus (Gossypium) as an example, we present an analytical workflow to evaluate a variety of bioinformatic method choices at different stages of RNA-seq analysis, from homoeolog expression quantification to downstream analysis used to infer key phenomena of polyploid expression evolution. In general, EAGLE-RC and GSNAP-PolyCat outperform other quantification pipelines tested, and their derived expression dataset best represents the expected homoeolog expression and co-expression divergence. The performance of co-expression network analysis was less affected by homoeolog quantification than by network construction methods, where weighted networks outperformed binary networks. By examining the extent and consequences of homoeolog read ambiguity, we illuminate the potential artifacts that may affect our understanding of duplicate gene expression, including an overestimation of homoeolog co-regulation and the incorrect inference of subgenome asymmetry in network topology. Taken together, our work points to a set of reasonable practices that we hope are broadly applicable to the evolutionary exploration of polyploids.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Mark A Arick
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Meiling Liu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel G Peterson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
14
|
Zhang Z, Fu T, Liu Z, Wang X, Xun H, Li G, Ding B, Dong Y, Lin X, Sanguinet KA, Liu B, Wu Y, Gong L. Extensive changes in gene expression and alternative splicing due to homoeologous exchange in rice segmental allopolyploids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2295-2308. [PMID: 31098756 DOI: 10.1007/s00122-019-03355-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
We report rampant homoeologous exchanges in progenies of a newly synthesized rice segmental allotetraploid and demonstrate their consequences to changes of gene expression and alternative splicing. Allopolyploidization is recurrent across the tree of angiosperms and known as a driving evolutionary force in both plants and animals. A salient feature of allopolyploidization is the induction of homoeologous exchange (HE) events between the constituent subgenomes, which may in turn cause changes in gene expression, transcript alternative splicing, and phenotypic novelty. However, this issue has been poorly studied, largely because lack of a system in which the exact parentage donating the subgenomes is known and the HE events are occurring in real time. Here, we employed whole-genome re-sequencing and RNA-seq-based transcriptome profiling in four randomly chosen progeny individuals (at the 10th-selfed generation) of segmental allotetraploids that were constructed by colchicine-mediated whole-genome doubling of F1 hybrids between the two subspecies (japonica and indica) of Asian cultivated Oryza sativa. We show that rampant HE events occurred in these tetraploid individuals, which converted most of the otherwise heterozygous genomic regions into a homogenized state of one parental subgenome. We demonstrate that genes within these homogenized genomic regions in the tetraploids showed high frequencies of altered expression and enhanced alternative splicing relative to their counterparts in the corresponding diploid parents in the embryo tissue. Intriguingly, limited overlaps between the differentially expressed genes and the differential alternative spliced genes were identified, which were partitioned to distinctly enriched gene ontology terms. Together, our results indicate that HE is a major mechanism to rapidly generate novelty in gene expression and transcriptome diversity, which may facilitate phenotypic innovation in nascent allopolyploids and relevant to allopolyploid crop breeding.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tiansi Fu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhijian Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Baoxu Ding
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yuzhu Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Jilin Academy of Agricultural Sciences (JAAS), Changchun, 136100, China
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
15
|
Homeologous regulation of Frigida-like genes provides insights on reproductive development and somatic embryogenesis in the allotetraploid Coffea arabica. Sci Rep 2019; 9:8446. [PMID: 31186437 PMCID: PMC6560031 DOI: 10.1038/s41598-019-44666-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/22/2019] [Indexed: 01/10/2023] Open
Abstract
Coffea arabica is an allotetraploid of high economic importance. C. arabica transcriptome is a combination of the transcripts of two parental genomes (C. eugenioides and C. canephora) that gave rise to the homeologous genes of the species. Previous studies have reported the transcriptional dynamics of C. arabica. In these reports, the ancestry of homeologous genes was identified and the overall regulation of homeologous differential expression (HDE) was explored. One of these genes is part of the FRIGIDA-like family (FRL), which includes the Arabidopsis thaliana flowering-time regulation protein, FRIGIDA (FRI). As nonfunctional FRI proteins give rise to rapid-cycling summer annual ecotypes instead of vernalization-responsive winter-annuals, allelic variation in FRI can modulate flowering time in A. thaliana. Using bioinformatics, genomic analysis, and the evaluation of gene expression of homeologs, we characterized the FRL gene family in C. arabica. Our findings indicate that C. arabica expresses 10 FRL homeologs, and that, throughout flower and fruit development, these genes are differentially transcribed. Strikingly, in addition to confirming the expression of FRL genes during zygotic embryogenesis, we detected FRL expression during direct somatic embryogenesis, a novel finding regarding the FRL gene family. The HDE profile of FRL genes suggests an intertwined homeologous gene regulation. Furthermore, we observed that FLC gene of C. arabica has an expression profile similar to that of CaFRL genes.
Collapse
|
16
|
Xu Y, Magwanga RO, Cai X, Zhou Z, Wang X, Wang Y, Zhang Z, Jin D, Guo X, Wei Y, Li Z, Wang K, Liu F. Deep Transcriptome Analysis Reveals Reactive Oxygen Species (ROS) Network Evolution, Response to Abiotic Stress, and Regulation of Fiber Development in Cotton. Int J Mol Sci 2019; 20:E1863. [PMID: 30991750 PMCID: PMC6514600 DOI: 10.3390/ijms20081863] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/03/2022] Open
Abstract
Reactive oxygen species (ROS) are important molecules in the plant, which are involved in many biological processes, including fiber development and adaptation to abiotic stress in cotton. We carried out transcription analysis to determine the evolution of the ROS genes and analyzed their expression levels in various tissues of cotton plant under abiotic stress conditions. There were 515, 260, and 261 genes of ROS network that were identified in Gossypium hirsutum (AD₁ genome), G. arboreum (A genome), and G. raimondii (D genome), respectively. The ROS network genes were found to be distributed in all the cotton chromosomes, but with a tendency of aggregating on either the lower or upper arms of the chromosomes. Moreover, all the cotton ROS network genes were grouped into 17 families as per the phylogenetic tress analysis. A total of 243 gene pairs were orthologous in G. arboreum and G. raimondii. There were 240 gene pairs that were orthologous in G. arboreum, G. raimondii, and G. hirsutum. The synonymous substitution value (Ks) peaks of orthologous gene pairs between the At subgenome and the A progenitor genome (G. arboreum), D subgenome and D progenitor genome (G. raimondii) were 0.004 and 0.015, respectively. The Ks peaks of ROS network orthologous gene pairs between the two progenitor genomes (A and D genomes) and two subgenomes (At and Dt subgenome) were 0.045. The majority of Ka/Ks value of orthologous gene pairs between the A, D genomes and two subgenomes of TM-1 were lower than 1.0. RNA seq. analysis and RT-qPCR validation, showed that, CSD1,2,3,5,6; FSD1,2; MSD1,2; APX3,11; FRO5.6; and RBOH6 played a major role in fiber development while CSD1, APX1, APX2, MDAR1, GPX4-6-7, FER2, RBOH6, RBOH11, and FRO5 were integral for enhancing salt stress in cotton. ROS network-mediated signal pathway enhances the mechanism of fiber development and regulation of abiotic stress in Gossypium. This study will enhance the understanding of ROS network and form the basic foundation in exploring the mechanism of ROS network-involving the fiber development and regulation of abiotic stress in cotton.
