1
|
Djoko Tagne CS, Kouamo MFM, Tchouakui M, Muhammad A, Mugenzi LJL, Tatchou-Nebangwa NMT, Thiomela RF, Gadji M, Wondji MJ, Hearn J, Desire MH, Ibrahim SS, Wondji CS. A single mutation G454A in the P450 CYP9K1 drives pyrethroid resistance in the major malaria vector Anopheles funestus reducing bed net efficacy. Genetics 2025; 229:1-40. [PMID: 39509710 PMCID: PMC11708915 DOI: 10.1093/genetics/iyae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Metabolic mechanisms conferring pyrethroid resistance in malaria vectors are jeopardizing the effectiveness of insecticide-based interventions, and identification of their markers is a key requirement for robust resistance management. Here, using a field-lab-field approach, we demonstrated that a single mutation G454A in the P450 CYP9K1 is driving pyrethroid resistance in the major malaria vector Anopheles funestus in East and Central Africa. Drastic reduction in CYP9K1 diversity was observed in Ugandan samples collected in 2014, with the selection of a predominant haplotype (G454A mutation at 90%), which was completely absent in the other African regions. However, 6 years later (2020) the Ugandan 454A-CYP9K1 haplotype was found predominant in Cameroon (84.6%), but absent in Malawi (Southern Africa) and Ghana (West Africa). Comparative in vitro heterologous expression and metabolism assays revealed that the mutant 454A-CYP9K1 (R) allele significantly metabolizes more type II pyrethroid (deltamethrin) compared with the wild G454-CYP9K1 (S) allele. Transgenic Drosophila melanogaster flies expressing 454A-CYP9K1 (R) allele exhibited significantly higher type I and II pyrethroids resistance compared to flies expressing the wild G454-CYP9K1 (S) allele. Furthermore, laboratory testing and field experimental hut trials in Cameroon demonstrated that mosquitoes harboring the resistant 454A-CYP9K1 allele significantly survived pyrethroids exposure (odds ratio = 567, P < 0.0001). This study highlights the rapid spread of pyrethroid-resistant CYP9K1 allele, under directional selection in East and Central Africa, contributing to reduced bed net efficacy. The newly designed DNA-based assay here will add to the toolbox of resistance monitoring and improving its management strategies.
Collapse
Affiliation(s)
- Carlos S Djoko Tagne
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Mersimine F M Kouamo
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Biotechnology Research, Bayero University, Kano, PMB 3011, Kano, Nigeria
| | - Leon J L Mugenzi
- Syngenta Crop Protection Department, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - Nelly M T Tatchou-Nebangwa
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O Box 63, Buea, Cameroon
| | - Riccado F Thiomela
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Mahamat Gadji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Murielle J Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jack Hearn
- Centre for Epidemiology and Planetary Health, Scotland’s Rural College (SRUC), RAVIC, Inverness IV2 5NA, UK
| | - Mbouobda H Desire
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Sulaiman S Ibrahim
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria
| | - Charles S Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
2
|
Oruni A, Tchouakui M, Tagne CSD, Hearn J, Kayondo J, Wondji CS. Temporal evolution of insecticide resistance and bionomics in Anopheles funestus, a key malaria vector in Uganda. Sci Rep 2024; 14:32027. [PMID: 39738472 PMCID: PMC11685729 DOI: 10.1038/s41598-024-83689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Insecticide resistance escalation is decreasing the efficacy of vector control tools. Monitoring vector resistance is paramount in order to understand its evolution and devise effective counter-solutions. In this study, we monitored insecticide resistance patterns, vector population bionomics and genetic variants associated with resistance over 3 years from 2021 to 2023 in Uganda. Anopheles funestus s.s was the predominant species in Mayuge but with evidence of hybridization with other species of the An. funestus group. Sporozoite infection rates were relatively very high with a peak of 20.41% in March 2022. Intense pyrethroid resistance was seen against pyrethroids up to 10-times the diagnostic concentration but partial recovery of susceptibility in PBO synergistic assays. Among bednets, only PBO-based nets (PermaNet 3.0 Top and Olyset Plus) and chlorfenapyr-based net (Interceptor G2) had high mortality rates. Mosquitoes were fully susceptible to chlorfenapyr and organophosphates, moderately resistant to clothianidin and resistant to carbamates. The allele frequency of key P450, CYP9K1, resistance marker was constantly very high but that for CYP6P9A/b were very low. Interestingly, we report the first detection of resistance alleles for Ace1 gene (RS = ~ 13%) and Rdl gene (RS = ~ 21%, RR = ~ 4%) in Uganda. The qRT-PCR revealed that Cytochrome P450s CYP9K1, CYP6P9A, CYP6P9b, CYP6P5 and CYP6M7 were consistently upregulated while a glutathione-S-transferase gene (GSTE2) showed low expression. Our study shows the complexity of insecticide resistance patterns and underlying mechanisms, hence constant and consistent spatial and temporal monitoring is crucial to rapidly detect changing resistance profiles which is key in informing deployment of counter interventions.
Collapse
Affiliation(s)
- Ambrose Oruni
- Entomology Department, Uganda Virus Research Institute, P.O. BOX 49, Entebbe, Uganda.
- Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon
| | - Carlos S Djoko Tagne
- Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Centre for Epidemiology and Planetary Health, Scotland's Rural College (SRUC), Inverness, IV2 5NA, UK
| | - Jonathan Kayondo
- Entomology Department, Uganda Virus Research Institute, P.O. BOX 49, Entebbe, Uganda
| | - Charles S Wondji
- Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
- International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
3
|
Tatchou-Nebangwa NMT, Mugenzi LMJ, Muhammad A, Nebangwa DN, Kouamo MFM, Tagne CSD, Tekoh TA, Tchouakui M, Ghogomu SM, Ibrahim SS, Wondji CS. Two highly selected mutations in the tandemly duplicated CYP6P4a and CYP6P4b genes drive pyrethroid resistance in Anopheles funestus in West Africa. BMC Biol 2024; 22:286. [PMID: 39696366 DOI: 10.1186/s12915-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Gaining a comprehensive understanding of the genetic mechanisms underlying insecticide resistance in malaria vectors is crucial for optimising the effectiveness of insecticide-based vector control methods and developing diagnostic tools for resistance management. Considering the heterogeneity of metabolic resistance in major malaria vectors, the implementation of tailored resistance management strategies is essential for successful vector control. Here, we provide evidence demonstrating that two highly selected mutations in CYP6P4a and CYP6P4b are driving pyrethroid insecticide resistance in the major malaria vector Anopheles funestus, in West Africa. RESULTS Continent-wide polymorphism survey revealed escalated signatures of directional selection of both genes between 2014 and 2021. In vitro insecticide metabolism assays with recombinant enzymes from both genes showed that mutant alleles under selection exhibit higher metabolic efficiency than their wild-type counterparts. Using the GAL4-UAS expression system, transgenic Drosophila flies overexpressing mutant alleles exhibited increased resistance to pyrethroids. These findings were consistent with in silico predictions which highlighted changes in enzyme active site architecture that enhance the affinity of mutant alleles for type I and II pyrethroids. Furthermore, we designed two DNA-based assays for the detection of CYP6P4a-M220I and CYP6P4b-D284E mutations, showing their current confinement to West Africa. Genotype/phenotype correlation analyses revealed that these markers are strongly associated with resistance to types I and II pyrethroids and combine to drastically reduce killing effects of pyrethroid bed nets. CONCLUSIONS Overall, this study demonstrated that CYP6P4a and CYP6P4b contribute to pyrethroid resistance in An. funestus and provided two additional insecticide resistance molecular diagnostic tools that would contribute to monitoring and better management of resistance.
Collapse
Affiliation(s)
- Nelly M T Tatchou-Nebangwa
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon.
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, CH4332, Switzerland
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Biotechnology Research, Bayero University, Kano PMB, Kano, 3011, Nigeria
| | - Derrick N Nebangwa
- Randall Center for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mersimine F M Kouamo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
| | - Carlos S Djoko Tagne
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Theofelix A Tekoh
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
| | - Stephen M Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Sulaiman S Ibrahim
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Department of Biochemistry, Bayero University, Kano PMB, Kano, 3011, Nigeria
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
4
|
Xu Y, Du J, Zhang K, Li J, Zou F, Li X, Meng Y, Chen Y, Tao L, Zhao F, Ma L, Shen B, Zhou D, Sun Y, Yan G, Zhu C. The Dual Resistance Mechanism of CYP325G4 and CYP6AA9 in Culex pipiens pallens Legs According to Transcriptome and Proteome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27150-27162. [PMID: 39604078 DOI: 10.1021/acs.jafc.4c05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mosquitoes within the Culex pipiens complex play a crucial role in human disease transmission. Insecticides, especially pyrethroids, are used to control these vectors. Mosquito legs are the main entry point and barrier for insecticides to gain their neuronal targets. However, the resistance mechanism in mosquito legs is unclear. Herein, we employed transcriptomic analyses and isobaric tags for relative and absolute quantitation techniques to investigate the resistance mechanism, focusing on Cx. pipiens legs. We discovered 2346 differentially expressed genes (DEGs) between deltamethrin-resistant (DR) and deltamethrin-sensitive (DS) mosquito legs, including 41 cytochrome P450 genes. In the same comparison, we identified 228 differentially expressed proteins (DEPs), including six cytochrome P450 proteins. Combined transcriptome and proteome analysis revealed only two upregulated P450 genes, CYP325G4 and CYP6AA9. The main clusters of DEGs and DEPs were associated with metabolic processes, such as cytochrome P450-mediated metabolism of drugs and xenobiotics. Transcription analysis revealed high CYP325G4 and CYP6AA9 expression in the DR strain at 72 h posteclosion compared with that in the DS strain, particularly in the legs. Mosquitoes knocked down for CYP325G4 were more sensitive to deltamethrin than the controls. CYP325G4 knockdown reduced the expression of several chlorinated hydrocarbon (CHC)-related genes, which altered the cuticle thickness and structure. Conversely, CYP6AA9 knockdown increased CHC gene expression without altering cuticle thickness and structure. P450 activity analysis demonstrated that CYP325G4 and CYP6AA9 contributed to metabolic resistance in the midgut and legs. This study identified CYP325G4 as a novel mosquito deltamethrin resistance factor, being involved in both metabolic and cuticular resistance mechanisms. The previously identified CYP6AA9 was investigated for its involvement in metabolic resistance and potential cuticular resistance in mosquito legs. These findings enhance our comprehension of resistance mechanisms, identifying P450s as promising targets for the future management of mosquito vector resistance, and laying a theoretical groundwork for mosquito resistance management.
Collapse
Affiliation(s)
- Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Kewei Zhang
- Department of Population Health & Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, California 92697, United States
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Feifei Zou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xixi Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufen Meng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Tao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fengming Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Guiyun Yan
- Department of Population Health & Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, California 92697, United States
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
5
|
Kang R, Li R, Mjengi J, Abbas Z, Song Y, Zhang L. A tiny sample rapid visual detection technology for imidacloprid resistance in Aphis gossypii by CRISPR/Cas12a. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175712. [PMID: 39181260 DOI: 10.1016/j.scitotenv.2024.175712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Insecticide resistance monitoring is essential for guiding chemical pest control and resistance management policies. Currently, rapid and effective technology for monitoring the resistance of tiny insects in the field is absent. Aphis gossypii Glover is a typical tiny insect, and one of the most frequently reported insecticide-resistant pests. In this study, we established a novel CRISPR/Cas12a-based rapid visual detection approach for detecting the V62I and R81T mutations in the β1 subunit of the nAChR in A. gossypii, to reflect target-site resistance to imidacloprid. Based on the nAChR β1 subunit gene in A. gossypii, the V62I/R81T-specific RPA primers and crRNAs were designed, and the ratio of 10 μM/2 μM/10 μM for ssDNA/Cas12a/crRNA was selected as the optimal dosage for the CRISPR reaction, ensuring that Cas12a only accurately recognizes imidacloprid-resistance templates. Our data show that the field populations of resistant insects possessing V62I and R81T mutations to imidacloprid can be accurately identified within one hour using the RPA-CRISPR/Cas12a detection approach under visible blue light at 440-460 nm. The protocol for RPA-CRISPR detection necessitates a single less than 2 mm specimen of A. gossypii tissues to perform RPA-CRISPR detection, and the process only requires a container at 37 °C and a portable blue light at 440-460 nm. Our research represents the first application of RPA-CRISPR technology in insecticide resistance detection, offers a new method for the resistance monitoring of A. gossypii or other tiny insects, helps delay the development of resistance to imidacloprid, improves the sustainability of chemical control, and provides theoretical guidance for managing pest resistance.
Collapse
Affiliation(s)
- Rujing Kang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ren Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Juma Mjengi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zohair Abbas
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yihong Song
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Ibrahim SS, Kouamo MFM, Muhammad A, Irving H, Riveron JM, Tchouakui M, Wondji CS. Functional Validation of Endogenous Redox Partner Cytochrome P450 Reductase Reveals the Key P450s CYP6P9a/- b as Broad Substrate Metabolizers Conferring Cross-Resistance to Different Insecticide Classes in Anopheles funestus. Int J Mol Sci 2024; 25:8092. [PMID: 39125661 PMCID: PMC11311542 DOI: 10.3390/ijms25158092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 08/12/2024] Open
Abstract
The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management.
Collapse
Affiliation(s)
- Sulaiman S. Ibrahim
- Department of Biochemistry, Bayero University, Kano PMB 3011, Nigeria
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| | - Mersimine F. M. Kouamo
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
- Center of Biotechnology Research, Bayero University, Kano PMB 3011, Nigeria
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| | - Jacob M. Riveron
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Magellan Tchouakui
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Charles S. Wondji
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| |
Collapse
|
7
|
Hancock PA, Ochomo E, Messenger LA. Genetic surveillance of insecticide resistance in African Anopheles populations to inform malaria vector control. Trends Parasitol 2024; 40:604-618. [PMID: 38760258 DOI: 10.1016/j.pt.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Insecticide resistance in malaria vector populations poses a major threat to malaria control, which relies largely on insecticidal interventions. Contemporary vector-control strategies focus on combatting resistance using multiple insecticides with differing modes of action within the mosquito. However, diverse genetic resistance mechanisms are present in vector populations, and continue to evolve. Knowledge of the spatial distribution of these genetic mechanisms, and how they impact the efficacy of different insecticidal products, is critical to inform intervention deployment decisions. We developed a catalogue of genetic-resistance mechanisms in African malaria vectors that could guide molecular surveillance. We highlight situations where intervention deployment has led to resistance evolution and spread, and identify challenges in understanding and mitigating the epidemiological impacts of resistance.
