1
|
Kumari P, Panigrahi AR, Yadav P, Beura SK, Singh SK. Platelets and inter-cellular communication in immune responses: Dialogue with both professional and non-professional immune cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:347-379. [PMID: 38762274 DOI: 10.1016/bs.apcsb.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Platelets, derived from bone marrow megakaryocytes, are essential for vascular integrity and play multifaceted roles in both physiological and pathological processes within the vasculature. Despite their small size and absence of a nucleus, platelets are increasingly recognized for their diverse immune functions. Recent research highlights their pivotal role in interactions with various immune cells, including professional cells like macrophages, dendritic cells, natural killer cells, T cells, and B cells, influencing host immune responses. Platelets also engage with non-professional immune cells, contributing to immune responses and structural maintenance, particularly in conditions like inflammation and atherosclerosis. This review underscores the emerging significance of platelets as potent immune cells, elucidating their interactions with the immune system. We explore the mechanisms of platelet activation, leading to diverse functions, such as aggregation, immunity, activation of other immune cells, and pathogen clearance. Platelets have become the predominant immune cells in circulation, involved in chronic inflammation, responses to infections, and autoimmune disorders. Their immunological attributes, including bioactive granule molecules and immune receptors, contribute to their role in immune responses. Unlike professional antigen-presenting cells, platelets process and present antigens through an MHC-I-dependent pathway, initiating T-cell immune responses. This review illuminates the unique features of platelets and their central role in modulating host immune responses in health and disease.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Pooja Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Samir Kumar Beura
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Sunil Kumar Singh
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India; Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
2
|
Kayama A, Eto K. Mass production of iPSC-derived platelets toward the clinical application. Regen Ther 2024; 25:213-219. [PMID: 38260088 PMCID: PMC10801197 DOI: 10.1016/j.reth.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
The ex vivo production of platelets from induced pluripotent cells (iPSCs) may offer a safer and sustainable alternative for transfusions and drug delivery systems (DDS). However, the mass production of the clinically required number of iPSC-derived platelets (iPSC-PLTs) is challenging. Here, we introduce recent technologies for mass production and the first-in-human clinical trial using ex vivo iPSC-PLTs. To this end, we established immortalized megakaryocyte progenitor cell lines (imMKCLs) as an expandable master cell bank (MCB) through the overexpression of c-MYC, BMI1 and BCL-XL, which modulated megakaryopoiesis and thrombopoiesis. We also optimized a culture cocktail for maturation of the imMKCLs by mixing an aryl hydrocarbon receptor (AhR) antagonist, SR1/GNF-316; a Rho-associated protein kinase (ROCK) inhibitor, Y-27632/Y-39983; and a small-molecule compound replacing recombinant thrombopoietin (TPO), TA-316. Finally, we discovered the importance of turbulence on the manufacturing of intact iPSC-PLTs, allowing us to develop a turbulence-based bioreactor, VerMES. Combination of the MCB and VerMES enabled us to produce more than 100 billion iPSC-PLTs, leading to the first-in-human clinical trial. Despite these advancements, many challenges remain before expanding the clinical implementation of this strategy.
Collapse
|
3
|
Grabowska J, Léopold V, Olesek K, Nijen Twilhaar MK, Affandi AJ, Brouwer MC, Jongerius I, Verschoor A, van Kooten C, van Kooyk Y, Storm G, van ‘t Veer C, den Haan JMM. Platelets interact with CD169 + macrophages and cDC1 and enhance liposome-induced CD8 + T cell responses. Front Immunol 2023; 14:1290272. [PMID: 38054006 PMCID: PMC10694434 DOI: 10.3389/fimmu.2023.1290272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Historically platelets are mostly known for their crucial contribution to hemostasis, but there is growing understanding of their role in inflammation and immunity. The immunomodulatory role of platelets entails interaction with pathogens, but also with immune cells including macrophages and dendritic cells (DCs), to activate adaptive immune responses. In our previous work, we have demonstrated that splenic CD169+ macrophages scavenge liposomes and collaborate with conventional type 1 DCs (cDC1) to induce expansion of CD8+ T cells. Here, we show that platelets associate with liposomes and bind to DNGR-1/Clec9a and CD169/Siglec-1 receptors in vitro. In addition, platelets interacted with splenic CD169+ macrophages and cDC1 and further increased liposome internalization by cDC1. Most importantly, platelet depletion prior to liposomal immunization resulted in significantly diminished antigen-specific CD8+ T cell responses, but not germinal center B cell responses. Previously, complement C3 was shown to be essential for platelet-mediated CD8+ T cell activation during bacterial infection. However, after liposomal vaccination CD8+ T cell priming was not dependent on complement C3. While DCs from platelet-deficient mice exhibited unaltered maturation status, they did express lower levels of CCR7. In addition, in the absence of platelets, CCL5 plasma levels were significantly reduced. Overall, our findings demonstrate that platelets engage in a cross-talk with CD169+ macrophages and cDC1 and emphasize the importance of platelets in induction of CD8+ T cell responses in the context of liposomal vaccination.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Valentine Léopold
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Anesthesiology and Critical Care, Paris University, Lariboisière Hospital, Paris, France
- Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris, Paris, France
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Alsya J. Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mieke C. Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Admar Verschoor
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany
| | - Cees van Kooten
- Department of Medicine, Division of Nephrology and Transplant Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cornelis van ‘t Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
4
|
Ebermeyer T, Hequet O, Berard F, Prier A, Eyraud MA, Arthaud CA, Heestermans M, Duchez AC, Guironnet-Paquet A, Berthelot P, Cognasse F, Hamzeh-Cognasse H. The efficacy of therapeutic plasma exchange in COVID-19 patients on endothelial tightness in vitro is hindered by platelet activation. Front Cardiovasc Med 2023; 10:1094786. [PMID: 37215546 PMCID: PMC10192624 DOI: 10.3389/fcvm.2023.1094786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Coronavirus disease (COVID)-19 is characterised in particular by vascular inflammation with platelet activation and endothelial dysfunction. During the pandemic, therapeutic plasma exchange (TPE) was used to reduce the cytokine storm in the circulation and delay or prevent ICU admissions. This procedure consists in replacing the inflammatory plasma by fresh frozen plasma from healthy donors and is often used to remove pathogenic molecules from plasma (autoantibodies, immune complexes, toxins, etc.). This study uses an in vitro model of platelet-endothelial cell interactions to assess changes in these interactions by plasma from COVID-19 patients and to determine the extent to which TPE reduces such changes. We noted that exposure of an endothelial monolayer to plasmas from COVID-19 patients post-TPE induced less endothelial permeability compared to COVID-19 control plasmas. Yet, when endothelial cells were co-cultured with healthy platelets and exposed to the plasma, the beneficial effect of TPE on endothelial permeability was somewhat reduced. This was linked to platelet and endothelial phenotypical activation but not with inflammatory molecule secretion. Our work shows that, in parallel to the beneficial removal of inflammatory factors from the circulation, TPE triggers cellular activation which may partly explain the reduction in efficacy in terms of endothelial dysfunction. These findings provide new insights for improving the efficacy of TPE using supporting treatments targeting platelet activation, for instance.
Collapse
Affiliation(s)
- Theo Ebermeyer
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, F-42023, Saint-Etienne, France
| | - Olivier Hequet
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Research Department, F-42023, Saint-Etienne, France
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Frederic Berard
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Université Jean Monnet de Saint-Etienne, Lyon, France
- Groupement Hospitalier Sud, Allergy and Clinical Immunology Department, Hospices Civils de Lyon, Lyon, France
| | - Amelie Prier
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, F-42023, Saint-Etienne, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Research Department, F-42023, Saint-Etienne, France
| | - Marie-Ange Eyraud
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, F-42023, Saint-Etienne, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Research Department, F-42023, Saint-Etienne, France
| | - Charles-Antoine Arthaud
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, F-42023, Saint-Etienne, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Research Department, F-42023, Saint-Etienne, France
| | - Marco Heestermans
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, F-42023, Saint-Etienne, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Research Department, F-42023, Saint-Etienne, France
| | - Anne-Claire Duchez
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, F-42023, Saint-Etienne, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Research Department, F-42023, Saint-Etienne, France
| | - Aurelie Guironnet-Paquet
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Research Department, F-42023, Saint-Etienne, France
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Philippe Berthelot
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Université Jean Monnet de Saint-Etienne, Lyon, France
- University Hospital of Saint-Etienne, Infectious Diseases Department, F-42023, Saint-Etienne, France
| | - Fabrice Cognasse
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, F-42023, Saint-Etienne, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Research Department, F-42023, Saint-Etienne, France
| | - Hind Hamzeh-Cognasse
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, F-42023, Saint-Etienne, France
| |
Collapse
|
5
|
Albayati S, Li N, Unsworth AJ, Liverani E. Platelet-lymphocyte co-culture serves as an ex vivo platform of dynamic heterotypic cross-talk. J Cell Commun Signal 2022; 16:661-675. [PMID: 35414144 PMCID: PMC9733731 DOI: 10.1007/s12079-022-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Platelets are well known for their roles in hemostasis and thrombosis, and are increasingly recognized for their abilities to interact with white blood cells during inflammatory diseases, via secreted soluble factors as well as cell-cell contact. This interaction has been investigated in animal models and patient samples and has shown to be implicated in patient outcomes in several diseases. Platelet-leukocyte co-cultures are widely used to study platelet-leukocyte interactions ex vivo. However, there is a paucity with regard to the systematic characterization of cell activation and functional behaviors of platelets and leukocytes in these co-cultures. Hence we aimed to characterize a model of platelet-leukocyte co-culture ex vivo. Human peripheral blood mononuclear cell (PBMC) and platelets were isolated and co-cultured for 5 days at 37 °C in the presence or absence of anti-CD3/CD28 antibodies or PHA. We evaluated PF-4 secretion and p-selectin expression in platelets as markers of platelet activation. Lymphocyte activation was assessed by cell proliferation and cell population phenotyping, in addition to platelet-lymphocyte aggregation. Platelet secretion and p-selectin expression is maintained throughout the co-culture, indicating that platelets were viable and reactive over the 5 days. Similarly PBMCs were viable and maintained proliferative capacity. Finally, dynamic heterotypic conjugation between platelets and T lymphocytes was also observed throughout co-culture (with a peak at days 3 and 4) upon T lymphocyte activation. In conclusion, this in vitro model can successfully mimic the in vivo interaction between platelets and T lymphocytes, and can be used to confirm and/or support in vivo results.