Collapse
Affiliation(s)
- Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
- Jaramogi Oginga Odinga University of Science and Technology (JOOUST), School of Biological and Physical Sciences (SPBS), P.O BOX 210-40600, Bondo, Kenya.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Zhenmei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Dingsha Jin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Xinlei Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Yangyang Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
- Biological and Food Engineering, Anyang Institute of Technology, Anyang 455000, China.
| | - Zhenqing Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| |
Collapse
|
17
|
Sousa F, Neiva J, Martins N, Jacinto R, Anderson L, Raimondi PT, Serrão EA, Pearson GA. Increased evolutionary rates and conserved transcriptional response following allopolyploidization in brown algae. Evolution 2019; 73:59-72. [PMID: 30421788 DOI: 10.1111/evo.13645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023]
Abstract
Genome mergers between independently evolving lineages, via allopolyploidy, can potentially lead to instantaneous sympatric speciation. However, little is known about the consequences of allopolyploidy and the resultant "genome shock" on genome evolution and expression beyond the plant and fungal branches of the Tree of Life. The aim of this study was to compare substitution rates and gene expression patterns in two allopolyploid brown algae (Phaeophyceae and Heterokonta) and their progenitors in the genus Pelvetiopsis N. L. Gardner in the north-east Pacific, and to date their relationships. We used RNA-seq data, all potential orthologues, and putative single-copy loci for phylogenomic, divergence, and gene expression analyses. The multispecies coalescent placed the origin of allopolyploids in the late Pleistocene (0.35-0.05 Ma). Homoeologues displayed increased nonsynonymous divergence compared with parental orthologues, consistent with relaxed selective constraint following allopolyploidization, including for genes with no evidence of pseudogenization or neofunctionalization. Patterns of homoeologue-orthologue expression conservation and expression level dominance were largely shared with both natural plant and fungal allopolyploids. Our results provide further support for common cross-Kingdom patterns of allopolyploid genome evolution and transcriptional responses, here in the evolutionarily distinct marine heterokont brown algae.
Collapse
Affiliation(s)
- Filipe Sousa
- CCMAR-Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, Faro, 8005-139, Portugal
| | - João Neiva
- CCMAR-Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, Faro, 8005-139, Portugal
| | - Neusa Martins
- CCMAR-Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, Faro, 8005-139, Portugal
| | - Rita Jacinto
- CCMAR-Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, Faro, 8005-139, Portugal
| | - Laura Anderson
- Long Marine Laboratory, University of California, Santa Cruz, California, 95064
| | - Peter T Raimondi
- Long Marine Laboratory, University of California, Santa Cruz, California, 95064
| | - Ester A Serrão
- CCMAR-Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, Faro, 8005-139, Portugal
| | - Gareth A Pearson
- CCMAR-Centro de Ciências do Mar da Universidade do Algarve, Edifício 7, Gambelas, Faro, 8005-139, Portugal
| |
Collapse
|
18
|
Stai JS, Yadav A, Sinou C, Bruneau A, Doyle JJ, Fernández-Baca D, Cannon SB. Cercis: A Non-polyploid Genomic Relic Within the Generally Polyploid Legume Family. FRONTIERS IN PLANT SCIENCE 2019; 10:345. [PMID: 31105714 PMCID: PMC6499179 DOI: 10.3389/fpls.2019.00345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 05/02/2023]
Abstract
Based on evolutionary, phylogenomic, and synteny analyses of genome sequences for more than a dozen diverse legume species as well as analysis of chromosome counts across the legume family, we conclude that the genus Cercis provides a plausible model for an early evolutionary form of the legume genome. The small Cercis genus is in the earliest-diverging clade in the earliest-diverging legume subfamily (Cercidoideae). The Cercis genome is physically small, and has accumulated mutations at an unusually slow rate compared to other legumes. Chromosome counts across 477 legume genera, combined with phylogenetic reconstructions and histories of whole-genome duplications, suggest that the legume progenitor had 7 chromosomes - as does Cercis. We propose a model in which a legume progenitor, with 7 chromosomes, diversified into species that would become the Cercidoideae and the remaining legume subfamilies; then speciation in the Cercidoideae gave rise to the progenitor of the Cercis genus. There is evidence for a genome duplication in the remaining Cercidoideae, which is likely due to allotetraploidy involving hybridization between a Cercis progenitor and a second diploid species that existed at the time of the polyploidy event. Outside the Cercidoideae, a set of probably independent whole-genome duplications gave rise to the five other legume subfamilies, at least four of which have predominant counts of 12-14 chromosomes among their early-diverging taxa. An earlier study concluded that independent duplications occurred in the Caesalpinioideae, Detarioideae, and Papilionoideae. We conclude that Cercis may be unique among legumes in lacking evidence of polyploidy, a process that has shaped the genomes of all other legumes thus far investigated.
Collapse
Affiliation(s)
- Jacob S. Stai
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
| | - Akshay Yadav
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, IA, United States
| | - Carole Sinou
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
| | - Jeff J. Doyle
- School of Integrative Plant Science, Plant Breeding & Genetics and Plant Biology Sections, Cornell University, Ithaca, NY, United States
| | | | - Steven B. Cannon
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture–Agricultural Research Service, Ames, IA, United States
- *Correspondence: Steven B. Cannon,
| |
Collapse
|
19
|
A Robust Methodology for Assessing Differential Homeolog Contributions to the Transcriptomes of Allopolyploids. Genetics 2018; 210:883-894. [PMID: 30213855 DOI: 10.1534/genetics.118.301564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Polyploidy has played a pivotal and recurring role in angiosperm evolution. Allotetraploids arise from hybridization between species and possess duplicated gene copies (homeologs) that serve redundant roles immediately after polyploidization. Although polyploidization is a major contributor to plant evolution, it remains poorly understood. We describe an analytical approach for assessing homeolog-specific expression that begins with de novo assembly of parental transcriptomes and effectively (i) reduces redundancy in de novo assemblies, (ii) identifies putative orthologs, (iii) isolates common regions between orthologs, and (iv) assesses homeolog-specific expression using a robust Bayesian Poisson-Gamma model to account for sequence bias when mapping polyploid reads back to parental references. Using this novel methodology, we examine differential homeolog contributions to the transcriptome in the recently formed allopolyploids Tragopogon mirus and T. miscellus (Compositae). Notably, we assess a larger Tragopogon gene set than previous studies of this system. Using carefully identified orthologous regions and filtering biased orthologs, we find in both allopolyploids largely balanced expression with no strong parental bias. These new methods can be used to examine homeolog expression in any tetrapolyploid system without requiring a reference genome.
Collapse
|
20
|
Leal-Bertioli SCM, Godoy IJ, Santos JF, Doyle JJ, Guimarães PM, Abernathy BL, Jackson SA, Moretzsohn MC, Bertioli DJ. Segmental allopolyploidy in action: Increasing diversity through polyploid hybridization and homoeologous recombination. AMERICAN JOURNAL OF BOTANY 2018; 105:1053-1066. [PMID: 29985538 DOI: 10.1002/ajb2.1112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 05/05/2023]
Abstract
PREMISE OF THE STUDY The genetic bottleneck of polyploid formation can be mitigated by multiple origins, gene flow, and recombination among different lineages. In crop plants with limited origins, efforts to increase genetic diversity have limitations. Here we used lineage recombination to increase genetic diversity in peanut, an allotetraploid likely of single origin, by crossing with a novel allopolyploid genotype and selecting improved lines. METHODS Single backcross progeny from cultivated peanut × wild species-derived allotetraploid cross were studied over successive generations. Using genetic assumptions that encompass segmental allotetraploidy, we used single nucleotide polymorphisms and whole-genome sequence data to infer genome structures. KEY RESULTS Selected lines, despite a high proportion of wild alleles, are agronomically adapted, productive, and with improved disease resistances. Wild alleles mostly substituted homologous segments of the peanut genome. Regions of dispersed wild alleles, characteristic of gene conversion, also occurred. However, wild chromosome segments sometimes replaced cultivated peanut's homeologous subgenome; A. ipaënsis B sometimes replaced A. hypogaea A subgenome (~0.6%), and A. duranensis replaced A. hypogaea B subgenome segments (~2%). Furthermore, some subgenome regions historically lost in cultivated peanut were "recovered" by wild chromosome segments (effectively reversing the "polyploid ratchet"). These processes resulted in lines with new genome structure variations. CONCLUSIONS Genetic diversity was introduced by wild allele introgression, and by introducing new genome structure variations. These results highlight the special possibilities of segmental allotetraploidy and of using lineage recombination to increase genetic diversity in peanut, likely mirroring what occurs in natural segmental allopolyploids with multiple origins.