Collapse
Affiliation(s)
- Penelope A Hancock
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, USA
| |
Collapse
|
8
|
Real-Jaramillo S, Bustillos JJ, Moncayo AL, Neira M, Fárez L, Beltrán E, Ocaña-Mayorga S. Phenotypic resistance not associated with knockdown mutations (kdr) in Anopheles albimanus exposed to deltamethrin in southern coastal Ecuador. Malar J 2024; 23:17. [PMID: 38217047 PMCID: PMC10787486 DOI: 10.1186/s12936-023-04818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Decrease in malaria rates (e.g. incidence and cases) in Latin America maintains this region on track to achieve the goal of elimination. During the last 5 years, three countries have been certified as malaria free. However, the region fails to achieve the goal of 40% reduction on malaria rates and an increase of cases has been reported in some countries, including Ecuador. This scenario has been associated with multiple causes, such as decrease of funding to continue anti-malarial programmes and the development of insecticide resistance of the main malaria vectors. In Ecuador, official reports indicated phenotypic resistance in Aedes aegypti and Anopheles albimanus to deltamethrin and malathion, particularly in the coastal areas of Ecuador, however, information about the mechanisms of resistance have not been yet elucidated. This study aims to evaluate phenotypic response to deltamethrin and its relationship with kdr mutations in An. albimanus from two localities with different agricultural activities in southern coastal Ecuador. METHODS The CDC bottle assay was carried out to evaluate the phenotypic status of the mosquito's population. Sequencing the voltage gated sodium channel gene (VGSC) sought knockdown mutations (kdr) in codons 1010, 1013 and 1014 associated with resistance. RESULTS Phenotypic resistance was found in Santa Rosa (63.3%) and suspected resistance in Huaquillas (82.1%); with females presenting a higher median of knockdown rate (83.7%) than males (45.6%). No statistical differences were found between the distributions of knockdown rate for the two localities (p = 0.6048) which indicates no influence of agricultural activity. Although phenotypic resistance was confirmed, genetic analysis demonstrate that this resistance was not related with the kdr mechanism of the VGSC gene because no mutations were found in codons 1010 and 1013, while in codon 1014, 90.6% showed the susceptible sequence (TTG) and 7.3% ambiguous nucleotides (TKK and TYG). CONCLUSIONS These results highlighted the importance of continuous monitoring of resistance in malaria vectors in Ecuador, particularly in areas that have reported outbreaks during the last years. It is also important to elucidate the mechanism involved in the development of the resistance to PYs to propose alternative insecticides or strategies for vector control in areas where resistance is present.
Collapse
Affiliation(s)
- Sebasthian Real-Jaramillo
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Calle Pambacienda y San Pedro del Valle, Campus Nayón, 170530, Nayón, Ecuador
| | - Juan J Bustillos
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Calle Pambacienda y San Pedro del Valle, Campus Nayón, 170530, Nayón, Ecuador
| | - Ana L Moncayo
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Calle Pambacienda y San Pedro del Valle, Campus Nayón, 170530, Nayón, Ecuador
| | - Marco Neira
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Calle Pambacienda y San Pedro del Valle, Campus Nayón, 170530, Nayón, Ecuador
- The Cyprus Institute, Climate and Atmosphere Research Center (CARE-C), Nicosia, Cyprus
| | - Leonardo Fárez
- Laboratorio de Referencia Intermedio de Entomología CZ707D02, Ministerio de Salud Pública de Ecuador, Machala, Ecuador
| | - Efraín Beltrán
- Unidad Académica de Ciencias Químicas y de La Salud, Universidad Técnica de Machala, Machala, Ecuador
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Calle Pambacienda y San Pedro del Valle, Campus Nayón, 170530, Nayón, Ecuador.
| |
Collapse
|
9
|
Akoton R, Sovegnon PM, Djihinto OY, Medjigbodo AA, Agonhossou R, Saizonou HM, Tchigossou GM, Atoyebi SM, Tossou E, Zeukeng F, Lagnika HO, Mousse W, Adegnika AA, Djouaka R, Djogbénou LS. Vectorial competence, insecticide resistance in Anopheles funestus and operational implications for malaria vector control strategies in Benin Republic. Malar J 2023; 22:385. [PMID: 38129880 PMCID: PMC10740250 DOI: 10.1186/s12936-023-04815-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The primary reason for the failure of malaria vector control across endemic regions is the widespread insecticide resistance observed in Anopheles vectors. The most dominant African vectors of malaria parasites are Anopheles gambiae and Anopheles funestus mosquitoes. These species often exhibit divergent behaviours and adaptive changes underscoring the importance of deploying active and effective measures in their control. Unlike An. gambiae, An. funestus mosquitoes are poorly studied in Benin Republic. However, recent reports indicated that An. funestus can adapt and colonize various ecological niches owing to its resistance against insecticides and adaptation to changing breeding habitats. Unfortunately, scientific investigations on the contribution of An. funestus to malaria transmission, their susceptibility to insecticide and resistance mechanism developed are currently insufficient for the design of better control strategies. In an attempt to gather valuable information on An. funestus, the present review examines the progress made on this malaria vector species in Benin Republic and highlights future research perspectives on insecticide resistance profiles and related mechanisms, as well as new potential control strategies against An. funestus. Literature analysis revealed that An. funestus is distributed all over the country, although present in low density compared to other dominant malaria vectors. Interestingly, An. funestus is being found in abundance during the dry seasons, suggesting an adaptation to desiccation. Among the An. funestus group, only An. funestus sensu stricto (s.s.) and Anopheles leesoni were found in the country with An. funestus s.s. being the most abundant species. Furthermore, An. funestus s.s. is the only one species in the group contributing to malaria transmission and have adapted biting times that allow them to bite at dawn. In addition, across the country, An. funestus were found resistant to pyrethroid insecticides used for bed nets impregnation and also resistant to bendiocarb which is currently being introduced in indoor residual spraying formulation in malaria endemic regions. All these findings highlight the challenges faced in controlling this malaria vector. Therefore, advancing the knowledge of vectorial competence of An. funestus, understanding the dynamics of insecticide resistance in this malaria vector, and exploring alternative vector control measures, are critical for sustainable malaria control efforts in Benin Republic.
Collapse
Affiliation(s)
- Romaric Akoton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin.
- Fondation Pour la Recherche Scientifique (FORS), Cotonou, Benin.
| | - Pierre Marie Sovegnon
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Oswald Y Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Adandé A Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Romuald Agonhossou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
- Fondation Pour la Recherche Scientifique (FORS), Cotonou, Benin
| | - Helga M Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
| | | | - Seun M Atoyebi
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Eric Tossou
- International Institute of Tropical Agriculture, Cotonou, Benin
| | - Francis Zeukeng
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Hamirath O Lagnika
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Wassiyath Mousse
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute for Tropical Medicine (ITM), University of Tübingen, Tübingen, Germany
| | | | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
- Regional Institute of Public Health, University of Abomey-Calavi, Ouidah, Benin
| |
Collapse
|
10
|
Nguiffo-Nguete D, Mugenzi LMJ, Manzambi EZ, Tchouakui M, Wondji M, Tekoh T, Watsenga F, Agossa F, Wondji CS. Evidence of intensification of pyrethroid resistance in the major malaria vectors in Kinshasa, Democratic Republic of Congo. Sci Rep 2023; 13:14711. [PMID: 37679465 PMCID: PMC10484898 DOI: 10.1038/s41598-023-41952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Assessing patterns and evolution of insecticide resistance in malaria vectors is a prerequisite to design suitable control strategies. Here, we characterised resistance profile in Anopheles gambiae and Anopheles funestus in Kinshasa and assess the level of aggravation by comparing to previous 2015 estimates. Both species collected in July 2021 were highly resistant to pyrethroids at 1×, 5× and 10× concentrations (mortality < 90%) and remain fully susceptible to bendiocarb and pirimiphos methyl. Compared to 2015, Partial recovery of susceptibility was observed in A. gambiae after PBO synergist assays for both permethrin and α-cypermethrin and total recovery of susceptibility was observed for deltamethrin in 2021. In addition, the efficacy of most bednets decreased significantly in 2021. Genotyping of resistance markers revealed a near fixation of the L1014-Kdr mutation (98.3%) in A. gambiae in 2021. The frequency of the 119F-GSTe2 resistant significantly increased between 2015 and 2021 (19.6% vs 33.3%; P = 0.02) in A. funestus. Transcriptomic analysis also revealed a significant increased expression (P < 0.001) of key cytochrome P450s in A. funestus notably CYP6P9a. The escalation of pyrethroid resistance observed in Anopheles populations from Kinshasa coupled with increased frequency/expression level of resistance genes highlights an urgent need to implement tools to improve malaria vector control.
Collapse
Affiliation(s)
- Daniel Nguiffo-Nguete
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon.
| | - Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon
| | - Emile Zola Manzambi
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon
| | - Murielle Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L35QA, UK
| | - Theofelix Tekoh
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Francis Watsenga
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Fiacre Agossa
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L35QA, UK.
- International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
11
|
Yunta C, Ooi JMF, Oladepo F, Grafanaki S, Pergantis SA, Tsakireli D, Ismail HM, Paine MJI. Chlorfenapyr metabolism by mosquito P450s associated with pyrethroid resistance identifies potential activation markers. Sci Rep 2023; 13:14124. [PMID: 37644079 PMCID: PMC10465574 DOI: 10.1038/s41598-023-41364-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Chlorfenapyr is a pro-insecticide increasingly used in combination with pyrethroids such as a-cypermethrin or deltamethrin in insecticide treated bednets (ITNs) to control malaria transmitted by pyrethroid-resistant mosquito populations. Chlorfenapyr requires P450 activation to produce tralopyril and other bioactive metabolites. Pyrethroid resistance is often associated with elevated levels of chemoprotective P450s with broad substrate specificity, which could influence chlorfenapyr activity. Here, we have investigated chlorfenapyr metabolism by a panel of eight P450s commonly associated with pyrethroid resistance in An. gambiae and Ae. aegypti, the major vectors of malaria and arboviruses. Chlorfenapyr was activated to tralopyril by An. gambiae CYP6P3, CYP9J5, CYP9K1 and Ae. aegypti, CYP9J32. The Kcat/KM value of 0.66 μM-1 min-1 for CYP9K1 was, 6.7 fold higher than CYP6P3 and CYP9J32 (both 0.1 μM-1 min-1) and 22-fold higher than CYP9J5 (0.03 μM-1 min-1). Further investigation of the effect of -cypermethrin equivalent to the ratios used with chlorfenapyr in bed nets (~ 1:2 molar ratio) resulted in a reduction in chlorfenapyr metabolism by CYP6P3 and CYP6K1 of 76.8% and 56.8% respectively. This research provides valuable insights into the metabolism of chlorfenapyr by mosquito P450s and highlights the need for continued investigation into effective vector control strategies.
Collapse
Affiliation(s)
- Cristina Yunta
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Jocelyn M F Ooi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | - Sofia Grafanaki
- Department of Chemistry, University of Crete, Voutes Campus, Heraklion, 700 13, Greece
| | - Spiros A Pergantis
- Department of Chemistry, University of Crete, Voutes Campus, Heraklion, 700 13, Greece
| | - Dimitra Tsakireli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, 100 N. Plastira Street, Heraklion, 700 13, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, Athens, 118 55, Greece
| | - Hanafy M Ismail
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Mark J I Paine
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
12
|
Odero JO, Nambunga IH, Wangrawa DW, Badolo A, Weetman D, Koekemoer LL, Ferguson HM, Okumu FO, Baldini F. Advances in the genetic characterization of the malaria vector, Anopheles funestus, and implications for improved surveillance and control. Malar J 2023; 22:230. [PMID: 37553665 PMCID: PMC10410966 DOI: 10.1186/s12936-023-04662-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Anopheles mosquitoes present a major public health challenge in sub-Saharan Africa; notably, as vectors of malaria that kill over half a million people annually. In parts of the east and southern Africa region, one species in the Funestus group, Anopheles funestus, has established itself as an exceptionally dominant vector in some areas, it is responsible for more than 90% of all malaria transmission events. However, compared to other malaria vectors, the species is far less studied, partly due to difficulties in laboratory colonization and the unresolved aspects of its taxonomy and systematics. Control of An. funestus is also increasingly difficult because it has developed widespread resistance to public health insecticides. Fortunately, recent advances in molecular techniques are enabling greater insights into species identity, gene flow patterns, population structure, and the spread of resistance in mosquitoes. These advances and their potential applications are reviewed with a focus on four research themes relevant to the biology and control of An. funestus in Africa, namely: (i) the taxonomic characterization of different vector species within the Funestus group and their role in malaria transmission; (ii) insecticide resistance profile; (iii) population genetic diversity and gene flow, and (iv) applications of genetic technologies for surveillance and control. The research gaps and opportunities identified in this review will provide a basis for improving the surveillance and control of An. funestus and malaria transmission in Africa.
