1
|
Wang GD, Shao XJ, Bai B, Wang J, Wang X, Cao X, Liu YH, Wang X, Yin TT, Zhang SJ, Lu Y, Wang Z, Wang L, Zhao W, Zhang B, Ruan J, Zhang YP. Structural variation during dog domestication: insights from gray wolf and dhole genomes. Natl Sci Rev 2019; 6:110-122. [PMID: 34694297 PMCID: PMC8291444 DOI: 10.1093/nsr/nwy076] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/27/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
Several processes like phenotypic evolution, disease susceptibility and environmental adaptations, which fashion the domestication of animals, are largely attributable to structural variations (SVs) in the genome. Here, we present high-quality draft genomes of the gray wolf (Canis lupus) and dhole (Cuon alpinus) with scaffold N50 of 6.04 Mb and 3.96 Mb, respectively. Sequence alignment comprising genomes of three canid species reveals SVs specific to the dog, particularly 16 315 insertions, 2565 deletions, 443 repeats, 16 inversions and 15 translocations. Functional annotation of the dog SVs associated with genes indicates their enrichments in energy metabolisms, neurological processes and immune systems. Interestingly, we identify and verify at population level an insertion fully covering a copy of the AKR1B1 (Aldo-Keto Reductase Family 1 Member B) transcript. Transcriptome analysis reveals a high level of expression of the new AKR1B1 copy in the small intestine and liver, implying an increase in de novo fatty acid synthesis and antioxidant ability in dog compared to gray wolf, likely in response to dietary shifts during the agricultural revolution. For the first time, we report a comprehensive analysis of the evolutionary dynamics of SVs during the domestication step of dogs. Our findings demonstrate that retroposition can birth new genes to facilitate domestication, and affirm the importance of large-scale genomic variants in domestication studies.
Collapse
Affiliation(s)
- Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiu-Juan Shao
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bing Bai
- Medical Faculty, Kunming University of Science and Technology, Kunming 650504, China
- Department of Pediatrics, the First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Junlong Wang
- College of Pharmacology, Soochow University, Suzhou 215123, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiaobo Wang
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xue Cao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming 650500, China
| | - Yan-Hu Liu
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
| | - Xuan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Shao-Jie Zhang
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
| | - Yan Lu
- Beijing Zoo, Beijing 100044, China
| | | | - Lu Wang
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
| | - Wenming Zhao
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jue Ruan
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
2
|
Pilkington SM, Crowhurst R, Hilario E, Nardozza S, Fraser L, Peng Y, Gunaseelan K, Simpson R, Tahir J, Deroles SC, Templeton K, Luo Z, Davy M, Cheng C, McNeilage M, Scaglione D, Liu Y, Zhang Q, Datson P, De Silva N, Gardiner SE, Bassett H, Chagné D, McCallum J, Dzierzon H, Deng C, Wang YY, Barron L, Manako K, Bowen J, Foster TM, Erridge ZA, Tiffin H, Waite CN, Davies KM, Grierson EP, Laing WA, Kirk R, Chen X, Wood M, Montefiori M, Brummell DA, Schwinn KE, Catanach A, Fullerton C, Li D, Meiyalaghan S, Nieuwenhuizen N, Read N, Prakash R, Hunter D, Zhang H, McKenzie M, Knäbel M, Harris A, Allan AC, Gleave A, Chen A, Janssen BJ, Plunkett B, Ampomah-Dwamena C, Voogd C, Leif D, Lafferty D, Souleyre EJF, Varkonyi-Gasic E, Gambi F, Hanley J, Yao JL, Cheung J, David KM, Warren B, Marsh K, Snowden KC, Lin-Wang K, Brian L, Martinez-Sanchez M, Wang M, Ileperuma N, Macnee N, Campin R, McAtee P, Drummond RSM, Espley RV, Ireland HS, Wu R, Atkinson RG, Karunairetnam S, Bulley S, Chunkath S, Hanley Z, Storey R, Thrimawithana AH, Thomson S, David C, Testolin R, Huang H, Hellens RP, Schaffer RJ. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics 2018; 19:257. [PMID: 29661190 PMCID: PMC5902842 DOI: 10.1186/s12864-018-4656-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 04/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) ‘Hongyang’ draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. Results A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within ‘Hongyang’ The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned ‘Hort16A’ cDNAs and comparing with the predicted protein models for Red5 and both the original ‘Hongyang’ assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised ‘Hongyang’ annotation, respectively, compared with 90.9% to the Red5 models. Conclusions Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4656-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah M Pilkington
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Simona Nardozza
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Lena Fraser
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Yongyan Peng
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Kularajathevan Gunaseelan
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Robert Simpson
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Jibran Tahir
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | | | - Kerry Templeton
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Zhiwei Luo
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Marcus Davy
- PFR, 412 No 1 Road, Te Puke, Bay of Plenty, 3182, New Zealand
| | - Canhong Cheng
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Mark McNeilage
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Davide Scaglione
- IGA Technology Services, Parco Scientifico e Tecnologico, Udine, Italy
| | - Yifei Liu
- South China Botanic Gardens, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
| | - Qiong Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Wuhan, China
| | - Paul Datson
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nihal De Silva
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | | | | | - David Chagné
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - John McCallum
- PFR, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Helge Dzierzon
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Yen-Yi Wang
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Lorna Barron
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Kelvina Manako
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Judith Bowen
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Toshi M Foster
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Zoe A Erridge
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Heather Tiffin
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Chethi N Waite
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Kevin M Davies
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | | | | | - Rebecca Kirk
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Xiuyin Chen
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Marion Wood
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Mirco Montefiori
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | | | | | | | - Christina Fullerton