Collapse
Affiliation(s)
- Samara Albayati
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, PA, USA
| | - Nailin Li
- Department of Medicine-Solna, Cardiovascular Medicine Unit, Karolinska Institutet, Stockholm, Sweden
| | - Amanda J Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Manchester, M1 5GD, UK
| | - Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, PA, USA.
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
6
|
Amoafo EB, Entsie P, Albayati S, Dorsam GP, Kunapuli SP, Kilpatrick LE, Liverani E. Sex-related differences in the response of anti-platelet drug therapies targeting purinergic signaling pathways in sepsis. Front Immunol 2022; 13:1015577. [PMID: 36405709 PMCID: PMC9667743 DOI: 10.3389/fimmu.2022.1015577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
Sepsis, a complex clinical syndrome resulting from a serious infection, is a major healthcare problem associated with high mortality. Sex-related differences in the immune response to sepsis have been proposed but the mechanism is still unknown. Purinergic signaling is a sex-specific regulatory mechanism in immune cell physiology. Our studies have shown that blocking the ADP-receptor P2Y12 but not P2Y1 receptor was protective in male mice during sepsis, but not female. We now hypothesize that there are sex-related differences in modulating P2Y12 or P2Y1 signaling pathways during sepsis. Male and female wild-type (WT), P2Y12 knock-out (KO), and P2Y1 KO mice underwent sham surgery or cecal ligation and puncture (CLP) to induce sepsis. The P2Y12 antagonist ticagrelor or the P2Y1 antagonist MRS2279 were administered intra-peritoneally after surgery to septic male and female mice. Blood, lungs and kidneys were collected 24 hours post-surgery. Sepsis-induced changes in platelet activation, secretion and platelet interaction with immune cells were measured by flow cytometry. Neutrophil infiltration in the lung and kidney was determined by a myeloperoxidase (MPO) colorimetric assay kit. Sepsis-induced platelet activation, secretion and aggregate formation were reduced in male CLP P2Y12 KO and in female CLP P2Y1 KO mice compared with their CLP WT counterpart. Sepsis-induced MPO activity was reduced in male CLP P2Y12 KO and CLP P2Y1 KO female mice. CLP males treated with ticagrelor or MRS2279 showed a decrease in sepsis-induced MPO levels in lung and kidneys, aggregate formation, and platelet activation as compared to untreated male CLP mice. There were no differences in platelet activation, aggregate formation, and neutrophil infiltration in lung and kidney between female CLP mice and female CLP mice treated with ticagrelor or MRS2279. In human T lymphocytes, blocking P2Y1 or P2Y12 alters cell growth and secretion in vitro in a sex-dependent manner, supporting the data obtained in mice. In conclusion, targeting purinergic signaling represents a promising therapy for sepsis but drug targeting purinergic signaling is sex-specific and needs to be investigated to determine sex-related targeted therapies in sepsis.
Collapse
Affiliation(s)
- Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, United States
| | - Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, United States
| | - Samara Albayati
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, PA, United States
| | - Glenn P. Dorsam
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Satya P. Kunapuli
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, PA, United States
| | - Laurie E. Kilpatrick
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, United States
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, PA, United States
| |
Collapse
|
7
|
Abbadessa G, Mainero C, Bonavita S. Hemostasis components as therapeutic targets in autoimmune demyelination. Clin Pharmacol Ther 2022; 111:807-816. [DOI: 10.1002/cpt.2532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/04/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Gianmarco Abbadessa
- Division of Neurology Department of Advanced Medical and Surgical Sciences University of Campania Luigi Vanvitelli 80131 Naples Italy
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital
- Harvard Medical School
| | - Simona Bonavita
- Division of Neurology Department of Advanced Medical and Surgical Sciences University of Campania Luigi Vanvitelli 80131 Naples Italy
| |
Collapse
|
8
|
Abstract
Classically, platelets have been described as the cellular blood component that mediates hemostasis and thrombosis. This important platelet function has received significant research attention for >150 years. The immune cell functions of platelets are much less appreciated. Platelets interact with and activate cells of all branches of immunity in response to pathogen exposures and infection, as well as in response to sterile tissue injury. In this review, we focus on innate immune mechanisms of platelet activation, platelet interactions with innate immune cells, as well as the intersection of platelets and adaptive immunity. The immune potential of platelets is dependent in part on their megakaryocyte precursor providing them with the molecular composition to be first responders and immune sentinels in initiating and orchestrating coordinated pathogen immune responses. There is emerging evidence that extramedullary megakaryocytes may be immune differentiated compared with bone marrow megakaryocytes, but the physiological relevance of immunophenotypic differences are just beginning to be explored. These concepts are also discussed in this review. The immune functions of the megakaryocyte/platelet lineage have likely evolved to coordinate the need to repair a vascular breach with the simultaneous need to induce an immune response that may limit pathogen invasion once the blood is exposed to an external environment.
Collapse
Affiliation(s)
- Milka Koupenova
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605
| | - Alison Livada
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY 14642
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
9
|
Chebbo M, Duez C, Alessi MC, Chanez P, Gras D. Platelets: a potential role in chronic respiratory diseases? Eur Respir Rev 2021; 30:30/161/210062. [PMID: 34526315 PMCID: PMC9488457 DOI: 10.1183/16000617.0062-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Platelets are small anucleate cells known for their role in haemostasis and thrombosis. In recent years, an increasing number of observations have suggested that platelets are also immune cells and key modulators of immunity. They express different receptors and molecules that allow them to respond to pathogens, and to interact with other immune cells. Platelets were linked to the pathogenesis of some inflammatory disorders including respiratory diseases such as asthma and idiopathic pulmonary fibrosis. Here, we discuss the involvement of platelets in different immune responses, and we focus on their potential role in various chronic lung diseases. In addition to their essential role in haemostasis and thrombosis, platelets are strong modulators of different immune responses, and could be involved in the physiopathology of several chronic airway diseaseshttps://bit.ly/3cB6Xnj
Collapse
Affiliation(s)
| | | | - Marie C Alessi
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, CHU de la Timone, Laboratoire d'hématologie, Marseille, France
| | - Pascal Chanez
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, Hôpital NORD, Clinique des Bronches, Allergie et Sommeil, Marseille, France
| | - Delphine Gras
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France
| |
Collapse
|
10
|
Ebermeyer T, Cognasse F, Berthelot P, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet Innate Immune Receptors and TLRs: A Double-Edged Sword. Int J Mol Sci 2021; 22:ijms22157894. [PMID: 34360659 PMCID: PMC8347377 DOI: 10.3390/ijms22157894] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review will provide an overview of platelet functions. Indeed, stress signals may induce platelet apoptosis through proapoptotis or hemostasis receptors, necrosis, and even autophagy. Platelets also interact with immune cells and modulate immune responses in terms of activation, maturation, recruitment and cytokine secretion. This review will also show that platelets, thanks to their wide range of innate immune receptors, and in particular toll-like receptors, and can be considered sentinels actively participating in the immuno-surveillance of the body. We will discuss the diversity of platelet responses following the engagement of these receptors as well as the signaling pathways involved. Finally, we will show that while platelets contribute significantly, via their TLRs, to immune response and inflammation, these receptors also participate in the pathophysiological processes associated with various pathogens and diseases, including cancer and atherosclerosis.