Collapse
Affiliation(s)
- Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Ismail H Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph ZEBRO, Ouagadougou, Burkina Faso
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph ZEBRO, Ouagadougou, Burkina Faso
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic Parasitic Diseases, Vector Control Reference Laboratory, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Heather M Ferguson
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
- School of Life Science and Biotechnology, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Francesco Baldini
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
13
|
Ibrahim SS, Muhammad A, Hearn J, Weedall GD, Nagi SC, Mukhtar MM, Fadel AN, Mugenzi LJ, Patterson EI, Irving H, Wondji CS. Molecular drivers of insecticide resistance in the Sahelo-Sudanian populations of a major malaria vector Anopheles coluzzii. BMC Biol 2023; 21:125. [PMID: 37226196 PMCID: PMC10210336 DOI: 10.1186/s12915-023-01610-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Information on common markers of metabolic resistance in malaria vectors from countries sharing similar eco-climatic characteristics can facilitate coordination of malaria control. Here, we characterized populations of the major malaria vector Anopheles coluzzii from Sahel region, spanning four sub-Saharan African countries: Nigeria, Niger, Chad and Cameroon. RESULTS Genome-wide transcriptional analysis identified major genes previously implicated in pyrethroid and/or cross-resistance to other insecticides, overexpressed across the Sahel, including CYP450s, glutathione S-transferases, carboxylesterases and cuticular proteins. Several, well-known markers of insecticide resistance were found in high frequencies-including in the voltage-gated sodium channel (V402L, I940T, L995F, I1527T and N1570Y), the acetylcholinesterase-1 gene (G280S) and the CYP4J5-L43F (which is fixed). High frequencies of the epidemiologically important chromosomal inversion polymorphisms, 2La, 2Rb and 2Rc, were observed (~80% for 2Rb and 2Rc). The 2La alternative arrangement is fixed across the Sahel. Low frequencies of these inversions (<10%) were observed in the fully insecticide susceptible laboratory colony of An. coluzzii (Ngoussou). Several of the most commonly overexpressed metabolic resistance genes sit in these three inversions. Two commonly overexpressed genes, GSTe2 and CYP6Z2, were functionally validated. Transgenic Drosophila melanogaster flies expressing GSTe2 exhibited extremely high DDT and permethrin resistance (mortalities <10% in 24h). Serial deletion of the 5' intergenic region, to identify putative nucleotide(s) associated with GSTe2 overexpression, revealed that simultaneous insertion of adenine nucleotide and a transition (T->C), between Forkhead box L1 and c-EST putative binding sites, were responsible for the high overexpression of GSTe2 in the resistant mosquitoes. Transgenic flies expressing CYP6Z2 exhibited marginal resistance towards 3-phenoxybenzylalcohol (a primary product of pyrethroid hydrolysis by carboxylesterases) and a type II pyrethroid, α-cypermethrin. However, significantly higher mortalities were observed in CYP6Z2 transgenic flies compared with controls, on exposure to the neonicotinoid, clothianidin. This suggests a possible bioactivation of clothianidin into a toxic intermediate, which may make it an ideal insecticide against populations of An. coluzzii overexpressing this P450. CONCLUSIONS These findings will facilitate regional collaborations within the Sahel region and refine implementation strategies through re-focusing interventions, improving evidence-based, cross-border policies towards local and regional malaria pre-elimination.
Collapse
Affiliation(s)
- Sulaiman S. Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
- Department of Biochemistry, Bayero University, PMB 3011, Kano, Nigeria
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
- Centre for Biotechnology Research, Bayero University, PMB 3011, Kano, Nigeria
| | - Jack Hearn
- Centre of Epidemiology and Planetary Health, Veterinary & Animal Science, Scotland’s Rural College, Inverness, IV2 5NA UK
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF UK
| | - Sanjay C. Nagi
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
| | | | - Amen N. Fadel
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Leon J. Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Edward I. Patterson
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1 Canada
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| |
Collapse
|
14
|
Lu X, Simma EA, Spanoghe P, Van Leeuwen T, Dermauw W. Recombinant expression and characterization of GSTd3 from a resistant population of Anopheles arabiensis and comparison of DDTase activity with GSTe2. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105397. [PMID: 37105620 DOI: 10.1016/j.pestbp.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
The development of insecticide resistance in malaria vectors is a challenge for the global effort to control and eradicate malaria. Glutathione S-transferases (GSTs) are multifunctional enzymes involved in the detoxification of many classes of insecticides. For mosquitoes, it is known that overexpression of an epsilon GST, GSTe2, confers resistance towards DDT and pyrethroids. In addition to GSTe2, consistent overexpression of a delta class GST, GSTd3, has been observed in insecticide resistant populations of different malaria vector species. However, the functional role of GSTd3 towards DDT resistance has not yet been investigated. Here, we recombinantly expressed both GSTe2 and GSTd3 from Anopheles arabiensis and compared their metabolic activities against DDT. Both AaGSTd3 and AaGSTe2 exhibited CDNB-conjugating and glutathione peroxidase activity and DDT metabolism was observed for both GSTs. However, the DDT dehydrochlorinase activity exhibited by AaGSTe2 was much higher than for AaGSTd3, and AaGSTe2 was also able to eliminate DDE although the metabolite could not be identified. Molecular modeling revealed subtle differences in the binding pocket of both enzymes and a better fit of DDT within the H-site of AaGSTe2. The overexpression but much lower DDT metabolic activity of AaGSTd3, might suggest that AaGSTd3 sequesters DDT. These findings highlight the complexity of insecticide resistance in the major malaria vectors and the difficulties associated with control of the vectors using DDT, which is still used for indoor residual spraying.
Collapse
Affiliation(s)
- Xueping Lu
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Eba Alemayehu Simma
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia.
| | - Pieter Spanoghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 9820 Merelbeke, Belgium.
| |
Collapse
|
15
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
16
|
Nolden M, Velten R, Paine MJI, Nauen R. Resilience of transfluthrin to oxidative attack by duplicated CYP6P9 variants known to confer pyrethroid resistance in the major malaria mosquito Anopheles funestus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105356. [PMID: 36963931 DOI: 10.1016/j.pestbp.2023.105356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Resistance to common pyrethroids, such as deltamethrin and permethrin is widespread in the malaria mosquito Anopheles funestus and mainly conferred by upregulated cytochrome P450 monooxygenases (P450s). In the pyrethroid resistant laboratory strain An. funestus FUMOZ-R the duplicated genes CYP6P9a and CYP6P9b are highly upregulated and have been shown to metabolize various pyrethroids, including deltamethrin and permethrin. Here, we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus using a baculovirus expression system and evaluated the interaction of the multifluorinated benzyl pyrethroid transfluthrin with these enzymes by different approaches. First, by Michaelis-Menten kinetics in a fluorescent probe assay with the model substrate 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC), we showed the inhibition of BOMFC metabolism by increasing concentrations of transfluthrin. Second, we tested the metabolic capacity of recombinantly expressed CYP6P9 variants to degrade transfluthrin utilizing UPLC-MS/MS analysis and detected low depletion rates, explaining the virtual lack of resistance of strain FUMOZ-R to transfluthrin observed in previous studies. However, as both approaches suggested an interaction of CYP6P9 variants with transfluthrin, we analyzed the oxidative metabolic fate and failed to detect hydroxylated transfluthrin, but low amounts of an M-2 transfluthrin metabolite. Based on the detected metabolite we hypothesize oxidative attack of the gem-dimethyl substituted cyclopropyl moiety, resulting in the formation of an allyl cation upon ring opening. In conclusion, these findings support the resilience of transfluthrin to P450-mediated pyrethroid resistance, and thus, reinforces its employment as an important resistance-breaking pyrethroid in resistance management strategies to control the major malaria vector An. funestus.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Robert Velten
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
17
|
Djondji Kamga FM, Mugenzi LMJ, Tchouakui M, Sandeu MM, Maffo CGT, Nyegue MA, Wondji CS. Contrasting Patterns of Asaia Association with Pyrethroid Resistance Escalation between the Malaria Vectors Anopheles funestus and Anopheles gambiae. Microorganisms 2023; 11:microorganisms11030644. [PMID: 36985217 PMCID: PMC10053915 DOI: 10.3390/microorganisms11030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Microbiome composition has been associated with insecticide resistance in malaria vectors. However, the contribution of major symbionts to the increasingly reported resistance escalation remains unclear. This study explores the possible association of a specific endosymbiont, Asaia spp., with elevated levels of pyrethroid resistance driven by cytochrome P450s enzymes and voltage-gated sodium channel mutations in Anopheles funestus and Anopheles gambiae. Molecular assays were used to detect the symbiont and resistance markers (CYP6P9a/b, 6.5 kb, L1014F, and N1575Y). Overall, genotyping of key mutations revealed an association with the resistance phenotype. The prevalence of Asaia spp. in the FUMOZ_X_FANG strain was associated with the resistance phenotype at a 5X dose of deltamethrin (OR = 25.7; p = 0.002). Mosquitoes with the resistant allele for the markers tested were significantly more infected with Asaia compared to those possessing the susceptible allele. Furthermore, the abundance correlated with the resistance phenotype at 1X concentration of deltamethrin (p = 0.02, Mann-Whitney test). However, for the MANGOUM_X_KISUMU strain, findings rather revealed an association between Asaia load and the susceptible phenotype (p = 0.04, Mann-Whitney test), demonstrating a negative link between the symbiont and permethrin resistance. These bacteria should be further investigated to establish its interactions with other resistance mechanisms and cross-resistance with other insecticide classes.
Collapse
Affiliation(s)
- Fleuriane Metissa Djondji Kamga
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon
- Department of Microbiology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon
| | - Leon M. J. Mugenzi
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon
| | - Maurice Marcel Sandeu
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon
| | | | | | - Charles S. Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Correspondence:
| |
Collapse
|
18
|
Mugenzi LMJ, A. Tekoh T, S. Ibrahim S, Muhammad A, Kouamo M, Wondji MJ, Irving H, Hearn J, Wondji CS. The duplicated P450s CYP6P9a/b drive carbamates and pyrethroids cross-resistance in the major African malaria vector Anopheles funestus. PLoS Genet 2023; 19:e1010678. [PMID: 36972302 PMCID: PMC10089315 DOI: 10.1371/journal.pgen.1010678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 04/11/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cross-resistance to insecticides in multiple resistant malaria vectors is hampering resistance management. Understanding its underlying molecular basis is critical to implementation of suitable insecticide-based interventions. Here, we established that the tandemly duplicated cytochrome P450s, CYP6P9a/b are driving carbamate and pyrethroid cross-resistance in Southern African populations of the major malaria vector Anopheles funestus. Transcriptome sequencing revealed that cytochrome P450s are the most over-expressed genes in bendiocarb and permethrin-resistant An. funestus. The CYP6P9a and CYP6P9b genes are overexpressed in resistant An. funestus from Southern Africa (Malawi) versus susceptible An. funestus (Fold change (FC) is 53.4 and 17 respectively), while the CYP6P4a and CYP6P4b genes are overexpressed in resistant An. funestus in Ghana, West Africa, (FC is 41.1 and 17.2 respectively). Other up-regulated genes in resistant An. funestus include several additional cytochrome P450s (e.g. CYP9J5, CYP6P2, CYP6P5), glutathione-S transferases, ATP-binding cassette transporters, digestive enzymes, microRNA and transcription factors (FC<7). Targeted enrichment sequencing strongly linked a known major pyrethroid resistance locus (rp1) to carbamate resistance centering around CYP6P9a/b. In bendiocarb resistant An. funestus, this locus exhibits a reduced nucleotide diversity, significant p-values when comparing allele frequencies, and the most non-synonymous substitutions. Recombinant enzyme metabolism assays showed that both CYP6P9a/b metabolize carbamates. Transgenic expression of CYP6P9a/b in Drosophila melanogaster revealed that flies expressing both genes were significantly more resistant to carbamates than controls. Furthermore, a strong correlation was observed between carbamate resistance and CYP6P9a genotypes with homozygote resistant An. funestus (CYP6P9a and the 6.5kb enhancer structural variant) exhibiting a greater ability to withstand bendiocarb/propoxur exposure than homozygote CYP6P9a_susceptible (e.g Odds ratio = 20.8, P<0.0001 for bendiocarb) and heterozygotes (OR = 9.7, P<0.0001). Double homozygote resistant genotype (RR/RR) were even more able to survive than any other genotype combination showing an additive effect. This study highlights the risk that pyrethroid resistance escalation poses to the efficacy of other classes of insecticides. Available metabolic resistance DNA-based diagnostic assays should be used by control programs to monitor cross-resistance between insecticides before implementing new interventions.
Collapse
Affiliation(s)
- Leon M. J. Mugenzi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Theofelix A. Tekoh
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science University of Buea, Buea, Cameroon
| | - Sulaiman S. Ibrahim
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Department of Biochemistry, Bayero University, Kano, Nigeria
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Mersimine Kouamo
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Murielle J. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College, An Lòchran, 10 Inverness Campus, Inverness, Scotland, United Kingdom
| | - Charles S. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
19
|
Suh PF, Elanga-Ndille E, Tchouakui M, Sandeu MM, Tagne D, Wondji C, Ndo C. Impact of insecticide resistance on malaria vector competence: a literature review. Malar J 2023; 22:19. [PMID: 36650503 PMCID: PMC9847052 DOI: 10.1186/s12936-023-04444-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Since its first report in Anopheles mosquitoes in 1950s, insecticide resistance has spread very fast to most sub-Saharan African malaria-endemic countries, where it is predicted to seriously jeopardize the success of vector control efforts, leading to rebound of disease cases. Supported mainly by four mechanisms (metabolic resistance, target site resistance, cuticular resistance, and behavioural resistance), this phenomenon is associated with intrinsic changes in the resistant insect vectors that could influence development of invading Plasmodium parasites. A literature review was undertaken using Pubmed database to collect articles evaluating directly or indiretly the impact of insecticide resistance and the associated mechanisms on key determinants of malaria vector competence including sialome composition, anti-Plasmodium immunity, intestinal commensal microbiota, and mosquito longevity. Globally, the evidence gathered is contradictory even though the insecticide resistant vectors seem to be more permissive to Plasmodium infections. The actual body of knowledge on key factors to vectorial competence, such as the immunity and microbiota communities of the insecticide resistant vector is still very insufficient to definitively infer on the epidemiological importance of these vectors against the susceptible counterparts. More studies are needed to fill important knowledge gaps that could help predicting malaria epidemiology in a context where the selection and spread of insecticide resistant vectors is ongoing.
Collapse
Affiliation(s)
- Pierre Fongho Suh
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 837, Yaoundé, Cameroon
| | - Emmanuel Elanga-Ndille
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Darus Tagne
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Charles Wondji
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Cyrille Ndo
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon.
| |
Collapse
|
20
|
Cohee LM, Goupeyou-Youmsi J, Seydel KB, Mangani C, Ntenda P, Sixpence A, Mbewe RB, Matengeni A, Takala-Harrison S, Walker ED, Wilson ML, Mzilahowa T, Laufer MK, Valim C, Taylor TE, Mathanga DP. Understanding the Intransigence of Malaria in Malawi. Am J Trop Med Hyg 2022; 107:40-48. [PMID: 36228915 PMCID: PMC9662216 DOI: 10.4269/ajtmh.21-1263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/19/2022] [Indexed: 01/29/2023] Open
Abstract
Despite the scale-up of interventions against malaria over the past decade, this disease remains a leading threat to health in Malawi. To evaluate the epidemiology of both Plasmodium falciparum infection and malaria disease, the Malawi International Center of Excellence for Malaria Research (ICEMR) has developed and implemented diverse and robust surveillance and research projects. Descriptive studies in ICEMR Phase 1 increased our understanding of the declining effectiveness of long-lasting insecticidal nets (LLINs), the role of school-age children in malaria parasite transmission, and the complexity of host-parasite interactions leading to disease. These findings informed the design of ICEMR Phase 2 to test hypotheses about LLIN use and effectiveness, vector resistance to insecticides, demographic targets of malaria control, patterns and causes of asymptomatic to life-threatening disease, and the impacts of RTS,S vaccination plus piperonyl butoxide-treated LLINs on infection and disease in young children. These investigations are helping us to understand mosquito-to-human and human-to-mosquito transmission in the context of Malawi's intransigent malaria problem.
