1
|
Genetic and Biochemical Aspects of Floral Scents in Roses. Int J Mol Sci 2022; 23:ijms23148014. [PMID: 35887360 PMCID: PMC9321236 DOI: 10.3390/ijms23148014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Floral scents possess high ornamental and economic values to rose production in the floricultural industry. In the past two decades, molecular bases of floral scent production have been studied in the rose as well as their genetic inheritance. Some significant achievements have been acquired, such as the comprehensive rose genome and the finding of a novel geraniol synthase in plants. In this review, we summarize the composition of floral scents in modern roses, focusing on the recent advances in the molecular mechanisms of floral scent production and emission, as well as the latest developments in molecular breeding and metabolic engineering of rose scents. It could provide useful information for both studying and improving the floral scent production in the rose.
Collapse
|
2
|
Fang L, Wang Y. MicroRNAs in Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:686831. [PMID: 34531880 PMCID: PMC8438446 DOI: 10.3389/fpls.2021.686831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21-nucleotides) non-coding RNAs found in plant and animals. MiRNAs function as critical post-transcriptional regulators of gene expression by binding to complementary sequences in their target mRNAs, leading to mRNA destabilization and translational inhibition. Plant miRNAs have some distinct characteristics compared to their animal counterparts, including greater evolutionary conservation and unique miRNA processing methods. The lifecycle of a plant begins with embryogenesis and progresses through seed germination, vegetative growth, reproductive growth, flowering and fruiting, and finally senescence and death. MiRNAs participate in the transformation of plant growth and development and directly monitor progression of these processes and the expression of certain morphological characteristics by regulating transcription factor genes involved in cell growth and differentiation. In woody plants, a large and rapidly increasing number of miRNAs have been identified, but their biological functions are largely unknown. In this review, we summarize the progress of miRNA research in woody plants to date. In particular, we discuss the potential roles of these miRNAs in growth, development, and biotic and abiotic stresses responses in woody plants.
Collapse
Affiliation(s)
- Lisha Fang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
3
|
Owusu Adjei M, Zhou X, Mao M, Rafique F, Ma J. MicroRNAs Roles in Plants Secondary Metabolism. PLANT SIGNALING & BEHAVIOR 2021; 16:1915590. [PMID: 33938393 PMCID: PMC8205019 DOI: 10.1080/15592324.2021.1915590] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 05/20/2023]
Abstract
Plant growth and development is dependent on the regulation of classes of microRNAs (miRNAs) that have emerged as important gene regulators. These miRNAs can regulate plant gene expression to function. They play an important roles in biological homeostasis and environmental response controls. A wide range of plant biological and metabolic processes, including developmental timing, tissues specific development, and differentiation, depends on miRNAs. They perpetually regulate secondary metabolite functions in different plant family lines. Mapping of molecular phylogenies shows the distribution of secondary metabolism in the plant territory. More importantly, a lot of information related to miRNA regulatory processes in plants is revealed, but the role of miRNAs in secondary metabolism regulation and functions of the metabolites are still unclear. In this review, we pinnacle some potential miRNAs regulating the secondary metabolite biosynthesis activities in plants. This will provide an alternative knowledge for functional studies of secondary metabolism.
Collapse
Affiliation(s)
- Mark Owusu Adjei
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuzixin Zhou
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Meiqin Mao
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fatima Rafique
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Ma
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Sankaranarayanan R, Palani SN, Tamilmaran N, Punitha Selvakumar AS, Chandra Sekar P, Tennyson J. Novel approaches on identification of conserved miRNAs for broad-spectrum Potyvirus control measures. Mol Biol Rep 2021; 48:2377-2388. [PMID: 33743120 DOI: 10.1007/s11033-021-06271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Potyviridae comprises more than 200 ssRNA viruses, many of which have a broad host range and geographical distributions. Potyvirids (members of Potyviridae) infect several economically important plants such as saffron, cardamom, cucumber, pepper, potato, tomato, yam, etc. Cumulatively, potyvirids cause a substantial economic loss. The major bottleneck in developing an efficient antiviral strategy is that viruses quickly evade host immunity owing to their higher mutation and recombination rates. Due to this reason, the emergence of newer and improved broad-spectrum approaches to combat viral infections is essential. The use of microRNA's (miRNA) to circumvent viral infection against animal viruses has been successfully employed. Fewer studies reported the development of efficient miRNA-based antivirus resistant strategies against plant viruses and none focused on multiple virus resistance. We focused on potyviruses since studies are limited and identification of conserved miRNAs among various host plants would be an initiative to design broad-spectrum antivirus strategies. In this study, we predicted evolutionarily conserved miRNAs by BLAST searching of reported miRNAs from 15 plants against the GSS and EST sequences of banana. A total of nine miRNAs were predicted and screened in nine diverse potyvirids' hosts (Banana, Tomato, Green gram, Jasmine, Chilli, Coriander, Onion, Rose and Colocasia) belonging to eight different orders (Zingiberales, Solanales, Fabales, Lamiales, Apiales, Asperagales, Rosales and Alismatales). Results suggested that miR168 and miR162 are conserved among all the selected plants. This comprehensive study laid the foundations to design broad-spectrum antivirus resistance using miRNAs. To conclude miR168 and miR162 are conserved among many plants and play a crucial role in evading virus infection which could be used as a potential candidate for developing antiviral strategies against potyvirid infections.
Collapse
|
5
|
Giovannini A, Laura M, Nesi B, Savona M, Cardi T. Genes and genome editing tools for breeding desirable phenotypes in ornamentals. PLANT CELL REPORTS 2021; 40:461-478. [PMID: 33388891 PMCID: PMC7778708 DOI: 10.1007/s00299-020-02632-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/27/2020] [Indexed: 05/05/2023]
Abstract
We review the main genes underlying commercial traits in cut flower species and critically discuss the possibility to apply genome editing approaches to produce novel variation and phenotypes. Promoting flowering and flower longevity as well as creating novelty in flower structure, colour range and fragrances are major objectives of ornamental plant breeding. The novel genome editing techniques add new possibilities to study gene function and breed new varieties. The implementation of such techniques, however, relies on detailed information about structure and function of genomes and genes. Moreover, improved protocols for efficient delivery of editing reagents are required. Recent results of the application of genome editing techniques to elite ornamental crops are discussed in this review. Enabling technologies and genomic resources are reviewed in relation to the implementation of such approaches. Availability of the main gene sequences, underlying commercial traits and in vitro transformation protocols are provided for the world's best-selling cut flowers, namely rose, lily, chrysanthemum, lisianthus, tulip, gerbera, freesia, alstroemeria, carnation and hydrangea. Results obtained so far are described and their implications for the improvement of flowering, flower architecture, colour, scent and shelf-life are discussed.