Collapse
Affiliation(s)
- Théo Ebermeyer
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Fabrice Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 25 bd Pasteur, F-42100 Saint-Étienne, France
| | - Philippe Berthelot
- Team GIMAP, CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, U1111, UMR5308, F-69007 Lyon, France;
- Infectious Diseases Department, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Patrick Mismetti
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Department of Vascular Medicine and Therapeutics, INNOVTE, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Olivier Garraud
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Hind Hamzeh-Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Correspondence:
| |
Collapse
|
11
|
Saris A, Steuten J, Schrijver DP, van Schijndel G, Zwaginga JJ, van Ham SM, ten Brinke A. Inhibition of Dendritic Cell Activation and Modulation of T Cell Polarization by the Platelet Secretome. Front Immunol 2021; 12:631285. [PMID: 33737933 PMCID: PMC7961920 DOI: 10.3389/fimmu.2021.631285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Platelet transfusions are a frequently administered therapy for especially hemato-oncological patients with thrombocytopenia. Next to their primary function in hemostasis, currently there is increased attention for the capacity of platelets to affect the function of various cells of the immune system. Here, we investigate the capacity of platelets to immuno-modulate monocyte-derived dendritic cells (moDC) as well as primary dendritic cells and effects on subsequent T cell responses. Platelets significantly inhibited pro-inflammatory (IL-12, IL-6, TNFα) and increased anti-inflammatory (IL-10) cytokine production of moDCs primed with toll-like receptor (TLR)-dependent and TLR-independent stimuli. Transwell assays and ultracentrifugation revealed that a soluble factor secreted by platelets, but not microvesicles, inhibited DC activation. Interestingly, platelet-derived soluble mediators also inhibited cytokine production by human ex vivo stimulated myeloid CD1c+ conventional DC2. Moreover, platelets and platelet-derived soluble mediators inhibited T cell priming and T helper differentiation toward an IFNγ+ Th1 phenotype by moDCs. Overall, these results show that platelets are able to inhibit the pro-inflammatory properties of DCs, and may even induce an anti-inflammatory DC phenotype, with decreased T cell priming capacity by the DC. The results of this study provide more insight in the potential role of platelets in immune modulation, especially in the context of platelet transfusions.
Collapse
Affiliation(s)
- Anno Saris
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Infectious Disease, Leiden University Medical Center, Leiden, Netherlands
| | - Juulke Steuten
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David P. Schrijver
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gijs van Schijndel
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jaap Jan Zwaginga
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - S. Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Pathogen-reduced PRP blocks T-cell activation, induces Treg cells, and promotes TGF-β expression by cDCs and monocytes in mice. Blood Adv 2020; 4:5547-5561. [PMID: 33166410 DOI: 10.1182/bloodadvances.2020002867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Alloimmunization against platelet-rich plasma (PRP) transfusions can lead to complications such as platelet refractoriness or rejection of subsequent transfusions and transplants. In mice, pathogen reduction treatment of PRP with UVB light and riboflavin (UV+R) prevents alloimmunization and appears to induce partial antigen-specific tolerance to subsequent transfusions. Herein, the in vivo responses of antigen-presenting cells and T cells to transfusion with UV+R-treated allogeneic PRP were evaluated to understand the cellular immune responses leading to antigen-specific tolerance. Mice that received UV+R-treated PRP had significantly increased transforming growth factor β (TGF-β) expression by CD11b+ CD4+ CD11cHi conventional dendritic cells (cDCs) and CD11bHi monocytes (P < .05). While robust T-cell responses to transfusions with untreated allogeneic PRP were observed (P < .05), these were blocked by UV+R treatment. Mice given UV+R-treated PRP followed by untreated PRP showed an early significant (P < .01) enrichment in regulatory T (Treg) cells and associated TGF-β production as well as diminished effector T-cell responses. Adoptive transfer of T-cell-enriched splenocytes from mice given UV+R-treated PRP into naive recipients led to a small but significant reduction of CD8+ T-cell responses to subsequent allogeneic transfusion. These data demonstrate that pathogen reduction with UV+R induces a tolerogenic profile by way of CD11b+ CD4+ cDCs, monocytes, and induction of Treg cells, blocking T-cell activation and reducing secondary T-cell responses to untreated platelets in vivo.
Collapse
|
13
|
Maouia A, Rebetz J, Kapur R, Semple JW. The Immune Nature of Platelets Revisited. Transfus Med Rev 2020; 34:209-220. [PMID: 33051111 PMCID: PMC7501063 DOI: 10.1016/j.tmrv.2020.09.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Platelets are the primary cellular mediators of hemostasis and this function firmly acquaints them with a variety of inflammatory processes. For example, platelets can act as circulating sentinels by expressing Toll-like receptors (TLR) that bind pathogens and this allows platelets to effectively kill them or present them to cells of the immune system. Furthermore, activated platelets secrete and express many pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. In addition, platelets can directly influence adaptive immune responses via secretion of, for example, CD40 and CD40L molecules. Platelets are also the source of most of the microvesicles in the circulation and these miniscule elements further enhance the platelet’s ability to communicate with the immune system. More recently, it has been demonstrated that platelets and their parent cells, the megakaryocytes (MK), can also uptake, process and present both foreign and self-antigens to CD8+ T-cells conferring on them the ability to directly alter adaptive immune responses. This review will highlight several of the non-hemostatic attributes of platelets that clearly and rightfully place them as integral players in immune reactions. Platelets can act as circulating sentinels by expressing pathogen-associated molecular pattern receptors that bind pathogens and induce their killing and elimination. Activated platelets secrete and express a multitude of pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. Platelets express and secrete many critical immunoregulatory molecules that significantly affect both innate and adaptive immune responses. Platelets are the primary source of microparticles in the circulation and these augment the platelet’s ability to communicate with the immune system. Platelets and megakaryocytes can act as antigen presenting cells and present both foreign- and self-peptides to T-cells.
Collapse
Affiliation(s)
- Amal Maouia
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
14
|
Chen Y, Zhong H, Zhao Y, Luo X, Gao W. Role of platelet biomarkers in inflammatory response. Biomark Res 2020; 8:28. [PMID: 32774856 PMCID: PMC7397646 DOI: 10.1186/s40364-020-00207-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Beyond hemostasis, thrombosis and wound healing, it is becoming increasingly clear that platelets play an integral role in inflammatory response and immune regulation. Platelets recognize pathogenic microorganisms and secrete various immunoregulatory cytokines and chemokines, thus facilitating a variety of immune effects and regulatory functions. In this review, we discuss recent advances in signaling of platelet activation-related biomarkers in inflammatory settings and application prospects to apply for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yufei Chen
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Haoxuan Zhong
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Yikai Zhao
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| |
Collapse
|
15
|
Oxidative Damage of Blood Platelets Correlates with the Degree of Psychophysical Disability in Secondary Progressive Multiple Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2868014. [PMID: 32655763 PMCID: PMC7317616 DOI: 10.1155/2020/2868014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022]
Abstract
The results of past research studies show that platelets are one of the main sources of reactive oxygen species (ROS) and reactive nitrogen species (RNS) to be found in the course of many pathological states. The aim of this study was to determine the level of oxidative/nitrative stress biomarkers in blood platelets obtained from multiple sclerosis (MS) patients (n = 110) and to verify their correlation with the clinical parameters of the psychophysical disability of patients. The mitochondrial metabolism of platelets was assessed by measuring the intracellular production of ROS using the fluorescence method with DCFH-DA dye and by identification of changes in the mitochondrial membrane potential of platelets using the JC-1 dye. Moreover, we measured the mRNA expression for the gene encoding the cytochrome c oxidase subunit I (MTCO-1) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in platelets and megakaryocytes using the RT-qPCR method, as well as the concentration of NADPH oxidase (NOX-1) by the ELISA method. Our results proved an increased level of oxidative/nitrative damage of proteins (carbonyl groups, 3-nitrotyrosine) (p < 0.0001) and decreased level of -SH in MS (p < 0.0001) and also a pronounced correlation between these biomarkers and parameters assessed by the Expanded Disability Status Scale and the Beck's Depression Inventory. The application of fluorescence methods showed mitochondrial membrane potential disruption (p < 0.001) and higher production of ROS in platelets from MS compared to control (p < 0.0001). Our research has also confirmed the impairment of red-ox metabolism in MS, which was achieved by increasing the relative mRNA expression in platelets for the genes studied (2-fold increase for the MTCO-1 gene and 1.5-fold increase in GAPDH gene, p < 0.05), as well as the augmented concentration of NOX-1 compared to control (p < 0.0001). Our results indicate that the oxidative/nitrative damage of platelets is implicated in the pathophysiology of MS, which reflects the status of the disease.
Collapse
|
16
|
Stojanovska V, Zenclussen AC. Innate and Adaptive Immune Responses in HELLP Syndrome. Front Immunol 2020; 11:667. [PMID: 32351511 PMCID: PMC7174768 DOI: 10.3389/fimmu.2020.00667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Innate and adaptive immune involvement in hemolysis, elevated liver enzymes and low platelet (HELLP) syndrome is an understudied field, although it is of high clinical importance. This syndrome implies a risk of serious morbidity and mortality to both the mother and the fetus during pregnancy. It was proposed that HELLP syndrome occurs in a circulatory inflammatory milieu, that might in turn participate in a complex interplay between the secreted inflammatory immunomodulators and immune cell surface receptors. Meanwhile, reported immune cell attenuation during HELLP may consequently lead to a prolonged immunoactivation and tissue damage. In this regard, learning more about the immune components of this syndrome should widen the understanding of the HELLP pathophysiology and eventually enable development of novel immune-based therapeutics. This review aims to summarize and discuss the recent and previous findings of the innate and adaptive immune responses during HELLP in order to update the current knowledge of the immune involvement in HELLP pathogenesis.