Collapse
Affiliation(s)
- Lauren M. Cohee
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Charles Mangani
- School of Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Peter Ntenda
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Alick Sixpence
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Rex B. Mbewe
- Department of Physics and Biochemical Sciences, Malawi University of Business and Applied Sciences, Blantyre, Malawi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Alfred Matengeni
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Mark L. Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Themba Mzilahowa
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Clarissa Valim
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts
| | - Terrie E. Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Don P. Mathanga
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
- School of Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| |
Collapse
|
21
|
Nolden M, Paine MJI, Nauen R. Sequential phase I metabolism of pyrethroids by duplicated CYP6P9 variants results in the loss of the terminal benzene moiety and determines resistance in the malaria mosquito Anopheles funestus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103813. [PMID: 35870762 DOI: 10.1016/j.ibmb.2022.103813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Pyrethroid resistance in Anopheles funestus is threatening the eradication of malaria. One of the major drivers of pyrethroid resistance in An. funestus are cytochrome P450 monooxygenases CYP6P9a and CYP6P9b, which are found upregulated in resistant An. funestus populations from Sub-Saharan Africa and are known to metabolise pyrethroids. Here, we have functionally expressed CYP6P9a and CYP6P9b variants and investigated their interactions with azole-fungicides and pyrethroids. Some azole fungicides such as prochloraz inhibited CYP6P9a and CYP6P9b at nanomolar concentrations, whereas pyrethroids were weak inhibitors (>100 μM). Amino acid sequence comparisons suggested that a valine to isoleucine substitution at position 310 in the active site cavity of CYP6P9a and CYP6P9b, respectively, might affect substrate binding and metabolism. We therefore swapped the residues by site directed mutagenesis to produce CYP6P9aI310V and CYP6P9bV310I. CYP6P9bV310I produced stronger metabolic activity towards coumarin substrates and pyrethroids, particularly permethrin. The V310I mutation was previously also detected in a pyrethroid resistant field population of An. funestus in Benin. Additionally, we found the first metabolite of permethrin and deltamethrin after hydroxylation, 4'OH permethrin and 4'OH deltamethrin, were also suitable substrates for CYP6P9-variants, and were depleted by both enzymes to a higher extent than as their respective parent compounds (approximately 20% more active). Further, we found that both metabolites were toxic against An. funestus FANG (pyrethroid susceptible) but not towards FUMOZ-R (pyrethroid resistant) mosquitoes, the latter suggesting detoxification by overexpressed CYP6P9a and CYP6P9b. We confirmed by mass-spectrometric analysis that CYP6P9a and CYP6P9b are capable of cleaving phenoxybenzyl-ethers in type I pyrethroid permethrin and type II pyrethroid deltamethrin and that both enzymes preferentially metabolise trans-permethrin. This provides new insight into the metabolism of pyrethroids and a greater understanding of the molecular mechanisms of pyrethroid resistance in An. funestus.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany.
| |
Collapse
|
22
|
Menze BD, Tchouakui M, Mugenzi LMJ, Tchapga W, Tchoupo M, Wondji MJ, Chiumia M, Mzilahowa T, Wondji CS. Marked aggravation of pyrethroid resistance in major malaria vectors in Malawi between 2014 and 2021 is partly linked with increased expression of P450 alleles. BMC Infect Dis 2022; 22:660. [PMID: 35907831 PMCID: PMC9338535 DOI: 10.1186/s12879-022-07596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increased intensity of pyrethroid resistance is threatening the effectiveness of insecticide-based interventions to control malaria in Africa. Assessing the extent of this aggravation and its impact on the efficacy of these tools is vital to ensure the continued control of major vectors. Here we took advantage of 2009 and 2014 data from Malawi to establish the extent of the resistance escalation in 2021 and assessed its impact on various bed nets performance. METHODS Indoor blood-fed and wild female Anopheles (An) mosquitoes were collected with an electric aspirator in Chikwawa. Cocktail and SINE PCR were used to identify sibling species belonging to An. funestus group and An. gambiae complex. The susceptibility profile to the four classes of insecticides was assessed using the WHO tubes bioassays. Data were saved in an Excel file. Analysis was done using Vassarstats and figures by Graph Pad. RESULTS In this study, a high level of resistance was observed with pyrethroids (permethrin, deltamethrin and alpha-cypermethrin with mortality rate at 5x discriminating concentration (DC) < 50% and Mortality rate at 10x DC < 70%). A high level of resistance was also observed to carbamate (bendiocarb) with mortality rate at 5x DC < 25%). Aggravation of resistance was also noticed between 2009 and 2021. For pyrethroids, the mortality rate for permethrin reduced from 47.2% in 2009 to 13% in 2014 and 6.7% in 2021. For deltamethrin, the mortality rate reduced from 42.3% in 2009 to 1.75% in 2014 and 5.2% in 2021. For Bendiocarb, the mortality rate reduced from 60% in 2009 to 30.1% in 2014 and 12.2% in 2021. The high resistance observed is consistent with a drastic loss of pyrethroid-only bed nets efficacy although Piperonyl butoxide (PBO)-based nets remain effective. The resistance pattern observed was linked with high up-regulation of the P450 genes CYP6P9a, CYP6P9b and CYP6M7 in An. funestus s.s. mosquitoes surviving exposure to deltamethrin at 1x, 5x and 10x DC. A significant association was observed between the 6.5 kb structural variant and resistance escalation with homozygote resistant (SV+/SV+) more likely to survive exposure to 5x and 10x (OR = 4.1; P < 0.001) deltamethrin than heterozygotes. However, a significant proportion of mosquitoes survived the synergist assays with PBO suggesting that other mechanisms than P450s are present. CONCLUSIONS This resistance aggravation in An. funestus s.s. Malawian population highlights an urgent need to deploy novel control tools not relying on pyrethroids to improve the effectiveness of vector control.
Collapse
Affiliation(s)
- Benjamin D. Menze
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Leon M. J. Mugenzi
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Williams Tchapga
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Micareme Tchoupo
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Murielle J. Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Martin Chiumia
- Malaria Alert Centre (MAC), Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Themba Mzilahowa
- Malaria Alert Centre (MAC), Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Charles S. Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
23
|
Tepa A, Kengne-Ouafo JA, Djova VS, Tchouakui M, Mugenzi LMJ, Djouaka R, Pieme CA, Wondji CS. Molecular Drivers of Multiple and Elevated Resistance to Insecticides in a Population of the Malaria Vector Anopheles gambiae in Agriculture Hotspot of West Cameroon. Genes (Basel) 2022; 13:1206. [PMID: 35885989 PMCID: PMC9316901 DOI: 10.3390/genes13071206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Malaria remains a global public health problem. Unfortunately, the resistance of malaria vectors to commonly used insecticides threatens disease control and elimination efforts. Field mosquitoes have been shown to survive upon exposure to high insecticide concentrations. The molecular mechanisms driving this pronounced resistance remain poorly understood. Here, we elucidated the pattern of resistance escalation in the main malaria vector Anopheles gambiae in a pesticide-driven agricultural hotspot in Cameroon and its impact on vector control tools; (2) Methods: Larval stages and indoor blood-fed female mosquitoes (F0) were collected in Mangoum in May and November and forced to lay eggs; the emerged mosquitoes were used for WHO tube, synergist and cone tests. Molecular identification was performed using SINE PCR, whereas TaqMan-based PCR was used for genotyping of L1014F/S and N1575Y kdr and the G119S-ACE1 resistance markers. The transcription profile of candidate resistance genes was performed using qRT-PCR methods. Characterization of the breeding water and soil from Mangoum was achieved using the HPLC technique; (3) Results: An. gambiae s.s. was the only species in Mangoum with 4.10% infection with Plasmodium. These mosquitoes were resistant to all the four classes of insecticides with mortality rates <7% for pyrethroids and DDT and <54% for carbamates and organophophates. This population also exhibited high resistance intensity to pyrethroids (permethrin, alpha-cypermethrin and deltamethrin) after exposure to 5× and 10× discriminating doses. Synergist assays with PBO revealed only a partial recovery of susceptibility to permethrin, alpha-cypermethrin and deltamethrin. Only PBO-based nets (Olyset plus and permaNet 3.0) and Royal Guard showed an optimal efficacy. A high amount of alpha-cypermethrin was detected in breeding sites (5.16-fold LOD) suggesting ongoing selection from agricultural pesticides. The 1014F-kdr allele was fixed (100%) whereas the 1575Y-kdr (37.5%) and the 119S Ace-1R (51.1%) were moderately present. Elevated expression of P450s, respectively, in permethrin and deltamethrin resistant mosquitoes [CYP6M2 (10 and 34-fold), CYP6Z1(17 and 29-fold), CYP6Z2 (13 and 65-fold), CYP9K1 (13 and 87-fold)] supports their role in the observed resistance besides other mechanisms including chemosensory genes as SAP1 (28 and 13-fold), SAP2 (5 and 5-fold), SAP3 (24 and 8-fold) and cuticular genes as CYP4G16 (6 and 8-fold) and CYP4G17 (5 and 27-fold). However, these candidate genes were not associated with resistance escalation as the expression levels did not differ significantly between 1×, 5× and 10× surviving mosquitoes; (4) Conclusions: Intensive and multiple resistance is being selected in malaria vectors from a pesticide-based agricultural hotspot of Cameroon leading to loss in the efficacy of pyrethroid-only nets. Further studies are needed to decipher the molecular basis underlying such resistance escalation to better assess its impact on control interventions.
Collapse
Affiliation(s)
- Arnaud Tepa
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (J.A.K.-O.); (V.S.D.); (M.T.); (L.M.J.M.)
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, Yaoundé P.O. Box 1364, Cameroon;
| | - Jonas A. Kengne-Ouafo
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (J.A.K.-O.); (V.S.D.); (M.T.); (L.M.J.M.)
| | - Valdi S. Djova
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (J.A.K.-O.); (V.S.D.); (M.T.); (L.M.J.M.)
- Department of Biochemistry, University of Bamenda, Bambili P.O. Box 39, Cameroon
| | - Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (J.A.K.-O.); (V.S.D.); (M.T.); (L.M.J.M.)
| | - Leon M. J. Mugenzi
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (J.A.K.-O.); (V.S.D.); (M.T.); (L.M.J.M.)
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture, Cotonou P.O. Box 0932, Benin;
| | - Constant A. Pieme
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, Yaoundé P.O. Box 1364, Cameroon;
| | - Charles S. Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (J.A.K.-O.); (V.S.D.); (M.T.); (L.M.J.M.)
- International Institute of Tropical Agriculture, Yaoundé P.O. Box 2008, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
24
|
Kumala J, Koekemoer LL, Coetzee M, Mzilahowa T. Intensity of insecticide resistance in the major malaria vector Anopheles funestus from Chikwawa, rural Southern Malawi. Parasit Vectors 2022; 15:220. [PMID: 35729623 PMCID: PMC9210055 DOI: 10.1186/s13071-022-05299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria vector control using insecticide-based approaches has proven to be an effective strategy. However, widespread insecticide resistance among malaria vector populations across sub-Saharan Africa threatens to derail control efforts. This study was conducted in Chikwawa district, an area in rural southern Malawi characterised by persistent malaria transmission and reports of insecticide resistance in the local mosquito population. The aim of the was to characterise the intensity of insecticide resistance within a population of Anopheles funestus sensu lato (s.l.), a major vector of malaria in this district. METHODS Live adult females belonging to the An. funestus group were collected from households by indoor aspiration. The CDC bottle assay was used for phenotypic quantification of resistance to deltamethrin, permethrin and alpha-cypermethrin at 1×, 2.5×, 5× and 10× the recommended diagnostic dose for each of these insecticides. WHO tube assays were used to determine susceptibility to bendiocarb, dichlorodiphenyltrichloroethane (DDT) and pirimiphos-methyl insecticides at diagnostic concentrations. RESULTS Anopheles funestus s.l. exposed to 10× the recommended diagnostic dose was highly resistant to alpha-cypermethrin (mortality 95.4%); in contrast, mortality was 100% when exposed to both deltamethrin and permethrin at the same dose. Despite showing susceptibility to deltamethrin and permethrin at the 10× concentration, mortality at the 5× concentration was 96.7% and 97.1%, respectively, indicating moderate resistance to these two insecticides. WHO susceptibility assays indicated strong resistance against bendiocarb (mortality 33.8%, n = 93), whereas there was full susceptibility to DDT (mortality 98.9%, n = 103) and pirimiphos-methyl (mortality 100%, n = 103). CONCLUSIONS Strategies for managing resistance to insecticides, particularly against pyrethroids, must be urgently implemented to maintain the effectiveness of insecticide-based vector control interventions in the area. Such strategies include the wide-scale introduction of third-generation synergist insecticide-treated bed nets (ITNs) and next-generation dual active ingredient ITNs. The use of effective non-pyrethroids, such as pirimiphos-methyl, clothianidin and potentially DDT, could provide a window of opportunity for indoor residual spraying across the district. This strategy would support the current Malawi Insecticide Resistance Management Plan which aims at rotating insecticides to minimise selection pressure and slow down the evolution of resistance to approved insecticides. These actions will help to prevent malaria vector control failure and improve progress towards malaria elimination.