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Wuhan, China
| | | | - Niels Nieuwenhuizen
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nicola Read
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Roneel Prakash
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Don Hunter
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Huaibi Zhang
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | | | - Mareike Knäbel
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Alastair Harris
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew Gleave
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Angela Chen
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Bart J Janssen
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Blue Plunkett
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Charlotte Voogd
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Davin Leif
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Declan Lafferty
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Edwige J F Souleyre
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Francesco Gambi
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Jenny Hanley
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Joey Cheung
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Karine M David
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ben Warren
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ken Marsh
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Lara Brian
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Marcela Martinez-Sanchez
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Mindy Wang
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nadeesha Ileperuma
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nikolai Macnee
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Robert Campin
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Peter McAtee
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Revel S M Drummond
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Rongmei Wu
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Sakuntala Karunairetnam
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Sean Bulley
- PFR, 412 No 1 Road, Te Puke, Bay of Plenty, 3182, New Zealand
| | - Shayhan Chunkath
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Zac Hanley
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Roy Storey
- PFR, 412 No 1 Road, Te Puke, Bay of Plenty, 3182, New Zealand
| | - Amali H Thrimawithana
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Susan Thomson
- PFR, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Charles David
- PFR, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Raffaele Testolin
- IGA Technology Services, Parco Scientifico e Tecnologico, Udine, Italy.,Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Hongwen Huang
- South China Botanic Gardens, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China.,Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Wuhan, China
| | - Roger P Hellens
- Institute for Future Environments, Queensland University of Technology (QUT), Brisbane, 4001, Australia
| | - Robert J Schaffer
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand. .,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
3
|
An Y, Kawaguchi A, Zhao C, Toyoda A, Sharifi-Zarchi A, Mousavi SA, Bagherzadeh R, Inoue T, Ogino H, Fujiyama A, Chitsaz H, Baharvand H, Agata K. Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians. ZOOLOGICAL LETTERS 2018; 4:24. [PMID: 30181897 PMCID: PMC6114478 DOI: 10.1186/s40851-018-0102-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/03/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Planarians are non-parasitic Platyhelminthes (flatworms) famous for their regeneration ability and for having a well-organized brain. Dugesia japonica is a typical planarian species that is widely distributed in the East Asia. Extensive cellular and molecular experimental methods have been developed to identify the functions of thousands of genes in this species, making this planarian a good experimental model for regeneration biology and neurobiology. However, no genome-level information is available for D. japonica, and few gene regulatory networks have been identified thus far. RESULTS To obtain whole-genome information on this species and to study its gene regulatory networks, we extracted genomic DNA from 200 planarians derived from a laboratory-bred asexual clonal strain, and sequenced 476 Gb of data by second-generation sequencing. Kmer frequency graphing and fosmid sequence analysis indicated a complex genome that would be difficult to assemble using second-generation sequencing short reads. To address this challenge, we developed a new assembly strategy and improved the de novo genome assembly, producing a 1.56 Gb genome sequence (DjGenome ver1.0, including 202,925 scaffolds and N50 length 27,741 bp) that covers 99.4% of all 19,543 genes in the assembled transcriptome, although the genome is fragmented as 80% of the genome consists of repeated sequences (genomic frequency ≥ 2). By genome comparison between two planarian genera, we identified conserved non-coding elements (CNEs), which are indicative of gene regulatory elements. Transgenic experiments using Xenopus laevis indicated that one of the CNEs in the Djndk gene may be a regulatory element, suggesting that the regulation of the ndk gene and the brain formation mechanism may be conserved between vertebrates and invertebrates. CONCLUSION This draft genome and CNE analysis will contribute to resolving gene regulatory networks in planarians. The genome database is available at: http://www.planarian.jp.
Collapse
Affiliation(s)
- Yang An
- Department of Biophysics, Kyoto University, Kyoto, Japan
- Present address: Immolife-biotech Co., Ltd., Nanjing, China
| | - Akane Kawaguchi
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
- Present address: Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Chen Zhao
- School of Pharmacy, Fudan University, Shanghai, China
- Present address: Immolife-biotech Co., Ltd., Nanjing, China
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Ali Sharifi-Zarchi
- Department of Computer Science, Colorado State University, Fort Collins, USA
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Seyed Ahmad Mousavi
- Department of Computer Science, Colorado State University, Fort Collins, USA
| | - Reza Bagherzadeh
- Department of Biophysics, Kyoto University, Kyoto, Japan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
- Present address: Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Takeshi Inoue
- Department of Biophysics, Kyoto University, Kyoto, Japan
- Present address: Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Hajime Ogino
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
- Present address: Amphibian Research Center, Hiroshima University, Higashi-hiroshima, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hamidreza Chitsaz
- Department of Computer Science, Colorado State University, Fort Collins, USA
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Kiyokazu Agata
- Department of Biophysics, Kyoto University, Kyoto, Japan
- Present address: Department of Life Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|