Collapse
Affiliation(s)
- Violeta Stojanovska
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
17
|
Page MJ, Pretorius E. A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection. Semin Thromb Hemost 2020; 46:302-319. [PMID: 32279287 PMCID: PMC7339151 DOI: 10.1055/s-0040-1708827] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thrombocytopenia is commonly associated with sepsis and infections, which in turn are characterized by a profound immune reaction to the invading pathogen. Platelets are one of the cellular entities that exert considerable immune, antibacterial, and antiviral actions, and are therefore active participants in the host response. Platelets are sensitive to surrounding inflammatory stimuli and contribute to the immune response by multiple mechanisms, including endowing the endothelium with a proinflammatory phenotype, enhancing and amplifying leukocyte recruitment and inflammation, promoting the effector functions of immune cells, and ensuring an optimal adaptive immune response. During infection, pathogens and their products influence the platelet response and can even be toxic. However, platelets are able to sense and engage bacteria and viruses to assist in their removal and destruction. Platelets greatly contribute to host defense by multiple mechanisms, including forming immune complexes and aggregates, shedding their granular content, and internalizing pathogens and subsequently being marked for removal. These processes, and the nature of platelet function in general, cause the platelet to be irreversibly consumed in the execution of its duty. An exaggerated systemic inflammatory response to infection can drive platelet dysfunction, where platelets are inappropriately activated and face immunological destruction. While thrombocytopenia may arise by condition-specific mechanisms that cause an imbalance between platelet production and removal, this review evaluates a generic large-scale mechanism for platelet depletion as a repercussion of its involvement at the nexus of responses to infection.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
18
|
Affiliation(s)
- Hamdan S. ALGHAMDI
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University
| | - John A. JANSEN
- Department of Dentistry–Biomaterials, Radboud University Medical Center
| |
Collapse
|
19
|
Dewi IMW, Aleva FE, Kullaya VI, Garishah FM, de Mast Q, van der Ven AJAM, van de Veerdonk FL. Platelets Modulate IFN-γ Production against Candida albicans in Peripheral Blood Mononuclear Cells via Prostaglandins. THE JOURNAL OF IMMUNOLOGY 2019; 204:122-127. [PMID: 31767782 DOI: 10.4049/jimmunol.1900599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/29/2019] [Indexed: 12/23/2022]
Abstract
Platelets are known to have immunomodulatory properties. They modulate immune responses of leukocytes against various pathogens, including fungi. Candida albicans can cause systemic infection in immunocompromised individuals that is associated with a high mortality and morbidity. In the current study, we explored the role of platelets in antifungal host defense against C. albicans PBMCs were stimulated with heat-killed (HK) C. albicans in the presence or absence of isolated washed platelets. Cytokines were quantified from culture supernatants by ELISA. Inhibition of platelet receptors and cytokine pathways were used to elucidate the mechanisms involved in platelet-leukocyte interaction. In the presence of platelets, PBMCs produced less IFN-γ upon stimulation with HK C. albicans This effect was dependent on the direct contact between platelets and leukocytes but was independent of the platelet GPIb and P-selectin receptors. The attenuation of IFN-γ was not a direct effect on T cells but was dependent on the presence of APC and T cells. Platelets did not modulate the Th-1-polarizing cytokines IL-12 and IL-18. The addition of PG (PGE2) further diminished IFN-γ levels in PBMCs, and supplementation of cells with nonsteroidal anti-inflammatory drugs was able to restore the level of IFN-γ. Overall, we show that modulation of the Th1 response against C. albicans by platelets is dependent on PGs.
Collapse
Affiliation(s)
- Intan M W Dewi
- Department of Internal Medicine, Radboudumc, 6525GA Nijmegen, the Netherlands; .,Radboud Centre for Infectious Diseases, Radboudumc, 6525GA Nijmegen, the Netherlands.,Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, 40161 Bandung, Indonesia
| | - Floor E Aleva
- Department of Internal Medicine, Radboudumc, 6525GA Nijmegen, the Netherlands.,Department of Respiratory Medicine, Radboudumc, Nijmegen, the Netherlands; and
| | - Vesla I Kullaya
- Department of Internal Medicine, Radboudumc, 6525GA Nijmegen, the Netherlands.,Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Fadel M Garishah
- Department of Internal Medicine, Radboudumc, 6525GA Nijmegen, the Netherlands.,Radboud Centre for Infectious Diseases, Radboudumc, 6525GA Nijmegen, the Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc, 6525GA Nijmegen, the Netherlands.,Radboud Centre for Infectious Diseases, Radboudumc, 6525GA Nijmegen, the Netherlands
| | - André J A M van der Ven
- Department of Internal Medicine, Radboudumc, 6525GA Nijmegen, the Netherlands.,Radboud Centre for Infectious Diseases, Radboudumc, 6525GA Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboudumc, 6525GA Nijmegen, the Netherlands.,Radboud Centre for Infectious Diseases, Radboudumc, 6525GA Nijmegen, the Netherlands
| |
Collapse
|
20
|
Fox KA, Kirwan DE, Whittington AM, Krishnan N, Robertson BD, Gilman RH, López JW, Singh S, Porter JC, Friedland JS. Platelets Regulate Pulmonary Inflammation and Tissue Destruction in Tuberculosis. Am J Respir Crit Care Med 2019; 198:245-255. [PMID: 29420060 DOI: 10.1164/rccm.201710-2102oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Platelets may interact with the immune system in tuberculosis (TB) to regulate human inflammatory responses that lead to morbidity and spread of infection. OBJECTIVES To identify a functional role of platelets in the innate inflammatory and matrix-degrading response in TB. METHODS Markers of platelet activation were examined in plasma from 50 patients with TB before treatment and 50 control subjects. Twenty-five patients were followed longitudinally. Platelet-monocyte interactions were studied in a coculture model infected with live, virulent Mycobacterium tuberculosis (M.tb) and dissected using qRT-PCR, Luminex multiplex arrays, matrix degradation assays, and colony counts. Immunohistochemistry detected CD41 (cluster of differentiation 41) expression in a pulmonary TB murine model, and secreted platelet factors were measured in BAL fluid from 15 patients with TB and matched control subjects. MEASUREMENTS AND MAIN RESULTS Five of six platelet-associated mediators were upregulated in plasma of patients with TB compared with control subjects, with concentrations returning to baseline by Day 60 of treatment. Gene expression of the monocyte collagenase MMP-1 (matrix metalloproteinase-1) was upregulated by platelets in M.tb infection. Platelets also enhanced M.tb-induced MMP-1 and -10 secretion, which drove type I collagen degradation. Platelets increased monocyte IL-1 and IL-10 and decreased IL-12 and MDC (monocyte-derived chemokine; also known as CCL-22) secretion, as consistent with an M2 monocyte phenotype. Monocyte killing of intracellular M.tb was decreased. In the lung, platelets were detected in a TB mouse model, and secreted platelet mediators were upregulated in human BAL fluid and correlated with MMP and IL-1β concentrations. CONCLUSIONS Platelets drive a proinflammatory, tissue-degrading phenotype in TB.