Collapse
Affiliation(s)
- Justin Kumala
- Malaria Alert Centre-Communicable Diseases Action Centre (MAC-CDAC), Kamuzu University of Health Sciences, Blantyre, Malawi.,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Themba Mzilahowa
- Malaria Alert Centre-Communicable Diseases Action Centre (MAC-CDAC), Kamuzu University of Health Sciences, Blantyre, Malawi.
| |
Collapse
|
25
|
Sonhafouo-Chiana N, Nkahe LD, Kopya E, Awono-Ambene PH, Wanji S, Wondji CS, Antonio-Nkondjio C. Rapid evolution of insecticide resistance and patterns of pesticides usage in agriculture in the city of Yaoundé, Cameroon. Parasit Vectors 2022; 15:186. [PMID: 35655243 PMCID: PMC9164381 DOI: 10.1186/s13071-022-05321-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The practice of agriculture in urban settings contributes to the rapid expansion of insecticide resistance in malaria vectors. However, there is still not enough information on pesticide usage in most urban settings. The present study aims to assess the evolution of Anopheles gambiae (s.l.) population susceptibility to insecticides and patterns of pesticide usage in agriculture in the city of Yaoundé, Cameroon. METHODS WHO susceptibility tests and synergist PBO bioassays were conducted on adult An. gambiae (s.l.) mosquitoes aged 3 to 5 days emerging from larvae collected from the field. Seven insecticides (deltamethrin, permethrin, DDT, bendiocarb, propoxur, fenitrothion and malathion) were evaluated. The presence of target site mutation conferring knockdown (kdr) resistance was investigated using TaqMan assay, and mosquito species were identified using SINE-PCR. Surveys on 81 retailers and 232 farmers were conducted to assess general knowledge and practices regarding agricultural pesticide usage. RESULTS High resistance intensity to pyrethroids was observed with a high frequency of the kdr allele 1014F and low frequency of the kdr 1014S allele. The level of susceptibility of An. gambiae (s.l.) to pyrethroids and carbamates was found to decrease with time (from > 34% in 2017 to < 23% in 2019 for deltamethrin and permethrin and from 97% in 2017 to < 86% in 2019 for bendiocarb). Both An. gambiae (s.s.) and An. coluzzii were recorded. Over 150 pesticides and fertilizers were sold by retailers for agricultural purposes in the city of Yaoundé. Most farmers do not respect safety practices. Poor practices including extensive and inappropriate application of pesticides as well as poor management of perished pesticides and empty pesticide containers were also documented. CONCLUSIONS The study indicated rapid evolution of insecticide resistance and uncontrolled usage of pesticides by farmers in agriculture. There is an urgent need to address these gaps to improve the management of insecticide resistance.
Collapse
Affiliation(s)
- Nadège Sonhafouo-Chiana
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Leslie Diane Nkahe
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Edmond Kopya
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Parfait Herman Awono-Ambene
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
| | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Vector Biology, Liverpool School of Tropical medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Christophe Antonio-Nkondjio
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
- Vector Biology, Liverpool School of Tropical medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
26
|
Kusimo MO, Mackenzie-Impoinvil L, Ibrahim SS, Muhammad A, Irving H, Hearn J, Lenhart AE, Wondji CS. Pyrethroid resistance in the New World malaria vector Anopheles albimanus is mediated by cytochrome P450 CYP6P5. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105061. [PMID: 35430064 PMCID: PMC9125164 DOI: 10.1016/j.pestbp.2022.105061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Pyrethroid resistance in the malaria vector Anopheles albimanus presents an obstacle to malaria elimination in the Americas. Here, An. albimanus CYP6P5 (the most overexpressed P450 in a Peruvian population) was functionally characterized. Recombinant CYP6P5 metabolized the type II pyrethroids, deltamethrin and α-cypermethrin with comparable affinities (KM of 3.3 μM ± 0.4 and 3.6 μM ± 0.5, respectively), but exhibited a 2.7-fold higher catalytic rate for α-cypermethrin (kcat of 6.02 min-1 ± 0.2) versus deltamethrin (2.68 min-1 ± 0.09). Time-course assays revealed progressive depletion of the above pyrethroids with production of four HPLC-detectable metabolites. Low depletion was obtained with type I pyrethroid, permethrin. Transgenic expression in Drosophila melanogaster demonstrated that overexpression of CYP6P5 alone conferred type II pyrethroid resistance, with only 16% and 55.3% mortalities in flies exposed to 0.25% α-cypermethrin and 0.15% deltamethrin, respectively. Synergist bioassays using P450 inhibitor piperonylbutoxide significantly recovered susceptibility (mortality = 73.6%, p < 0.001) in synergized flies exposed to 4% piperonylbutoxide, plus 0.25% α-cypermethrin, compared to non-synergized flies (mortality = 4.9%). Moderate resistance was also observed towards 4% DDT. These findings established the preeminent role of CYP6P5 in metabolic resistance in An. albimanus, highlighting challenges associated with deployment of insecticide-based control tools in the Americas.
Collapse
Affiliation(s)
- Michael O Kusimo
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.
| | - Lucy Mackenzie-Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centre for Global Health, Centres for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Sulaiman S Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria.
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; Centre for Biotechnology Research, Bayero University, PMB 3011 Kano, Nigeria
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK
| | - Audrey E Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centre for Global Health, Centres for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Charles S Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon; Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK
| |
Collapse
|
27
|
Munhenga G, Oliver SV, Lobb LN, Mazarire TT, Sekgele W, Mashatola T, Mabaso N, Dlamini DM, Zulu M, Moletsane F, Letinić BD, Zawada J, Burke A, Matamba A, Brooke BD. Malaria risk and receptivity: Continuing development of insecticide resistance in the major malaria vector Anopheles arabiensis in northern KwaZulu-Natal, South Africa. S AFR J SCI 2022. [DOI: 10.17159/sajs.2022/11755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Malaria incidence in South Africa is highest in the three endemic provinces: KwaZulu-Natal, Mpumalanga and Limpopo. The contribution to malaria transmission by several mosquito species, variation in their resting behaviours and low levels of insecticide resistance makes it necessary to periodically monitor Anopheles species assemblages and resistance phenotypes in vector populations. The aim of this study was therefore to assess Anopheles species assemblage in northern KwaZulu-Natal and to collect insecticide susceptibility data for An. arabiensis, the primary vector of malaria in that province. Anopheles specimens were collected from Mamfene, Jozini, northern KwaZulu-Natal from November 2019 to April 2021. Progeny of wild-collected An. arabiensis females were used for standard insecticide susceptibility tests and synergist bioassays. Anopheles arabiensis contributed 85.6% (n=11 062) of the total catches. Samples for subsequent insecticide susceptibility bioassays were selected from 212 An. arabiensis families. These showed low-level resistance to DDT, permethrin, deltamethrin, and bendiocarb, as well as full susceptibility to pirimiphos-methyl. Synergist bioassays using piperonyl butoxide and triphenyl phosphate suggest oxygenase-based pyrethroid and esterase-mediated sequestration of bendiocarb. These low levels of resistance are unlikely to be operationally significant at present. It is concluded that northern KwaZulu-Natal Province remains receptive to malaria transmission despite ongoing control and elimination interventions. This is due to the perennial presence of the major vector An. arabiensis and other secondary vector species. The continued detection of low-frequency insecticide resistance phenotypes in An. arabiensis is cause for concern and requires periodic monitoring for changes in resistance frequency and intensity.
Collapse
Affiliation(s)
- Givemore Munhenga
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V. Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Leanne N. Lobb
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Theresa T. Mazarire
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Windy Sekgele
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thabo Mashatola
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nondumiso Mabaso
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Dumsani M. Dlamini
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Malibongwe Zulu
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fortunate Moletsane
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Blaženka D. Letinić
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Jacek Zawada
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ashley Burke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Avhatakali Matamba
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Basil D. Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
28
|
Nolden M, Brockmann A, Ebbinghaus-Kintscher U, Brueggen KU, Horstmann S, Paine MJI, Nauen R. Towards understanding transfluthrin efficacy in a pyrethroid-resistant strain of the malaria vector Anopheles funestus with special reference to cytochrome P450-mediated detoxification. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100041. [PMID: 35284893 PMCID: PMC8906121 DOI: 10.1016/j.crpvbd.2021.100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Malaria vector control interventions rely heavily on the application of insecticides against anopheline mosquitoes, in particular the fast-acting pyrethroids that target insect voltage-gated sodium channels (VGSC). Frequent applications of pyrethroids have resulted in resistance development in the major malaria vectors including Anopheles funestus, where resistance is primarily metabolic and driven by the overexpression of microsomal cytochrome P450 monooxygenases (P450s). Here we examined the pattern of cross-resistance of the pyrethroid-resistant An. funestus strain FUMOZ-R towards transfluthrin and multi-halogenated benzyl derivatives, permethrin, cypermethrin and deltamethrin in comparison to the susceptible reference strain FANG. Transfluthrin and two multi-fluorinated derivatives exhibited micromolar potency - comparable to permethrin - to functionally expressed dipteran VGSC in a cell-based cation influx assay. The activity of transfluthrin and its derivatives on VGSC was strongly correlated with their contact efficacy against strain FUMOZ-R, although no such correlation was obtained for the other pyrethroids due to their rapid detoxification by the resistant strain. The low resistance levels for transfluthrin and derivatives in strain FUMOZ-R were only weakly synergized by known P450 inhibitors such as piperonyl butoxide (PBO), triflumizole and 1-aminobenzotriazole (1-ABT). In contrast, deltamethrin toxicity in FUMOZ-R was synergized > 100-fold by all three P450 inhibitors. The biochemical profiling of a range of fluorescent resorufin and coumarin compounds against FANG and FUMOZ-R microsomes identified 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC) as a highly sensitive probe substrate for P450 activity. BOMFC was used to develop a fluorescence-based high-throughput screening assay to measure the P450 inhibitory action of potential synergists. Azole fungicides prochloraz and triflumizole were identified as extremely potent nanomolar inhibitors of microsomal P450s, strongly synergizing deltamethrin toxicity in An. funestus. Overall, the present study contributed to the understanding of transfluthrin efficacy at the molecular and organismal level and identified azole compounds with potential to synergize pyrethroid efficacy in malaria vectors. Transfluthrin and derivatives lack cross-resistance in resistant Anopheles funestus. Pyrethroid resistance in An. funestus is strongly synergized by azole fungicides. BOMFC is a highly active fluorescent probe substrate for microsomal cytochrome P450 monooxygenases in An. funestus. Azole fungicides are nanomolar inhibitors of microsomal cytochrome P450 monooxygenases in An. funestus.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany.,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Andreas Brockmann
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113, Bonn, Germany
| | | | - Kai-Uwe Brueggen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany
| | - Sebastian Horstmann
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany
| |
Collapse
|
29
|
Nolden M, Paine MJI, Nauen R. Biochemical profiling of functionally expressed CYP6P9 variants of the malaria vector Anopheles funestus with special reference to cytochrome b 5 and its role in pyrethroid and coumarin substrate metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105051. [PMID: 35249659 DOI: 10.1016/j.pestbp.2022.105051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are well studied enzymes catalyzing the oxidative metabolism of xenobiotics in insects including mosquitoes. Their duplication and upregulation in agricultural and public health pests such as anopheline mosquitoes often leads to an enhanced metabolism of insecticides which confers resistance. In the laboratory strain Anopheles funestus FUMOZ-R the duplicated P450s CYP6P9a and CYP6P9b are highly upregulated and proven to confer pyrethroid resistance. Microsomal P450 activity is regulated by NADPH cytochrome P450 oxidoreductase (CPR) required for electron transfer, whereas the modulatory role of cytochrome b5 (CYB5) on insect P450 activity is less clear. In previous studies CYP6P9a and CYP6P9b were recombinantly expressed in tandem with An. gambiae CPR using E. coli-expression systems and CYB5 added to the reaction mix to enhance activity. However, the precise role of CYB5 on substrate turn-over when combined with CYP6P9a and CYP6P9b remains poorly investigated, thus one objective of our study was to address this knowledge gap. In contrast to the CYP6P9 variants, the expression levels of both CYB5 and CPR were not upregulated in the pyrethroid resistant FUMOZ-R strain when compared to the susceptible FANG strain, suggesting no immediate regulatory role of these genes in pyrethroid resistance in FUMOZ-R. Here, for the first time we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus in a baculovirus expression system using High-5 insect cells. Co-expression of each enzyme with CPR from either An. gambiae or An. funestus did not reveal noteworthy differences in catalytic capacity. Whereas the co-expression of An. funestus CYB5 - tested at different multiplicity of infection (MOI) ratios - resulted in a significantly higher metabolization of coumarin substrates as measured by fluorescence assays. This was confirmed by Michaelis-Menten kinetics using the most active substrate, 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC). We observed a similar increase in coumarin substrate turnover by adding human CYB5 to the reaction mix. Finally, we compared by UPLC-MS/MS analysis the depletion rate of deltamethrin and the formation of 4'OH-deltamethrin by recombinantly expressed CYP6P9a and CYP6P9b with and without CYB5 and detected no difference in the extent of deltamethrin metabolism. Our results suggest that co-expression (or addition) of CYB5 with CYP6P9 variants, recombinantly expressed in insect cells, can significantly enhance their metabolic capacity to oxidize coumarins, but not deltamethrin.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
30
|
Katsavou E, Riga M, Ioannidis P, King R, Zimmer CT, Vontas J. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105005. [PMID: 35082029 DOI: 10.1016/j.pestbp.2021.105005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
31
|
Matowo J, Weetman D, Pignatelli P, Wright A, Charlwood JD, Kaaya R, Shirima B, Moshi O, Lukole E, Mosha J, Manjurano A, Mosha F, Rowland M, Protopopoff N. Expression of pyrethroid metabolizing P450 enzymes characterizes highly resistant Anopheles vector species targeted by successful deployment of PBO-treated bednets in Tanzania. PLoS One 2022; 17:e0249440. [PMID: 35073324 PMCID: PMC8786186 DOI: 10.1371/journal.pone.0249440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Long lasting insecticidal nets (LLINs) are a proven tool to reduce malaria transmission, but in Africa efficacy is being reduced by pyrethroid resistance in the major vectors. A previous study that was conducted in Muleba district, Tanzania indicated possible involvement of cytochrome P450 monooxygenases in a pyrethroid resistance in An. gambiae population where pre-exposure to piperonyl butoxide (PBO) followed by permethrin exposure in CDC bottle bioassays led to partial restoration of susceptibility. PBO is a synergist that can block pyrethroid-metabolizing enzymes in a mosquito. Insecticide resistance profiles and underlying mechanisms were investigated in Anopheles gambiae and An. funestus from Muleba during a cluster randomized trial. Diagnostic dose bioassays using permethrin, together with intensity assays, suggest pyrethroid resistance that is both strong and very common, but not extreme. Transcriptomic analysis found multiple P450 genes over expressed including CYP6M2, CYP6Z3, CYP6P3, CYP6P4, CYP6AA1 and CYP9K1 in An. gambiae and CYP6N1, CYP6M7, CYP6M1 and CYP6Z1 in An. funestus. Indeed, very similar suites of P450 enzymes commonly associated with resistant populations elsewhere in Africa were detected as over expressed suggesting a convergence of mechanisms across Sub-Saharan African malaria vectors. The findings give insight into factors that may correlate with pyrethroid PBO LLIN success, broadly supporting model predictions, but revision to guidelines previously issued by the World Health Organization is warranted.