Collapse
Affiliation(s)
- A. Giovannini
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - M. Laura
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - B. Nesi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via dei Fiori 8, 51017 Pescia, Italy
| | - M. Savona
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - T. Cardi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
6
|
Chen C, Xie F, Hua Q, Tel-Zur N, Zhang L, Zhang Z, Zhang R, Zhao J, Hu G, Qin Y. Integrated sRNAome and RNA-Seq analysis reveals miRNA effects on betalain biosynthesis in pitaya. BMC PLANT BIOLOGY 2020; 20:437. [PMID: 32962650 PMCID: PMC7510087 DOI: 10.1186/s12870-020-02622-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/25/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) and their regulatory functions in anthocyanin, carotenoid, and chlorophyll accumulation have been extensively characterized in many plant species. However, the miRNA regulatory mechanism in betalain biosynthesis remains mostly unknown. RESULTS In this study, 126 conserved miRNAs and 41 novel miRNAs were first isolated from Hylocereus monacanthus, among which 95 conserved miRNAs belonged to 53 miRNA families. Thirty-four candidate miRNAs related to betalain biosynthesis were differentially expressed. The expression patterns of those differential expressed miRNAs were analyzed in various pitaya tissues by RT-qPCR. A significantly negative correlation was detected between the expression levels of half those miRNAs and corresponding target genes. Target genes of miRNAs i.e. Hmo-miR157b-HmSPL6-like, Hmo-miR160a-Hpcyt P450-like3, Hmo-miR6020-HmCYP71A8-like, Hmo-novel-2-HmCYP83B1-like, Hmo-novel-15-HmTPST-like, Hmo-miR828a-HmTT2-like, Hmo-miR858-HmMYB12-like, Hmo-miR858-HmMYBC1-like and Hmo-miR858-HmMYB2-like were verified by 5'RACE and transient expression system in tobacco. CONCLUSIONS Hmo-miR157b, Hmo-miR160a, Hmo-miR6020 Hmo-novel-2, Hmo-novel-15, Hmo-miR828a and Hmo-miR858 play important roles in pitaya fruit coloration and betalain accumulation. Our findings provide new insights into the roles of miRNAs and their target genes of regulatory functions involved in betalain biosynthesis of pitaya.
Collapse
Affiliation(s)
- Canbin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Fangfang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Qingzhu Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Noemi Tel-Zur
- French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Beersheba, Israel
| | - Lulu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Rong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China.
| |
Collapse
|
7
|
Huang P, Lin F, Li B, Zheng Y. Hybrid-Transcriptome Sequencing and Associated Metabolite Analysis Reveal Putative Genes Involved in Flower Color Difference in Rose Mutants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E267. [PMID: 31387222 PMCID: PMC6724100 DOI: 10.3390/plants8080267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/21/2019] [Accepted: 07/29/2019] [Indexed: 02/04/2023]
Abstract
Gene mutation is a common phenomenon in nature that often leads to phenotype differences, such as the variations in flower color that frequently occur in roses. With the aim of revealing the genomic information and inner mechanisms, the differences in the levels of both transcription and secondary metabolism between a pair of natural rose mutants were investigated by using hybrid RNA-sequencing and metabolite analysis. Metabolite analysis showed that glycosylated derivatives of pelargonidin, e.g., pelargonidin 3,5 diglucoside and pelargonidin 3-glucoside, which were not detected in white flowers (Rosa 'Whilte Mrago Koster'), constituted the major pigments in pink flowers. Conversely, the flavonol contents of petal, such as kaempferol-3-glucoside, quercetin 3-glucoside, and rutin, were higher in white flowers. Hybrid RNA-sequencing obtained a total of 107,280 full-length transcripts in rose petal which were annotated in major databases. Differentially expressed gene (DEG) analysis showed that the expression of genes involved in the flavonoid biosynthesis pathway was significantly different, e.g., CHS, FLS, DFR, LDOX, which was verified by qRT-PCR during flowering. Additionally, two MYB transcription factors were found and named RmMYBAN2 and RmMYBPA1, and their expression patterns during flowering were also analyzed. These findings indicate that these genes may be involved in the flower color difference in the rose mutants, and competition between anthocyanin and flavonol biosynthesis is a primary cause of flower color variation, with its regulation reflected by transcriptional and secondary metabolite levels.
Collapse
Affiliation(s)
- Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Bin Li
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
8
|
Guo J, Wang Q, Liu L, Ren S, Li S, Liao P, Zhao Z, Lu C, Jiang B, Sunkar R, Zheng Y. Analysis of microRNAs, phased small interfering RNAs and their potential targets in Rosarugosa Thunb. BMC Genomics 2019; 19:983. [PMID: 30999850 PMCID: PMC7394236 DOI: 10.1186/s12864-018-5325-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that play important roles by regulating other genes. Rosa rugosa Thunb. is an important ornamental and edible plant, yet there are only a few studies on the miRNAs and their functions in R. rugosa. RESULTS We sequenced 10 samll RNA profiles from the roots, petals, pollens, stamens, and leaves and 4 RNA-seq profiles in leaves and petals to analysis miRNA, phasiRNAs and mRNAs in R. rugosa. In addition, we acquired a degradome sequencing profile from leaf of R. rugosa to identify miRNA and phasiRNA targets using the SeqTar algorithm. We have identified 321 conserved miRNA homologs including primary transcripts for 25 conserved miRNAs, and 22 novel miRNAs. We identified 592 putative targets of the conserved miRNAs or tasiRNAs that showed significant accumulations of degradome reads. We found differential expression patterns of conserved miRNAs in five different tissues of R. rugosa. We identified three hundred and thirty nine 21 nucleotide (nt) PHAS loci, and forty nine 24 nt PHAS loci, respectively. Our results suggest that miR482 triggers generations of phasiRNAs by targeting nucleotide-binding, leucine-rich repeat (NB-LRR) disease resistance genes in R. rugosa. Our results also suggest that the deregulated genes in leaves and petals are significantly enriched in GO terms and KEGG pathways related to metabolic processes and photosynthesis. CONCLUSIONS These results significantly enhanced our knowledge of the miRNAs and phasiRNAs, as well as their potential functions, in R. rugosa.
Collapse
Affiliation(s)
- Junqiang Guo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qingyi Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shuchao Ren
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shipeng Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Peiran Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhigang Zhao
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chenyu Lu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bingbing Jiang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, 74078, Oklahoma, USA
| | - Yun Zheng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
9
|
Tahmasebi A, Ebrahimie E, Pakniyat H, Ebrahimi M, Mohammadi-Dehcheshmeh M. Tissue-specific transcriptional biomarkers in medicinal plants: Application of large-scale meta-analysis and computational systems biology. Gene 2019; 691:114-124. [PMID: 30620887 DOI: 10.1016/j.gene.2018.12.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 12/01/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
Abstract
Biosynthesis of secondary metabolites in plant is a complex process, regulated by many genes and influenced by several factors. In recent years, the next-generation sequencing (NGS) technology and advanced statistical analysis such as meta-analysis and computational systems biology have provided novel opportunities to overcome biological complexity. Here, we performed a meta-analysis on publicly available transcriptome datasets of twelve economically significant medicinal plants to identify differentially expressed genes (DEGs) between shoot and root tissues and to find the key molecular features which may be effective in the biosynthesis of secondary metabolites. Meta-analysis identified a total of 880 genes with differential expression between two tissues. Functional enrichment and KEGG pathway analysis indicated that the functions of those DEGs are highly associated with the developmental process, starch metabolic process, response to stimulus, porphyrin and chlorophyll metabolism, biosynthesis of secondary metabolites and phenylalanine metabolism. In addition, systems biology analysis of the DEGs was applied to find protein-protein interaction network and discovery of significant modules. The detected modules were associated with hormone signal transduction, transcription repressor activity, response to light stimulus and epigenetic processes. Finally, analysis was extended to search for putative miRNAs that are associated with DEGs. A total of 31 miRNAs were detected which belonged to 16 conserved families. The present study provides a comprehensive view to better understand the tissue-specific expression of genes and mechanisms involved in secondary metabolites synthesis and may provide candidate genes for future researches to improve yield of secondary metabolites.