Collapse
Affiliation(s)
- Katharine A Fox
- 1 Infectious Diseases and Immunity, Wellcome Trust Centre for Global Health Research, and
| | - Daniela E Kirwan
- 1 Infectious Diseases and Immunity, Wellcome Trust Centre for Global Health Research, and
| | - Ashley M Whittington
- 1 Infectious Diseases and Immunity, Wellcome Trust Centre for Global Health Research, and
| | - Nitya Krishnan
- 2 Medical Research Council Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, United Kingdom
| | - Brian D Robertson
- 2 Medical Research Council Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, United Kingdom
| | - Robert H Gilman
- 3 Department of International Health, Johns Hopkins University, Baltimore Maryland.,4 Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - José W López
- 5 Laboratorio de Bioinformática y Biología Molecular, Universidad Peruana Cayetano Heredia, Lima, Peru.,6 Instituto Nacional de Salud del Niño, Lima, Peru; and
| | - Shivani Singh
- 1 Infectious Diseases and Immunity, Wellcome Trust Centre for Global Health Research, and
| | - Joanna C Porter
- 7 Centre for Inflammation and Tissue Repair, Respiratory Medicine, University College London, United Kingdom
| | - Jon S Friedland
- 1 Infectious Diseases and Immunity, Wellcome Trust Centre for Global Health Research, and
| |
Collapse
|
21
|
Cognasse F, Laradi S, Berthelot P, Bourlet T, Marotte H, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet Inflammatory Response to Stress. Front Immunol 2019; 10:1478. [PMID: 31316518 PMCID: PMC6611140 DOI: 10.3389/fimmu.2019.01478] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/13/2019] [Indexed: 12/02/2022] Open
Abstract
Blood platelets play a central hemostatic role, (i) as they repair vascular epithelial damage, and (ii) they play immune defense roles, as they have the capacity to produce and secrete various cytokines, chemokines, and related products. Platelets sense and respond to local dangers (infectious or not). Platelets, therefore, mediate inflammation, express and use receptors to bind infectious pathogen moieties and endogenous ligands, among other components. Platelets contribute to effective pathogen clearance. Damage-associated molecular patterns (DAMPs) are danger signals released during inflammatory stress, such as burns, trauma and infection. Each pathogen is recognized by its specific molecular signature or pathogen-associated molecular pattern (PAMP). Recent data demonstrate that platelets have the capacity to sense external danger signals (DAMPs or PAMPs) differentially through a distinct type of pathogen recognition receptor (such as Toll-like receptors). Platelets regulate the innate immune response to pathogens and/or endogenous molecules, presenting several types of “danger” signals using a complete signalosome. Platelets, therefore, use complex tools to mediate a wide range of functions from danger sensing to tissue repair. Moreover, we noted that the secretory capacity of stored platelets over time and the development of stress lesions by platelets upon collection, processing, and storage are considered stress signals. The key message of this review is the “inflammatory response to stress” function of platelets in an infectious or non-infectious context.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,GIMAP-EA3064, Université de Lyon, Saint-Étienne, France
| | - Sandrine Laradi
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,GIMAP-EA3064, Université de Lyon, Saint-Étienne, France
| | - Philippe Berthelot
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Laboratoire des Agents Infectieux et d'Hygiène, CHU de Saint-Etienne, Saint-Étienne, France
| | - Thomas Bourlet
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Laboratoire des Agents Infectieux et d'Hygiène, CHU de Saint-Etienne, Saint-Étienne, France
| | - Hubert Marotte
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Étienne, France.,Department of Rheumatology, University Hospital of Saint-Etienne, Saint-Étienne, France
| | - Patrick Mismetti
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Étienne, France.,Vascular and Therapeutic Medicine Department, Saint-Etienne University Hospital Center, Saint-Étienne, France
| | - Olivier Garraud
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Institut National de Transfusion Sanguine, Paris, France
| | | |
Collapse
|
22
|
Saluk-Bijak J, Dziedzic A, Bijak M. Pro-Thrombotic Activity of Blood Platelets in Multiple Sclerosis. Cells 2019; 8:cells8020110. [PMID: 30717273 PMCID: PMC6406904 DOI: 10.3390/cells8020110] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/19/2019] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
The available data, including experimental studies, clearly indicate an excessive intravascular activation of circulating platelets in multiple sclerosis (MS) and their hyper-responsiveness to a variety of physiological activators. Platelet activation is manifested as an increased adhesion and aggregation and is accompanied by the formation of pro-thrombotic microparticles. Activated blood platelets also show an expression of specific membrane receptors, synthesis many of biomediators, and generation of reactive oxygen species. Epidemiological studies confirm the high risk of stroke or myocardial infarction in MS that are ischemic incidents, strictly associated with incorrect platelet functions and their over pro-thrombotic activity. Chronic inflammation and high activity of pro-oxidative processes in the course of MS are the main factors identified as the cause of excessive platelet activation. The primary biological function of platelets is to support vascular integrity, but the importance of platelets in inflammatory diseases is also well documented. The pro-thrombotic activity of platelets and their inflammatory properties play a part in the pathophysiology of MS. The analysis of platelet function capability in MS could provide useful information for studying the pathogenesis of this disease. Due to the complexity of pathological processes in MS, medication must be multifaceted and blood platelets can probably be identified as new targets for therapy in the future.
Collapse
Affiliation(s)
- Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
23
|
Morrell CN, Pariser DN, Hilt ZT, Vega Ocasio D. The Platelet Napoleon Complex-Small Cells, but Big Immune Regulatory Functions. Annu Rev Immunol 2018; 37:125-144. [PMID: 30485751 DOI: 10.1146/annurev-immunol-042718-041607] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Platelets have dual physiologic roles as both cellular mediators of thrombosis and immune modulatory cells. Historically, the thrombotic function of platelets has received significant research and clinical attention, but emerging research indicates that the immune regulatory roles of platelets may be just as important. We now know that in addition to their role in the acute thrombotic event at the time of myocardial infarction, platelets initiate and accelerate inflammatory processes that are part of the pathogenesis of atherosclerosis and myocardial infarction expansion. Furthermore, it is increasingly apparent from recent studies that platelets impact the pathogenesis of many vascular inflammatory processes such as autoimmune diseases, sepsis, viral infections, and growth and metastasis of many types of tumors. Therefore, we must consider platelets as immune cells that affect all phases of immune responses.
Collapse
Affiliation(s)
- Craig N Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| | - Daphne N Pariser
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| | - Zachary T Hilt
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| | - Denisse Vega Ocasio
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| |
Collapse
|
24
|
Sá OMDS, Lopes NNF, Alves MTS, Caran EMM. Effects of Glycine on Collagen, PDGF, and EGF Expression in Model of Oral Mucositis. Nutrients 2018; 10:nu10101485. [PMID: 30322002 PMCID: PMC6213743 DOI: 10.3390/nu10101485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022] Open
Abstract
Oral mucositis is frequently a toxic effect of chemotherapeutic and/or radiotherapeutic treatment, resulting from complex multifaceted biological events involving DNA damage. The clinical manifestations have a negative impact on the life quality of cancer patients. Preventive measures and curative treatment of mucositis are still not well established. The glycine has anti-inflammatory, immunomodulatory, and cytoprotective actions, being a potential therapeutic in mucositis. The objective was to evaluate the effects of glycine on the expression of collagen and growth factors, platelet and epidermal in a hamster model oral mucositis. The mucositis was induced by the protocol of Sonis. There were 40 hamsters used, divided into two groups: Group I-control; Group II-supplemented with 5% intraperitoneal glycine, 2.0 mg/g diluted in hepes. Histopathological sections were used to perform the immune-histochemical method, the evaluation of collagen expression, and the growth factors: Epidermal growth factor (EGF) and platelet (PDGF). It was observed that the group supplemented with glycine experienced higher amounts of collagen expression and predominance type of collagen I. The glycine group presented lower immunoexpression of the growth factors, EGF and PDGF. The group supplemented with glycine showed a marked healing process of the oral mucosite, demonstrated by the predominance of collagen type I and reduction of growth factors, EGF and PDGF.
Collapse
Affiliation(s)
| | | | | | - Eliana Maria Monteiro Caran
- Department of Pediatrics, IOP/GRAACC Medical School of Federal University of São Paulo, São Paulo 04023-062, Brazil.
| |
Collapse
|
25
|
Platelets Enhance Dendritic Cell Responses against Staphylococcus aureus through CD40-CD40L. Infect Immun 2018; 86:IAI.00186-18. [PMID: 29914928 DOI: 10.1128/iai.00186-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that can cause mild to severe life-threatening infections in many tissues and organs. Platelets are known to participate in protection against S. aureus by direct killing and by enhancing the activities of neutrophils and macrophages in clearing S. aureus infection. Platelets have also been shown to induce monocyte differentiation into dendritic cells and to enhance activation of dendritic cells. Therefore, in the present study, we explored the role of platelets in enhancing bone marrow-derived dendritic cell (BMDC) function against S. aureus We observed a significant increase in dendritic cell phagocytosis and intracellular killing of a methicillin-resistant Staphylococcus aureus (MRSA) strain (USA300) by thrombin-activated platelets or their releasates. Enhancement of bacterial uptake and killing by DCs is mediated by platelet-derived CD40L. Coculture of USA300 and BMDCs in the presence of thrombin-activated platelet releasates invokes upregulation of the maturation marker CD80 on DCs and enhanced production of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 12 (IL-12), and IL-6. Overall, these observations support our hypothesis that platelets play a critical role in the host defense against S. aureus infection. Platelets stimulate DCs, leading to direct killing of S. aureus and enhanced DC maturation, potentially leading to adaptive immune responses against S. aureus.
Collapse
|
26
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
27
|
Tariket S, Sut C, Hamzeh-Cognasse H, Laradi S, Pozzetto B, Garraud O, Cognasse F. Transfusion-related acute lung injury: transfusion, platelets and biological response modifiers. Expert Rev Hematol 2016; 9:497-508. [DOI: 10.1586/17474086.2016.1152177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | - Sandrine Laradi
- Université de Lyon, Saint Etienne, France
- Etablissement Français du Sang - Rhônes-Alpes-Auvergne, Saint-Etienne, France
| | | | - Olivier Garraud
- Université de Lyon, Saint Etienne, France
- INTS - Institut National de la Transfusion Sanguine, Paris, France
| | - Fabrice Cognasse
- Université de Lyon, Saint Etienne, France
- Etablissement Français du Sang - Rhônes-Alpes-Auvergne, Saint-Etienne, France
| |
Collapse
|
28
|
Burenbatu, Borjigin M, Eerdunduleng, Huo W, Gong C, Hasengaowa, Zhang G, Longmei, Li M, Zhang X, Sun X, Yang J, Wang S, Narisu N, Liu Y, Bai H. Profiling of miRNA expression in immune thrombocytopenia patients before and after Qishunbaolier (QSBLE) treatment. Biomed Pharmacother 2015; 75:196-204. [DOI: 10.1016/j.biopha.2015.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/26/2015] [Indexed: 11/16/2022] Open
|
29
|
Perros AJ, Christensen AM, Flower RL, Dean MM. Soluble Mediators in Platelet Concentrates Modulate Dendritic Cell Inflammatory Responses in an Experimental Model of Transfusion. J Interferon Cytokine Res 2015; 35:821-30. [PMID: 26133961 DOI: 10.1089/jir.2015.0029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The transfusion of platelet concentrates (PCs) is widely used to treat thrombocytopenia and severe trauma. Ex vivo storage of PCs is associated with a storage lesion characterized by partial platelet activation and the release of soluble mediators, such as soluble CD40 ligand (sCD40L), RANTES, and interleukin (IL)-8. An in vitro whole blood culture transfusion model was employed to assess whether mediators present in PC supernatants (PC-SNs) modulated dendritic cell (DC)-specific inflammatory responses (intracellular staining) and the overall inflammatory response (cytometric bead array). Lipopolysaccharide (LPS) was included in parallel cultures to model the impact of PC-SNs on cell responses following toll-like receptor-mediated pathogen recognition. The impact of both the PC dose (10%, 25%) and ex vivo storage period was investigated [day 2 (D2), day 5 (D5), day 7 (D7)]. PC-SNs alone had minimal impact on DC-specific inflammatory responses and the overall inflammatory response. However, in the presence of LPS, exposure to PC-SNs resulted in a significant dose-associated suppression of the production of DC IL-12, IL-6, IL-1α, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein (MIP)-1β and storage-associated suppression of the production of DC IL-10, TNF-α, and IL-8. For the overall inflammatory response, IL-6, TNF-α, MIP-1α, MIP-1β, and inflammatory protein (IP)-10 were significantly suppressed and IL-8, IL-10, and IL-1β significantly increased following exposure to PC-SNs in the presence of LPS. These data suggest that soluble mediators present in PCs significantly suppress DC function and modulate the overall inflammatory response, particularly in the presence of an infectious stimulus. Given the central role of DCs in the initiation and regulation of the immune response, these results suggest that modulation of the DC inflammatory profile is a probable mechanism contributing to transfusion-related complications.