Collapse
Affiliation(s)
- Johnson Matowo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Patricia Pignatelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alexandra Wright
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jacques D. Charlwood
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robert Kaaya
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Boniface Shirima
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Oliva Moshi
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Eliud Lukole
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Jacklin Mosha
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Alphaxard Manjurano
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Franklin Mosha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Natacha Protopopoff
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
32
|
Wamba ANR, Ibrahim SS, Kusimo MO, Muhammad A, Mugenzi LMJ, Irving H, Wondji MJ, Hearn J, Bigoga JD, Wondji CS. The cytochrome P450 CYP325A is a major driver of pyrethroid resistance in the major malaria vector Anopheles funestus in Central Africa. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103647. [PMID: 34530119 DOI: 10.1016/j.ibmb.2021.103647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The overexpression and overactivity of key cytochrome P450s (CYP450) genes are major drivers of metabolic resistance to insecticides in African malaria vectors such as Anopheles funestus s.s. Previous RNAseq-based transcription analyses revealed elevated expression of CYP325A specific to Central African populations but its role in conferring resistance has not previously been demonstrated. In this study, RT-qPCR consistently confirmed that CYP325A is highly over-expressed in pyrethroid-resistant An. funestus from Cameroon, compared with a control strain and insecticide-unexposed mosquitoes. A synergist bioassay with PBO significantly recovered susceptibility for permethrin and deltamethrin indicating P450-based metabolic resistance. Analyses of the coding sequence of CYP325A Africa-wide detected high-levels of polymorphism, but with no predominant alleles selected by pyrethroid resistance. Geographical amino acid changes were detected notably in Cameroon. In silico homology modelling and molecular docking simulations predicted that CYP325A binds and metabolises type I and type II pyrethroids. Heterologous expression of recombinant CYP325A and metabolic assays confirmed that the most-common Cameroonian haplotype metabolises both type I and type II pyrethroids with depletion rate twice that the of the DR Congo haplotype. Analysis of the 1 kb putative promoter of CYP325A revealed reduced diversity in resistant mosquitoes compared to susceptible ones, suggesting a potential selective sweep in this region. The establishment of CYP325A as a pyrethroid resistance metabolising gene further explains pyrethroid resistance in Central African populations of An. funestus. Our work will facilitate future efforts to detect the causative resistance markers in the promoter region of CYP325A to design field applicable DNA-based diagnostic tools.
Collapse
Affiliation(s)
- Amelie N R Wamba
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Faculty of Science, Department of Biochemistry, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Sulaiman S Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Department of Biochemistry, Bayero University, PMB, 3011, Kano, Nigeria.
| | - Michael O Kusimo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Centre for Biotechnology Research, Bayero University, Kano, PMB, 3011, Kano Nigeria.
| | - Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Murielle J Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jude D Bigoga
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Laboratory for Vector Biology and Control, National Reference Unit for Vector Control, The Biotechnology Centre, Nkolbisson - University of Yaoundé I, P.O. Box 3851, Messa, Yaoundé, Cameroon.
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
33
|
Tian K, Feng J, Zhu J, Cheng J, Li M, Qiu X. Pyrethrin-resembling pyrethroids are metabolized more readily than heavily modified ones by CYP9As from Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104871. [PMID: 34119216 DOI: 10.1016/j.pestbp.2021.104871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The cotton bollworm, Helicoverpa armigera, is a polyphagous pest threatening many economically important crops worldwide. Until recently, synthetic pyrethroids remain in wide use for controlling pest insects including the cotton bollworm. Understanding the metabolic mechanism of pyrethroids in a given pest can provide significant implication for a smart choice of insecticides, and such information is useful for the development of novel selective and safe insecticides. In this study, we used complexes of recombinant H. armigera cytochrome P450 CYP9A and NADPH-dependent cytochrome P450 reductase to investigate the capacity of three CYP9A paralogs in the transformation of seven structurally different pyrethroids by metabolism assays. The results showed that the three paralogous CYP9As were able to metabolize multiple pyrethroids. Interestingly, all the three CYP9As transformed pyrethrin-resembling pyrethroids (e.g. bioallethrin) more efficiently than the heavily modified ones (e.g. bifenthrin). These findings suggest that herbivorous insects can cope with synthetic insecticides using their physiological systems that initially evolved to survive exposure to the defensive chemicals in their host plants, adding support to the pre-adaptation hypothesis.
Collapse
Affiliation(s)
- Kai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Feng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiagao Cheng
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
34
|
2La Paracentric Chromosomal Inversion and Overexpressed Metabolic Genes Enhance Thermotolerance and Pyrethroid Resistance in the Major Malaria Vector Anopheles gambiae. BIOLOGY 2021; 10:biology10060518. [PMID: 34200806 PMCID: PMC8230517 DOI: 10.3390/biology10060518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/31/2023]
Abstract
Changes in global temperature are impacting the spread/intensity of vector-borne diseases, including malaria, and accelerating evolutionary/adaptive changes in vector species. These changes, including chromosomal inversions and overexpression and/or changes in allele frequencies of thermotolerance-associated genes, may facilitate insecticide resistance through pleiotropy. This study investigated the impact of thermotolerance on pyrethroid resistance in four populations of the malaria vector An. gambiae s.l., from the savanna/sub-Sahel of northern Nigeria. Anopheles coluzzii and An. gambiae s.s. were the only malaria vectors found, sympatric in all the sites, with the former species predominant. High thermotolerance was observed, with no mortality at 38 °C, and LT50 of ~44 °C. Significantly high permethrin resistance was observed (mortality < 50%) in 44 °C heat-hardened (exposure to an intermediately high temperature provides protection to a more severe temperature or insecticide) larvae from two sites, BUK and Pantami, compared with the control, and heat-hardened adult females from Auyo (mortality = 3.00% ± 1.20, χ2 = 5.83, p < 0.01) compared with the control (12.00% ± 4.65). The 2La chromosomal inversion was detected at ~50% in subset of larvae and 58% in subset of adult females genotyped. A significant association was observed (OR = 7.2, p < 0.03) between permethrin resistance and the 2La/+a rearrangement compared with 2L+a/+a, in BUK larvae. For all sites, permethrin resistance correlated with 2La/a homozygosity in adult females (R = 5.02, p = 0.01). qRT-PCR identified six genes commonly induced/overexpressed, including the heat shock protein 70 (AGAP004581) which was 2468× and 5× overexpressed in heat-hardened and permethrin-resistant females, respectively; trehalose-6-phosphate synthase (AGAP008227); and the ionotropic glutamate receptor genes, IR25a (AGAP010272) and IR21a (AGAP008511). This study highlights challenges associated with insecticide-based malaria vector control, and the epidemiological significance of taking climate variables into account for the design/choice of control measures.
Collapse
|
35
|
Black WC, Snell TK, Saavedra-Rodriguez K, Kading RC, Campbell CL. From Global to Local-New Insights into Features of Pyrethroid Detoxification in Vector Mosquitoes. INSECTS 2021; 12:insects12040276. [PMID: 33804964 PMCID: PMC8063960 DOI: 10.3390/insects12040276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023]
Abstract
The threat of mosquito-borne diseases continues to be a problem for public health in subtropical and tropical regions of the world; in response, there has been increased use of adulticidal insecticides, such as pyrethroids, in human habitation areas over the last thirty years. As a result, the prevalence of pyrethroid-resistant genetic markers in natural mosquito populations has increased at an alarming rate. This review details recent advances in the understanding of specific mechanisms associated with pyrethroid resistance, with emphasis on features of insecticide detoxification and the interdependence of multiple cellular pathways. Together, these advances add important context to the understanding of the processes that are selected in resistant mosquitoes. Specifically, before pyrethroids bind to their targets on motoneurons, they must first permeate the outer cuticle and diffuse to inner tissues. Resistant mosquitoes have evolved detoxification mechanisms that rely on cytochrome P450s (CYP), esterases, carboxyesterases, and other oxidation/reduction (redox) components to effectively detoxify pyrethroids to nontoxic breakdown products that are then excreted. Enhanced resistance mechanisms have evolved to include alteration of gene copy number, transcriptional and post-transcriptional regulation of gene expression, as well as changes to cellular signaling mechanisms. Here, we outline the variety of ways in which detoxification has been selected in various mosquito populations, as well as key gene categories involved. Pathways associated with potential new genes of interest are proposed. Consideration of multiple cellular pathways could provide opportunities for development of new insecticides.
Collapse
|
36
|
Li X, Hu S, Yin H, Zhang H, Zhou D, Sun Y, Ma L, Shen B, Zhu C. MiR-4448 is involved in deltamethrin resistance by targeting CYP4H31 in Culex pipiens pallens. Parasit Vectors 2021; 14:159. [PMID: 33726813 PMCID: PMC7962327 DOI: 10.1186/s13071-021-04665-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 12/03/2022] Open
Abstract
Background Culex pipiens (Cx. pipiens) complex, which acts as a vector of viruses and is widespread and abundant worldwide, including West Nile virus, Japanese encephalitis virus, and Sindbis virus, can cause serious vector-borne diseases affecting human health. Unfortunately, mosquitoes have developed deltamethrin resistance because of its long-term overuse, representing a major challenge to mosquito control. Understanding the molecular regulatory mechanisms of resistance is vital to control mosquitoes. MicroRNAs (miRNAs) are short non-coding RNAs that have been demonstrated to be important regulators of gene expression across a wide variety of organisms, which might function in mosquito deltamethrin resistance. In the present study, we aimed to investigate the regulatory functions of miR-4448 and CYP4H31 in the formation of insecticidal resistance in mosquito Culex pipiens pallens. Methods We used quantitative real-time reverse transcription PCR to measure miR-4448 and CYP4H31 (encoding a cytochrome P450) expression levels. The regulatory functions of miR-4448 and CYP4H31 were assessed using dual-luciferase reporter assays. Then, oral feeding, RNA interference, and the American Centers for Disease Control and Prevention bottle bioassay were used to determine miR-4448’s association with deltamethrin resistance by targeting CYP4H31in vivo. Cell Counting Kit-8 (CCK-8) was also used to detect the viability of pIB/V5-His-CYP4H31-transfected C6/36 cells after deltamethrin treatment in vitro. Results MiR-4448 was downregulated in the deltamethrin-resistant strain (DR strain), whereas CYP4H31 was downregulated in deltamethrin-susceptible strain. CYP4H31 expression was downregulated by miR-4448 recognizing and binding to its 3′ untranslated region. Functional verification experiments showed that miR-4448 overexpression resulted in lower expression of CYP4H31. The mortality of miR-4448 mimic-injected DR strain mosquitoes was higher than that of the controls. CCK-8 assays showed that CYP4H31 decreased cellular resistance to deltamethrin in vitro and the mortality of the DR strain increased when CYP4H31 was knocked down in vivo. Conclusions In mosquitoes, miR-4448 participates in deltamethrin resistance by targeting CYP4H31. The results of the present study increase our understanding of deltamethrin resistance mechanisms.![]()
Collapse
Affiliation(s)
- Xixi Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Shengli Hu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Haitao Yin
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Hongbo Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| |
Collapse
|
37
|
Muhammad A, Ibrahim SS, Mukhtar MM, Irving H, Abajue MC, Edith NMA, Da’u SS, Paine MJI, Wondji CS. High pyrethroid/DDT resistance in major malaria vector Anopheles coluzzii from Niger-Delta of Nigeria is probably driven by metabolic resistance mechanisms. PLoS One 2021; 16:e0247944. [PMID: 33705436 PMCID: PMC7951933 DOI: 10.1371/journal.pone.0247944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
Entomological surveillance of local malaria vector populations is an important component of vector control and resistance management. In this study, the resistance profile and its possible mechanisms was characterised in a field population of the major malaria vector Anopheles coluzzii from Port Harcourt, the capital of Rivers state, in the Niger-Delta Region of Nigeria. Larvae collected in Port-Harcourt, were reared to adulthood and used for WHO bioassays. The population exhibited high resistance to permethrin, deltamethrin and DDT with mortalities of 6.7% ± 2.4, 37.5% ± 3.2 and 6.3% ± 4.1, respectively, but were fully susceptible to bendiocarb and malathion. Synergist bioassays with piperonylbutoxide (PBO) partially recovered susceptibility, with mortalities increasing to 53% ± 4, indicating probable role of CYP450s in permethrin resistance (χ2 = 29.48, P < 0.0001). Transcriptional profiling revealed five major resistance-associated genes overexpressed in the field samples compared to the fully susceptible laboratory colony, Ngoussou. Highest fold change (FC) was observed with GSTe2 (FC = 3.3 in permethrin exposed and 6.2 in unexposed) and CYP6Z3 (FC = 1.4 in exposed and 4.6 in unexposed). TaqMan genotyping of 32 F0 females detected the 1014F and 1575Y knockdown resistance (kdr) mutations with frequencies of 0.84 and 0.1, respectively, while 1014S mutation was not detected. Sequencing of a fragment of the voltage-gated sodium channel, spanning exon 20 from 13 deltamethrin-resistant and 9 susceptible females revealed only 2 distinct haplotypes with a low haplotype diversity of 0.33. The findings of high pyrethroid resistance but with a significant degree of recovery after PBO synergist assay suggests the need to move to PBO-based nets. This could be complemented with carbamate- or organophosphate-based indoor residual spraying in this area.