Collapse
Affiliation(s)
- Ahmad Tahmasebi
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran
| | - Esmaeil Ebrahimie
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; Institute of Biotechnology, Shiraz University, Shiraz 7144165186, Iran; Division of Information Technology, Engineering and the Environment, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide 5005, Australia; School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide 5005, Australia.
| | - Hassan Pakniyat
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran
| | - Mansour Ebrahimi
- Department of Biology, University of Qom, Qom, 371514661, Iran; Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Manijeh Mohammadi-Dehcheshmeh
- Institute of Biotechnology, Shiraz University, Shiraz 7144165186, Iran; Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
10
|
Kishi-Kaboshi M, Aida R, Sasaki K. Genome engineering in ornamental plants: Current status and future prospects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 131:47-52. [PMID: 29709514 DOI: 10.1016/j.plaphy.2018.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 05/21/2023]
Abstract
Ornamental plants, like roses, carnations, and chrysanthemums, are economically important and are sold all over the world. In addition, numerous cut and garden flowers add colors to homes and gardens. Various strategies of plant breeding have been employed to improve traits of many ornamental plants. These approaches span from conventional techniques, such as crossbreeding and mutation breeding, to genetically modified plants. Recently, genome editing has become available as an efficient means for modifying traits in plant species. Genome editing technology is useful for genetic analysis and is poised to become a common breeding method for ornamental plants. In this review, we summarize the benefits and limitations of conventional breeding techniques and genome editing methods and discuss their future potential to accelerate the rate breeding programs in ornamental plants.
Collapse
Affiliation(s)
- Mitsuko Kishi-Kaboshi
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-0852, Japan
| | - Ryutaro Aida
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-0852, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-0852, Japan.
| |
Collapse
|
11
|
Tripathi AM, Niranjan A, Roy S. Global gene expression and pigment analysis of two contrasting flower color cultivars of Canna. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:1-10. [PMID: 29544208 DOI: 10.1016/j.plaphy.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 05/19/2023]
Abstract
Development of flower color in plants is a complex process. Among others, it is an important trait for ornamental flowering plants. Canna is a flowering ornamental plant of family Cannaceae. To understand the molecular mechanism of flower color development in Canna, RNA sequencing from flower tissues of two contrasting flower color cultivars, Red President (RP) and Tropical Sunrise (TS) was performed. More than 27.0 million and 19.0 million clean reads were obtained from RP and TS, respectively. The combined clean reads were assembled into 147,295 unigenes. The Canna unigenes showed maximum homology with Populus trichocarpa (26.79%). A total of 2702 unigenes expressed differentially between the two cultivars of which 1972 were up-regulated and 730 were down-regulated in RP. Phenylpropanoid and flavonoid biosynthetic processes were the significant processes in RP. Expression of a vast number of transcription factors including MYB, bHLH, ARF, and WRKY were higher in RP than TS. The expression analysis of RNA sequencing data was validated by qRT-PCR analysis. Further, concentration of measured anthocyanidins and flavonols were very low or absent in TS, corroborating largely with our transcriptome data. These findings may help in understanding flower color development in Canna and in future crop breeding program.
Collapse
Affiliation(s)
- Abhinandan Mani Tripathi
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India
| | - Abhishek Niranjan
- Central Instrumental Facility, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Sribash Roy
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India.
| |
Collapse
|
12
|
Liu J, Fu X, Dong Y, Lu J, Ren M, Zhou N, Wang C. MIKC C-type MADS-box genes in Rosa chinensis: the remarkable expansion of ABCDE model genes and their roles in floral organogenesis. HORTICULTURE RESEARCH 2018; 5:25. [PMID: 29736250 PMCID: PMC5928068 DOI: 10.1038/s41438-018-0031-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/07/2018] [Accepted: 02/27/2018] [Indexed: 05/04/2023]
Abstract
MIKCC-type MADS-box (MIKCC) genes encode transcription factors that have crucial roles in controlling floral organogenesis and flowering time in plants. Although this gene family has been well characterized in many plant species, its evolutionary and comprehensive functional analysis in rose is lacking. In this study, 58 non-redundant MIKCC uni-transcripts were extensively identified from rose transcriptomes. Phylogenetic analysis placed these genes into 12 clades with their Arabidopsis and strawberry counterparts, and revealed that ABCDE model (including AP1/FUL, AP3/PI, AG, and SEP clades), and SOC1 and AGL6 clade genes have remarkably expanded in Rosa chinensis, whereas genes from the FLC and AGL17 clades were undetectable. Sequence alignments suggest that the AP3/PI clade may contribute to more specific functions in rose due to a high variation of amino acid residues within its MADS-box domains. A comparative analysis of gene expression in specific floral organ differentiation stages and floral organs between R. chinensis cv. Old Blush and the closely related mutant genotype R. chinensis cv. Viridiflora (floral organs mutated into leaf-like structures) further revealed the roles of ABCDE model genes during floral organogenesis in rose. Analysis of co-expression networks provided an overview of the regulatory mechanisms of rose MIKCC genes and shed light on both the prominent roles of AP3/PI clade genes in floral organogenesis and the roles of RcAGL19, RcAGL24, and RcSOC1 in regulating floral transition in rose. Our analyses provide an overall insight of MIKCC genes in rose and their potential roles in floral organogenesis.
Collapse
Affiliation(s)
- Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Xiaodong Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Yuwei Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Min Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Ningning Zhou
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650200 China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| |
Collapse
|
13
|
Kim T, Park JH, Lee SG, Kim S, Kim J, Lee J, Shin C. Small RNA Transcriptome of Hibiscus Syriacus Provides Insights into the Potential Influence of microRNAs in Flower Development and Terpene Synthesis. Mol Cells 2017; 40:587-597. [PMID: 28835019 PMCID: PMC5582305 DOI: 10.14348/molcells.2017.0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in Hibiscus syriacus, the national flower of South Korea. We employed high-throughput sequencing of small RNAs obtained from four different tissues (i.e., leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissue-specific expressions. In addition, we computationally predicted novel targets of miRNAs and validated some of them using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR477 was a terpene synthase, the primary gene involved in the formation of disease-resistant terpene metabolites such as sterols and phytoalexins. In addition, a predicted target of conserved miRNAs, miR396, is SHORT VEGETATIVE PHASE, which is involved in flower initiation and is duplicated in H. syriacus. Collectively, this study provides the first reliable draft of the H. syriacus miRNA transcriptome that should constitute a basis for understanding the biological roles of miRNAs in H. syriacus.
Collapse
Affiliation(s)
- Taewook Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - Sang-gil Lee
- Program in Applied Life Chemistry, Seoul National University, Seoul,08826,
Korea
| | - Soyoung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - Jihyun Kim
- Program in Applied Life Chemistry, Seoul National University, Seoul,08826,
Korea
| | - Jungho Lee
- Green Plant Institute, Yongin 16954,
Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
14
|
Landis JB, Soltis DE, Soltis PS. Comparative transcriptomic analysis of the evolution and development of flower size in Saltugilia (Polemoniaceae). BMC Genomics 2017; 18:475. [PMID: 28645249 PMCID: PMC5481933 DOI: 10.1186/s12864-017-3868-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Flower size varies dramatically across angiosperms, representing innovations over the course of >130 million years of evolution and contributing substantially to relationships with pollinators. However, the genetic underpinning of flower size is not well understood. Saltugilia (Polemoniaceae) provides an excellent non-model system for extending the genetic study of flower size to interspecific differences that coincide with variation in pollinators. RESULTS Using targeted gene capture methods, we infer phylogenetic relationships among all members of Saltugilia to provide a framework for investigating the genetic control of flower size differences via RNA-Seq de novo assembly. Nuclear concatenation and species tree inference methods provide congruent topologies. The inferred evolutionary trajectory of flower size is from small flowers to larger flowers. We identified 4 to 10,368 transcripts that are differentially expressed during flower development, with many unigenes associated with cell wall modification and components of the auxin and gibberellin pathways. CONCLUSIONS Saltugilia is an excellent model for investigating covarying floral and pollinator evolution. Four candidate genes from model systems (BIG BROTHER, BIG PETAL, GASA, and LONGIFOLIA) show differential expression during development of flowers in Saltugilia, and four other genes (FLOWERING-PROMOTING FACTOR 1, PECTINESTERASE, POLYGALACTURONASE, and SUCROSE SYNTHASE) fit into hypothesized organ size pathways. Together, these gene sets provide a strong foundation for future functional studies to determine their roles in specifying interspecific differences in flower size.
