1
|
Zhang L, Cai Y, Li L, Hu J, Jia C, Kuang X, Zhou Y, Lan Z, Liu C, Jiang F, Sun N, Zeng N. Analysis of global trends and hotspots of skin microbiome in acne: a bibliometric perspective. BioData Min 2025; 18:19. [PMID: 40033326 DOI: 10.1186/s13040-025-00433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Acne is a chronic inflammatory condition affecting the hair follicles and sebaceous glands. Recent research has revealed significant advances in the study of the acne skin microbiome. Systematic analysis of research trends and hotspots in the acne skin microbiome is lacking. This study utilized bibliometric methods to conduct in-depth research on the recognition structure of the acne skin microbiome, identifying hot trends and emerging topics. METHODS We performed a topic search to retrieve articles about skin microbiome in acne from the Web of Science Core Collection. Bibliometric research was conducted using CiteSpace, VOSviewer, and R language. RESULTS This study analyzed 757 articles from 1362 institutions in 68 countries, the United States leading the research efforts. Notably, Brigitte Dréno from the University of Nantes emerged as the most prolific author in this field, with 19 papers and 334 co-citations. The research output on the skin microbiome of acne continues to increase, with Experimental Dermatology being the journal with the highest number of published articles. The primary focus is investigating the skin microbiome's mechanisms in acne development and exploring treatment strategies. These findings have important implications for developing microbiome-targeted therapies, which could provide new, personalized treatment options for patients with acne. Emerging research hotspots include skincare, gut microbiome, and treatment. CONCLUSION The study's findings indicate a thriving research interest in the skin microbiome and its relationship to acne, focusing on acne treatment through the regulation of the skin microbiome balance. Currently, the development of skincare products targeting the regulation of the skin microbiome represents a research hotspot, reflecting the transition from basic scientific research to clinical practice.
Collapse
Affiliation(s)
- Lanfang Zhang
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuan Cai
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Li
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Hu
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changsha Jia
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xu Kuang
- Department of Dermatology, Sinan Branch of Zunyi Medical University Affiliated Hospital, Tongren, China
| | - Yi Zhou
- Department of Dermatology, Dejiang Nation Hospital of TCM, Tongren, China
| | - Zhiai Lan
- Department of Dermatology, Dejiang Nation Hospital of TCM, Tongren, China
| | - Chunyan Liu
- Department of Dermatology, Dejiang Nation Hospital of TCM, Tongren, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| | - Nana Sun
- Department of Dermatology, Guizhou Province Cosmetic Plastic Surgery Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Ni Zeng
- Department of Dermatology, Guizhou Province Cosmetic Plastic Surgery Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
2
|
Nevot G, Santos-Moreno J, Campamà-Sanz N, Toloza L, Parra-Cid C, Jansen PAM, Barbier I, Ledesma-Amaro R, van den Bogaard EH, Güell M. Synthetically programmed antioxidant delivery by a domesticated skin commensal. Cell Syst 2025; 16:101169. [PMID: 39919749 DOI: 10.1016/j.cels.2025.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/03/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
Bacteria represent a promising dynamic delivery system for the treatment of disease. In the skin, the relevant location of Cutibacterium acnes within the hair follicle makes this bacterium an attractive chassis for dermal biotechnological applications. Here, we provide a genetic toolbox for the engineering of this traditionally intractable bacterium, including basic gene expression tools, biocontainment strategies, markerless genetic engineering, and dynamic transcriptional regulation. As a proof of concept, we develop an antioxidant-secreting strain capable of reducing oxidative stress in a UV stress model.
Collapse
Affiliation(s)
- Guillermo Nevot
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain
| | - Javier Santos-Moreno
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain.
| | - Nil Campamà-Sanz
- Department of Cell and Molecular Biology, Karolinska Institutet, Södermanland and Uppland, 17165 Stockholm, Sweden
| | - Lorena Toloza
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain
| | - Cristóbal Parra-Cid
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain
| | - Patrick A M Jansen
- Department of Dermatology, Radboud University Medical Center, Nijmegen 6525GA, Güeldres, the Netherlands
| | - Içvara Barbier
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, Greater London, London SW72AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, Greater London, London SW72AZ, UK
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud University Medical Center, Nijmegen 6525GA, Güeldres, the Netherlands
| | - Marc Güell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, 08003 Barcelona, Cataluña, Spain.
| |
Collapse
|
3
|
Knödlseder N, Fábrega MJ, Santos-Moreno J, Manils J, Toloza L, Marín Vilar M, Fernández C, Broadbent K, Maruotti J, Lemenager H, Carolis C, Zouboulis CC, Soler C, Lood R, Brüggemann H, Güell M. Delivery of a sebum modulator by an engineered skin microbe in mice. Nat Biotechnol 2024; 42:1661-1666. [PMID: 38195987 DOI: 10.1038/s41587-023-02072-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2024]
Abstract
Microorganisms can be equipped with synthetic genetic programs for the production of targeted therapeutic molecules. Cutibacterium acnes is the most abundant commensal of the human skin, making it an attractive chassis to create skin-delivered therapeutics. Here, we report the engineering of this bacterium to produce and secrete the therapeutic molecule neutrophil gelatinase-associated lipocalin, in vivo, for the modulation of cutaneous sebum production.
Collapse
Affiliation(s)
- Nastassia Knödlseder
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - María-José Fábrega
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Santos-Moreno
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan Manils
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Toloza
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Marín Vilar
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Fernández
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Katrina Broadbent
- Protein Technologies Facility, Center of Genomic Regulation, Barcelona, Spain
| | | | | | - Carlo Carolis
- Protein Technologies Facility, Center of Genomic Regulation, Barcelona, Spain
| | - Christos C Zouboulis
- Hochschulklinik für Dermatologie, Venerologie und Allergologie, Immunologisches Zentrum; Städtisches Klinikum Dessau; and Medizinische Hochschule Brandenburg Theodor Fontane und Fakultät für Gesundheitswissenschaften Brandenburg, Dessau-Roßlau, Germany
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Rolf Lood
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Marc Güell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
4
|
Jung Y, Kim I, Jung DR, Ha JH, Lee EK, Kim JM, Kim JY, Jang JH, Bae JT, Shin JH, Cho YS. Aging-Induced Changes in Cutibacterium acnes and Their Effects on Skin Elasticity and Wrinkle Formation. Microorganisms 2024; 12:2179. [PMID: 39597568 PMCID: PMC11596587 DOI: 10.3390/microorganisms12112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Skin aging involves biomechanical changes like decreased elasticity, increased wrinkle formation, and altered barrier function. The skin microbiome significantly impacts this process. Here, we investigated the effects of decreased Cutibacterium acnes abundance and increase in other skin microorganisms on skin biomechanical properties in 60 healthy Koreans from Seoul, divided into younger (20-29 years) and older (60-75 years) groups. Metagenomic sequencing and skin assessments showed that the older group exhibited decreased C. acnes dominance and increased microbial diversity, correlating with reduced skin elasticity and increased wrinkles. In the younger age group, the enriched pathways included zeatin biosynthesis, distinct biotin metabolism pathways, and cofactor and vitamin metabolism in the younger age group, whereas pathways related to lipid metabolism, energy metabolism, and responses to environmental stressors, including UV damage and pollution, were enriched in the older group, according to functional analysis results. Network analysis indicated higher microbial connectivity in the younger group, suggesting a more stable community, whereas the older group's community displayed higher modularity, indicating more independent and specialized clusters. This study enhances our understanding of the impact of skin microbiome changes on skin aging, particularly the anti-aging effects of C. acnes. Future research should focus on the physiological mechanisms of skin microbiota on skin aging and explore therapeutic potentials to enhance skin health.
Collapse
Affiliation(s)
- YeonGyun Jung
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| | - Ikwhan Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea; (I.K.)