Collapse
Affiliation(s)
- Soraya C M Leal-Bertioli
- University of Georgia, Center for Applied Genetic Technologies, 111 Riverbend Road, Athens, GA, 30602-6810, USA
| | - Ignácio J Godoy
- Campinas Agronomical Institute, Avenida Barão de Itapura, 1.481, Campinas, SP, 13020-902, Brazil
| | - João F Santos
- Campinas Agronomical Institute, Avenida Barão de Itapura, 1.481, Campinas, SP, 13020-902, Brazil
| | - Jeff J Doyle
- Cornell University, School of Integrative Plant Science, Plant Breeding & Genetics Section, Ithaca, NY, 14853, USA
| | - Patrícia M Guimarães
- Embrapa Genetic Resources and Biotechnology, PqEB, W5 Norte Final, Brasília, DF, 70770-917, Brazil
| | - Brian L Abernathy
- University of Georgia, Center for Applied Genetic Technologies, 111 Riverbend Road, Athens, GA, 30602-6810, USA
| | - Scott A Jackson
- University of Georgia, Center for Applied Genetic Technologies, 111 Riverbend Road, Athens, GA, 30602-6810, USA
| | - Márcio C Moretzsohn
- Embrapa Genetic Resources and Biotechnology, PqEB, W5 Norte Final, Brasília, DF, 70770-917, Brazil
| | - David J Bertioli
- University of Georgia, Center for Applied Genetic Technologies, 111 Riverbend Road, Athens, GA, 30602-6810, USA
| |
Collapse
|
21
|
Zhao B, Cao J, Hu G, Chen Z, Wang L, Shangguan X, Wang L, Mao Y, Zhang T, Wendel JF, Chen X. Core cis-element variation confers subgenome-biased expression of a transcription factor that functions in cotton fiber elongation. THE NEW PHYTOLOGIST 2018; 218:1061-1075. [PMID: 29465754 PMCID: PMC6079642 DOI: 10.1111/nph.15063] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
Cotton cultivars have evolved to produce extensive, long, seed-born fibers important for the textile industry, but we know little about the molecular mechanism underlying spinnable fiber formation. Here, we report how PACLOBUTRAZOL RESISTANCE 1 (PRE1) in cotton, which encodes a basic helix-loop-helix (bHLH) transcription factor, is a target gene of spinnable fiber evolution. Differential expression of homoeologous genes in polyploids is thought to be important to plant adaptation and novel phenotypes. PRE1 expression is specific to cotton fiber cells, upregulated during their rapid elongation stage and A-homoeologous biased in allotetraploid cultivars. Transgenic studies demonstrated that PRE1 is a positive regulator of fiber elongation. We determined that the natural variation of the canonical TATA-box, a regulatory element commonly found in many eukaryotic core promoters, is necessary for subgenome-biased PRE1 expression, representing a mechanism underlying the selection of homoeologous genes. Thus, variations in the promoter of the cell elongation regulator gene PRE1 have contributed to spinnable fiber formation in cotton. Overexpression of GhPRE1 in transgenic cotton yields longer fibers with improved quality parameters, indicating that this bHLH gene is useful for improving cotton fiber quality.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Plant Molecular GeneticsNational Center for Plant Gene ResearchInstitute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant SciencesUniversity of CASChinese Academy of SciencesShanghai200032China
| | - Jun‐Feng Cao
- Plant Stress Biology CenterInstitute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant SciencesUniversity of CASChinese Academy of SciencesShanghai200032China
- Plant Science Research CenterShanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai201602China
| | - Guan‐Jing Hu
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Zhi‐Wen Chen
- National Key Laboratory of Plant Molecular GeneticsNational Center for Plant Gene ResearchInstitute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant SciencesUniversity of CASChinese Academy of SciencesShanghai200032China
| | - Lu‐Yao Wang
- Nanjing Agricultural UniversityNanjingJiangsu210095China
| | - Xiao‐Xia Shangguan
- National Key Laboratory of Plant Molecular GeneticsNational Center for Plant Gene ResearchInstitute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant SciencesUniversity of CASChinese Academy of SciencesShanghai200032China
| | - Ling‐Jian Wang
- National Key Laboratory of Plant Molecular GeneticsNational Center for Plant Gene ResearchInstitute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant SciencesUniversity of CASChinese Academy of SciencesShanghai200032China
| | - Ying‐Bo Mao
- National Key Laboratory of Plant Molecular GeneticsNational Center for Plant Gene ResearchInstitute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant SciencesUniversity of CASChinese Academy of SciencesShanghai200032China
| | - Tian‐Zhen Zhang
- Nanjing Agricultural UniversityNanjingJiangsu210095China
- Zhejiang UniversityHangzhouZhejiang310058China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Xiao‐Ya Chen
- National Key Laboratory of Plant Molecular GeneticsNational Center for Plant Gene ResearchInstitute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant SciencesUniversity of CASChinese Academy of SciencesShanghai200032China
- Plant Science Research CenterShanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai201602China
| |
Collapse
|
22
|
Yu X, Wang X, Hyldgaard B, Zhu Z, Zhou R, Kjaer KH, Ouzounis T, Lou Q, Li J, Cai Q, Rosenqvist E, Ottosen CO, Chen J. Allopolyploidization in Cucumis contributes to delayed leaf maturation with repression of redundant homoeologous genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:393-404. [PMID: 29421854 DOI: 10.1111/tpj.13865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 05/25/2023]
Abstract
The important role of polyploidy in plant evolution is widely recognized. However, many questions remain to be explored to address how polyploidy affects the phenotype of the plant. To shed light on the phenotypic and molecular impacts of allopolyploidy, we investigated the leaf development of a synthesized allotetraploid (Cucumis × hytivus), with an emphasis on chlorophyll development. Delayed leaf maturation was identified in C. × hytivus, based on delayed leaf expansion, initial chlorophyll deficiency in the leaves and disordered sink-source transition. Anatomical observations also revealed disturbed chloroplast development in C. ×hytivus. The determination of chlorophyll biosynthesis intermediates suggested that the chlorophyll biosynthesis pathway of C. × hytivus is blocked at the site at which uroporphyrinogen III is catalysed to coproporphyrinogen III. Three chlorophyll biosynthesis-related genes, HEMA1, HEME2 and POR, were significantly repressed in C. × hytivus. Sequence alignment showed both synonymous and non-synonymous substitutions in the HEMA1, HEME2 and POR genes of the parents. Cloning of the chlorophyll biosynthetic genes suggested the retention of homoeologs. In addition, a chimeric clone of the HEMA1 gene that consisted of homologous genes from the parents was identified in C. × hytivus. Overall, our results showed that allopolyploidization in Cucumis has resulted in disturbed chloroplast development and reduced chlorophyll biosynthesis caused by the repressed expression of duplicated homologous genes, which further led to delayed leaf maturation in the allotetraploid, C. × hytivus. The preferential retention/loss of certain types of genes and non-reciprocal homoeologous recombination were also supported in the present study, which provides new insights into the impact of allopolyploidy.
Collapse
Affiliation(s)
- Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Lab for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xixi Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Lab for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | | | - Zaobing Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Lab for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Rong Zhou
- Vegetable Research Institute, Jiangsu Academy of Agricultural Science, Jiangsu, Nanjing, China
| | | | - Theoharis Ouzounis
- Horticulture and Product Physiology Group, Wageningen University, Wageningen, The Netherlands
| | - Qunfeng Lou
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Lab for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ji Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Lab for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jinfeng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Lab for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Grover CE, Arick MA, Conover JL, Thrash A, Hu G, Sanders WS, Hsu CY, Naqvi RZ, Farooq M, Li X, Gong L, Mudge J, Ramaraj T, Udall JA, Peterson DG, Wendel JF. Comparative Genomics of an Unusual Biogeographic Disjunction in the Cotton Tribe (Gossypieae) Yields Insights into Genome Downsizing. Genome Biol Evol 2017; 9:3328-3344. [PMID: 29194487 PMCID: PMC5737505 DOI: 10.1093/gbe/evx248] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2017] [Indexed: 12/19/2022] Open
Abstract
Long-distance insular dispersal is associated with divergence and speciation because of founder effects and strong genetic drift. The cotton tribe (Gossypieae) has experienced multiple transoceanic dispersals, generating an aggregate geographic range that encompasses much of the tropics and subtropics worldwide. Two genera in the Gossypieae, Kokia and Gossypioides, exhibit a remarkable geographic disjunction, being restricted to the Hawaiian Islands and Madagascar/East Africa, respectively. We assembled and use de novo genome sequences to address questions regarding the divergence of these two genera from each other and from their sister-group, Gossypium. In addition, we explore processes underlying the genome downsizing that characterizes Kokia and Gossypioides relative to other genera in the tribe. Using 13,000 gene orthologs and synonymous substitution rates, we show that the two disjuncts last shared a common ancestor ∼5 Ma, or half as long ago as their divergence from Gossypium. We report relative stasis in the transposable element fraction. In comparison to Gossypium, there is loss of ∼30% of the gene content in the two disjunct genera and a history of genome-wide accumulation of deletions. In both genera, there is a genome-wide bias toward deletions over insertions, and the number of gene losses exceeds the number of gains by ∼2- to 4-fold. The genomic analyses presented here elucidate genomic consequences of the demographic and biogeographic history of these closest relatives of Gossypium, and enhance their value as phylogenetic outgroups.