Collapse
Affiliation(s)
- Jacob B. Landis
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Department of Botany and Plant Sciences, University of California Riverside, 4412 Boyce Hall, 3401 Watkins Drive, Riverside, CA 92521 USA
| | - Douglas E. Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Genetics Institute, University of Florida, Gainesville, FL 32610 USA
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Genetics Institute, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
15
|
Liu D, Mewalal R, Hu R, Tuskan GA, Yang X. New technologies accelerate the exploration of non-coding RNAs in horticultural plants. HORTICULTURE RESEARCH 2017; 4:17031. [PMID: 28698797 PMCID: PMC5496985 DOI: 10.1038/hortres.2017.31] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 05/06/2023]
Abstract
Non-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs. Here we summarize the classification and known biological functions of plant ncRNAs, review the application of next-generation sequencing (NGS) technology and ribosome profiling technology to ncRNA discovery in horticultural plants and discuss the application of new technologies, especially the new genome-editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems, to functional characterization of plant ncRNAs.
Collapse
Affiliation(s)
- Degao Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Ritesh Mewalal
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
- ()
| |
Collapse
|
16
|
Zhao F, Wang C, Han J, Zhu X, Li X, Wang X, Fang J. Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level. Funct Integr Genomics 2016; 17:213-235. [PMID: 27696076 DOI: 10.1007/s10142-016-0514-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 10/20/2022]
Abstract
MicroRNAs (miRNAs) are critical regulators of various biological and metabolic processes of plants. Numerous miRNAs and their functions have been identified and analyzed in many plants. However, till now, the involvement of miRNAs in the response of grapevine berries to ethylene has not been reported yet. Here, Solexa technology was employed to deeply sequence small RNA libraries constructed from grapevine berries treated with and without ethylene. A total of 124 known and 78 novel miRNAs were identified. Among these miRNAs, 162 miRNAs were clearly responsive to ethylene, with 55 downregulated, 59 upregulated, and 14 unchanged miRNAs detected only in the control. The other 35 miRNAs responsive to ethylene were induced by ethylene and detected only in the ethylene-treated grapevine materials. Expression analysis of 27 conserved and 26 novel miRNAs revealed that 13 conserved and 18 novel ones were regulated by ethylene during the whole development of grapevine berries. High-throughput sequencing and qRT-PCR assays revealed consistent results on the expression results of ethylene-responsive miRNAs. Moreover, 90 target genes for 34 novel miRNAs were predicted, most of which were involved in responses to various stresses, especially like exogenous ethylene treatment. The identified miRNAs may be mainly involved in grapevine berry development and response to various environmental conditions.
Collapse
Affiliation(s)
- Fanggui Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xicheng Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Kuligowska K, Lütken H, Müller R. Towards development of new ornamental plants: status and progress in wide hybridization. PLANTA 2016; 244:1-17. [PMID: 26969022 DOI: 10.1007/s00425-016-2493-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 05/21/2023]
Abstract
The present review provides insights into the key findings of the hybridization process, crucial factors affecting the adaptation of new technologies within wide hybridization of ornamental plants and presents perspectives of further development of this strategy. Wide hybridization is one of the oldest breeding techniques that contributed enormously to the development of modern plant cultivars. Within ornamental breeding, it represents the main source of genetic variation. During the long history of wide hybridization, a number of methods were implemented allowing the evolution from a conventional breeding tool into a modern methodology. Nowadays, the research on model plants and crop species increases our understanding of reproductive isolation among distant species and partly explains the background of the traditional approaches previously used for overcoming hybridization barriers. Characterization of parental plants and hybrids is performed using molecular and cytological techniques that strongly facilitate breeding processes. Molecular markers and sequencing technologies are used for the assessment of genetic relationships among plants, as the genetic distance is typically depicted as one of the most important factors influencing cross-compatibility in hybridization processes. Furthermore, molecular marker systems are frequently applied for verification of hybrid state of the progeny. The flow cytometry and genomic in situ hybridization are used in the assessment of hybridization partners and characterization of hybrid progeny in relation to genome stabilization as well as genome recombination and introgression. In the future, new research and technologies are likely to provide more detailed information about genes and pathways responsible for interspecific reproductive isolation. Ultimately, this knowledge will enable development of strategies for obtaining compatible lines for hybrid production. Recent development in sequencing technologies and availability of sequence data will also facilitate creation of new molecular markers that will advance marker-assisted selection in hybridization process.
Collapse
Affiliation(s)
- Katarzyna Kuligowska
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630, Tåstrup, Denmark.
| | - Henrik Lütken
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630, Tåstrup, Denmark
| | - Renate Müller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630, Tåstrup, Denmark
| |
Collapse
|
18
|
In silico search and biological validation of microRNAs related to drought response in peach and almond. Funct Integr Genomics 2016; 17:189-201. [PMID: 27068847 DOI: 10.1007/s10142-016-0488-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Plant responses to drought stress are regulated at the transcriptional and post-transcriptional levels through noncoding endogenous microRNAs. These microRNAs play key roles in gene expression, mainly by down-regulating target mRNAs. In this work, an in silico search and validation for microRNAs related to drought response in peach ('G.H. Hill'), almond ('Sefied') and an interspecific peach-almond hybrid ('GN 15') has been performed. We used qPCR to analyse the gene expression of several miRNAs described as being related to drought response in peach, including miR156, miR159, miR160, miR167, miR171, miR172, miR398, miR403, miR408, miR842 and miR2275 under mild and severe water deficit. These miRNAs were in silico selected on the basis of previous works, their conservation in plants and their drought response. qPCR analysis confirmed the implication of these miRNAs in the dehydration stress response in the three assayed genotypes. Comparison of miRNA expression patterns in the three evaluated genotypes indicated that the hybrid GN 15 showed higher expression levels of specific miRNAs which should be related to the observed drought tolerance. mRNA target transcripts of the miRNAs studied were predicted using the Rose database, which includes transcription factors that regulate plant growth and development. In addition, results showed that the promoter region contains responsive elements to hormone-mediated regulatory elements. Network analysis not only unravelled the interaction between miRNAs and their predicted gene targets but also highlighted the roles of miRNAs in response to drought stress.
Collapse
|
19
|
Roy S, Tripathi AM, Yadav A, Mishra P, Nautiyal CS. Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing. PLoS One 2016; 11:e0147499. [PMID: 26799570 PMCID: PMC4723037 DOI: 10.1371/journal.pone.0147499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
miRNAs are endogenous small RNA (sRNA) that play critical roles in plant development processes. Canna is an ornamental plant belonging to family Cannaceae. Here, we report for the first time the identification and differential expression of miRNAs in two contrasting flower color cultivars of Canna, Tropical sunrise and Red president. A total of 313 known miRNAs belonging to 78 miRNA families were identified from both the cultivars. Thirty one miRNAs (17 miRNA families) were specific to Tropical sunrise and 43 miRNAs (10 miRNA families) were specific to Red president. Thirty two and 18 putative new miRNAs were identified from Tropical sunrise and Red president, respectively. One hundred and nine miRNAs were differentially expressed in the two cultivars targeting 1343 genes. Among these, 16 miRNAs families targeting60 genes were involved in flower development related traits and five miRNA families targeting five genes were involved in phenyl propanoid and pigment metabolic processes. We further validated the expression analysis of a few miRNA and their target genes by qRT-PCR. Transcription factors were the major miRNA targets identified. Target validation of a few randomly selected miRNAs by RLM-RACE was performed but was successful with only miR162. These findings will help in understanding flower development processes, particularly the color development in Canna.