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Hoon Ha
- R&D Center, Kolmar Korea, Seoul 06800, Republic of Korea; (J.H.H.); (J.M.K.); (J.Y.K.)
| | - Eun Kyung Lee
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| | - Jin Mo Kim
- R&D Center, Kolmar Korea, Seoul 06800, Republic of Korea; (J.H.H.); (J.M.K.); (J.Y.K.)
| | - Jin Young Kim
- R&D Center, Kolmar Korea, Seoul 06800, Republic of Korea; (J.H.H.); (J.M.K.); (J.Y.K.)
| | - Jun-Hwan Jang
- J2KBIO, Chungbuk 28104, Republic of Korea; (J.-H.J.); (J.-T.B.)
| | - Jun-Tae Bae
- J2KBIO, Chungbuk 28104, Republic of Korea; (J.-H.J.); (J.-T.B.)
| | - Jae-Ho Shin
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea; (I.K.)
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| |
Collapse
|
5
|
Rani R, Marinho Righetto G, Schäfer AB, Wenzel M. The Diverse Activities and Mechanisms of the Acylphloroglucinol Antibiotic Rhodomyrtone: Antibacterial Activity and Beyond. Antibiotics (Basel) 2024; 13:936. [PMID: 39452203 PMCID: PMC11504083 DOI: 10.3390/antibiotics13100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: The rose myrtle Rhodomyrtus tomentosa is a medicinal plant used in traditional Asian medicine. The active compound in R. tomentosa leaf extracts is rhodomyrtone, a chiral acylphloroglucinol. Rhodomyrtone exhibits an impressive breadth of activities, including antibacterial, antiviral, antiplasmodial, immunomodulatory, and anticancer properties. Its antibacterial properties have been extensively studied. Methods: We performed a comprehensive literature review on rhodomyrtone and summarized the current knowledge about this promising acylphloroglucinol antibiotic and its diverse functions in this review. Results: Rhodomyrtone shows nano to micromolar activities against a broad range of Gram-positive pathogens, including multidrug-resistant clinical isolates, and possesses a unique mechanism of action. It increases membrane fluidity and creates hyperfluid domains that attract membrane proteins prior to forming large membrane vesicles, effectively acting as a membrane protein trap. This mechanism affects a multitude of cellular processes, including cell division and cell wall synthesis. Additionally, rhodomyrtone reduces the expression of inflammatory cytokines, such as TNF-α, IL-17A, IL1β, and IL8. Generally showing low toxicity against mammalian cells, rhodomyrtone does inhibit the proliferation of cancer cell lines, such as epidermal carcinoma cells. The primary mechanism behind this activity appears to be the downregulation of adhesion kinases and growth factors. Furthermore, rhodomyrtone has shown antioxidant activity and displays cognitive effects, such as decreasing depressive symptoms in mice. Conclusions: Rhodomyrtone shows great promise as therapeutic agent, mostly for antibacterial but also for diverse other applications. Yet, bottlenecks such as resistance development and a better understanding of mammalian cell toxictiy demand careful assessment.
Collapse
Affiliation(s)
- Rupa Rani
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| | - Gabriela Marinho Righetto
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| |
Collapse
|
6
|
Shafiuddin M, Prather GW, Huang WC, Anton JR, Martin AL, Sillart SB, Tang JZ, Vittori MR, Prinsen MJ, Ninneman JJ, Manithody C, Henderson JP, Aleem AW, Ilagan MXG, McCoy WH. Cutibacterium adaptation to life on humans provides a novel biomarker of C. acnes infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613542. [PMID: 39345635 PMCID: PMC11429735 DOI: 10.1101/2024.09.18.613542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The domestication of cattle provided Propionibacteriaceae the opportunity to adapt to human skin. These bacteria constitute a distinct genus ( Cutibacterium ), and a single species within that genus ( C. acnes ) dominates 25% of human skin. C. acnes protects humans from pathogen colonization, but it can also infect indwelling medical devices inserted through human skin. Proteins that help Cutibacteria live on our skin may also act as virulence factors during an opportunistic infection, like a shoulder periprosthetic joint infection (PJI). To better understand the evolution of this commensal and opportunistic pathogen, we sought to extensively characterize one of these proteins, RoxP. This secreted protein is only found in the Cutibacterium genus, helps C. acnes grow in oxic environments, and is required for C. acnes to colonize human skin. Structure-based sequence analysis of twenty-one RoxP orthologs (71-100% identity to C. acnes strain KPA171202 RoxP_1) revealed a high-degree of molecular surface conservation and helped identify a potential heme-binding interface. Biophysical evaluation of a subset of seven RoxP orthologs (71-100% identity) demonstrated that heme-binding is conserved. Computational modeling of these orthologs suggests that RoxP heme-binding is mediated by an invariant molecular surface composed of a surface-exposed tryptophan (W66), adjacent cationic pocket, and nearby potential heme axial ligands. Further, these orthologs were found to undergo heme-dependent oligomerization. To further probe the role of this protein in C. acnes biology, we developed four monoclonal anti-RoxP antibodies, assessed the binding of those antibodies to a subset of ten RoxP orthologs (71-100% identity), developed an anti-RoxP sandwich ELISA (sELISA) with sub-nanogram sensitivity, and adapted that sELISA to quantitate RoxP in human biofluids that can be infected by C. acnes (serum, synovial fluid, cerebrospinal fluid). This study expands our understanding of how an environmental bacterium evolved to live on humans, and the assays developed in this work can now be used to identify this organism when it gains access to sterile sites to cause opportunistic infections. Author Summary The longer humans live, the more they require internal "replacement parts," like prosthetic joints. Increased placement of these and other medical devices has increased their complications, which frequently are infections caused by microbes that live on humans. One of these microbes is Cutibacterium acnes , which dominates 25% of human skin. It appears that when humans domesticated cattle, a C. acnes ancestor adapted from living in cows to living on people. One of these adaptations was RoxP, a protein only found in Cutibacterium and carried by all C. acnes . Here, we describe our extensive characterization of RoxP. We found that distantly related RoxP conserve high stability at the low pH found on human skin. They also conserve the ability to bind heme, a source of iron used by microbes when they infect humans. As a part of this work, we developed tests that measure RoxP to identify C. acnes growth. In a clinic or hospital, these tests could allow a doctor to rapidly identify C. acnes infections, which would improve patient outcomes and lower healthcare costs. This work has helped us better understand how C. acnes adapted to live on humans and to identify C. acnes infections of medical devices.
Collapse
|
7
|
MacGibeny MA, Adjei S, Pyle H, Bunick CG, Ghannoum M, Grada A, Harris-Tryon T, Tyring SK, Kong HH. The Human Skin Microbiome in Health: CME Part 1. J Am Acad Dermatol 2024:S0190-9622(24)02671-9. [PMID: 39168311 PMCID: PMC11912297 DOI: 10.1016/j.jaad.2024.07.1498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
Human skin is home to a myriad of microorganisms, including bacteria, viruses, fungi, and mites, many of which are considered commensal microbes that aid in maintaining the overall homeostasis or steady-state condition of the skin and contribute to skin health. Our understanding of the complexities of the skin's interaction with its microorganisms is evolving. This knowledge is based primarily on in vitro and animal studies, and more work is needed to understand how this knowledge relates to humans. Here, we introduce the concept of the skin microbiome and discuss skin microbial ecology, some intrinsic factors with potential influence on the human skin microbiome, and possible microbiome-host interactions. The second article of this two-part CME series describes how microbiome alterations may be associated with skin disease, how medications can affect the microbiome, and what microbiome-based therapies are under investigation.
Collapse
Affiliation(s)
| | - Susuana Adjei
- Department of Dermatology, Lake Granbury Medical Center, Dallas, TX, USA
| | - Hunter Pyle
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT, USA
| | - Mahmoud Ghannoum
- Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Ayman Grada
- Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Tamia Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen K Tyring
- Department of Dermatology, Lake Granbury Medical Center, Dallas, TX, USA.