Collapse
Affiliation(s)
- Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- Centre for Biotechnology Research, Bayero University, Kano, Nigeria
| | - Sulaiman S. Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- Department of Biochemistry, Bayero University, Kano, Nigeria
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | | | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Maduamaka C. Abajue
- Department of Animal and Environmental Biology, University of Port Harcourt, Port Harcourt, Nigeria
| | - Noutcha M. A. Edith
- Department of Animal and Environmental Biology, University of Port Harcourt, Port Harcourt, Nigeria
| | - Sabitu S. Da’u
- Department of Science, School of Continuing Education, Bayero University, Kano, Nigeria
| | - Mark J. I. Paine
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| |
Collapse
|
38
|
Assessing cross-resistance within the pyrethroids in terms of their interactions with key cytochrome P450 enzymes and resistance in vector populations. Parasit Vectors 2021; 14:115. [PMID: 33602297 PMCID: PMC7893915 DOI: 10.1186/s13071-021-04609-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/23/2021] [Indexed: 01/21/2023] Open
Abstract
Background It is important to understand whether the potential impact of pyrethroid resistance on malaria control can be mitigated by switching between different pyrethroids or whether cross-resistance within this insecticide class precludes this approach. Methods Here we assess the relationships among pyrethroids in terms of their binding affinity to, and depletion by, key cytochrome P450 enzymes (hereafter P450s) that are known to confer metabolic pyrethroid resistance in Anopheles gambiae (s.l.) and An. funestus, in order to identify which pyrethroids may diverge from the others in their vulnerability to resistance. We then investigate whether these same pyrethroids also diverge from the others in terms of resistance in vector populations. Results We found that the type I and II pyrethroids permethrin and deltamethrin, respectively, are closely related in terms of binding affinity to key P450s, depletion by P450s and resistance within vector populations. Bifenthrin, which lacks the common structural moiety of most pyrethroids, diverged from the other pyrethroids tested in terms of both binding affinity to key P450s and depletion by P450s, but resistance to bifenthrin has rarely been tested in vector populations and was not analysed here. Etofenprox, which also lacks the common structural moiety of most pyrethroids, diverged from the more commonly deployed pyrethroids in terms of binding affinity to key P450s and resistance in vector populations, but did not diverge from these pyrethroids in terms of depletion by the P450s. The analysis of depletion by the P450s indicated that etofenprox may be more vulnerable to metabolic resistance mechanisms in vector populations. In addition, greater resistance to etofenprox was found across Aedes aegypti populations, but greater resistance to this compound was not found in any of the malaria vector species analysed. The results for pyrethroid depletion by anopheline P450s in the laboratory were largely not repeated in the findings for resistance in malaria vector populations. Conclusion Importantly, the prevalence of resistance to the pyrethroids α-cypermethrin, cyfluthrin, deltamethrin, λ-cyhalothrin and permethrin was correlated across malaria vector populations, and switching between these compounds as a tool to mitigate against pyrethroid resistance is not advised without strong evidence supporting a true difference in resistance.![]()
Collapse
|
39
|
Influence of a Major Mountainous Landscape Barrier (Mount Cameroon) on the Spread of Metabolic ( GSTe2) and Target-Site ( Rdl) Resistance Alleles in the African Malaria Vector Anopheles funestus. Genes (Basel) 2020; 11:genes11121492. [PMID: 33322524 PMCID: PMC7764057 DOI: 10.3390/genes11121492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/03/2022] Open
Abstract
Increased levels of insecticide resistance in major malaria vectors such as Anopheles funestus threaten the effectiveness of insecticide-based control programmes. Understanding the landscape features impacting the spread of resistance makers is necessary to design suitable resistance management strategies. Here, we examined the influence of the highest mountain in West Africa (Mount Cameroon; 4095 m elevation) on the spread of metabolic and target-site resistance alleles in An. funestus populations. Vector composition varied across the four localities surveyed along the altitudinal cline with major vectors exhibiting high parity rate (80.5%). Plasmodium infection rates ranged from 0.79% (An. melas) to 4.67% (An. funestus). High frequencies of GSTe2R (67–81%) and RdlR (49–90%) resistance alleles were observed in An. funestus throughout the study area, with GSTe2R frequency increasing with altitude, whereas the opposite is observed for RdlR. Patterns of genetic diversity and population structure analyses revealed high levels of polymorphisms with 12 and 16 haplotypes respectively for GSTe2 and Rdl. However, the reduced diversity patterns of resistance allele carriers revealed signatures of positive selection on the two genes across the study area irrespective of the altitude. Despite slight variations associated with the altitude, the spread of resistance alleles suggest that control strategies could be implemented against malaria vectors across mountainous landscapes.
Collapse
|
40
|
Sandeu MM, Mulamba C, Weedall GD, Wondji CS. A differential expression of pyrethroid resistance genes in the malaria vector Anopheles funestus across Uganda is associated with patterns of gene flow. PLoS One 2020; 15:e0240743. [PMID: 33170837 PMCID: PMC7654797 DOI: 10.1371/journal.pone.0240743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Insecticide resistance is challenging the effectiveness of insecticide-based control interventions to reduce malaria burden in Africa. Understanding the molecular basis of insecticides resistance and patterns of gene flow in major malaria vectors such as Anopheles funestus are important steps for designing effective resistance management strategies. Here, we investigated the association between patterns of genetic structure and expression profiles of genes involved in the pyrethroid resistance in An. funestus across Uganda and neighboring Kenya. METHODS Blood-fed mosquitoes An. funestus were collected across the four localities in Uganda and neighboring Kenya. A Microarray-based genome-wide transcription analysis was performed to identify the set of genes associated with permethrin resistance. 17 microsatellites markers were genotyped and used to establish patterns of genetic differentiation. RESULTS Microarray-based genome-wide transcription profiling of pyrethroid resistance in four locations across Uganda (Arua, Bulambuli, Lira, and Tororo) and Kenya (Kisumu) revealed that resistance was mainly driven by metabolic resistance. The most commonly up-regulated genes in pyrethroid resistance mosquitoes include cytochrome P450s (CYP9K1, CYP6M7, CYP4H18, CYP4H17, CYP4C36). However, expression levels of key genes vary geographically such as the P450 CYP6M7 [Fold-change (FC) = 115.8 (Arua) vs 24.05 (Tororo) and 16.9 (Kisumu)]. In addition, several genes from other families were also over-expressed including Glutathione S-transferases (GSTs), carboxylesterases, trypsin, glycogenin, and nucleotide binding protein which probably contribute to insecticide resistance across Uganda and Kenya. Genotyping of 17 microsatellite loci in the five locations provided evidence that a geographical shift in the resistance mechanisms could be associated with patterns of population structure throughout East Africa. Genetic and population structure analyses indicated significant genetic differentiation between Arua and other localities (FST>0.03) and revealed a barrier to gene flow between Arua and other areas, possibly associated with Rift Valley. CONCLUSION The correlation between patterns of genetic structure and variation in gene expression could be used to inform future interventions especially as new insecticides are gradually introduced.
Collapse
Affiliation(s)
- Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Charles Mulamba
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Uganda Virus Research Institute, Entebbe, Uganda
| | - Gareth D. Weedall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charles S. Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
41
|
Djuicy DD, Hearn J, Tchouakui M, Wondji MJ, Irving H, Okumu FO, Wondji CS. CYP6P9-Driven Signatures of Selective Sweep of Metabolic Resistance to Pyrethroids in the Malaria Vector Anopheles funestus Reveal Contemporary Barriers to Gene Flow. Genes (Basel) 2020; 11:E1314. [PMID: 33167550 PMCID: PMC7694540 DOI: 10.3390/genes11111314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 11/16/2022] Open
Abstract
Pyrethroid resistance in major malaria vectors such as Anopheles funestus threatens malaria control efforts in Africa. Cytochrome P450-mediated metabolic resistance is best understood for CYP6P9 genes in southern Africa in An. funestus. However, we do not know if this resistance mechanism is spreading across Africa and how it relates to broader patterns of gene flow across the continent. Nucleotide diversity of the CYP6P9a gene and the diversity pattern of five gene fragments spanning a region of 120 kb around the CYP6P9a gene were surveyed in mosquitoes from southern, eastern and central Africa. These analyses revealed that a Cyp6P9a resistance-associated allele has swept through southern and eastern Africa and is now fixed in these regions. A similar diversity profile was observed when analysing genomic regions located 34 kb upstream to 86 kb downstream of the CYP6P9a locus, concordant with a selective sweep throughout the rp1 locus. We identify reduced gene flow between southern/eastern Africa and central Africa, which we hypothesise is due to the Great Rift Valley. These potential barriers to gene flow are likely to prevent or slow the spread of CYP6P9-based resistance mechanism to other parts of Africa and would to be considered in future vector control interventions such as gene drive.
Collapse
Affiliation(s)
- Delia Doreen Djuicy
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon; (M.T.); (M.J.W.)
| | - Jack Hearn
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (H.I.)
| | - Magellan Tchouakui
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon; (M.T.); (M.J.W.)
| | - Murielle J. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon; (M.T.); (M.J.W.)
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (H.I.)
| | - Helen Irving
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (H.I.)
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53 Ifakara 67501, Tanzania;
| | - Charles S. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon; (M.T.); (M.J.W.)
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (H.I.)
| |
Collapse
|
42
|
Nkemngo FN, Mugenzi LMJ, Terence E, Niang A, Wondji MJ, Tchoupo M, Nguete ND, Tchapga W, Irving H, Ntabi JDM, Agonhossou R, Boussougou-Sambe TS, Akoton RB, Koukouikila-Koussounda F, Pinilla YT, Ntoumi F, Djogbenou LS, Ghogomu SM, Ndo C, Adegnika AA, Borrmann S, Wondji CS. Multiple insecticide resistance and Plasmodium infection in the principal malaria vectors Anopheles funestus and Anopheles gambiae in a forested locality close to the Yaoundé airport, Cameroon. Wellcome Open Res 2020; 5:146. [PMID: 33204845 PMCID: PMC7667521 DOI: 10.12688/wellcomeopenres.15818.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Reducing the burden of malaria requires better understanding of vector populations, particularly in forested regions where the incidence remains elevated. Here, we characterized malaria vectors in a locality near the Yaoundé international airport, Cameroon, including species composition, abundance, Plasmodium infection rate, insecticide resistance profiles and underlying resistance mechanisms. Methods: Blood-fed adult mosquitoes resting indoors were aspirated from houses in April 2019 at Elende, a locality situated 2 km from the Yaoundé-Nsimalen airport. Female mosquitoes were forced to lay eggs to generate F 1 adults. Bioassays were performed to assess resistance profile to the four insecticides classes. The threshold of insecticide susceptibility was defined above 98% mortality rate and mortality rates below 90% were indicative of confirmed insecticide resistance. Furthermore, the molecular basis of resistance and Plasmodium infection rates were investigated. Results: Anopheles funestus s.s. was the most abundant species in Elende (85%) followed by Anopheles gambiae s.s. (15%) with both having similar sporozoite rate. Both species exhibited high levels of resistance to the pyrethroids, permethrin and deltamethrin (<40% mortality). An. gambiae s.s. was resistant to DDT (9.9% mortality) and bendiocarb (54% mortality) while susceptible to organophosphate. An. funestus s.s. was resistant to dieldrin (1% mortality), DDT (86% mortality) but susceptible to carbamates and organophosphates. The L119F-GSTe2 resistance allele (8%) and G119S ace-1 resistance allele (15%) were detected in An. funestus s.s. and An. gambiae s.s., respectively . Furthermore, the high pyrethroid/DDT resistances in An. gambiae corresponded with an increase frequency of 1014F kdr allele (95%). Transcriptional profiling of candidate cytochrome P450 genes reveals the over-expression of CYP6P5, CYP6P9a and CYP6P9b. Conclusion: The resistance to multiple insecticide classes observed in these vector populations alongside the significant Plasmodium sporozoite rate highlights the challenges that vector control programs encounter in sustaining the regular benefits of contemporary insecticide-based control interventions in forested areas.
Collapse
Affiliation(s)
- Francis N. Nkemngo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, South West, 237, Cameroon
| | - Leon M. J. Mugenzi
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, South West, 237, Cameroon
| | - Ebai Terence
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
| | - Abdoulaye Niang
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Murielle J. Wondji
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Micareme Tchoupo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
| | - Nguiffo D. Nguete
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
| | - Williams Tchapga
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
| | - Helen Irving
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jacques D. M. Ntabi
- Fondation Congolaise pour la Recherche Medicale (FCRM), Brazzaville, Congo
- Université Marien Ngouabi, Brazzaville, Congo
| | - Romuald Agonhossou
- Institut Régional de Santé Publique, Université d'Abomey-Calavi, Cotonou, Benin
| | - Terence S. Boussougou-Sambe
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Romaric B. Akoton
- Institut Régional de Santé Publique, Université d'Abomey-Calavi, Cotonou, Benin
| | - Felix Koukouikila-Koussounda
- Fondation Congolaise pour la Recherche Medicale (FCRM), Brazzaville, Congo
- Université Marien Ngouabi, Brazzaville, Congo
| | - Yudi T. Pinilla
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Medicale (FCRM), Brazzaville, Congo
- Université Marien Ngouabi, Brazzaville, Congo
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Luc S. Djogbenou
- Institut Régional de Santé Publique, Université d'Abomey-Calavi, Cotonou, Benin
| | - Stephen M. Ghogomu
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, South West, 237, Cameroon
| | - Cyrille Ndo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Ayola A. Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Eberhard Karls Universität Tübingen,, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Charles S. Wondji
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
43
|
Wu Z, Pu X, Shu B, Bin S, Lin J. Transcriptome analysis of putative detoxification genes in the Asian citrus psyllid, Diaphorina citri. PEST MANAGEMENT SCIENCE 2020; 76:3857-3870. [PMID: 32483911 DOI: 10.1002/ps.5937] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/08/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a notorious pest that transmits the causal agent of huanglongbing (also called citrus greening disease). Resistance to insecticide in this destructive pest poses a serious threat to the citrus industry. To date, no systemic studies on genes coding for detoxification enzymes has been carried out on D. citri. RESULTS Multiple transcriptomes were generated through deep sequencing of RNA libraries. Candidate genes potentially involved in detoxification including cytochrome P450 monooxygenases (CYPs), glutathione S-transferases (GSTs), and esterases (ESTs) were systematically identified by searching the transcriptomes and a draft genome assembly. A total of 49, 14 and 20 genes were found encoding CYPs, GSTs, and ESTs, respectively, in D. citri. The total numbers of candidate detoxification genes were much smaller than the counterparts reported in other insect species, which may reflect the strict oligophagy of this insect species. Developmental stage- and tissue-specific expression patterns of the identified genes as well as their responses to insecticide treatments identified a small set of genes that could participate in detoxifying plant secondary metabolites and insecticides. CONCLUSION Our studies represent the most comprehensive investigation to date on identification, characterization and expression profiling of detoxification genes in D. citri. The information revealed in this study shall be useful in designing strategies to manage this important insect pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinhua Pu
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuying Bin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
44
|
Vontas J, Katsavou E, Mavridis K. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104666. [PMID: 32980073 DOI: 10.1016/j.pestbp.2020.104666] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Despite the substantial progress achieved in the characterization of cytochrome P450 (CYP) -based resistance mechanisms in mosquitoes, a number of questions remain unanswered. These include: (i) the regulation and physiology of resistance conferring CYPs; (ii) the actual contribution of CYPs in resistance alone or in combination with other detoxification partners or other resistance mechanisms; (iii) the association between overexpression levels and allelic variation, with the catalytic activity and the intensity of resistance and (iv) the true value of molecular diagnostics targeting CYP markers, for driving decision making in the frame of Insecticide Resistance Management applications. Furthermore, the translation of CYP - based insecticide resistance research in mosquitoes into practical applications, is being developed, but it is not fully exploited, as yet. Examples include the production of high throughput platforms for screening the liability (stability) or inhibition potential of novel insecticidal leads and synergists (add-ons), as well as the exploration of the negative cross resistance concept (i.e. detoxification of certain insecticides, but activation of others pro-insecticides). The goal of this review is to critically summarise the current knowledge and the gaps of the CYP-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors. The progress and limitations of the protein and the reverse/forward genetic approaches, the understanding and importance of molecular and physiological aspects, as well as the current and future exploitation routes of CYP research are discussed.