Collapse
Affiliation(s)
- Sribash Roy
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute campus, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Abhinandan Mani Tripathi
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute campus, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Amrita Yadav
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Parneeta Mishra
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute campus, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Chandra Shekhar Nautiyal
- Division of Plant Microbe Interaction, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
20
|
Mansouri E, Hardani A, Afzalzadeh MR, Amir zargar A, Meamar Z. Combined Effects of Retinoic Acid and Hydro-Alcoholic Extract of Rosa Damascena Mill on Wound in Diabetic Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2016; 15:583-9. [PMID: 27642329 PMCID: PMC5018286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retinoic acid and Rosa damascena are compounds that have considerable effects in the cellular proliferation and synthesis of extracellular matrix. The present study was designed to assess the combined effects of retinoic acid and Rosa damascena mill on wound in diabetic rats. Seventy-two rats were used in this study. Diabetes was induced by a single intraperitoneal injection of streptozotocin (60 mg. Kg(-1)). Then, a full thickness wound was created on dorsal surface of all animals. After that, rats were divided, into three groups; control (normal saline), positive control (Phenytoin), and case (combined of 0.1% Tretinoein lotion and hydro-alcoholic extract of Rosa damascena mill). Afterward, wounds were evaluated macroscopically and microscopically on days 5, 10 and 15. Macroscopic and microscopic evaluations showed a significant improvement (p<0.05) of wounds in case group on 5(th) and 10(th) days when compared to positive control and control groups. The combination of Retinoic acid and hydro-alcholic extract of Rosa damascena mill can accelerate wound healing in diabetic rats.
Collapse
Affiliation(s)
- Esrafil Mansouri
- Department of Anatomical Sciences, Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran.
| | - Ameneh Hardani
- Department of Public Health, Faculty of Hygiene Sciences, Ahvaz Jundishapur University of Medical Sciences, Iran.
| | - Mohamad Reza Afzalzadeh
- Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran.
| | - Ashraf Amir zargar
- Department of Physiology and Diabetes Research Center, Faculty of Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Iran.
| | - Zakiaeh Meamar
- Department of Engineering Environmental Health, Faculty of Hygiene Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,
| |
Collapse
|
21
|
Shi Q, Zhou L, Wang Y, Li K, Zheng B, Miao K. Transcriptomic Analysis of Paeonia delavayi Wild Population Flowers to Identify Differentially Expressed Genes Involved in Purple-Red and Yellow Petal Pigmentation. PLoS One 2015; 10:e0135038. [PMID: 26267644 PMCID: PMC4534100 DOI: 10.1371/journal.pone.0135038] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 07/17/2015] [Indexed: 12/17/2022] Open
Abstract
Tree peony (Paeonia suffruticosa Andrews) is a very famous traditional ornamental plant in China. P. delavayi is a species endemic to Southwest China that has aroused great interest from researchers as a precious genetic resource for flower color breeding. However, the current understanding of the molecular mechanisms of flower pigmentation in this plant is limited, hindering the genetic engineering of novel flower color in tree peonies. In this study, we conducted a large-scale transcriptome analysis based on Illumina HiSeq sequencing of cDNA libraries generated from yellow and purple-red P. delavayi petals. A total of 90,202 unigenes were obtained by de novo assembly, with an average length of 721 nt. Using Blastx, 44,811 unigenes (49.68%) were found to have significant similarity to accessions in the NR, NT, and Swiss-Prot databases. We also examined COG, GO and KEGG annotations to better understand the functions of these unigenes. Further analysis of the two digital transcriptomes revealed that 6,855 unigenes were differentially expressed between yellow and purple-red flower petals, with 3,430 up-regulated and 3,425 down-regulated. According to the RNA-Seq data and qRT-PCR analysis, we proposed that four up-regulated key structural genes, including F3H, DFR, ANS and 3GT, might play an important role in purple-red petal pigmentation, while high co-expression of THC2'GT, CHI and FNS II ensures the accumulation of pigments contributing to the yellow color. We also found 50 differentially expressed transcription factors that might be involved in flavonoid biosynthesis. This study is the first to report genetic information for P. delavayi. The large number of gene sequences produced by transcriptome sequencing and the candidate genes identified using pathway mapping and expression profiles will provide a valuable resource for future association studies aimed at better understanding the molecular mechanisms underlying flower pigmentation in tree peonies.
Collapse
Affiliation(s)
- Qianqian Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lin Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Kui Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Baoqiang Zheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Kun Miao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
22
|
Koning-Boucoiran CFS, Esselink GD, Vukosavljev M, van 't Westende WPC, Gitonga VW, Krens FA, Voorrips RE, van de Weg WE, Schulz D, Debener T, Maliepaard C, Arens P, Smulders MJM. Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k Axiom SNP array for rose (Rosa L.). FRONTIERS IN PLANT SCIENCE 2015; 6:249. [PMID: 25954285 PMCID: PMC4404716 DOI: 10.3389/fpls.2015.00249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/27/2015] [Indexed: 05/18/2023]
Abstract
In order to develop a versatile and large SNP array for rose, we set out to mine ESTs from diverse sets of rose germplasm. For this RNA-Seq libraries containing about 700 million reads were generated from tetraploid cut and garden roses using Illumina paired-end sequencing, and from diploid Rosa multiflora using 454 sequencing. Separate de novo assemblies were performed in order to identify single nucleotide polymorphisms (SNPs) within and between rose varieties. SNPs among tetraploid roses were selected for constructing a genotyping array that can be employed for genetic mapping and marker-trait association discovery in breeding programs based on tetraploid germplasm, both from cut roses and from garden roses. In total 68,893 SNPs were included on the WagRhSNP Axiom array. Next, an orthology-guided assembly was performed for the construction of a non-redundant rose transcriptome database. A total of 21,740 transcripts had significant hits with orthologous genes in the strawberry (Fragaria vesca L.) genome. Of these 13,390 appeared to contain the full-length coding regions. This newly established transcriptome resource adds considerably to the currently available sequence resources for the Rosaceae family in general and the genus Rosa in particular.