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
McLaughlin J, Burnham CAD, McDowell A. MALDI-TOF mass spectrometry misidentification of Cutibacterium namnetense and Cutibacterium modestum: Implications for multiplex PCR phylotyping of Cutibacterium acnes. Anaerobe 2024; 88:102874. [PMID: 38848934 DOI: 10.1016/j.anaerobe.2024.102874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can misidentify Cutibacterium namnetense and Cutibacterium modestum as Cutibacterium acnes. We now describe how such MALDI-TOF MS misidentification explains previous reports of C. acnes isolates that could not be characterised using a multiplex PCR phylotyping assay.
Collapse
Affiliation(s)
- Joseph McLaughlin
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, UK
| | - Carey-Ann D Burnham
- Division of Laboratory and Genomic Medicine, Department of Pathology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew McDowell
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, UK; Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK.
| |
Collapse
|
9
|
Mim MF, Sikder MH, Chowdhury MZH, Bhuiyan AUA, Zinan N, Islam SMN. The dynamic relationship between skin microbiomes and personal care products: A comprehensive review. Heliyon 2024; 10:e34549. [PMID: 39104505 PMCID: PMC11298934 DOI: 10.1016/j.heliyon.2024.e34549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Healthy skin reflects a healthy microbiome and vice versa. The contemporary society, marked by a sharp increase in skin irritation cases, has compelled researchers, dermatologists, and the cosmetics industry to investigate the correlation between skin microbiomes and the use of skincare products. Different cosmetics can change skin's normal flora to a varying degree -some changes can be detrimental, there are also instances where these alterations aid in restoring the skin microbiome. Previous studies using artificial skin models, metagenomic analysis, and culture-based approaches have suggested that skincare products play an important role in skin microbial alteration. This article assessed current knowledge on microbial shifts from daily use of various personal and skincare products. We have also introduced a readily applicable framework, synthesized from various observations, which can be employed to identify the normal skin microbiome and evaluate the impact of personal care and skincare products on it. We also discussed how lifestyle choice remake skin microbial makeup. Future studies are warranted to examine the effect of personal and skincare product usage on skin microbiome across various age groups, genders, and body sites with a multi-study approach.
Collapse
Affiliation(s)
- Mahjabin Ferdaous Mim
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Zahid Hasan Chowdhury
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Ashkar-Ul-Alam Bhuiyan
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Nayeematul Zinan
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Shah Mohammad Naimul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| |
Collapse
|
10
|
Yu T, Xu X, Liu Y, Wang X, Wu S, Qiu Z, Liu X, Pan X, Gu C, Wang S, Dong L, Li W, Yao X. Multi-omics signatures reveal genomic and functional heterogeneity of Cutibacterium acnes in normal and diseased skin. Cell Host Microbe 2024; 32:1129-1146.e8. [PMID: 38936370 DOI: 10.1016/j.chom.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Cutibacterium acnes is the most abundant bacterium of the human skin microbiome since adolescence, participating in both skin homeostasis and diseases. Here, we demonstrate individual and niche heterogeneity of C. acnes from 1,234 isolate genomes. Skin disease (atopic dermatitis and acne) and body site shape genomic differences of C. acnes, stemming from horizontal gene transfer and selection pressure. C. acnes harbors characteristic metabolic functions, fewer antibiotic resistance genes and virulence factors, and a more stable genome compared with Staphylococcus epidermidis. Integrated genome, transcriptome, and metabolome analysis at the strain level unveils the functional characteristics of C. acnes. Consistent with the transcriptome signature, C. acnes in a sebum-rich environment induces toxic and pro-inflammatory effects on keratinocytes. L-carnosine, an anti-oxidative stress metabolite, is up-regulated in the C. acnes metabolome from atopic dermatitis and attenuates skin inflammation. Collectively, our study reveals the joint impact of genes and the microenvironment on C. acnes function.
Collapse
Affiliation(s)
- Tianze Yu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoqiang Xu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yang Liu
- 01life Institute, Shenzhen 518000, China
| | - Xiaokai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhuoqiong Qiu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiaoyu Pan
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chaoying Gu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shangshang Wang
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lixin Dong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Wei Li
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xu Yao
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
11
|
Bjerg CSB, Poehlein A, Bömeke M, Himmelbach A, Schramm A, Brüggemann H. Increased biofilm formation in dual-strain compared to single-strain communities of Cutibacterium acnes. Sci Rep 2024; 14:14547. [PMID: 38914744 PMCID: PMC11196685 DOI: 10.1038/s41598-024-65348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Cutibacterium acnes is a known opportunistic pathogen in orthopedic implant-associated infections (OIAIs). The species of C. acnes comprises distinct phylotypes. Previous studies suggested that C. acnes can cause single- as well as multi-typic infections, i.e. infections caused by multiple strains of different phylotypes. However, it is not known if different C. acnes phylotypes are organized in a complex biofilm community, which could constitute a multicellular strategy to increase biofilm strength and persistency. Here, the interactions of two C. acnes strains belonging to phylotypes IB and II were determined in co-culture experiments. No adverse interactions between the strains were observed in liquid culture or on agar plates; instead, biofilm formation in both microtiter plates and on titanium discs was significantly increased when combining both strains. Fluorescence in situ hybridization showed that both strains co-occurred throughout the biofilm. Transcriptome analyses revealed strain-specific alterations of gene expression in biofilm-embedded cells compared to planktonic growth, in particular affecting genes involved in carbon and amino acid metabolism. Overall, our results provide first insights into the nature of dual-type biofilms of C. acnes, suggesting that strains belonging to different phylotypes can form biofilms together with additive effects. The findings might influence the perception of C. acnes OIAIs in terms of diagnosis and treatment.
Collapse
Affiliation(s)
- Cecilie Scavenius Brønnum Bjerg
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Mechthild Bömeke
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Schramm
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
12
|
Ma L, Li Y, Niu Y, Yang S, Shao L. Complete genome sequence of Cutibacterium acnes type II CCSM0331, isolated from a healthy woman's skin. Microbiol Resour Announc 2024; 13:e0010823. [PMID: 38038464 DOI: 10.1128/mra.00108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
The complete genome sequence of Cutibacterium acnes Type II strain CCSM0331, which was isolated from the healthy facial skin, is reported. The assembled 2.5-Mbp genome comprised a single circular chromosome. These data will provide valuable information on the beneficial role of C. acnes as a skin commensal bacteria.
Collapse
Affiliation(s)
- Laiji Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai, China
| | - Yan Li
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd , Jinan, Shandong, China
| | - Yujie Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai, China
| | - Suzhen Yang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd , Jinan, Shandong, China
| | - Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai, China
| |
Collapse
|
13
|
O'Neill AM, Cavagnero KJ, Seidman JS, Zaramela L, Chen Y, Li F, Nakatsuji T, Cheng JY, Tong YL, Do TH, Brinton SL, Hata TR, Modlin RL, Gallo RL. Genetic and Functional Analyses of Cutibacterium Acnes Isolates Reveal the Association of a Linear Plasmid with Skin Inflammation. J Invest Dermatol 2024; 144:116-124.e4. [PMID: 37478901 PMCID: PMC11137742 DOI: 10.1016/j.jid.2023.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 07/23/2023]
Abstract
Cutibacterium acnes is a commensal bacterium on the skin that is generally well-tolerated, but different strain types have been hypothesized to contribute to the disease acne vulgaris. To understand how some strain types might contribute to skin inflammation, we generated a repository of C. acnes isolates from skin swabs of healthy subjects and subjects with acne and assessed their strain-level identity and capacity to stimulate cytokine release. Phylotype II K-type strains were more frequent on healthy and nonlesional skin of subjects with acne than those isolated from lesions. Phylotype IA-1 C-type strains were increased on lesional skin compared with those on healthy skin. The capacity to induce cytokines from cultured monocyte-derived dendritic cells was opposite to this action on sebocytes and keratinocytes and did not correlate with the strain types associated with the disease. Whole-genome sequencing revealed a linear plasmid in high-inflammatory isolates within similar strain types that had different proinflammatory responses. Single-cell RNA sequencing of mouse skin after intradermal injection showed that strains containing this plasmid induced a higher inflammatory response in dermal fibroblasts. These findings revealed that C. acnes strain type is insufficient to predict inflammation and that carriage of a plasmid could contribute to disease.