Collapse
Affiliation(s)
- Alexis J Perros
- 1 Research and Development , Australian Red Cross Blood Service, Brisbane, Australia .,2 Faculty of Health, School of Biomedical Sciences, Queensland University of Technology , Brisbane, Australia
| | - Anne-Marie Christensen
- 1 Research and Development , Australian Red Cross Blood Service, Brisbane, Australia .,2 Faculty of Health, School of Biomedical Sciences, Queensland University of Technology , Brisbane, Australia
| | - Robert L Flower
- 1 Research and Development , Australian Red Cross Blood Service, Brisbane, Australia .,2 Faculty of Health, School of Biomedical Sciences, Queensland University of Technology , Brisbane, Australia
| | - Melinda M Dean
- 1 Research and Development , Australian Red Cross Blood Service, Brisbane, Australia .,2 Faculty of Health, School of Biomedical Sciences, Queensland University of Technology , Brisbane, Australia
| |
Collapse
|
30
|
Loh YS, Dean MM, Johnson L, Marks DC. Treatment of platelets with riboflavin and ultraviolet light mediates complement activation and suppresses monocyte interleukin-12 production in whole blood. Vox Sang 2015; 109:327-35. [DOI: 10.1111/vox.12283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/03/2015] [Accepted: 03/17/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Y. S. Loh
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
| | - M. M. Dean
- Research and Development; Australian Red Cross Blood Service; Brisbane QLD Australia
| | - L. Johnson
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
| | - D. C. Marks
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
| |
Collapse
|
31
|
Relationship between the Increased Haemostatic Properties of Blood Platelets and Oxidative Stress Level in Multiple Sclerosis Patients with the Secondary Progressive Stage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:240918. [PMID: 26064417 PMCID: PMC4429191 DOI: 10.1155/2015/240918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/16/2015] [Accepted: 04/01/2015] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is the autoimmune disease of the central nervous system with complex pathogenesis, different clinical courses and recurrent neurological relapses and/or progression. Despite various scientific papers that focused on early stage of MS, our study targets selective group of late stage secondary progressive MS patients. The presented work is concerned with the reactivity of blood platelets in primary hemostasis in SP MS patients. 50 SP MS patients and 50 healthy volunteers (never diagnosed with MS or other chronic diseases) were examined to evaluate the biological activity of blood platelets (adhesion, aggregation), especially their response to the most important physiological agonists (thrombin, ADP, and collagen) and the effect of oxidative stress on platelet activity. We found that the blood platelets from SP MS patients were significantly more sensitive to all used agonists in comparison with control group. Moreover, the platelet hemostatic function was advanced in patients suffering from SP MS and positively correlated with increased production of O2−∙ in these cells, as well as with Expanded Disability Status Scale. We postulate that the increased oxidative stress in blood platelets in SP MS may be primarily responsible for the altered haemostatic properties of blood platelets.
Collapse
|
32
|
Schrottmaier WC, Kral JB, Badrnya S, Assinger A. Aspirin and P2Y12 Inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb Haemost 2015; 114:478-89. [PMID: 25904241 DOI: 10.1160/th14-11-0943] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/28/2015] [Indexed: 01/19/2023]
Abstract
Platelets are key players in haemostasis and represent a pivotal link between inflammation, immunity and atherogenesis. Depending on the (patho)physiological environment platelets modulate various leukocyte functions via release of inflammatory mediators and direct cell-cell interactions. Elevated levels of circulating platelet-leukocyte aggregates are found in patients suffering from several thrombotic or inflammatory conditions. Platelet-monocyte and platelet-neutrophil interaction can trigger pro- and anti-inflammatory responses and modulate effector functions of all leukocyte subpopulations. These platelet-mediated immune responses have implications for the progression of cardiovascular diseases and also play a crucial role during infections, cancer, transplantations and other inflammatory diseases of several organs. Antiplatelet therapy including the COX inhibitor aspirin and/or ADP receptor P2Y12 inhibitors such as clopidogrel, prasugrel and ticagrelor are the therapy of choice for various cardiovascular complications. Both aspirin and P2Y12 inhibitors attenuate platelet-leukocyte interactions, thereby also modulating immune responses. This may have beneficial effects in some pathological conditions, while it might be detrimental in others. This review aims to summarise the current knowledge on platelet-leukocyte interactions and the impact of aspirin and P2Y12 inhibition on platelet-mediated immune responses and to give an overview on the effects of antiplatelet therapy on platelet-leukocyte interplay in various diseases.
Collapse
Affiliation(s)
| | | | | | - Alice Assinger
- Dr. Alice Assinger, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria, Tel.: +43 1 40160 31405, E-mail:
| |
Collapse
|
33
|
Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol 2015; 6:98. [PMID: 25798138 PMCID: PMC4351644 DOI: 10.3389/fimmu.2015.00098] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022] Open
Abstract
Platelets contribute to processes beyond thrombus formation and may play a so far underestimated role as an immune cell in various circumstances. This review outlines immune functions of platelets in host defense, but also how they may contribute to mechanisms of infectious diseases. A particular emphasis is placed on the interaction of platelets with other immune cells. Furthermore, this article outlines the features of atherosclerosis as an inflammatory vascular disease highlighting the role of platelet crosstalk with cellular and soluble factors involved in atheroprogression. Understanding, how platelets influence these processes of vascular remodeling will shed light on their role for tissue homeostasis beyond intravascular thrombosis. Finally, translational implications of platelet-mediated inflammation in atherosclerosis are discussed.
Collapse
Affiliation(s)
- Henry M. Nording
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Peter Seizer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Harald F. Langer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Garraud O, Cognasse F. Are Platelets Cells? And if Yes, are They Immune Cells? Front Immunol 2015; 6:70. [PMID: 25750642 PMCID: PMC4335469 DOI: 10.3389/fimmu.2015.00070] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/03/2015] [Indexed: 02/06/2023] Open
Abstract
Small fragments circulating in the blood were formally identified by the end of the nineteenth century, and it was suggested that they assisted coagulation via interactions with vessel endothelia. Wright, at the beginning of the twentieth century, identified their bone-marrow origin. For long, platelets have been considered sticky assistants of hemostasis and pollutants of blood or tissue samples; they were just cell fragments. As such, however, they were acknowledged as immunizing (to specific HPA and HLA markers): the platelet’s dark face. The enlightened face showed that besides hemostasis, platelets contained factors involved in healing. As early as 1930s, platelets entered the arsenal of medicines were transfused, and were soon manipulated to become a kind of glue to repair damaged tissues. Some gladly categorized platelets as cells but they were certainly not fully licensed as such for cell physiologists. Actually, platelets possess almost every characteristic of cells, apart from being capable of organizing their genes: they have neither a nucleus nor genes. This view prevailed until it became evident that platelets play a role in homeostasis and interact with cells other than with vascular endothelial cells; then began the era of physiological and also pathological inflammation. Platelets have now entered the field of immunity as inflammatory cells. Does assistance to immune cells itself suffice to license a cell as an “immune cell”? Platelets prove capable of sensing different types of signals and organizing an appropriate response. Many cells can do that. However, platelets can use a complete signalosome (apart from the last transcription step, though it is likely that this step can be circumvented by retrotranscribing RNA messages). The question has also arisen as to whether platelets can present antigen via their abundantly expressed MHC class I molecules. In combination, these properties argue in favor of allowing platelets the title of immune cells.