Collapse
Affiliation(s)
- Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA
| | - Mark A Arick
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS
| | - Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA
| | - Adam Thrash
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS
| | - Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA
| | - William S Sanders
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS
- Department of Computer Science & Engineering, Mississippi State University, Mississippi State, MS
- The Jackson Laboratory, Connecticut, Farmington, CT
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Punjab, Pakistan
| | - Muhammad Farooq
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Punjab, Pakistan
| | - Xiaochong Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, P.R. China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, P.R. China
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico
| | | | - Joshua A Udall
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA
| |
Collapse
|
24
|
Saski CA, Scheffler BE, Hulse-Kemp AM, Liu B, Song Q, Ando A, Stelly DM, Scheffler JA, Grimwood J, Jones DC, Peterson DG, Schmutz J, Chen ZJ. Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum L.) genome, and an approach toward reference-grade assemblies of polyploids. Sci Rep 2017; 7:15274. [PMID: 29127298 PMCID: PMC5681701 DOI: 10.1038/s41598-017-14885-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/18/2017] [Indexed: 01/06/2023] Open
Abstract
Like those of many agricultural crops, the cultivated cotton is an allotetraploid and has a large genome (~2.5 gigabase pairs). The two sub genomes, A and D, are highly similar but unequally sized and repeat-rich, which pose significant challenges for accurate genome reconstruction using standard approaches. Here we report the development of BAC libraries, sub genome specific physical maps, and a new-generation sequencing approach that will lead to a reference-grade genome assembly for Upland cotton. Three BAC libraries were constructed, fingerprinted, and integrated with BAC-end sequences (BES) to produce a de novo whole-genome physical map. The BAC map was partitioned by sub genomes through alignment to the diploid progenitor D-genome reference sequence with densely spaced BES anchor points and computational filtering. The physical maps were validated with FISH and genetic mapping of SNP markers derived from BES. Two pairs of homeologous chromosomes, A11/D11 and A12/D12, were used to assess multiplex sequencing approaches for completeness and scalability. The results represent the first sub genome anchored physical maps of Upland cotton, and a new-generation approach to the whole-genome sequencing, which will lead to the reference-grade assembly of allopolyploid cotton and serve as a general strategy for sequencing other polyploid species.
Collapse
Affiliation(s)
| | - Brian E Scheffler
- USDA-ARS, Genomics and Bioinformatics Research Unit, Stoneville, MS, USA
| | - Amanda M Hulse-Kemp
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Bo Liu
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Qingxin Song
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712, USA
| | - Atsumi Ando
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Don C Jones
- Agriculture and Environmental Research, Cotton Incorporated, Cary, NC, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology and Department of Plant & Soil Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - Z Jeffery Chen
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
25
|
Sun Y, Wu Y, Yang C, Sun S, Lin X, Liu L, Xu C, Wendel JF, Gong L, Liu B. Segmental allotetraploidy generates extensive homoeologous expression rewiring and phenotypic diversity at the population level in rice. Mol Ecol 2017; 26:5451-5466. [PMID: 28802080 DOI: 10.1111/mec.14297] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/04/2017] [Accepted: 07/24/2017] [Indexed: 02/03/2023]
Abstract
Allopolyploidization, that is, concomitant merging and doubling of two or more divergent genomes in a common nucleus/cytoplasm, is known to instantly alter genomewide transcriptome dynamics, a phenomenon referred to as "transcriptomic shock." However, the immediate effects of transcriptomic alteration in generating phenotypic diversity at the population level remain underinvestigated. Here, we employed the MassARRAY-based Sequenom platform to assess and compare orthologous, allelic and homoeologous gene expression status in two tissues (leaf and root) of a set of randomly chosen individuals from populations of parental rice subspecies (indica and japonica), in vitro "hybrids" (parental mixes), reciprocal F1 hybrids and reciprocal tetraploids at the 5th-selfed generation (S5). We show that hybridization and whole genome duplication (WGD) have opposing effects on allelic and homoeologous expression in the F1 hybrids and tetraploids, respectively. Whereas hybridization exerts strong attenuating effects on allelic expression differences in diploid hybrids, WGD augments the intrinsic parental differences and generates extensive and variable homoeolog content which triggers diversification in expression patterning among the tetraploid plants. Coupled with the vast phenotypic diversity observed among the tetraploid individuals, our results provide experimental evidence in support of the notion that allopolyploidy catalyses rapid phenotypic diversification in higher plants. Our data further suggest that largely stochastic homoeolog content reshuffling rather than alteration in total expression level may be an important feature of evolution in young segmental allopolyploids, which underlies rapid expression diversity at the population level.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Shuai Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiuyun Lin
- Jilin Academy of Agriculture, Changchun, China
| | - Lixia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.,Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
26
|
Homoeologous chromosome pairing across the eukaryote phylogeny. Mol Phylogenet Evol 2017; 117:83-94. [PMID: 28602622 DOI: 10.1016/j.ympev.2017.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022]
Abstract
During the past quarter century, molecular phylogenetic inferences have significantly resolved evolutionary relationships spanning the eukaryotic tree of life. With improved phylogenies in hand, the focus of systematics will continue to expand from estimating species relationships toward examining the evolution of specific, fundamental traits across the eukaryotic tree. Undoubtedly, this will expose knowledge gaps in the evolution of key traits, particularly with respect to non-model lineages. Here, we examine one such trait across eukaryotes-the regulation of homologous chromosome pairing during meiosis-as an illustrative example. Specifically, we present an overview of the breakdown of homologous chromosome pairing in model eukaryotes and provide a discussion of various meiotic aberrations that result in the failure of homolog recognition, with a particular focus on lineages with a history of hybridization and polyploidization, across major eukaryotic clades. We then explore what is known about these processes in natural and non-model eukaryotic taxa, thereby exposing disparities in our understanding of this key trait among non-model groups.