Collapse
Affiliation(s)
- Alan M O'Neill
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Kellen J Cavagnero
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Jason S Seidman
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Livia Zaramela
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Yang Chen
- Department of Dermatology, University of California San Diego, La Jolla, California, USA; Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Fengwu Li
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Joyce Y Cheng
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Yun L Tong
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Tran H Do
- Division of Dermatology, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Samantha L Brinton
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Tissa R Hata
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Robert L Modlin
- Division of Dermatology, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
14
|
Erbežnik A, Celar Šturm A, Strašek Smrdel K, Triglav T, Maver Vodičar P. Comparative Genomic Analysis of Cutibacterium spp. Isolates in Implant-Associated Infections. Microorganisms 2023; 11:2971. [PMID: 38138116 PMCID: PMC10745319 DOI: 10.3390/microorganisms11122971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Bacteria of the genus Cutibacterium are Gram-positive commensals and opportunistic pathogens that represent a major challenge in the diagnosis and treatment of implant-associated infections (IAIs). This study provides insight into the distribution of different sequence types (STs) of C. acnes, and the presence of virulence factors (VFs) in 64 Cutibacterium spp. isolates from suspected or confirmed IAIs obtained during routine microbiological diagnostics. Fifty-three C. acnes, six C. avidum, four C. granulosum, and one C. namnetense isolate, collected from different anatomical sites, were included in our study. Using whole-genome sequencing and a single-locus sequencing typing scheme, we successfully characterized all C. acnes strains and revealed the substantial diversity of STs, with the discovery of six previously unidentified STs. Phylotype IA1, previously associated with both healthy skin microbiome and infections, was the most prevalent, with ST A1 being the most common. Some minor differences in STs' distribution were observed in correlation with anatomical location and association with infection. A genomic analysis of 40 investigated VFs among 64 selected strains showed no significant differences between different STs, anatomical sites, or infection-related and infection undetermined/unlikely groups of strains. Most differences in VF distribution were found between strains of different Cutibacterium spp., subspecies, and phylotypes, with CAMP factors, biofilm-related VFs, lipases, and heat shock proteins identified in all analyzed Cutibacterium spp.
Collapse
Affiliation(s)
| | | | | | | | - Polona Maver Vodičar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.E.); (A.C.Š.); (K.S.S.); (T.T.)
| |
Collapse
|
15
|
Rana MS, Kim J, Kim S. First Report of Plasmid-Mediated Macrolide-Clindamycin-Tetracycline Resistance in a High Virulent Isolate of Cutibacterium acnes ST115. Pathogens 2023; 12:1286. [PMID: 38003751 PMCID: PMC10674219 DOI: 10.3390/pathogens12111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Cutibacterium acnes, a prevalent skin commensal, has emerged as a significant global challenge due to its widespread antibiotic resistance. To investigate the antibiotic resistance mechanisms and clinical characterization of C. acnes in Korea, we collected 22 clinical isolates from diverse patient specimens obtained from the National Culture Collection for Pathogens across Korea. Among the isolates, KB112 isolate was subjected to whole genome sequencing due to high resistance against clindamycin, erythromycin, tetracycline, doxycycline, and minocycline. The whole genome analysis of KB112 isolate revealed a circular chromosome of 2,534,481 base pair with an average G + C content of 60.2% with sequence type (ST) 115, harboring the potential virulent CAMP factor pore-forming toxin 2 (CAMP2), the multidrug resistance ABC transporter ATP-binding protein YknY, and the multidrug efflux protein YfmO. The genomic sequence also showed the existence of a plasmid (30,947 bp) containing the erm(50) and tet(W) gene, which confer resistance to macrolide-clindamycin and tetracycline, respectively. This study reports plasmid-mediated multi-drug resistance of C. acnes for the first time in Korea.
Collapse
Affiliation(s)
- Md Shohel Rana
- Department of Biomedical Sciences, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea; (M.S.R.); (J.K.)
| | - Jungmin Kim
- Department of Biomedical Sciences, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea; (M.S.R.); (J.K.)
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Shukho Kim
- Department of Biomedical Sciences, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea; (M.S.R.); (J.K.)
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
16
|
Both A, Huang J, Hentschke M, Tobys D, Christner M, Klatte TO, Seifert H, Aepfelbacher M, Rohde H. Genomics of Invasive Cutibacterium acnes Isolates from Deep-Seated Infections. Microbiol Spectr 2023; 11:e0474022. [PMID: 36976006 PMCID: PMC10100948 DOI: 10.1128/spectrum.04740-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Cutibacterium acnes, formerly known as Propionibacterium acnes, is a commensal of the human pilosebaceous unit but also causes deep-seated infection, especially in the context of orthopedic and neurosurgical foreign materials. Interestingly, little is known about the role of specific pathogenicity factors for infection establishment. Here, 86 infection-associated and 103 commensalism-associated isolates of C. acnes were collected from three independent microbiology laboratories. We sequenced the whole genomes of the isolates for genotyping and a genome-wide association study (GWAS). We found that C. acnes subsp. acnes IA1 was the most significant phylotype among the infection isolates (48.3% of all infection isolates; odds ratio [OR] = 1.98 for infection). Among the commensal isolates, C. acnes subsp. acnes IB was the most significant phylotype (40.8% of all commensal isolates; OR = 0.5 for infection). Interestingly, C. acnes subsp. elongatum (III) was rare overall and did not occur at all in infection. The open reading frame-based GWAS (ORF-GWAS) did not show any loci with a strong signal for infection association (no P values of ≤0.05 after adjustment for multiple testing; no logarithmic OR [logOR] of ≥|2|). We concluded that all subspecies and phylotypes of C. acnes, possibly with the exception of C. acnes subsp. elongatum, are able to cause deep-seated infection given favorable conditions, most importantly related to inserted foreign material. Genetic content appears to have a small effect on the likelihood of infection establishment, and functional studies are needed to understand the individual factors contributing to deep-seated infections caused by C. acnes. IMPORTANCE Opportunistic infections emerging from human skin microbiota are of ever-increasing importance. Cutibacterium acnes, being abundant on the human skin, may cause deep-seated infections (e.g., device-associated infections). Differentiation between invasive (i.e., clinically significant) C. acnes isolates and sole contaminants is often difficult. Identification of genetic markers associated with invasiveness not only would strengthen our knowledge related to pathogenesis but also could open ways to selectively categorize invasive and contaminating isolates in the clinical microbiology lab. We show that in contrast to other opportunistic pathogens (e.g., Staphylococcus epidermidis), invasiveness is apparently a broadly distributed ability across almost all C. acnes subspecies and phylotypes. Thus, our work strongly supports an approach in which clinical significance is judged from clinical context rather than by detecting specific genetic traits.