Collapse
Affiliation(s)
- Olivier Garraud
- Institut National de la Transfusion Sanguine , Paris , France ; EA3064, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- EA3064, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| |
Collapse
|
35
|
Stolla M, Refaai MA, Heal JM, Spinelli SL, Garraud O, Phipps RP, Blumberg N. Platelet transfusion - the new immunology of an old therapy. Front Immunol 2015; 6:28. [PMID: 25699046 PMCID: PMC4313719 DOI: 10.3389/fimmu.2015.00028] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/14/2015] [Indexed: 01/14/2023] Open
Abstract
Platelet transfusion has been a vital therapeutic approach in patients with hematologic malignancies for close to half a century. Randomized trials show that prophylactic platelet transfusions mitigate bleeding in patients with acute myeloid leukemia. However, even with prophylactic transfusions, as many as 75% of patients, experience hemorrhage. While platelet transfusion efficacy is modest, questions and concerns have arisen about the risks of platelet transfusion therapy. The acknowledged serious risks of platelet transfusion include viral transmission, bacterial sepsis, and acute lung injury. Less serious adverse effects include allergic and non-hemolytic febrile reactions. Rare hemolytic reactions have occurred due to a common policy of transfusing without regard to ABO type. In the last decade or so, new concerns have arisen; platelet-derived lipids are implicated in transfusion-related acute lung injury after transfusion. With the recognition that platelets are immune cells came the discoveries that supernatant IL-6, IL-27 sCD40L, and OX40L are closely linked to febrile reactions and sCD40L with acute lung injury. Platelet transfusions are pro-inflammatory, and may be pro-thrombotic. Anti-A and anti-B can bind to incompatible recipient or donor platelets and soluble antigens, impair hemostasis and thus increase bleeding. Finally, stored platelet supernatants contain biological mediators such as VEGF and TGF-β1 that may compromise the host versus tumor response. This is particularly of concern in patients receiving many platelet transfusions, as for acute leukemia. New evidence suggests that removing stored supernatant will improve clinical outcomes. This new view of platelets as pro-inflammatory and immunomodulatory agents suggests that innovative approaches to improving platelet storage and pre-transfusion manipulations to reduce toxicity could substantially improve the efficacy and safety of this long-employed therapy.
Collapse
Affiliation(s)
- Moritz Stolla
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA
| | - Majed A Refaai
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA
| | - Joanna M Heal
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA
| | - Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA
| | - Olivier Garraud
- Etablissement Francais du Sang Auvergne-Loire, Universite de Lyon , Saint-Etienne , France
| | - Richard P Phipps
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA ; Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA ; Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA ; Department of Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA
| |
Collapse
|
36
|
Ali RA, Wuescher LM, Worth RG. Platelets: essential components of the immune system. CURRENT TRENDS IN IMMUNOLOGY 2015; 16:65-78. [PMID: 27818580 PMCID: PMC5096834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Platelets are anucleate cell fragments known for their central role in coagulation and vascular integrity. However, it is becoming increasingly clear that platelets contribute to diverse immunological processes extending beyond the traditional view of platelets as fragmentary mediators of hemostasis and thrombosis. There is recent evidence that platelets participate in: 1) intervention against microbial threats; 2) recruitment and promotion of innate effector cell functions; 3) modulating antigen presentation; and 4) enhancement of adaptive immune responses. In this way, platelets should be viewed as the underappreciated orchestrator of the immune system. This review will discuss recent and historical evidence regarding how platelets influence both innate and adaptive immune responses.
Collapse
|
37
|
The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int J Mol Sci 2014; 15:22342-64. [PMID: 25479079 PMCID: PMC4284712 DOI: 10.3390/ijms151222342] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/13/2022] Open
Abstract
The CD40 ligand (CD40L) is a transmembrane molecule of crucial interest in cell signaling in innate and adaptive immunity. It is expressed by a variety of cells, but mainly by activated T-lymphocytes and platelets. CD40L may be cleaved into a soluble form (sCD40L) that has a cytokine-like activity. Both forms bind to several receptors, including CD40. This interaction is necessary for the antigen specific immune response. Furthermore, CD40L and sCD40L are involved in inflammation and a panoply of immune related and vascular pathologies. Soluble CD40L is primarily produced by platelets after activation, degranulation and cleavage, which may present a problem for transfusion. Soluble CD40L is involved in adverse transfusion events including transfusion related acute lung injury (TRALI). Although platelet storage designed for transfusion occurs in sterile conditions, platelets are activated and release sCD40L without known agonists. Recently, proteomic studies identified signaling pathways activated in platelet concentrates. Soluble CD40L is a good candidate for platelet activation in an auto-amplification loop. In this review, we describe the immunomodulatory role of CD40L in physiological and pathological conditions. We will focus on the main signaling pathways activated by CD40L after binding to its different receptors.
Collapse
|
38
|
Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost 2014; 12:1764-75. [PMID: 25224706 DOI: 10.1111/jth.12730] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023]
Abstract
The paradigm of platelets as mere mediators of hemostasis has long since been replaced by a dual role: hemostasis and inflammation. Now recognized as key players in innate and adaptive immune responses, platelets have the capacity to interact with almost all known immune cells. These platelet-immune cell interactions represent a hallmark of immunity, as they can potently enhance immune cell functions and, in some cases, even constitute a prerequisite for host defense mechanisms such as NETosis. In addition, recent studies have revealed a new role for platelets in immunity: They are ubiquitous sentinels and rapid first-line immune responders, as platelet-pathogen interactions within the vasculature appear to precede all other host defense mechanisms. Here, we discuss recent advances in our understanding of platelets as inflammatory cells, and provide an exemplary review of their role in acute inflammation.
Collapse
Affiliation(s)
- J M Herter
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
39
|
Speth C, Rambach G, Lass-Flörl C. Platelet immunology in fungal infections. Thromb Haemost 2014; 112:632-9. [PMID: 24990293 DOI: 10.1160/th14-01-0074] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022]
Abstract
Up to date, perception of platelets has changed from key players in coagulation to multitaskers within the immune network, connecting its most diverse elements and crucially shaping their interplay with invading pathogens such as fungi. In addition, antimicrobial effector molecules and mechanisms in platelets enable a direct inhibitory effect on fungi, thus completing their immune capacity. To precisely assess the impact of platelets on the course of invasive fungal infections is complicated by some critical parameters. First, there is a fragile balance between protective antimicrobial effects and detrimental reactions that aggravate the fungal pathogenesis. Second, some platelet effects are exerted indirectly by other immune mediators and are thus difficult to quantify. Third, drugs such as antimycotics, antibiotics, or cytostatics, are commonly administered to the patients and might modulate the interplay between platelets and fungi. Our article highlights selected aspects of the complex interactions between platelets and fungi and the relevance of these processes for the pathogenesis of fungal infections.
Collapse
Affiliation(s)
| | - Günter Rambach
- Dr. Günter Rambach, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Schöpfstr. 41, 6020 Innsbruck, Austria, Tel.: +43 512 9003 70705, Fax: +43 512 9003 73700, E-mail:
| | | |
Collapse
|
40
|
Nakanishi T, Inaba M, Inagaki-Katashiba N, Tanaka A, Vien PTX, Kibata K, Ito T, Nomura S. Platelet-derived RANK ligand enhances CCL17 secretion from dendritic cells mediated by thymic stromal lymphopoietin. Platelets 2014; 26:425-31. [PMID: 24867354 DOI: 10.3109/09537104.2014.920081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play an integral role in cellular cascade that initiate and maintain Th2 responses in allergy. In this study, we examined the interaction between platelets and DCs to determine the role of platelets in the intervention of immune responses through modulation of DC functions. Blood-purified myeloid DCs, which had been stimulated with thymic stromal lymphopoietin (TSLP-DCs), formed aggregates with activated platelets. TSLP-DC maturation was induced after the interaction with TRAP6-activated platelets as indicated by an increase in the expression of CD86, CD40, and CD83. In addition, production of a Th2 cell-attracting chemokine, CCL17, was clearly upregulated by coculture of TSLP-DCs with TRAP6-activated platelets. We further found that an expression of RANK ligand (RANKL) on platelets was upregulated by the TRAP6 activation, and that, using the neutralizing antibody against RANKL, the platelet-derived RANKL induces the activation of TSLP-DCs. Thus, activated platelets can intervene in adaptive immune responses through induction of functional modulation of TSLP-DCs. Platelets have the ability to enhance the DC-mediated Th2 response and may contribute to the allergic inflammation. In conclusion, our study provides new insights in platelet functions and the possible mechanism of allergic responses that stem from DCs.
Collapse
Affiliation(s)
- Takahisa Nakanishi
- First Department of Internal Medicine, Kansai Medical University , Osaka , Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lazarus AH, Semple JW, Cines DB. Innate and adaptive immunity in immune thrombocytopenia. Semin Hematol 2014; 50 Suppl 1:S68-70. [PMID: 23664521 DOI: 10.1053/j.seminhematol.2013.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by both accelerated clearance of autoantibody-sensitized platelets and suboptimal platelet production. A number of studies have provided evidence of disturbed innate and adaptive immune responses in patients with ITP. This brief review will highlight some of the more recent work in this field and highlight other findings that provide a potential link between ITP, systemic lupus erythematosus (SLE), and autoimmune hemolytic anemia (AHA).
Collapse
|
42
|
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disorder with an incidence of 3 to 5 per 100 000 individuals. In children, the disease is self-limited and is most commonly virus related (acute ITP) whereas in adults, the disease is typically chronic. The age distribution of adult ITP displays 2 peaks; the first in younger adults aged 18 to 40 with a female predominance and the second in people aged older than 60 with men and women affected equally. Our approach to ITP has evolved over the past several years: there has been a change in nomenclature and ITP now denotes “immune thrombocytopenia” (the “I” no longer denoting “idiopathic”) and “purpura” no longer features in the name of the disease; new insights into the pathogenesis of ITP have revealed the importance of impaired megakaryocytopoiesis in the condition; underlying mechanisms of secondary ITP have been elucidated and finally novel thrombopoietic agents have been shown to be effective in the treatment of ITP in randomized clinical trials. In this article, we review important recent advances in the pathogenesis and treatment of ITP.