Collapse
Affiliation(s)
| | - G. Danny Esselink
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Mirjana Vukosavljev
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | | | - Virginia W. Gitonga
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Frans A. Krens
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Roeland E. Voorrips
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - W. Eric van de Weg
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Dietmar Schulz
- Abteilung Molekulare Pflanzenzüchtung, Institute for Plant Genetics, Leibnitz University HannoverHannover, Germany
| | - Thomas Debener
- Abteilung Molekulare Pflanzenzüchtung, Institute for Plant Genetics, Leibnitz University HannoverHannover, Germany
| | - Chris Maliepaard
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Paul Arens
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Marinus J. M. Smulders
- Wageningen UR Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
- *Correspondence: Marinus J. M. Smulders, Wageningen UR Plant Breeding, Wageningen University and Research Centre, PO Box 386, NL-6708 PB Wageningen, Netherlands
| |
Collapse
|
23
|
Debener T, Byrne DH. Disease resistance breeding in rose: current status and potential of biotechnological tools. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:107-17. [PMID: 25438791 DOI: 10.1016/j.plantsci.2014.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 05/09/2023]
Abstract
The cultivated rose is a multispecies complex for which a high level of disease protection is needed due to the low tolerance of blemishes in ornamental plants. The most important fungal diseases are black spot, powdery mildew, botrytis and downy mildew. Rose rosette, a lethal viral pathogen, is emerging as a devastating disease in North America. Currently rose breeders use a recurrent phenotypic selection approach and perform selection for disease resistance for most pathogen issues in a 2-3 year field trial. Marker assisted selection could accelerate this breeding process. Thus far markers have been identified for resistance to black spot (Rdrs) and powdery mildew and with the ability of genotyping by sequencing to generate 1000s of markers our ability to identify markers useful in plant improvement should increase exponentially. Transgenic rose lines with various fungal resistance genes inserted have shown limited success and RNAi technology has potential to provide virus resistance. Roses, as do other plants, have sequences homologous to characterized R-genes in their genomes, some which have been related to specific disease resistance. With improving next generation sequencing technology, our ability to do genomic and transcriptomic studies of the resistance related genes in both the rose and the pathogens to reveal novel gene targets to develop resistant roses will accelerate. Finally, the development of designer nucleases opens up a potentially non-GMO approach to directly modify a rose's DNA to create a disease resistant rose. Although there is much potential, at present rose breeders are not using marker assisted breeding primarily because a good suite of marker/trait associations (MTA) that would ensure a path to stable disease resistance is not available. As our genomic analytical tools improve, so will our ability to identify useful genes and linked markers. Once these MTAs are available, it will be the cost savings, both in time and money, that will convince the breeders to use the technology.
Collapse
Affiliation(s)
- Thomas Debener
- Leibniz University of Hannover, Faculty of Natural Sciences, Institute for Plant Genetics, Hannover, Germany
| | - David H Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| |
Collapse
|
24
|
Agarwal P, Parida SK, Mahto A, Das S, Mathew IE, Malik N, Tyagi AK. Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnol J 2014; 9:1480-92. [PMID: 25349922 DOI: 10.1002/biot.201400063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
The transcript pool of a plant part, under any given condition, is a collection of mRNAs that will pave the way for a biochemical reaction of the plant to stimuli. Over the past decades, transcriptome study has advanced from Northern blotting to RNA sequencing (RNA-seq), through other techniques, of which real-time quantitative polymerase chain reaction (PCR) and microarray are the most significant ones. The questions being addressed by such studies have also matured from a solitary process to expression atlas and marker-assisted genetic enhancement. Not only genes and their networks involved in various developmental processes of plant parts have been elucidated, but also stress tolerant genes have been highlighted. The transcriptome of a plant with altered expression of a target gene has given information about the downstream genes. Marker information has been used for breeding improved varieties. Fortunately, the data generated by transcriptome analysis has been made freely available for ample utilization and comparison. The review discusses this wide variety of transcriptome data being generated in plants, which includes developmental stages, abiotic and biotic stress, effect of altered gene expression, as well as comparative transcriptomics, with a special emphasis on microarray and RNA-seq. Such data can be used to determine the regulatory gene networks, which can subsequently be utilized for generating improved plant varieties.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Liu S, Kuang H, Lai Z. Transcriptome analysis by Illumina high-throughout paired-end sequencing reveals the complexity of differential gene expression during in vitro plantlet growth and flowering in Amaranthus tricolor L. PLoS One 2014; 9:e100919. [PMID: 24963660 PMCID: PMC4071066 DOI: 10.1371/journal.pone.0100919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/02/2014] [Indexed: 11/18/2022] Open
Abstract
Amaranthus tricolor L. is a C4 plant, which is consumed as a major leafy vegetable in some tropical countries. Under conditions of high temperature and short daylight, Am. tricolor readily bolts and blooms, degrading leaf quality. A preliminary in vitro flowering study demonstrated that the flowering control pathway in Am. tricolor may differ from that of Arabidopsis. Nevertheless, no transcriptome analysis of the flowering process in Amaranthus has been conducted. To study Am. tricolor floral regulatory mechanisms, we conducted a large-scale transcriptome analysis--based on Illumina HiSeq sequencing of cDNA libraries generated from Am. tricolor at young seedling (YSS), adult seedling (ASS), flower bud (FBS), and flowering (FS) stages. A total of 99,312 unigenes were obtained. Using BLASTX, 43,088 unigenes (43.39%) were found to have significant similarity with accessions in Nr, Nt, and Swiss-Prot databases. Of these unigenes, 11,291 were mapped to 266 KEGG pathways. Further analysis of the four digital transcriptomes revealed that 735, 17,184, 274, and 206 unigenes were specifically expressed during YSS, ASS, FBS, and FS, respectively, with 59,517 unigenes expressed throughout the four stages. These unigenes were involved in many metabolic pathways related to in vitro flowering. Among these pathways, 259 unigenes were associated with ubiquitin-mediated proteolysis, indicating its importance for in vitro flowering in Am. tricolor. Other pathways, such as circadian rhythm and cell cycle, also had important roles. Finally, 26 unigenes were validated by qRT-PCR in samples from Am. tricolor at YSS, ASS, FBS, and FS; their differential expressions at the various stages indicate their possible roles in Am. tricolor growth and development, but the results were somewhat similar to Arabidopsis. Because unigenes involved in many metabolic pathways or of unknown function were revealed to regulate in vitro plantlet growth and flowering in Am. tricolor, the process appears to be highly complex in this species.
Collapse
Affiliation(s)
- Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huaqin Kuang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
26
|
Transcriptome and gene expression analysis during flower blooming in Rosa chinensis ‘Pallida’. Gene 2014; 540:96-103. [DOI: 10.1016/j.gene.2014.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/29/2014] [Accepted: 02/08/2014] [Indexed: 11/22/2022]
|
27
|
Tian J, Pei H, Zhang S, Chen J, Chen W, Yang R, Meng Y, You J, Gao J, Ma N. TRV-GFP: a modified Tobacco rattle virus vector for efficient and visualizable analysis of gene function. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:311-22. [PMID: 24218330 PMCID: PMC3883300 DOI: 10.1093/jxb/ert381] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Virus-induced gene silencing (VIGS) is a useful tool for functional characterization of genes in plants. Unfortunately, the efficiency of infection by Tobacco rattle virus (TRV) is relatively low for some non-Solanaceae plants, which are economically important, such as rose (Rosa sp.). Here, to generate an easy traceable TRV vector, a green fluorescent protein (GFP) gene was tagged to the 3' terminus of the coat protein gene in the original TRV2 vector, and the silencing efficiency of the modified TRV-GFP vector was tested in several plants, including Nicotiana benthamiana, Arabidopsis thaliana, rose, strawberry (Fragaria ananassa), and chrysanthemum (Dendranthema grandiflorum). The results showed that the efficiency of infection by TRV-GFP was equal to that of the original TRV vector in each tested plant. Spread of the modified TRV virus was easy to monitor by using fluorescent microscopy and a hand-held UV lamp. When TRV-GFP was used to silence the endogenous phytoene desaturase (PDS) gene in rose cuttings and seedlings, the typical photobleached phenotype was observed in 75-80% plants which were identified as GFP positive by UV lamp. In addition, the abundance of GFP protein, which represented the concentration of TRV virus, was proved to correlate negatively with the level of the PDS gene, suggesting that GFP could be used as an indicator of the degree of silencing of a target gene. Taken together, this work provides a visualizable and efficient tool to predict positive gene silencing plants, which is valuable for research into gene function in plants, especially for non-Solanaceae plants.