Collapse
Affiliation(s)
- Anna Both
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jiabin Huang
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - David Tobys
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Martin Christner
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Orla Klatte
- Department for Trauma Surgery and Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Martin Aepfelbacher
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Mias C, Mengeaud V, Bessou-Touya S, Duplan H. Recent advances in understanding inflammatory acne: Deciphering the relationship between Cutibacterium acnes and Th17 inflammatory pathway. J Eur Acad Dermatol Venereol 2023; 37 Suppl 2:3-11. [PMID: 36729400 DOI: 10.1111/jdv.18794] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Acne vulgaris is a common chronic inflammatory skin disease of the pilosebaceous units. Four factors contribute to acne: hyperseborrhea and dysseborrhea, follicular hyperkeratinisation, skin microbiome dysbiosis and local immuno-inflammation. Recent key studies have highlighted a better understanding of the important role of Cutibacterium acnes (C. acnes) in the development of acne. Three major findings in the last decade include: (1) the ability of C. acnes to self-organize in a biofilm associated with a more virulent activity, (2) the loss of the C. acnes phylotype diversity and (3) the central role of the Th17 pathway in acne inflammation. Indeed, there is a close link between C. acnes and the activation of the Th17 immuno-inflammatory pathway at the initiation of acne development. These mechanisms are directly linked to the loss of C. acnes phylotype diversity during acne, with a predominance of the pro-pathogenic phylotype IA1. This specifically contributes to the induction of the Th17-mediated immuno-inflammatory response involving skin cells, such as keratinocytes, monocytes and sebocytes. These advancements have led to new insights into the underlying mechanisms which can be harnessed to develop novel treatments and diagnostic biomarkers. A major disadvantage of traditional treatment with topical antibiotics is that they induce cutaneous dysbiosis and antimicrobial resistance. Thus, future treatments would no longer aim to 'kill' C. acnes, but to maintain the skin microbiota balance allowing for tissue homeostasis, specifically, the restoration of C. acnes phylotype diversity. Here, we provide an overview of some of the key processes involved in the pathogenesis of acne, with a focus on the prominent role of C. acnes and the Th17-inflammatory pathways involved.
Collapse
Affiliation(s)
- Céline Mias
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| | | | | | - Hélène Duplan
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| |
Collapse
|
18
|
Mias C, Thouvenin MD, Gravier E, Dalmon S, Bouyer K, Alvarez S, Mengeaud V, Ribet V, Bessou-Touya S, Duplan H. Change in Cutibacterium acnes phylotype abundance and improvement of clinical parameters using a new dermocosmetic product containing Myrtus communis and Celastrol enriched plant cell culture extracts in patients with acne vulgaris. J Eur Acad Dermatol Venereol 2023; 37 Suppl 2:20-25. [PMID: 36729402 DOI: 10.1111/jdv.18792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/08/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Acne is a multifactorial chronic inflammatory disease of the pilosebaceous unit, where Cutibacterium acnes plays a main role. Recent papers demonstrated that specific C. acnes phylotypes were correlated with the severity of inflammatory acne and reported a specific loss of C. acnes phylotype diversity in this context. OBJECTIVES The aim of this exploratory study was to evaluate the efficacy of a new dermocosmetic product containing Myrtus communis and Celastrol-enriched plant cell culture extracts on C. acnes phylotype abundance and clinical parameters in subjects with mild to moderate acne vulgaris. METHODS Cutibacterium acnes phylotype diversity was evaluated by single-locus sequence typing sequencing on the nonlesional areas of the forehead, that is, areas excluding inflammatory lesions (papules and pustules) on day 1 (D1) and after 56 days (D57) of twice daily application of the dermocosmetic product on the whole face. Clinical efficacy on acne was also assessed by acne lesion counting and Global Evaluation Acne (GEA) score on D1 and D57. RESULTS Our study confirmed the link between the presence of some C. acnes phylotypes and acne severity. The dermocosmetic cream was linked to a positive impact on C. acnes phylotypes: a significant decrease in pro-pathogen phylotype IC and increase in nonpathogen phylotype IB were observed in the nonlesional areas of acne on D57 compared to D1. In parallel, the clinical results showed a significant decrease in inflammatory and comedonal acne lesions and a significant improvement in the acne severity according to the GEA score. CONCLUSIONS This study showed that the application of a new dermocosmetic product containing M. communis and Celastrol-enriched plant cell culture extracts was linked to a change in the C. acnes phylotype abundance and an improvement in acne severity.
Collapse
Affiliation(s)
- Céline Mias
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| | | | - Eleonore Gravier
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| | - Sandrine Dalmon
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| | - Karine Bouyer
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| | - Sandrine Alvarez
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| | | | - Virginie Ribet
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| | | | - Hélène Duplan
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| |
Collapse
|
19
|
Mias C, Chansard N, Maitre M, Galliano MF, Garidou L, Mengeaud V, Bessou-Touya S, Duplan H. Myrtus communis and Celastrol enriched plant cell culture extracts control together the pivotal role of Cutibacterium acnes and inflammatory pathways in acne. J Eur Acad Dermatol Venereol 2023; 37 Suppl 2:12-19. [PMID: 36729401 DOI: 10.1111/jdv.18793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/29/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Acne is a multifactorial inflammatory disease of the pilosebaceous unit in which Cutibacterium acnes is one of the main triggers. A strong predominance of C. acnes phylotype IA1 is present in acne skin with higher biofilm organization and virulence, promoting local immuno-inflammation, especially the Th17 pathway. OBJECTIVES We evaluated the single and combined pharmacological properties of the plant extracts, Myrtus communis (Myrtacine®) and Celastrol enriched plant cell culture (CEE) extracts on the C. acnes/Th17 pathway. METHODS The effect of Myrtacine® on the virulence of C. acnes phylotype IA1 was quantified according to the expression of several related genes. The activity of Myrtacine® and CEE on the inflammatory cascade was assessed using monocytes-derived dendritic cells (Mo-DC) stimulated with membranes or biofilms of the C. acnes phylotype IA1. Finally, the effect of CEE on the Th17 pathway was studied using C. acnes stimulated sebocyte 2D cultures and 3D skin tissue models containing preactivated Th17 cells. RESULTS Myrtacine® had an anti-virulence effect, evident as a significant and strong inhibition of the expression of several virulence factor genes by 60%-95% compared to untreated controls. Myrtacine® and CEE significantly inhibited proinflammatory cytokine (IL-6, IL-8, IL-12p40 and TNF-α) production by Mo-DC in response to C. acnes phylotype IA1. Interestingly, these two ingredients resulted in synergistic inhibition of most cytokines when used in combination. Finally, we demonstrated an inhibitory effect of CEE, in solution or formulated at 0.3%, specifically on IL-17 release by Th17 lymphocytes in a C. acnes-stimulated sebocyte 2D cultures and by Th17-lymphocytes integrated in a 3D skin models. CONCLUSIONS 2D and 3D models were developed to represent relevant and specific pathways involved in acne. Myrtacine® and CEE were shown to alter one or more of these pathways, indicating their potential beneficial effects on this disease.
Collapse
Affiliation(s)
- Céline Mias
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| | | | - Martine Maitre
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| | | | - Lucile Garidou
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| | | | | | - Hélène Duplan
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| |
Collapse
|
20
|
Bromfield JI, Hugenholtz P, Frazer IH, Khosrotehrani K, Chandra J. Targeting Staphylococcus aureus dominated skin dysbiosis in actinic keratosis to prevent the onset of cutaneous squamous cell carcinoma: Outlook for future therapies? Front Oncol 2023; 13:1091379. [PMID: 36816953 PMCID: PMC9933124 DOI: 10.3389/fonc.2023.1091379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) and its premalignant precursor, actinic keratosis (AK), present a global health burden that is continuously increasing despite extensive efforts to promote sun safety. Chronic UV exposure is a recognized risk factor for the development of AK and cSCC. However, increasing evidence suggests that AK and cSCC is also associated with skin microbiome dysbiosis and, in particular, an overabundance of the bacterium Staphylococcus aureus (S. aureus). Studies have shown that S. aureus-derived toxins can contribute to DNA damage and lead to chronic upregulation of proinflammatory cytokines that may affect carcinogenesis. Eradication of S. aureus from AK lesions and restoration of a healthy microbiome may therefore represent a therapeutic opportunity to alter disease progression. Whilst antibiotics can reduce the S. aureus load, antibiotic resistant S. aureus pose an increasing global public health threat. The use of specific topically delivered probiotics has been used experimentally in other skin conditions to restore eubiosis, and could therefore also present a non-invasive treatment approach to decrease S. aureus colonization and restore a healthy skin microbiome on AK lesions. This article reviews mechanisms by which S. aureus may contribute to cutaneous carcinogenesis, and discusses hypotheses and theories that explore the therapeutic potential of specific bacterial species which compete with S. aureus in an attempt to restore microbial eubiosis in skin.