Collapse
Affiliation(s)
- Uri Abadi
- Hematology Institute, Meir Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Yarchovsky-Dolberg
- Hematology Institute, Meir Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Martin H. Ellis
- Hematology Institute, Meir Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Liu X, Hou Y, Peng J. Advances in immunopathogenesis of adult immune thrombocytopenia. Front Med 2013; 7:418-24. [DOI: 10.1007/s11684-013-0297-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
|
44
|
Hamzeh-Cognasse H, Damien P, Nguyen KA, Arthaud CA, Eyraud MA, Chavarin P, Absi L, Osselaer JC, Pozzetto B, Cognasse F, Garraud O. Immune-reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin-27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions. Transfusion 2013; 54:613-25. [PMID: 23944651 DOI: 10.1111/trf.12378] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Leukoreduction of labile blood components dramatically decreases the frequency of minor, intermediate, and severe adverse events (AEs), referred to as acute transfusion reactions (ATRs), especially after transfusion of platelet components (PCs). The pathophysiology of AEs may result from accumulation of soluble, secreted, platelet (PLT) factors with proinflammatory functions stored in PCs. Thus, several cosynergizing factors associated with PLT accumulation in PCs may contribute to clinically reported ATRs with inflammatory symptoms. STUDY DESIGN AND METHODS We screened for 65 PLT-associated secretory products in PCs that caused ATRs and identified PLT molecules associated with ATRs and inflammation. A functional in vitro study using PC supernatants assayed on reporting immune cells was performed to indicate relevance. RESULTS Among 10,600 apheresis PCs, 30 caused inflammatory ATRs and contained significantly elevated levels of soluble CD40 ligand (sCD40L), interleukin (IL)-27, and soluble OX40 ligand (sOX40L). Normal PLTs secreted IL-27 and sOX40L at bioactive concentrations upon thrombin stimulation and were up regulated in association with ATRs, similar to sCD40L. Other secreted products were identified but not investigated further as their positivity was not consistent. CONCLUSIONS This study demonstrates the putative participation of PLT-derived sOX40L, IL-27, and sCD40L, which accumulate in PC supernatants, with inflammatory-type ATRs. Further studies are required to determine the clinical significance of these findings to forecast preventive measures whenever possible.
Collapse
|
45
|
|
46
|
Berthet J, Damien P, Hamzeh-Cognasse H, Arthaud CA, Eyraud MA, Zéni F, Pozzetto B, McNicol A, Garraud O, Cognasse F. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin Immunol 2012; 145:189-200. [PMID: 23108090 DOI: 10.1016/j.clim.2012.09.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 12/15/2022]
Abstract
Platelets are currently acknowledged as cells of innate immunity and inflammation and play a complex role in sepsis. We examined whether different types of LPS have different effects on the release of soluble signaling/effective molecules from platelets. We used platelet-rich plasma from healthy volunteers and LPS from two strains of gram-negative bacteria with disparate LPS structures. We combined LPS-stimulated platelet supernatants with reporter cells and measured the PBMC cytokine secretion profiles. Upon stimulation of platelets with both Escherichia coli O111 and Salmonella minnesota LPS, the platelet LPS::TLR4 interaction activated pathways to trigger the production of a large number of molecules. The different platelet supernatants caused differential PBMC secretion of IL-6, TNFα, and IL-8. Our data demonstrate that platelets have the capacity to sense external signals differentially through a single type of pathogen recognition receptor and adjust the innate immune response appropriately for pathogens exhibiting different types of 'danger' signals.
Collapse
Affiliation(s)
- Julien Berthet
- Université de Lyon, F-42023, GIMAP, EA3064, Saint-Etienne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol 2011; 34:5-30. [PMID: 21818701 DOI: 10.1007/s00281-011-0286-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/20/2011] [Indexed: 12/28/2022]
Abstract
Platelets are chief effector cells in hemostasis. In addition, however, their specializations include activities and intercellular interactions that make them key effectors in inflammation and in the continuum of innate and adaptive immunity. This review focuses on the immune features of human platelets and platelets from experimental animals and on interactions between inflammatory, immune, and hemostatic activities of these anucleate but complex and versatile cells. The experimental findings and evidence for physiologic immune functions include previously unrecognized biologic characteristics of platelets and are paralleled by new evidence for unique roles of platelets in inflammatory, immune, and thrombotic diseases.
Collapse
Affiliation(s)
- Adriana Vieira-de-Abreu
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
48
|
Garraud O, Damien P, Berthet J, Arthaud CA, Hamzeh-Cognasse H, Cognasse F. [Blood platelets and biological response to 'danger' signals and subsequent inflammation: towards a new paradigm?]. Transfus Clin Biol 2011; 18:165-73. [PMID: 21444230 DOI: 10.1016/j.tracli.2011.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 12/22/2022]
Abstract
Blood platelets are cellular elements of primary haemostasis. During the last decade research on platelets has been subsequently based on this paradigm, with separate observations on issues such as the ability for platelets to bind infectious agents or even engulf them, to drop in counts in case of evolving infectious processes, etc. More recently, novel work has set up bases for novel functions for platelets, as members of functional immune cells, principally in innate immunity but capable of influencing adaptive immunity. Platelets are thus essential to haemostasis and to inflammation, questioning their essential functionality and the set up of a novel paradigm: could platelets be tissue-repairing cells? Such an assumption would open an entire new field of investigations. The present "State of the Art" essay attempts to discuss the main arguments on this.
Collapse
Affiliation(s)
- O Garraud
- EFS Auvergne-Loire Saint-Étienne, 25, boulevard Pasteur, 42023 Saint-Étienne cedex 2, France.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Immune thrombocytopenia (ITP) is a bleeding disorder in which both antibody and cell-mediated autoimmune responses are directed against an individual's own platelets and/or megakaryocytes, leading to either enhanced platelet destruction and/or reduced platelet production, respectively. The cause of this platelet-specific autoimmunity remains unknown, but there has been a constant stream of recent publications that suggest ITP is the result of T-cell dysregulation. RECENT FINDINGS In the last 18 months, a rich tapestry of studies has emerged that seems to clarify some immunopathologic issues in ITP while raising new questions related to ITP pathogenesis. The current view on the immunopathogenic mechanisms associated with ITP appears to particularly concentrate on how incompetent CD4+ T-regulatory cells (Tregs) allow autoimmune effector mechanisms to proceed and cause thrombocytopenia. There is a parallel body of recent literature focusing on molecular mimicry mechanisms, B-cell abnormalities, abnormal cytokine patterns and genetic studies in ITP. Of interest, one can recognize inter-relationships between these immune dysregulations. SUMMARY This article will discuss the literature from the past 18 months pertaining to these observations and will show that whereas many of the T-cell defects have been clarified, new questions have also come to light and more immunopathological research is warranted.
Collapse
|
50
|
Delirezh N, Majedi L, Asri Rezaei S, Ranjkeshzadeh H. Generation of mature monocyte-derived dendritic cells in the presence of heparin and monocyte conditioned medium: phenotypic and functional comparison. IRANIAN BIOMEDICAL JOURNAL 2011; 15:79-84. [PMID: 21987113 PMCID: PMC3639743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 05/01/2010] [Accepted: 05/14/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Dendritic cells (DC) induce tumor or pathogen-specific T cell responses in humans. Several laboratories have developed culture systems, including maturation factors for human DC from peripheral blood monocytes. We comprehensively compared standard maturation stimulus, an autologous monocyte-conditioned medium (MCM), with heparin for their ability to promote uniformly mature DC that elicit T cell responses. METHODS A short (4-day) priming of plastic adherent monocytes with granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-4 with or without heparin was followed by 48-hour incubation in MCM to generate fully mature and stable DC. Phenotypic and functional analyses were carried out using anti-CD14 and anti-CD83 monoclonal antibodies, and mixed lymphocyte reaction, respectively. RESULTS We found that fully matured DC with a large amount of cytoplasm and copious dendritic projections were visible at the end of culturing period in the presence of MCM, heparin and MCM plus heparin. Thus, DC generated with these maturation factors are non-adherent and have typical satellite morphology. Flow cytometric analysis using anti-CD14 (monocyte marker) and anti-CD83 (mature DC marker) revealed that expression of CD14 decreased in MCM plus heparin-treated DC, and the expression of CD83 was increased when heparin and MCM used as a maturation factor. Functionally, MCM and MCM plus heparin-treated DC showed stronger mixed leukocyte reaction than heparin alone. CONCLUSION These results support the use of the MCM with heparin as maturation factor that could result in functionally mature monocyte-derived DC in comparison to either MCM or heparin alone.
Collapse
Affiliation(s)
- Nowruz Delirezh
- Dept. of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran.
| | - Leila Majedi
- Dept. of Microbiology, Faculty of Veterinary Medicine, Urmia University,
Urmia, Iran
| | - Siamak Asri Rezaei
- Dept. of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University,
Urmia, Iran
| | | |
Collapse
|