Collapse
|
27
|
Ahmed MM, Shen C, Khan AQ, Wahid MA, Shaban M, Lin Z. A comparative genomics approach revealed evolutionary dynamics of microsatellite imperfection and conservation in genus Gossypium. Hereditas 2017; 154:12. [PMID: 28529469 PMCID: PMC5437633 DOI: 10.1186/s41065-017-0034-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/27/2017] [Indexed: 11/13/2022] Open
Abstract
Background Ongoing molecular processes in a cell could target microsatellites, a kind of repetitive DNA, owing to length variations and motif imperfection. Mutational mechanisms underlying such kind of genetic variations have been extensively investigated in diverse organisms. However, obscure impact of ploidization, an evolutionary process of genome content duplication prevails mostly in plants, on non-coding DNA is poorly understood. Results Genome sequences of diversely originated plant species were examined for genome-wide motif imperfection pattern, and various analytical tools were employed to canvass characteristic relationships among repeat density, imperfection and length of microsatellites. Moreover, comparative genomics approach aided in exploration of microsatellites conservation footprints in Gossypium evolution. Based on our results, motif imperfection in repeat length was found intricately related to genomic abundance of imperfect microsatellites among 13 genomes. Microsatellite decay estimation depicted slower decay of long motif repeats which led to predominant abundance of 5-nt repeat motif in Gossypium species. Short motif repeats exhibited rapid decay through the evolution of Gossypium lineage ensuing drastic decrease of 2-nt repeats, of which, “AT” motif type dilapidated in cultivated tetraploids of cotton. Conclusion The outcome could be a directive to explore comparative evolutionary footprints of simple non-coding genetic elements i.e., repeat elements, through the evolution of genus-specific characteristics in cotton genomes. Electronic supplementary material The online version of this article (doi:10.1186/s41065-017-0034-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Mahmood Ahmed
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Chao Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Anam Qadir Khan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Muhammad Atif Wahid
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Muhammad Shaban
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| |
Collapse
|
28
|
Powell JJ, Fitzgerald TL, Stiller J, Berkman PJ, Gardiner DM, Manners JM, Henry RJ, Kazan K. The defence-associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:533-543. [PMID: 27735125 PMCID: PMC5362679 DOI: 10.1111/pbi.12651] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
Bread wheat (Triticum aestivum L.) is an allopolyploid species containing three ancestral genomes. Therefore, three homoeologous copies exist for the majority of genes in the wheat genome. Whether different homoeologs are differentially expressed (homoeolog expression bias) in response to biotic and abiotic stresses is poorly understood. In this study, we applied a RNA-seq approach to analyse homoeolog-specific global gene expression patterns in wheat during infection by the fungal pathogen Fusarium pseudograminearum, which causes crown rot disease in cereals. To ensure specific detection of homoeologs, we first optimized read alignment methods and validated the results experimentally on genes with known patterns of subgenome-specific expression. Our global analysis identified widespread patterns of differential expression among homoeologs, indicating homoeolog expression bias underpins a large proportion of the wheat transcriptome. In particular, genes differentially expressed in response to Fusarium infection were found to be disproportionately contributed from B and D subgenomes. In addition, we found differences in the degree of responsiveness to pathogen infection among homoeologous genes with B and D homoeologs exhibiting stronger responses to pathogen infection than A genome copies. We call this latter phenomenon as 'homoeolog induction bias'. Understanding how homoeolog expression and induction biases operate may assist the improvement of biotic stress tolerance in wheat and other polyploid crop species.
Collapse
Affiliation(s)
- Jonathan J. Powell
- Commonwealth Scientific and Industrial Research Organisation AgricultureSt LuciaQueenslandAustralia
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Timothy L. Fitzgerald
- Commonwealth Scientific and Industrial Research Organisation AgricultureSt LuciaQueenslandAustralia
| | - Jiri Stiller
- Commonwealth Scientific and Industrial Research Organisation AgricultureSt LuciaQueenslandAustralia
| | - Paul J. Berkman
- Commonwealth Scientific and Industrial Research Organisation AgricultureSt LuciaQueenslandAustralia
| | - Donald M. Gardiner
- Commonwealth Scientific and Industrial Research Organisation AgricultureSt LuciaQueenslandAustralia
| | - John M. Manners
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainAustralian Capital TerritoryAustralia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation AgricultureSt LuciaQueenslandAustralia
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
29
|
Shen C, Jin X, Zhu D, Lin Z. Uncovering SNP and indel variations of tetraploid cottons by SLAF-seq. BMC Genomics 2017; 18:247. [PMID: 28330454 PMCID: PMC5363057 DOI: 10.1186/s12864-017-3643-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 03/18/2017] [Indexed: 11/10/2022] Open
Abstract
Background Cotton (Gossypium spp.), as the world’s most utilized textile fibre source, is an important, economically valuable crop worldwide. Understanding the genomic variation of tetraploid cotton species is important for exploitation of the excellent characteristics of wild cotton and for improving the diversity of cotton in breeding. However, the discovery of DNA polymorphisms in tetraploid cotton genomes has lagged behind other important crops. Results A total of 111,795,823 reads, 467,735 specific length amplified fragment (SLAF) tags and 139,176 high-quality DNA polymorphisms were identified using specific length amplified fragment sequencing (SLAF-seq), including 132,880 SNPs and 6,296 InDels between the reference genome (TM-1) and the five tetraploid cotton species. Intriguingly, gene ontology (GO) enrichment analysis revealed that a number of significant terms were related to reproduction in G. barbadense acc. 3–79. Based on the new data sets, we reconstructed phylogenetic trees that showed a high concordance to the phylogeny of diploid and polyploid cottons. A large amount of interspecific genetic variations were identified, and some of them were validated by the single-strand conformation polymorphism (SSCP) method, which will be applied in introgression genetics and breeding with G. hirsutum cv. Emian22 as the receptor and the other species as donors. Conclusions Using SLAF-seq, a large number of DNA polymorphisms were identified. The comprehensive analysis of DNA polymorphisms provided invaluable insights into the different tetraploid cotton species. More importantly, the identification of numerous interspecific genetic variations provides the basis and is very practical for future introgression breeding. The results presented herein provide a valuable genomic resource for new insights into the genetics and breeding of cotton. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3643-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - De Zhu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
30
|
Li F, Fan K, Ma F, Yue E, Bibi N, Wang M, Shen H, Hasan MMU, Wang X. Genomic Identification and Comparative Expansion Analysis of the Non-Specific Lipid Transfer Protein Gene Family in Gossypium. Sci Rep 2016; 6:38948. [PMID: 27976679 PMCID: PMC5157027 DOI: 10.1038/srep38948] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022] Open
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are involved in many biological processes. In this study, 51, 47 and 91 nsLTPs were identified in Gossypium arboreum, G. raimondii and their descendant allotetraploid G. hirsutum, respectively. All the nsLTPs were phylogenetically divided into 8 distinct subfamilies. Besides, the recent duplication, which is considered cotton-specific whole genome duplication, may have led to nsLTP expansion in Gossypium. Both tandem and segmental duplication contributed to nsLTP expansion in G. arboreum and G. hirsutum, while tandem duplication was the dominant pattern in G. raimondii. Additionally, the interspecific orthologous gene pairs in Gossypium were identified. Some GaLTPs and GrLTPs lost their orthologs in the At and Dt subgenomes, respectively, of G. hirsutum. The distribution of these GrLTPs and GaLTPs within each subfamily was complementary, suggesting that the loss and retention of nsLTPs in G. hirsutum might not be random. Moreover, the nsLTPs in the At and Dt subgenomes might have evolved symmetrically. Furthermore, both intraspecific and interspecific orthologous genes showed considerable expression variation, suggesting that their functions were strongly differentiated. Our results lay an important foundation for expansion and evolutionary analysis of the nsLTP family in Gossypium, and advance nsLTP studies in other plants, especially polyploid plants.
Collapse
Affiliation(s)
- Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Kai Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Fanglu Ma
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Erkui Yue
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Noreen Bibi
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
- Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Ming Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Hao Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Md Mosfeq-Ul Hasan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China
| |
Collapse
|
31
|
Gao R, Wang H, Dong B, Yang X, Chen S, Jiang J, Zhang Z, Liu C, Zhao N, Chen F. Morphological, Genome and Gene Expression Changes in Newly Induced Autopolyploid Chrysanthemum lavandulifolium (Fisch. ex Trautv.) Makino. Int J Mol Sci 2016; 17:E1690. [PMID: 27735845 PMCID: PMC5085722 DOI: 10.3390/ijms17101690] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022] Open
Abstract
Autopolyploidy is widespread in higher plants and plays an important role in the process of evolution. The present study successfully induced autotetraploidys from Chrysanthemum lavandulifolium by colchicine. The plant morphology, genomic, transcriptomic, and epigenetic changes between tetraploid and diploid plants were investigated. Ligulate flower, tubular flower and leaves of tetraploid plants were greater than those of the diploid plants. Compared with diploid plants, the genome changed as a consequence of polyploidization in tetraploid plants, namely, 1.1% lost fragments and 1.6% novel fragments occurred. In addition, DNA methylation increased after genome doubling in tetraploid plants. Among 485 common transcript-derived fragments (TDFs), which existed in tetraploid and diploid progenitors, 62 fragments were detected as differentially expressed TDFs, 6.8% of TDFs exhibited up-regulated gene expression in the tetraploid plants and 6.0% exhibited down-regulation. The present study provides a reference for further studying the autopolyploidization role in the evolution of C. lavandulifolium. In conclusion, the autopolyploid C. lavandulifolium showed a global change in morphology, genome and gene expression compared with corresponding diploid.