Collapse
Affiliation(s)
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Ian Hector Frazer
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kiarash Khosrotehrani
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Dermatology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Janin Chandra
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
21
|
Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J, Xia J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:363-382. [PMID: 36939800 PMCID: PMC9712873 DOI: 10.1007/s43657-022-00073-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe-microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host-microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.
Collapse
Affiliation(s)
- Huizhen Chen
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qi Zhao
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Qian Zhong
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Cheng Duan
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| | - Jean Krutmann
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
- grid.506261.60000 0001 0706 7839Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, 200438 China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
22
|
Jing X, Gong Y, Pan H, Meng Y, Ren Y, Diao Z, Mu R, Xu T, Zhang J, Ji Y, Li Y, Wang C, Qu L, Cui L, Ma B, Xu J. Single-cell Raman-activated sorting and cultivation (scRACS-Culture) for assessing and mining in situ phosphate-solubilizing microbes from nature. ISME COMMUNICATIONS 2022; 2:106. [PMID: 37938284 PMCID: PMC9723661 DOI: 10.1038/s43705-022-00188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023]
Abstract
Due to the challenges in detecting in situ activity and cultivating the not-yet-cultured, functional assessment and mining of living microbes from nature has typically followed a 'culture-first' paradigm. Here, employing phosphate-solubilizing microbes (PSM) as model, we introduce a 'screen-first' strategy that is underpinned by a precisely one-cell-resolution, complete workflow of single-cell Raman-activated Sorting and Cultivation (scRACS-Culture). Directly from domestic sewage, individual cells were screened for in-situ organic-phosphate-solubilizing activity via D2O intake rate, sorted by the function via Raman-activated Gravity-driven Encapsulation (RAGE), and then cultivated from precisely one cell. By scRACS-Culture, pure cultures of strong organic PSM including Comamonas spp., Acinetobacter spp., Enterobacter spp. and Citrobacter spp., were derived, whose phosphate-solubilizing activities in situ are 90-200% higher than in pure culture, underscoring the importance of 'screen-first' strategy. Moreover, employing scRACS-Seq for post-RACS cells that remain uncultured, we discovered a previously unknown, low-abundance, strong organic-PSM of Cutibacterium spp. that employs secretary metallophosphoesterase (MPP), cell-wall-anchored 5'-nucleotidase (encoded by ushA) and periplasmic-membrane located PstSCAB-PhoU transporter system for efficient solubilization and scavenging of extracellular phosphate in sewage. Therefore, scRACS-Culture and scRACS-Seq provide an in situ function-based, 'screen-first' approach for assessing and mining microbes directly from the environment.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Huihui Pan
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yishang Ren
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Zhidian Diao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Runzhi Mu
- Qingdao Zhang Cun River Water Co., Ltd, Qingdao, Shandong, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- Qingdao Single-Cell Biotechnology Co., Ltd, Qingdao, Shandong, China
| | - Yuandong Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Chen Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Lingyun Qu
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Energy Institute, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China.
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Energy Institute, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China.
| |
Collapse
|
23
|
Ito Y, Amagai M. Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases. Inflamm Regen 2022; 42:26. [PMID: 36045395 PMCID: PMC9434865 DOI: 10.1186/s41232-022-00212-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
The skin serves as the interface between the human body and the environment and interacts with the microbial community. The skin microbiota consists of microorganisms, such as bacteria, fungi, mites, and viruses, and they fluctuate depending on the microenvironment defined by anatomical location and physiological function. The balance of interactions between the host and microbiota plays a pivotal role in the orchestration of skin homeostasis; however, the disturbance of the balance due to an alteration in the microbial communities, namely, dysbiosis, leads to various skin disorders. Recent developments in sequencing technology have provided new insights into the structure and function of skin microbial communities. Based on high-throughput sequencing analysis, a growing body of evidence indicates that a new treatment using live bacteria, termed bacteriotherapy, is a feasible therapeutic option for cutaneous diseases caused by dysbiosis. In particular, the administration of specific bacterial strains has been investigated as an exclusionary treatment strategy against pathogens associated with chronic skin disorders, whereas the safety, efficacy, and sustainability of this therapeutic approach using isolated live bacteria need to be further explored. In this review, we summarize our current understanding of the skin microbiota, as well as therapeutic strategies using characterized strains of live bacteria for skin inflammatory diseases. The ecosystem formed by interactions between the host and skin microbial consortium is still largely unexplored; however, advances in our understanding of the function of the skin microbiota at the strain level will lead to the development of new therapeutic methods.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
24
|
Singh AP, Arya H, Singh V, Kumar P, Gautam HK. Identification of natural inhibitors to inhibit C. acnes lipase through docking and simulation studies. J Mol Model 2022; 28:281. [PMID: 36040538 DOI: 10.1007/s00894-022-05289-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
Acne vulgaris is a common skin disease affecting 80-90% of teenagers worldwide. C. acnes producing lipases are the main virulence factor that catalyzes sebum lipid into free fatty acid that is used for C. acnes growth. Recently, computational biology and bioinformatics play a significant role in drug discovery programs and the identification of novel lead(s). In this study, potential inhibitors against the C. acnes lipase have been identified via cost-effective computational investigations. Molecular docking, MD simulations, and binding affinity analysis have been performed between the active site of C. acnes lipase protein and selected natural plant constituents. First, C. acnes lipase protein was downloaded from PDB and defined the catalytically active site. Next, 16 active natural plant constituents were shortlisted from the PubChem library (based on their pharmacokinetics, pharmacodynamics, and antibacterial activity). Docking studies identified the best five active compounds that showed significantly strong binding affinity interacted through hydrogen bonding, hydrophobic interactions, and π-stacking with the active site residues of the target protein. Furthermore, a 100 ns MD simulation run showed a stable RMSD and less fluctuating RMSF graph for luteolin and neryl acetate. In silico investigation suggested that luteolin, neryl acetate, and isotretinoin were involved in stable interactions which were maintained throughout the MD run with the C. acnes lipase enzyme, virtually. The results advocated that these could potentially inhibit lipase activity and be used in the clinical management of acne.
Collapse
Affiliation(s)
- Akash Pratap Singh
- CSlR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Innovative and Scientific Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| | - Vijay Singh
- CSlR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Pradeep Kumar
- CSlR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Innovative and Scientific Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant K Gautam
- CSlR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India. .,Academy of Innovative and Scientific Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
25
|
Kraaijvanger R, Veltkamp M. The Role of Cutibacterium acnes in Sarcoidosis: From Antigen to Treatable Trait? Microorganisms 2022; 10:1649. [PMID: 36014067 PMCID: PMC9415339 DOI: 10.3390/microorganisms10081649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Cutibacterium acnes (C. acnes, formerly Propionibacterium acnes) is considered to be a non-pathogenic resident of the human skin, as well as mucosal surfaces. However, it also has been demonstrated that C. acnes plays a pathogenic role in diseases such as acne vulgaris or implant infections after orthopedic surgery. Besides a role in infectious disease, this bacterium also seems to harbor immunomodulatory effects demonstrated by studies using C. acnes to enhance anti-tumor activity in various cancers or vaccination response. Sarcoidosis is a systemic inflammatory disorder of unknown causes. Cultures of C. acnes in biopsy samples of sarcoidosis patients, its presence in BAL fluid, tissue samples as well as antibodies against this bacterium found in serum of patients with sarcoidosis suggest an etiological role in this disease. In this review we address the antigenic as well as immunomodulatory potential of C. acnes with a focus on sarcoidosis. Furthermore, a potential role for antibiotic treatment in patients with sarcoidosis will be explored.