Collapse
Affiliation(s)
- Ji Tian
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Haixia Pei
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Shuai Zhang
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiwei Chen
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Wen Chen
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Ruoyun Yang
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Yonglu Meng
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Jie You
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Nan Ma
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Yu C, Luo L, Pan H, Guo X, Wan H, Zhang Q. Filling gaps with construction of a genetic linkage map in tetraploid roses. FRONTIERS IN PLANT SCIENCE 2014; 5:796. [PMID: 25628638 PMCID: PMC4292389 DOI: 10.3389/fpls.2014.00796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/21/2014] [Indexed: 05/21/2023]
Abstract
Rose (Rosa sp.) is one of the most economically important ornamental crops worldwide. The present work contains a genetic linkage map for tetraploid roses that was constructed from an F1 segregation population using AFLPs and SSRs on 189 individuals. The preliminary 'Yunzheng Xiawei' and 'Sun City' maps consisted of 298 and 255 markers arranged into 26 and 32 linkage groups, respectively. The recombined parental maps covered 737 and 752 cM of the genome, respectively. The integrated linkage map was composed of 295 polymorphic markers that spanned 874 cM, and it had a mean intermarker distance of 2.9 cM. In addition, a set of newly developed EST-SSRs that are distributed evenly throughout the mapping population were released. The work identified 67 anchoring points that came from 43 common SSRs. The results that were produced from a large number of individuals (189) and polymorphic SSRs (242) will enhance the ability to construct higher density consensus maps with the available diploid level rose maps, and they will definitely serve as a tool for accurate QTL detection and marker assisted selection.
Collapse
Affiliation(s)
| | | | | | | | | | - Qixiang Zhang
- *Correspondence: Qixiang Zhang, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and rural ecological environment and College of Landscape Architecture, Beijing Forestry University, 35# Qinghua East Road, Beijing, 100083, China e-mail:
| |
Collapse
|
29
|
Longhi S, Giongo L, Buti M, Surbanovski N, Viola R, Velasco R, Ward JA, Sargent DJ. Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives. HORTICULTURE RESEARCH 2014; 1:1. [PMID: 26504527 PMCID: PMC4591673 DOI: 10.1038/hortres.2014.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/24/2013] [Indexed: 05/04/2023]
Abstract
The Rosoideae is a subfamily of the Rosaceae that contains a number of species of economic importance, including the soft fruit species strawberry (Fragaria ×ananassa), red (Rubus idaeus) and black (Rubus occidentalis) raspberries, blackberries (Rubus spp.) and one of the most economically important cut flower genera, the roses (Rosa spp.). Molecular genetics and genomics resources for the Rosoideae have developed rapidly over the past two decades, beginning with the development and application of a number of molecular marker types including restriction fragment length polymorphisms, amplified fragment length polymorphisms and microsatellites, and culminating in the recent publication of the genome sequence of the woodland strawberry, Fragaria vesca, and the development of high throughput single nucleotide polymorphism (SNP)-genotyping resources for Fragaria, Rosa and Rubus. These tools have been used to identify genes and other functional elements that control traits of economic importance, to study the evolution of plant genome structure within the subfamily, and are beginning to facilitate genomic-assisted breeding through the development and deployment of markers linked to traits such as aspects of fruit quality, disease resistance and the timing of flowering. In this review, we report on the developments that have been made over the last 20 years in the field of molecular genetics and structural genomics within the Rosoideae, comment on how the knowledge gained will improve the efficiency of cultivar development and discuss how these advances will enhance our understanding of the biological processes determining agronomically important traits in all Rosoideae species.
Collapse
Affiliation(s)
- Sara Longhi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Lara Giongo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Matteo Buti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Nada Surbanovski
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Roberto Viola
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Daniel J Sargent
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
30
|
Identification and profiling of novel and conserved microRNAs during the flower opening process in Prunus mume via deep sequencing. Mol Genet Genomics 2013; 289:169-83. [DOI: 10.1007/s00438-013-0800-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/04/2013] [Indexed: 01/01/2023]
|
31
|
Rock CD. Trans-acting small interfering RNA4: key to nutraceutical synthesis in grape development? TRENDS IN PLANT SCIENCE 2013; 18:601-10. [PMID: 23993483 PMCID: PMC3818397 DOI: 10.1016/j.tplants.2013.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/12/2013] [Accepted: 07/31/2013] [Indexed: 05/19/2023]
Abstract
The facility and versatility of microRNAs (miRNAs) to evolve and change likely underlies how they have become dominant constituents of eukaryotic genomes. In this opinion article I propose that trans-acting small interfering RNA gene 4 (TAS4) evolution may be important for biosynthesis of polyphenolics, arbuscular symbiosis, and bacterial pathogen etiologies. Expression-based and phylogenetic evidence shows that TAS4 targets two novel grape (Vitis vinifera L.) MYB transcription factors (VvMYBA6, VvMYBA7) that spawn phased small interfering RNAs (siRNAs) which probably function in nutraceutical bioflavonoid biosynthesis and fruit development. Characterization of the molecular mechanisms of TAS4 control of plant development and integration into biotic and abiotic stress- and nutrient-signaling regulatory networks has applicability to molecular breeding and the development of strategies for engineering healthier foods.
Collapse
Affiliation(s)
- Christopher D Rock
- Department of Biological Sciences, Texas Tech University (TTU), Lubbock, TX 79409-3131, USA.
| |
Collapse
|
32
|
Pei H, Ma N, Tian J, Luo J, Chen J, Li J, Zheng Y, Chen X, Fei Z, Gao J. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. PLANT PHYSIOLOGY 2013; 163:775-91. [PMID: 23933991 PMCID: PMC3793057 DOI: 10.1104/pp.113.223388] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/08/2013] [Indexed: 05/18/2023]
Abstract
Cell expansion is crucial for plant growth. It is well known that the phytohormone ethylene functions in plant development as a key modulator of cell expansion. However, the role of ethylene in the regulation of this process remains unclear. In this study, 2,189 ethylene-responsive transcripts were identified in rose (Rosa hybrida) petals using transcriptome sequencing and microarray analysis. Among these transcripts, an NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor gene, RhNAC100, was rapidly and dramatically induced by ethylene in the petals. Interestingly, accumulation of the RhNAC100 transcript was modulated by ethylene via microRNA164-dependent posttranscriptional regulation. Overexpression of RhNAC100 in Arabidopsis (Arabidopsis thaliana) substantially reduced the petal size by repressing petal cell expansion. By contrast, silencing of RhNAC100 in rose petals using virus-induced gene silencing significantly increased petal size and promoted cell expansion in the petal abaxial subepidermis (P < 0.05). Expression analysis showed that 22 out of the 29 cell expansion-related genes tested exhibited changes in expression in RhNAC100-silenced rose petals. Moreover, of those genes, one cellulose synthase and two aquaporin genes (Rosa hybrida Cellulose Synthase2 and R. hybrida Plasma Membrane Intrinsic Protein1;1/2;1) were identified as targets of RhNAC100. Our results suggest that ethylene regulates cell expansion by fine-tuning the microRNA164/RhNAC100 module and also provide new insights into the function of NAC transcription factors.