Collapse
Affiliation(s)
- Ri Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
- Department of Horticulture, Agricultural College Yanbian University, Park Road 977, Yanji 133002, China.
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bin Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaodong Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhaohe Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chen Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Nan Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
32
|
Boutte J, Ferreira de Carvalho J, Rousseau-Gueutin M, Poulain J, Da Silva C, Wincker P, Ainouche M, Salmon A. Reference Transcriptomes and Detection of Duplicated Copies in Hexaploid and Allododecaploid Spartina Species (Poaceae). Genome Biol Evol 2016; 8:3030-3044. [PMID: 27614235 PMCID: PMC5633685 DOI: 10.1093/gbe/evw209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2016] [Indexed: 01/19/2023] Open
Abstract
In this study, we report the assembly and annotation of five reference transcriptomes for the European hexaploid Spartina species (S. maritima, S. alterniflora and their homoploid hybrids S. x townsendii and S. x neyrautii) and the allododecaploid invasive species S. anglica These transcriptomes were constructed from various leaf and root cDNA libraries that were sequenced using both Roche-454 and Illumina technologies. Considering the high ploidy levels of the Spartina genomes under study, and considering the absence of diploid reference genome and the need of an appropriate analytical strategy, we developed generic bioinformatics tools to (1) detect different haplotypes of each gene within each species and (2) assign a parental origin to haplotypes detected in the hexaploid hybrids and the neo-allopolyploid. The approach described here allows the detection of putative homeologs from sets of short reads. Synonymous substitution rate (KS) comparisons between haplotypes from the hexaploid species revealed the presence of one KS peak (likely resulting from the tetraploid duplication event). The procedure developed in this study can be applied for future differential gene expression or genomics experiments to study the fate of duplicated genes in the invasive allododecaploid S. anglica.
Collapse
Affiliation(s)
- Julien Boutte
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, Rennes Cedex, France
| | - Julie Ferreira de Carvalho
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, Rennes Cedex, France
| | - Mathieu Rousseau-Gueutin
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, Rennes Cedex, France UMR Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Le Rheu Cedex, France
| | | | | | | | - Malika Ainouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, Rennes Cedex, France
| | - Armel Salmon
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, Rennes Cedex, France
| |
Collapse
|
33
|
Kottapalli P, Ulloa M, Kottapalli KR, Payton P, Burke J. SNP Marker Discovery in Pima Cotton ( Gossypium barbadense L.) Leaf Transcriptomes. GENOMICS INSIGHTS 2016; 9:51-60. [PMID: 27721653 PMCID: PMC5049682 DOI: 10.4137/gei.s40377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 11/17/2022]
Abstract
The objective of this study was to explore the known narrow genetic diversity and discover single-nucleotide polymorphic (SNP) markers for marker-assisted breeding within Pima cotton (Gossypium barbadense L.) leaf transcriptomes. cDNA from 25-day plants of three diverse cotton genotypes [Pima S6 (PS6), Pima S7 (PS7), and Pima 3-79 (P3-79)] was sequenced on Illumina sequencing platform. A total of 28.9 million reads (average read length of 138 bp) were generated by sequencing cDNA libraries of these three genotypes. The de novo assembly of reads generated transcriptome sets of 26,369 contigs for PS6, 25,870 contigs for PS7, and 24,796 contigs for P3-79. A Pima leaf reference transcriptome was generated consisting of 42,695 contigs. More than 10,000 single-nucleotide polymorphisms (SNPs) were identified between the genotypes, with 100% SNP frequency and a minimum of eight sequencing reads. The most prevalent SNP substitutions were C-T and A-G in these cotton genotypes. The putative SNPs identified can be utilized for characterizing genetic diversity, genotyping, and eventually in Pima cotton breeding through marker-assisted selection.
Collapse
Affiliation(s)
- Pratibha Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| | - Mauricio Ulloa
- USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX, USA
| | | | - Paxton Payton
- USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX, USA
| | - John Burke
- USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX, USA
| |
Collapse
|
34
|
Gallagher JP, Grover CE, Hu G, Wendel JF. Insights into the Ecology and Evolution of Polyploid Plants through Network Analysis. Mol Ecol 2016; 25:2644-60. [PMID: 27027619 DOI: 10.1111/mec.13626] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022]
Abstract
Polyploidy is a widespread phenomenon throughout eukaryotes, with important ecological and evolutionary consequences. Although genes operate as components of complex pathways and networks, polyploid changes in genes and gene expression have typically been evaluated as either individual genes or as a part of broad-scale analyses. Network analysis has been fruitful in associating genomic and other 'omic'-based changes with phenotype for many systems. In polyploid species, network analysis has the potential not only to facilitate a better understanding of the complex 'omic' underpinnings of phenotypic and ecological traits common to polyploidy, but also to provide novel insight into the interaction among duplicated genes and genomes. This adds perspective to the global patterns of expression (and other 'omic') change that accompany polyploidy and to the patterns of recruitment and/or loss of genes following polyploidization. While network analysis in polyploid species faces challenges common to other analyses of duplicated genomes, present technologies combined with thoughtful experimental design provide a powerful system to explore polyploid evolution. Here, we demonstrate the utility and potential of network analysis to questions pertaining to polyploidy with an example involving evolution of the transgressively superior cotton fibres found in polyploid Gossypium hirsutum. By combining network analysis with prior knowledge, we provide further insights into the role of profilins in fibre domestication and exemplify the potential for network analysis in polyploid species.
Collapse
Affiliation(s)
- Joseph P Gallagher
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
35
|
Page JT, Liechty ZS, Alexander RH, Clemons K, Hulse-Kemp AM, Ashrafi H, Van Deynze A, Stelly DM, Udall JA. DNA Sequence Evolution and Rare Homoeologous Conversion in Tetraploid Cotton. PLoS Genet 2016; 12:e1006012. [PMID: 27168520 PMCID: PMC4864293 DOI: 10.1371/journal.pgen.1006012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/06/2016] [Indexed: 01/08/2023] Open
Abstract
Allotetraploid cotton species are a vital source of spinnable fiber for textiles. The polyploid nature of the cotton genome raises many evolutionary questions as to the relationships between duplicated genomes. We describe the evolution of the cotton genome (SNPs and structural variants) with the greatly improved resolution of 34 deeply re-sequenced genomes. We also explore the evolution of homoeologous regions in the AT- and DT-genomes and especially the phenomenon of conversion between genomes. We did not find any compelling evidence for homoeologous conversion between genomes. These findings are very different from other recent reports of frequent conversion events between genomes. We also identified several distinct regions of the genome that have been introgressed between G. hirsutum and G. barbadense, which presumably resulted from breeding efforts targeting associated beneficial alleles. Finally, the genotypic data resulting from this study provides access to a wealth of diversity sorely needed in the narrow germplasm of cotton cultivars.
Collapse
Affiliation(s)
- Justin T. Page
- Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - Zach S. Liechty
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah, United States of America
| | - Rich H. Alexander
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah, United States of America
| | - Kimberly Clemons
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah, United States of America
| | - Amanda M. Hulse-Kemp
- Department of Soil & Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, United States of America
| | - Hamid Ashrafi
- Seed Biotechnology Center, University of California-Davis, Davis, California, United States of America
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California-Davis, Davis, California, United States of America
| | - David M. Stelly
- Department of Soil & Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, United States of America
| | - Joshua A. Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
36
|
The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep 2015; 5:17662. [PMID: 26634818 PMCID: PMC4669482 DOI: 10.1038/srep17662] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/30/2015] [Indexed: 01/24/2023] Open
Abstract
Gossypium hirsutum contributes the most production of cotton fibre, but G. barbadense is valued for its better comprehensive resistance and superior fibre properties. However, the allotetraploid genome of G. barbadense has not been comprehensively analysed. Here we present a high-quality assembly of the 2.57 gigabase genome of G. barbadense, including 80,876 protein-coding genes. The double-sized genome of the A (or At) (1.50 Gb) against D (or Dt) (853 Mb) primarily resulted from the expansion of Gypsy elements, including Peabody and Retrosat2 subclades in the Del clade, and the Athila subclade in the Athila/Tat clade. Substantial gene expansion and contraction were observed and rich homoeologous gene pairs with biased expression patterns were identified, suggesting abundant gene sub-functionalization occurred by allopolyploidization. More specifically, the CesA gene family has adapted differentially temporal expression patterns, suggesting an integrated regulatory mechanism of CesA genes from At and Dt subgenomes for the primary and secondary cellulose biosynthesis of cotton fibre in a “relay race”-like fashion. We anticipate that the G. barbadense genome sequence will advance our understanding the mechanism of genome polyploidization and underpin genome-wide comparison research in this genus.