Collapse
Affiliation(s)
- Raisa Kraaijvanger
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Marcel Veltkamp
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Division of Hearth and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
26
|
Ouyang K, Oparaugo N, Nelson AM, Agak GW. T Cell Extracellular Traps: Tipping the Balance Between Skin Health and Disease. Front Immunol 2022; 13:900634. [PMID: 35795664 PMCID: PMC9250990 DOI: 10.3389/fimmu.2022.900634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
The role of extracellular traps (ETs) in the innate immune response against pathogens is well established. ETs were first identified in neutrophils and have since been identified in several other immune cells. Although the mechanistic details are not yet fully understood, recent reports have described antigen-specific T cells producing T cell extracellular traps (TETs). Depending on their location within the cutaneous environment, TETs may be beneficial to the host by their ability to limit the spread of pathogens and provide protection against damage to body tissues, and promote early wound healing and degradation of inflammatory mediators, leading to the resolution of inflammatory responses within the skin. However, ETs have also been associated with worse disease outcomes. Here, we consider host-microbe ET interactions by highlighting how cutaneous T cell-derived ETs aid in orchestrating host immune responses against Cutibacterium acnes (C. acnes), a commensal skin bacterium that contributes to skin health, but is also associated with acne vulgaris and surgical infections following joint-replacement procedures. Insights on the role of the skin microbes in regulating T cell ET formation have broad implications not only in novel probiotic design for acne treatment, but also in the treatment for other chronic inflammatory skin disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Kelsey Ouyang
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
- Division of Dermatology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Nicole Oparaugo
- David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA, United States
| | - George W. Agak
- Division of Dermatology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- *Correspondence: George W. Agak,
| |
Collapse
|
27
|
Lee JH, Kim YG, Park S, Hu L, Lee J. Phytopigment Alizarin Inhibits Multispecies Biofilm Development by Cutibacterium acnes, Staphylococcus aureus, and Candida albicans. Pharmaceutics 2022; 14:pharmaceutics14051047. [PMID: 35631633 PMCID: PMC9143108 DOI: 10.3390/pharmaceutics14051047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Acne vulgaris is a common chronic inflammatory skin disease involving Cutibacterium acnes with other skin commensals such as Staphylococcus aureus and Candida albicans in the anaerobic and lipid-rich conditions of pilosebaceous units. These microbes readily form multispecies biofilms that are tolerant of traditional antibiotics as well as host immune systems. The phytopigment alizarin was previously found to prevent biofilm formation by S. aureus and C. albicans strains under aerobic conditions. Hence, we hypothesized that alizarin might control C. acnes and multispecies biofilm development. We found that under anaerobic conditions, alizarin efficiently inhibited single biofilm formation and multispecies biofilm development by C. acnes, S. aureus, and C. albicans without inhibiting planktonic cell growth. Alizarin increased the hydrophilicities of S. aureus and C. albicans cells, decreased lipase production by S. aureus, diminished agglutination by C. acnes, and inhibited the aggregation of C. albicans cells. Furthermore, the co-administration of alizarin and antibiotics enhanced the antibiofilm efficacies of alizarin against C. acnes. A transcriptomic study showed that alizarin repressed the transcriptions of various biofilm-related genes such as lipase, hyaluronate lyase, adhesin/invasion-related, and virulence-related genes of C. acnes. Furthermore, alizarin at 100 µg/mL prevented C. acnes biofilm development on porcine skin. Our results show that alizarin inhibits multispecies biofilm development by acne-causing microbes and suggest it might be a useful agent for treating or preventing C. acnes-causing skin diseases.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
| | - Sunyoung Park
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
| | - Liangbin Hu
- School of Food & Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
- Correspondence: ; Tel.: +82-53-810-2533; Fax: +82-53-810-4631
| |
Collapse
|
28
|
Prasad SK, Bhat S, Shashank D, C R A, R S, Rachtanapun P, Devegowda D, Santhekadur PK, Sommano SR. Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Front Oncol 2022; 12:836004. [PMID: 35480118 PMCID: PMC9036991 DOI: 10.3389/fonc.2022.836004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven carcinogens. Lately, there has been in-depth research investigating carcinogenic capabilities of some bacteria. Reports indicate that chronic inflammation and harmful bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species (ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-dependent mechanisms and virulence factors have also been suspected of playing a vital role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore and establish the possible relationship between the two. With the growing concerns on anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial infections, it must be deemed critical to understand and identify carcinogenic bacteria, to establish their role in causing cancer.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Dharini Shashank
- Department of General Surgery, Adichunchanagiri Institute of Medical Sciences, Mandya, India
| | - Akshatha C R
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sindhu R
- Department of Microbiology, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Prasanna K Santhekadur
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
29
|
Stødkilde K, Nielsen JT, Petersen SV, Paetzold B, Brüggemann H, Mulder FAA, Andersen CBF. Solution Structure of the Cutibacterium acnes-Specific Protein RoxP and Insights Into Its Antioxidant Activity. Front Cell Infect Microbiol 2022; 12:803004. [PMID: 35223541 PMCID: PMC8873378 DOI: 10.3389/fcimb.2022.803004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cutibacterium acnes is a predominant bacterium on human skin and is generally regarded as commensal. Recently, the abundantly secreted protein produced by C. acnes, RoxP, was shown to alleviate radical-induced cell damage, presumably via antioxidant activity, which could potentially be harnessed to fortify skin barrier function. The aim of this study was to determine the structure of RoxP and elucidate the mechanisms behind its antioxidative effect. Here, we present the solution structure of RoxP revealing a compact immunoglobulin-like domain containing a long flexible loop which, in concert with the core domain, forms a positively charged groove that could function as a binding site for cofactors or substrates. Although RoxP shares structural features with cell-adhesion proteins, we show that it does not appear to be responsible for adhesion of C. acnes bacteria to human keratinocytes. We identify two tyrosine-containing stretches located in the flexible loop of RoxP, which appear to be responsible for the antioxidant activity of RoxP.
Collapse
Affiliation(s)
| | | | | | | | | | - Frans A A Mulder
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
30
|
Zhou Y, Deng W, Mo M, Luo D, Liu H, Jiang Y, Chen W, Xu C. Stimuli-Responsive Nanoplatform-Assisted Photodynamic Therapy Against Bacterial Infections. Front Med (Lausanne) 2021; 8:729300. [PMID: 34604266 PMCID: PMC8482315 DOI: 10.3389/fmed.2021.729300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial infections are common diseases causing tremendous deaths in clinical settings. It has been a big challenge to human beings because of the antibiotics abuse and the newly emerging microbes. Photodynamic therapy (PDT) is a reactive oxygen species-based therapeutic technique through light-activated photosensitizer (PS). Recent studies have highlighted the potential of PDT as an alternative method of antibacterial treatment for its broad applicability and high efficiency. However, there are some shortcomings due to the low selectivity and specificity of PS. Growing evidence has shown that drug delivery nanoplatforms have unique advantages in enhancing therapeutic efficacy of drugs. Particularly, stimuli-responsive nanoplatforms, as a promising delivery system, provide great opportunities for the effective delivery of PS. In the present mini-review, we briefly introduced the unique microenvironment in bacterial infection tissues and the application of PDT on bacterial infections. Then we review the stimuli-responsive nanoplatforms (including pH-, enzymes-, redox-, magnetic-, and electric-) used in PDT against bacterial infections. Lastly, some perspectives have also been proposed to further promote the future developments of antibacterial PDT.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenmin Deng
- Department of Clinical Pharmacy, The People's Hospital of Dianbai District, Maoming, China
| | - Mulan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dexu Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Houhe Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangdong-Hongkong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou, China.,Sydney Vital Translational Cancer Research Centre, Sydney, NSW, Australia
| | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Abstract
The human skin is our outermost layer and serves as a protective barrier against external insults. Advances in next generation sequencing have enabled the discoveries of a rich and diverse community of microbes - bacteria, fungi and viruses that are residents of this surface. The genomes of these microbes also revealed the presence of many secretory enzymes. In particular, proteases which are hydrolytic enzymes capable of protein cleavage and degradation are of special interest in the skin environment which is enriched in proteins and lipids. In this minireview, we will focus on the roles of these skin-relevant microbial secreted proteases, both in terms of their widely studied roles as pathogenic agents in tissue invasion and host immune inactivation, and their recently discovered roles in inter-microbial interactions and modulation of virulence factors. From these studies, it has become apparent that while microbial proteases are capable of a wide range of functions, their expression is tightly regulated and highly responsive to the environments the microbes are in. With the introduction of new biochemical and bioinformatics tools to study protease functions, it will be important to understand the roles played by skin microbial secretory proteases in cutaneous health, especially the less studied commensal microbes with an emphasis on contextual relevance.