Collapse
Affiliation(s)
- John Vontas
- Foundation for Research and Technology (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece; Department of Crop Science, Agricultural University of Athens, Iera Odos 875, 11855, Athens, Greece.
| | - Eva Katsavou
- Department of Crop Science, Agricultural University of Athens, Iera Odos 875, 11855, Athens, Greece
| | - Konstantinos Mavridis
- Foundation for Research and Technology (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece
| |
Collapse
|
45
|
Nouage L, Elanga-Ndille E, Binyang A, Tchouakui M, Atsatse T, Ndo C, Kekeunou S, Wondji CS. Influence of GST- and P450-based metabolic resistance to pyrethroids on blood feeding in the major African malaria vector Anopheles funestus. PLoS One 2020; 15:e0230984. [PMID: 32946446 PMCID: PMC7500606 DOI: 10.1371/journal.pone.0230984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
Insecticide resistance genes are often associated with pleiotropic effects on various mosquito life-history traits. However, very little information is available on the impact of insecticide resistance on blood feeding process in mosquitoes. Here, using two recently detected DNA-based metabolic markers in the major malaria vector, An. funestus, we investigated how metabolic resistance genes could affect the blood meal intake. After allowing both the field F1 and lab F8 Anopheles funestus strains to feed on the human arm for 30 minutes, we assessed the association between key parameters of blood meal process including, probing time, feeding duration, blood feeding success, blood meal size, and markers of glutathione S-transferase (L119F-GSTe2) and cytochrome P450 (CYP6P9a_R)-mediated metabolic resistance. None of the parameters of blood meal process was associated with L119F-GSTe2 genotypes. By contrast, for CYP6P9a_R, homozygous resistant mosquitoes were significantly more able to blood-feed than homozygous susceptible (OR = 3.3; CI 95%: 1.4-7.7; P = 0.01) mosquitoes. Moreover, the volume of blood meal ingested by CYP6P9a-SS mosquitoes was lower than that of CYP6P9a-RS (P<0.004) and of CYP6P9a-RR (P<0.006). This suggests that CYP6P9a gene is inked with the feeding success and blood meal size of An. funestus. However, no correlation was found in the expression of CYP6P9a and that of genes encoding for salivary proteins involved in blood meal process. This study suggests that P450-based metabolic resistance may influence the blood feeding process of Anopheles funestus mosquito and consequently its ability to transmit malaria parasites.
Collapse
Affiliation(s)
- Lynda Nouage
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Emmanuel Elanga-Ndille
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Achille Binyang
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Tatiane Atsatse
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Cyrille Ndo
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Sévilor Kekeunou
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Charles S. Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
46
|
Oumbouke WA, Pignatelli P, Barreaux AMG, Tia IZ, Koffi AA, Ahoua Alou LP, Sternberg ED, Thomas MB, Weetman D, N'Guessan R. Fine scale spatial investigation of multiple insecticide resistance and underlying target-site and metabolic mechanisms in Anopheles gambiae in central Côte d'Ivoire. Sci Rep 2020; 10:15066. [PMID: 32934291 PMCID: PMC7493912 DOI: 10.1038/s41598-020-71933-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 08/20/2020] [Indexed: 11/10/2022] Open
Abstract
Routine monitoring of occurrence, levels and mechanisms of insecticide resistance informs effective management strategies, and should be used to assess the effect of new tools on resistance. As part of a cluster randomised controlled trial evaluating a novel insecticide-based intervention in central Côte d’Ivoire, we assessed resistance and its underlying mechanisms in Anopheles gambiae populations from a subset of trial villages. Resistance to multiple insecticides in An. gambiae s.s. and An. coluzzii was detected across villages, with dose–response assays demonstrating extremely high resistance intensity to the pyrethroid deltamethrin (> 1,500-fold), and mortality following exposure to pyrethroid-treated bednets was low (< 30% mortality in cone bioassays). The 1014F kdr mutation was almost fixed (≥ 90%) in all villages but the 1575Y kdr-amplifying mutation was relatively rare (< 15%). The carbamate and organophosphate resistance-associated Ace-1 G119S mutation was also detected at moderate frequencies (22–43%). Transcriptome analysis identified overexpression of P450 genes known to confer pyrethroid resistance (Cyp9K1, Cyp6P3, and Cyp6M2), and also a carboxylesterase (COEAE1F) as major candidates. Cyp6P3 expression was high but variable (up to 33-fold) and correlated positively with deltamethrin resistance intensity across villages (r2 = 0.78, P = 0.02). Tools and strategies to mitigate the extreme and multiple resistance provided by these mechanisms are required in this area to avoid future control failures.
Collapse
Affiliation(s)
- Welbeck A Oumbouke
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK. .,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.
| | - Patricia Pignatelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Antoine M G Barreaux
- School of Biological Sciences, University of Bristol, Bristol, UK.,Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Innocent Z Tia
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Alphonsine A Koffi
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Eleanore D Sternberg
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.,Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Matthew B Thomas
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Raphael N'Guessan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| |
Collapse
|
47
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
48
|
Atoyebi SM, Tchigossou GM, Akoton R, Riveron JM, Irving H, Weedall G, Tossou E, Djegbe I, Oyewole IO, Bakare AA, Wondji CS, Djouaka R. Investigating the molecular basis of multiple insecticide resistance in a major malaria vector Anopheles funestus (sensu stricto) from Akaka-Remo, Ogun State, Nigeria. Parasit Vectors 2020; 13:423. [PMID: 32811561 PMCID: PMC7436991 DOI: 10.1186/s13071-020-04296-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Understanding the mechanisms used by Anopheles mosquitoes to survive insecticide exposure is key to manage existing insecticide resistance and develop more suitable insecticide-based malaria vector control interventions as well as other alternative integrated tools. To this regard, the molecular basis of permethrin, DDT and dieldrin resistance in Anopheles funestus (sensu stricto) at Akaka-Remo was investigated. METHODS Bioassays were conducted on 3-5-day-old adult An. funestus (s.s.) mosquitoes for permethrin, DDT and dieldrin susceptibility test. The molecular mechanisms of mosquito resistance to these insecticides were investigated using microarray and reverse transcriptase PCR techniques. The voltage-gated sodium channel region of mosquitoes was also screened for the presence of knockdown resistance mutations (kdr west and east) by sequencing method. RESULTS Anopheles funestus (s.s.) population was resistant to permethrin (mortality rate of 68%), DDT (mortality rate of 10%) and dieldrin (mortality rate of 8%) insecticides. Microarray and RT-PCR analyses revealed the overexpression of glutathione S-transferase genes, cytochrome P450s, esterase, trypsin and cuticle proteins in resistant mosquitoes compared to control. The GSTe2 was the most upregulated detoxification gene in permethrin-resistant (FC = 44.89), DDT-resistant (FC = 57.39) and dieldrin-resistant (FC = 41.10) mosquitoes compared to control population (FC = 22.34). The cytochrome P450 gene, CYP6P9b was also upregulated in both permethrin- and DDT-resistant mosquitoes. The digestive enzyme, trypsin (hydrolytic processes) and the cuticle proteins (inducing cuticle thickening leading to reduced insecticides penetration) also showed high involvement in insecticide resistance, through their overexpression in resistant mosquitoes compared to control. The kdr east and west were absent in all mosquitoes analysed, suggesting their non-involvement in the observed mosquito resistance. CONCLUSIONS The upregulation of metabolic genes, especially the GSTe2 and trypsin, as well as the cuticle proteins is driving insecticide resistance of An. funestus (s.s.) population. However, additional molecular analyses, including functional metabolic assays of these genes as well as screening for a possible higher cuticular hydrocarbon and lipid contents, and increased procuticle thickness in resistant mosquitoes are needed to further describe their distinct roles in mosquito resistance.
Collapse
Affiliation(s)
- Seun M. Atoyebi
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- Cell Biology & Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Genevieve M. Tchigossou
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Romaric Akoton
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Jacob M. Riveron
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
- Insecticide Bioscience Department, Syngenta, Toulouse, UK
| | - Helen Irving
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Gareth Weedall
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
- Liverpool John Moores University, Liverpool, L3 3AF UK
| | - Eric Tossou
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Innocent Djegbe
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- National University of Sciences, Technologies, Engineering and Mathematics, Ecole Normale Supérieure de Natitingou, BP 123, Natitingou, Benin
| | - Isaac O. Oyewole
- Biology Department, Babcock University, Ilisan Remo, Ogun State Nigeria
| | - Adekunle A. Bakare
- Cell Biology & Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Charles S. Wondji
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
- Centre for Research in Infectious Diseases (CRID), Yaounde, Cameroon
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
| |
Collapse
|
49
|
Tackling the Molecular Drug Sensitivity in the Sea Louse Caligus rogercresseyi Based on mRNA and lncRNA Interactions. Genes (Basel) 2020; 11:genes11080857. [PMID: 32726954 PMCID: PMC7464394 DOI: 10.3390/genes11080857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/05/2023] Open
Abstract
Caligus rogercresseyi, commonly known as sea louse, is an ectoparasite copepod that impacts the salmon aquaculture in Chile, causing losses of hundreds of million dollars per year. This pathogen is mainly controlled by immersion baths with delousing drugs, which can lead to resistant traits selection in lice populations. Bioassays are commonly used to assess louse drug sensitivity, but the current procedures may mask relevant molecular responses. This study aimed to discover novel coding genes and non-coding RNAs that could evidence drug sensitivity at the genomic level. Sea lice samples from populations with contrasting sensitivity to delousing drugs were collected. Bioassays using azamethiphos, cypermethrin, and deltamethrin drugs were conducted to evaluate the sensitivity and to collect samples for RNA-sequencing. Transcriptome sequencing was conducted on samples exposed to each drug to evaluate the presence of coding and non-coding RNAs associated with the response of these compounds. The results revealed specific transcriptome patterns in lice exposed to azamethiphos, deltamethrin, and cypermethrin drugs. Enrichment analyses of Gene Ontology terms showed specific biological processes and molecular functions associated with each delousing drug analyzed. Furthermore, novel long non-coding RNAs (lncRNAs) were identified in C. rogercresseyi and tightly linked to differentially expressed coding genes. A significant correlation between gene transcription patterns and phenotypic effects was found in lice collected from different salmon farms with contrasting drug treatment efficacies. The significant correlation among gene transcription patterns with the historical background of drug sensitivity suggests novel molecular mechanisms of pharmacological resistance in lice populations.
Collapse
|
50
|
Chanda J, Saili K, Phiri F, Stevenson JC, Mwenda M, Chishimba S, Mulube C, Mambwe B, Lungu C, Earle D, Bennett A, Eisele TP, Kamuliwo M, Steketee RW, Keating J, Miller JM, Sikaala CH. Pyrethroid and Carbamate Resistance in Anopheles funestus Giles along Lake Kariba in Southern Zambia. Am J Trop Med Hyg 2020; 103:90-97. [PMID: 32618244 PMCID: PMC7416976 DOI: 10.4269/ajtmh.19-0664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Whereas data on insecticide resistance and its underlying mechanisms exist for parts of Zambia, data remain limited in the southern part of the country. This study investigated the status of insecticide resistance, metabolic mechanisms, and parasite infection in Anopheles funestus along Lake Kariba in southern Zambia. Indoor-resting mosquitoes were collected from 20 randomly selected houses within clusters where a mass drug administration trial was conducted and raised to F1 progeny. Non–blood-fed 2- to 5-day-old female An. funestus were exposed to WHO insecticide-impregnated papers with 0.05% deltamethrin, 0.1% bendiocarb, 0.25% pirimiphos-methyl, or 4% dichloro-diphenyl-trichloroethane (DDT). In separate assays, An. funestus were pre-exposed to piperonyl butoxide (PBO) to determine the presence of monooxygenases. Wild-caught An. funestus that had laid eggs for susceptibility assays were screened for circumsporozoite protein of Plasmodium falciparum by ELISA, and sibling species were identified by polymerase chain reaction. Anopheles funestus showed resistance to deltamethrin and bendiocarb but remained susceptible to pirimiphos-methyl and DDT. The pre-exposure of An. funestus to PBO restored full susceptibility to deltamethrin but not to bendiocarb. The overall sporozoite infection rate in An. funestus populations was 5.8%. Detection of pyrethroid and carbamate resistance in An. funestus calls for increased insecticide resistance monitoring to guide planning and selection of effective insecticide resistance management strategies. To prevent the development of resistance and reduce the underlying vectorial capacity of mosquitoes in areas targeted for malaria elimination, an effective integrated vector management strategy is needed.
Collapse
Affiliation(s)
- Javan Chanda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Kochelani Saili
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Foustina Phiri
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | - Jennifer C Stevenson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Macha Research Trust, Choma, Zambia
| | - Mulenga Mwenda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Sandra Chishimba
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Conceptor Mulube
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Brenda Mambwe
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Christopher Lungu
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Duncan Earle
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California
| | - Thomas P Eisele
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Mulakwa Kamuliwo
- National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| | | | - Joseph Keating
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - John M Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Chadwick H Sikaala
- SADC Malaria Elimination Eight Secretariat, Windhoek, Namibia.,National Malaria Elimination Centre, Zambia Ministry of Health, Lusaka, Zambia
| |
Collapse
|