Collapse
|
37
|
Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol Phylogenet Evol 2015; 92:45-52. [DOI: 10.1016/j.ympev.2015.05.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 01/06/2023]
|
38
|
Wendel JF, Grover CE. Taxonomy and Evolution of the Cotton Genus, Gossypium. AGRONOMY MONOGRAPHS 2015. [DOI: 10.2134/agronmonogr57.2013.0020] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Jonathan F. Wendel
- Dep. of Ecology, Evolution and Organismal Biology, Bessey Hall; Iowa State University; Ames IA 50011
| | - Corrinne E. Grover
- Dep. of Ecology, Evolution and Organismal Biology, Bessey Hall; Iowa State University; Ames IA 50011
| |
Collapse
|
39
|
Chai J, Su Y, Huang F, Liu S, Tao M, Murphy RW, Luo J. The gap in research on polyploidization between plants and vertebrates: model systems and strategic challenges. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0879-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Lazebnik Y. The shock of being united and symphiliosis. Another lesson from plants? Cell Cycle 2015; 13:2323-9. [PMID: 25483182 DOI: 10.4161/cc.29704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yuri Lazebnik
- a Yale Cardiovascular Research Center; New Haven, CT USA
| |
Collapse
|
41
|
Liu C, Yang X, Zhang H, Wang X, Zhang Z, Bian Y, Zhu B, Dong Y, Liu B. Genetic and epigenetic modifications to the BBAA component of common wheat during its evolutionary history at the hexaploid level. PLANT MOLECULAR BIOLOGY 2015; 88:53-64. [PMID: 25809554 DOI: 10.1007/s11103-015-0307-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/12/2015] [Indexed: 05/11/2023]
Abstract
The formation and evolution of common wheat (Triticum aestivum L., genome BBAADD) involves allopolyploidization events at two ploidy levels. Whether the two ploidy levels (tetraploidy and hexaploidy) have impacted the BBAA subgenomes differentially remains largely unknown. We have reported recently that extensive and distinct modifications of transcriptome expression occurred to the BBAA component of common wheat relative to the evolution of gene expression at the tetraploid level in Triticum turgidum. As a step further, here we analyzed the genetic and cytosine DNA methylation differences between an extracted tetraploid wheat (ETW) harboring genome BBAA that is highly similar to the BBAA subgenomes of common wheat, and a set of diverse T. turgidum collections, including both wild and cultivated genotypes. We found that while ETW had no significantly altered karyotype from T. turgidum, it diverged substantially from the later at both the nucleotide sequence level and in DNA methylation based on molecular marker assay of randomly sampled loci across the genome. In particular, ETW is globally less cytosine-methylated than T. turgidum, consistent with earlier observations of a generally higher transcriptome expression level in ETW than in T. turgidum. Together, our results suggest that genome evolution at the allohexaploid level has caused extensive genetic and DNA methylation modifications to the BBAA subgenomes of common wheat, which are distinctive from those accumulated at the tetraploid level in both wild and cultivated T. turgidum genotypes.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang Y, Ning Z, Hu Y, Chen J, Zhao R, Chen H, Ai N, Guo W, Zhang T. Molecular Mapping of Restriction-Site Associated DNA Markers In Allotetraploid Upland Cotton. PLoS One 2015; 10:e0124781. [PMID: 25894395 PMCID: PMC4403916 DOI: 10.1371/journal.pone.0124781] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/03/2015] [Indexed: 12/12/2022] Open
Abstract
Upland cotton (Gossypium hirsutum L., 2n = 52, AADD) is an allotetraploid, therefore the discovery of single nucleotide polymorphism (SNP) markers is difficult. The recent emergence of genome complexity reduction technologies based on the next-generation sequencing (NGS) platform has greatly expedited SNP discovery in crops with highly repetitive and complex genomes. Here we applied restriction-site associated DNA (RAD) sequencing technology for de novo SNP discovery in allotetraploid cotton. We identified 21,109 SNPs between the two parents and used these for genotyping of 161 recombinant inbred lines (RILs). Finally, a high dense linkage map comprising 4,153 loci over 3500-cM was developed based on the previous result. Using this map quantitative trait locus (QTLs) conferring fiber strength and Verticillium Wilt (VW) resistance were mapped to a more accurate region in comparison to the 1576-cM interval determined using the simple sequence repeat (SSR) genetic map. This suggests that the newly constructed map has more power and resolution than the previous SSR map. It will pave the way for the rapid identification of the marker-assisted selection in cotton breeding and cloning of QTL of interest traits.
Collapse
Affiliation(s)
- Yangkun Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Ning
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiedan Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Chen
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, Xinjiang, China
| | - Nijiang Ai
- Shihezi Agricultural Sci & Tec Research Center, Shihezi 832000, Xinjiang, China
| | - Wangzhen Guo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
43
|
Gene-expression novelty in allopolyploid cotton: a proteomic perspective. Genetics 2015; 200:91-104. [PMID: 25735302 DOI: 10.1534/genetics.115.174367] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/28/2015] [Indexed: 01/20/2023] Open
Abstract
Allopolyploidization is accompanied by changes in gene expression that are thought to contribute to phenotypic diversification. Here we describe global changes in the single-celled cotton fiber proteome of two natural allopolyploid species (Gossypium hirsutum and G. barbadense) and living models of their diploid parents using two different proteomic approaches. In total, 1323 two-dimensional gel electrophoresis spots and 1652 identified proteins by isobaric tags for relative and absolute quantitation were quantitatively profiled during fiber elongation. Between allopolyploids and their diploid A- and D-genome progenitors, amounts of differential expression ranged from 4.4 to 12.8%. Over 80% of the allopolyploid proteome was additively expressed with respect to progenitor diploids. Interestingly, the fiber proteome of G. hirsutum resembles the parental A-genome more closely, where long, spinable fiber first evolved, than does the fiber proteome of G. barbadense. More protein expression patterns were A-dominant than D-dominant in G. hirsutum, but in G. barbadense, the direction of expression-level dominance switched from the D-genome to the A-genome during fiber development. Comparison of developmental changes between the two allopolyploid species revealed a high level of proteomic differentiation despite their shared ancestry, relatively recent evolutionary divergence, and similar gross morphology. These results suggest that the two allopolyploid species have achieved superficially similar modern fiber phenotypes through different evolutionary routes at the proteome level. We also detected homeolog-specific expression for 1001 proteins and present a novel approach to infer the relationship between homeolog-specific and duplicate expression patterns. Our study provides a proteomic perspective on understanding evolutionary consequences of allopolyploidization, showing how protein expression has been altered by polyploidization and subsequently has diversified among species.
Collapse
|
44
|
Chester M, Riley RK, Soltis PS, Soltis DE. Patterns of chromosomal variation in natural populations of the neoallotetraploid Tragopogon mirus (Asteraceae). Heredity (Edinb) 2015; 114:309-17. [PMID: 25370212 PMCID: PMC4815575 DOI: 10.1038/hdy.2014.101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/16/2022] Open
Abstract
Cytological studies have shown many newly formed allopolyploids (neoallopolyploids) exhibit chromosomal variation as a result of meiotic irregularities, but few naturally occurring neoallopolyploids have been examined. Little is known about how long chromosomal variation may persist and how it might influence the establishment and evolution of allopolyploids in nature. In this study we assess chromosomal composition in a natural neoallotetraploid, Tragopogon mirus, and compare it with T. miscellus, which is an allotetraploid of similar age (~40 generations old). We also assess whether parental gene losses in T. mirus correlate with entire or partial chromosome losses. Of 37 T. mirus individuals that were karyotyped, 23 (62%) were chromosomally additive of the parents, whereas the remaining 14 individuals (38%) had aneuploid compositions. The proportion of additive versus aneuploid individuals differed from that found previously in T. miscellus, in which aneuploidy was more common (69%; Fisher's exact test, P=0.0033). Deviations from parental chromosome additivity within T. mirus individuals also did not reach the levels observed in T. miscellus, but similar compensated changes were observed. The loss of T. dubius-derived genes in two T. mirus individuals did not correlate with any chromosomal changes, indicating a role for smaller-scale genetic alterations. Overall, these data for T. mirus provide a second example of prolonged chromosomal instability in natural neoallopolyploid populations.