Collapse
|
33
|
Cavaiuolo M, Cocetta G, Ferrante A. The Antioxidants Changes in Ornamental Flowers during Development and Senescence. Antioxidants (Basel) 2013; 2:132-55. [PMID: 26784342 PMCID: PMC4665434 DOI: 10.3390/antiox2030132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/16/2022] Open
Abstract
The concentration of antioxidant compounds is constitutive and variable from species to species and is also variable considering the development of the plant tissue. In this review, we take into consideration the antioxidant changes and the physiological, biochemical and molecular factors that are able to modulate the accumulation of antioxidant compounds in ornamental flowers during the whole development process until the senescence. Many ornamental flowers are natural sources of very important bioactive compounds with benefit to the human health and their possible role as dietary components has been reported. The most part of antioxidants are flower pigments such as carotenoids and polyphenols, often present in higher concentration compared with the most common fruits and vegetables. The antioxidants content changes during development and during senescence many biochemical systems and molecular mechanisms are activated to counteract the increase of reactive oxygen species and free radicals. There is a tight correlation between antioxidants and senescence processes and this aspect is detailed and appropriately discussed.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy.
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy.
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, Milano 20133, Italy.
| |
Collapse
|
34
|
Li MJ, Yang YH, Chen XJ, Wang FQ, Lin WX, Yi YJ, Zeng L, Yang SY, Zhang ZY. Transcriptome/degradome-wide identification of R. glutinosa miRNAs and their targets: the role of miRNA activity in the replanting disease. PLoS One 2013; 8:e68531. [PMID: 23861915 PMCID: PMC3702588 DOI: 10.1371/journal.pone.0068531] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/30/2013] [Indexed: 11/26/2022] Open
Abstract
Rehmannia glutinosa, a traditional Chinese medicine herb, is unable to grow normally in a soil where the same species has recently been cultivated. The biological basis of this so called "replanting disease" is unknown, but it may involve the action of microRNAs (miRNAs), which are known to be important regulators of plant growth and development. High throughput Solexa/Illumina sequencing was used to generate a transcript library of the R. glutinosa transcriptome and degradome in order to identify possible miRNAs and their targets implicated in the replanting disease. A total of 87,665 unigenes and 589 miRNA families (17 of which have not been identified in plants to date) was identified from the libraries made from a first year (FP) and a second year (SP) crop. A comparison between the FP and SP miRNAs showed that the abundance of eight of the novel and 295 of the known miRNA families differed between the FP and SP plants. Sequencing of the degradome sampled from FP and SP plants led to the identification of 165 transcript targets of 85 of the differentially abundant miRNA families. The interaction of some of these miRNAs with their target(s) is likely to form an important part of the molecular basis of the replanting disease of R. glutinosa.
Collapse
Affiliation(s)
- Ming Jie Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yan Hui Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Xin Jian Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Feng Qing Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wen Xiong Lin
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Jie Yi
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Lei Zeng
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Shuo Ye Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Zhong Yi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
35
|
Hwang DG, Park JH, Lim JY, Kim D, Choi Y, Kim S, Reeves G, Yeom SI, Lee JS, Park M, Kim S, Choi IY, Choi D, Shin C. The hot pepper (Capsicum annuum) microRNA transcriptome reveals novel and conserved targets: a foundation for understanding MicroRNA functional roles in hot pepper. PLoS One 2013; 8:e64238. [PMID: 23737975 PMCID: PMC3667847 DOI: 10.1371/journal.pone.0064238] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/10/2013] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21 nt in length which play important roles in regulating gene expression in plants. Although many miRNA studies have focused on a few model plants, miRNAs and their target genes remain largely unknown in hot pepper (Capsicum annuum), one of the most important crops cultivated worldwide. Here, we employed high-throughput sequencing technology to identify miRNAs in pepper extensively from 10 different libraries, including leaf, stem, root, flower, and six developmental stage fruits. Based on a bioinformatics pipeline, we successfully identified 29 and 35 families of conserved and novel miRNAs, respectively. Northern blot analysis was used to validate further the expression of representative miRNAs and to analyze their tissue-specific or developmental stage-specific expression patterns. Moreover, we computationally predicted miRNA targets, many of which were experimentally confirmed using 5′ rapid amplification of cDNA ends analysis. One of the validated novel targets of miR-396 was a domain rearranged methyltransferase, the major de novo methylation enzyme, involved in RNA-directed DNA methylation in plants. This work provides the first reliable draft of the pepper miRNA transcriptome. It offers an expanded picture of pepper miRNAs in relation to other plants, providing a basis for understanding the functional roles of miRNAs in pepper.
Collapse
Affiliation(s)
- Dong-Gyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pei H, Ma N, Chen J, Zheng Y, Tian J, Li J, Zhang S, Fei Z, Gao J. Integrative analysis of miRNA and mRNA profiles in response to ethylene in rose petals during flower opening. PLoS One 2013; 8:e64290. [PMID: 23696879 PMCID: PMC3655976 DOI: 10.1371/journal.pone.0064290] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/11/2013] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs play an important role in plant development and plant responses to various biotic and abiotic stimuli. As one of the most important ornamental crops, rose (Rosa hybrida) possesses several specific morphological and physiological features, including recurrent flowering, highly divergent flower shapes, colors and volatiles. Ethylene plays an important role in regulating petal cell expansion during rose flower opening. Here, we report the population and expression profiles of miRNAs in rose petals during flower opening and in response to ethylene based on high throughput sequencing. We identified a total of 33 conserved miRNAs, as well as 47 putative novel miRNAs were identified from rose petals. The conserved and novel targets to those miRNAs were predicted using the rose floral transcriptome database. Expression profiling revealed that expression of 28 known (84.8% of known miRNAs) and 39 novel (83.0% of novel miRNAs) miRNAs was substantially changed in rose petals during the earlier opening period. We also found that 28 known and 22 novel miRNAs showed expression changes in response to ethylene treatment. Furthermore, we performed integrative analysis of expression profiles of miRNAs and their targets. We found that ethylene-caused expression changes of five miRNAs (miR156, miR164, miR166, miR5139 and rhy-miRC1) were inversely correlated to those of their seven target genes. These results indicate that these miRNA/target modules might be regulated by ethylene and were involved in ethylene-regulated petal growth.
Collapse
Affiliation(s)
- Haixia Pei
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Nan Ma
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jiwei Chen
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yi Zheng
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
| | - Ji Tian
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jing Li
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Shuai Zhang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
37
|
Lee J, Kim DI, Park JH, Choi IY, Shin C. MiRAuto: an automated user-friendly microRNA prediction tool utilizing plant small RNA sequencing data. Mol Cells 2013; 35:342-7. [PMID: 23625170 PMCID: PMC3887891 DOI: 10.1007/s10059-013-0019-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small RNAs that post-transcriptionally regulate gene expression in animals and plants. The recent rapid advancement in miRNA biology, including high-throughput sequencing of small RNA libraries, inspired the development of a bioinformatics software, miRAuto, which predicts putative miRNAs in model plant genomes computationally. Furthermore, miRAuto enables users to identify miRNAs in non-model plant species whose genomes have yet to be fully sequenced. miRAuto analyzes the expression of the 5'-end position of mapped small RNAs in reference sequences to prevent the possibility of mRNA fragments being included as candidate miRNAs. We validated the utility of miRAuto on a small RNA dataset, and the results were compared to other publicly available miRNA prediction programs. In conclusion, miRAuto is a fully automated user-friendly tool for predicting miRNAs from small RNA sequencing data in both model and non-model plant species. miRAuto is available at http://nature.snu.ac.kr/software/miRAuto.htm.
Collapse
Affiliation(s)
- Jeongsoo Lee
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Dong-in Kim
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921,
Korea
| | - Ik-Young Choi
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921,
Korea
| |
Collapse
|