Collapse
Affiliation(s)
- M Chester
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - R K Riley
- Department of Biology, University of Florida, Gainesville, FL, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - P S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - D E Soltis
- Department of Biology, University of Florida, Gainesville, FL, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
45
|
Abstract
To facilitate cotton functional genomics studies and identify cotton genes mediating biotic and abiotic stress responses, we report here a detailed protocol of construction of a VIGS library from diploid cotton Gossypium raimondii. Sequencing of the representative colonies revealed that the library covers a significant percentage of unique cotton genes. Based on the number of colonies in the primary library, it is estimated that this VIGS library is about 50× coverage of predicted cotton protein-coding genes. As a proof-of-concept experiment, we further describe a protocol to identify the genetic determinants involved in cotton drought tolerance using this VIGS library. The cotton VIGS library established here provides a unique opportunity to identify essential cotton genes in various stress responses and developmental growth regulation.
Collapse
|
46
|
Masonbrink RE, Gallagher JP, Jareczek JJ, Renny-Byfield S, Grover CE, Gong L, Wendel JF. CenH3 evolution in diploids and polyploids of three angiosperm genera. BMC PLANT BIOLOGY 2014; 14:383. [PMID: 25547313 PMCID: PMC4308911 DOI: 10.1186/s12870-014-0383-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/12/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Centromeric DNA sequences alone are neither necessary nor sufficient for centromere specification. The centromere specific histone, CenH3, evolves rapidly in many species, perhaps as a coevolutionary response to rapidly evolving centromeric DNA. To gain insight into CenH3 evolution, we characterized patterns of nucleotide and protein diversity among diploids and allopolyploids within three diverse angiosperm genera, Brassica, Oryza, and Gossypium (cotton), with a focus on evidence for diversifying selection in the various domains of the CenH3 gene. In addition, we compare expression profiles and alternative splicing patterns for CenH3 in representatives of each genus. RESULTS All three genera retain both duplicated CenH3 copies, while Brassica and Gossypium exhibit pronounced homoeologous expression level bias. Comparisons among genera reveal shared and unique aspects of CenH3 evolution, variable levels of diversifying selection in different CenH3 domains, and that alternative splicing contributes significantly to CenH3 diversity. CONCLUSIONS Since the N terminus is subject to diversifying selection but the DNA binding domains do not appear to be, rapidly evolving centromere sequences are unlikely to be the primary driver of CenH3 sequence diversification. At present, the functional explanation for the diversity generated by both conventional protein evolution in the N terminal domain, as well as alternative splicing, remains unexplained.
Collapse
Affiliation(s)
- Rick E Masonbrink
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Joseph P Gallagher
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Josef J Jareczek
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Simon Renny-Byfield
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Lei Gong
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
47
|
Wang J, Sun N, Deng T, Zhang L, Zuo K. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum). BMC Genomics 2014; 15:961. [PMID: 25378022 PMCID: PMC4233062 DOI: 10.1186/1471-2164-15-961] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 09/22/2014] [Indexed: 12/18/2022] Open
Abstract
Background Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n = 4x = (AD)2 = 52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n = 2x = (D5)2 = 26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. Results EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Conclusions Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved understanding of the roles of the Hsf gene family during stress responses and fiber development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-961) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Lida Zhang
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | |
Collapse
|
48
|
Renny-Byfield S, Wendel JF. Doubling down on genomes: polyploidy and crop plants. AMERICAN JOURNAL OF BOTANY 2014; 101:1711-25. [PMID: 25090999 DOI: 10.3732/ajb.1400119] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyploidy, or whole genome multiplication, is ubiquitous among angiosperms. Many crop species are relatively recent allopolyploids, resulting from interspecific hybridization and polyploidy. Thus, an appreciation of the evolutionary consequences of (allo)polyploidy is central to our understanding of crop plant domestication, agricultural improvement, and the evolution of angiosperms in general. Indeed, many recent insights into plant biology have been gleaned from polyploid crops, including, but not limited to wheat, tobacco, sugarcane, apple, and cotton. A multitude of evolutionary processes affect polyploid genomes, including rapid and substantial genome reorganization, transgressive gene expression alterations, gene fractionation, gene conversion, genome downsizing, and sub- and neofunctionalization of duplicate genes. Often these genomic changes are accompanied by heterosis, robustness, and the improvement of crop yield, relative to closely related diploids. Historically, however, the genome-wide analysis of polyploid crops has lagged behind those of diploid crops and other model organisms. This lag is partly due to the difficulties in genome assembly, resulting from the genomic complexities induced by combining two or more evolutionarily diverged genomes into a single nucleus and by the significant size of polyploid genomes. In this review, we explore the role of polyploidy in angiosperm evolution, the domestication process and crop improvement. We focus on the potential of modern technologies, particularly next-generation sequencing, to inform us on the patterns and processes governing polyploid crop improvement and phenotypic change subsequent to domestication.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| | - Jonathan F Wendel
- Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
49
|
Abstract
Allopolyploidization in plants entails the merger of two divergent nuclear genomes, typically with only one set (usually maternal) of parental plastidial and mitochondrial genomes and with an altered cytonuclear stoichiometry. Thus, we might expect cytonuclear coevolution to be an important dimension of allopolyploid evolution. Here, we investigate cytonuclear coordination for the key chloroplast protein rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase), which is composed of nuclear-encoded, small subunits (SSUs) and plastid-encoded, large subunits. By studying gene composition and diversity as well as gene expression in four model allopolyploid lineages, Arabidopsis, Arachis, Brassica, and Nicotiana, we demonstrate that paralogous nuclear-encoded rbcS genes within diploids are subject to homogenization via gene conversion and that such concerted evolution via gene conversion characterizes duplicated genes (homoeologs) at the polyploid level. Many gene conversions in the polyploids are intergenomic with respect to the diploid progenitor genomes, occur in functional domains of the homoeologous SSUs, and are directionally biased, such that the maternal amino acid states are favored. This consistent preferential maternal-to-paternal gene conversion is mirrored at the transcriptional level, with a uniform transcriptional bias of the maternal-like rbcS homoeologs. These data, repeated among multiple diverse angiosperm genera for an important photosynthetic enzyme, suggest that cytonuclear coevolution may be mediated by intergenomic gene conversion and altered transcription of duplicated, now homoeologous nuclear genes.
Collapse
Affiliation(s)
- Lei Gong
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| | - Mischa Olson
- Department of Ecology, Evolution and Organismal Biology, Iowa State University Department of Plant Biology, Cornell University
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| |
Collapse
|
50
|
Gong L, Kakrana A, Arikit S, Meyers BC, Wendel JF. Composition and expression of conserved microRNA genes in diploid cotton (Gossypium) species. Genome Biol Evol 2014; 5:2449-59. [PMID: 24281048 PMCID: PMC3879982 DOI: 10.1093/gbe/evt196] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs are ubiquitous in plant genomes but vary greatly in their abundance within and conservation among plant lineages. To gain insight into the evolutionary birth/death dynamics of microRNA families, we sequenced small RNA and 5′-end PARE libraries generated from two closely related species of Gossypium. Here, we demonstrate that 33 microRNA families, with similar copy numbers and average evolutionary rates, are conserved in the two congeneric cottons. Analysis of the presence/absence of these microRNA families in other land plants sheds light on their depth of phylogenetic origin and lineage-specific loss/gain. Conserved microRNA families in Gossypium exhibit a striking interspecific asymmetry in expression, potentially connected to relative proximity to neighboring transposable elements. A complex correlated expression pattern of microRNA target genes with their controlling microRNAs indicates that possible functional divergence of conserved microRNA families can also exist even within a single plant genus.
Collapse
Affiliation(s)
- Lei Gong
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| | | | | | | | | |
Collapse
|