Collapse
|
32
|
Fournière M, Bedoux G, Souak D, Bourgougnon N, Feuilloley MGJ, Latire T. Effects of Ulva sp. Extracts on the Growth, Biofilm Production, and Virulence of Skin Bacteria Microbiota: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes Strains. Molecules 2021; 26:4763. [PMID: 34443349 PMCID: PMC8401615 DOI: 10.3390/molecules26164763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/01/2022] Open
Abstract
Ulva sp. is known to be a source of bioactive compounds such as ulvans, but to date, their biological activity on skin commensal and/or opportunistic pathogen bacteria has not been reported. In this study, the effects of poly- and oligosaccharide fractions produced by enzyme-assisted extraction and depolymerization were investigated, for the first time in vitro, on cutaneous bacteria: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes. At 1000 μg/mL, poly- and oligosaccharide fractions did not affect the growth of the bacteria regarding their generation time. Polysaccharide Ulva sp. fractions at 1000 μg/mL did not alter the bacterial biofilm formation, while oligosaccharide fractions modified S. epidermidis and C. acnes biofilm structures. None of the fractions at 1000 μg/mL significantly modified the cytotoxic potential of S. epidermidis and S. aureus towards keratinocytes. However, poly- and oligosaccharide fractions at 1000 μg/mL induced a decrease in the inflammatory potential of both acneic and non-acneic C. acnes strains on keratinocytes of up to 39.8%; the strongest and most significant effect occurred when the bacteria were grown in the presence of polysaccharide fractions. Our research shows that poly- and oligosaccharide Ulva sp. fractions present notable biological activities on cutaneous bacteria, especially towards C. acnes acneic and non-acneic strains, which supports their potential use for dermo-cosmetic applications.
Collapse
Affiliation(s)
- Mathilde Fournière
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Djouhar Souak
- Laboratoire de Microbiologie Signaux et Microenvironnement LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| |
Collapse
|
33
|
Brüggemann H, Salar-Vidal L, Gollnick HPM, Lood R. A Janus-Faced Bacterium: Host-Beneficial and -Detrimental Roles of Cutibacterium acnes. Front Microbiol 2021; 12:673845. [PMID: 34135880 PMCID: PMC8200545 DOI: 10.3389/fmicb.2021.673845] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bacterial species Cutibacterium acnes (formerly known as Propionibacterium acnes) is tightly associated with humans. It is the dominant bacterium in sebaceous regions of the human skin, where it preferentially colonizes the pilosebaceous unit. Multiple strains of C. acnes that belong to phylogenetically distinct types can co-exist. In this review we summarize and discuss the current knowledge of C. acnes regarding bacterial properties and traits that allow host colonization and play major roles in host-bacterium interactions and also regarding the host responses that C. acnes can trigger. These responses can have beneficial or detrimental consequences for the host. In the first part of the review, we highlight and critically review disease associations of C. acnes, in particular acne vulgaris, implant-associated infections and native infections. Here, we also analyse the current evidence for a direct or indirect role of a C. acnes-related dysbiosis in disease development or progression, i.e., reduced C. acnes strain diversity and/or the predominance of a certain phylotype. In the second part of the review, we highlight historical and recent findings demonstrating beneficial aspects of colonization by C. acnes such as colonization resistance, immune system interactions, and oxidant protection, and discuss the molecular mechanisms behind these effects. This new insight led to efforts in skin microbiota manipulation, such as the use of C. acnes strains as probiotic options to treat skin disorders.
Collapse
Affiliation(s)
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Harald P. M. Gollnick
- Department of Dermatology and Venerology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
34
|
Spittaels KJ, van Uytfanghe K, Zouboulis CC, Stove C, Crabbé A, Coenye T. Porphyrins produced by acneic Cutibacterium acnes strains activate the inflammasome by inducing K + leakage. iScience 2021; 24:102575. [PMID: 34151228 PMCID: PMC8188554 DOI: 10.1016/j.isci.2021.102575] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 12/02/2022] Open
Abstract
Some Cutibacterium acnes subgroups dominate on healthy skin, whereas others are frequently acne associated. Here we provide mechanistic insights into this difference, using an anaerobic keratinocyte-sebocyte-C. acnes co-culture model. An acneic C. acnes strain as well as its porphyrins activates NRLP3 inflammasome assembly, whereas this was not observed with a non-acneic strain. Low levels of intracellular K+ in keratinocytes stimulated with extracted porphyrins or infected with the acneic strain were observed, identifying porphyrin-induced K+ leakage as trigger for inflammasome activation. Using a panel of C. acnes strains, we found that porphyrin production and IL-1β release are correlated and are higher in acneic strains. This demonstrates that the latter produce more porphyrins, which interact with the keratinocyte cell membrane, leading to K+ leakage, NLRP3 inflammasome activation, and IL-1β release and provides an explanation for the observation that some C. acnes strains are associated with healthy skin, whereas others dominate in acneic skin. We developed an anaerobic keratinocyte-sebocyte-C. acnes co-culture model Acneic C. acnes strains and their porphyrins activate NRLP3 inflammasome assembly Activation of the NRLP3 inflammasome is not observed in non-acneic strains Porphyrins from acneic C. acnes activate the inflammasome by inducing K+ leakage
Collapse
Affiliation(s)
- Karl-Jan Spittaels
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Katleen van Uytfanghe
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, 06847 Dessau, Germany
| | - Christophe Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
35
|
Rozas M, Hart de Ruijter A, Fabrega MJ, Zorgani A, Guell M, Paetzold B, Brillet F. From Dysbiosis to Healthy Skin: Major Contributions of Cutibacterium acnes to Skin Homeostasis. Microorganisms 2021; 9:628. [PMID: 33803499 PMCID: PMC8003110 DOI: 10.3390/microorganisms9030628] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cutibacterium acnes is the most abundant bacterium living in human, healthy and sebum-rich skin sites, such as the face and the back. This bacterium is adapted to this specific environment and therefore could have a major role in local skin homeostasis. To assess the role of this bacterium in healthy skin, this review focused on (i) the abundance of C. acnes in the skin microbiome of healthy skin and skin disorders, (ii) its major contributions to human skin health, and (iii) skin commensals used as probiotics to alleviate skin disorders. The loss of C. acnes relative abundance and/or clonal diversity is frequently associated with skin disorders such as acne, atopic dermatitis, rosacea, and psoriasis. C. acnes, and the diversity of its clonal population, contributes actively to the normal biophysiological skin functions through, for example, lipid modulation, niche competition and oxidative stress mitigation. Compared to gut probiotics, limited dermatological studies have investigated skin probiotics with skin commensal strains, highlighting their unexplored potential.
Collapse
Affiliation(s)
- Miquel Rozas
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Astrid Hart de Ruijter
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Maria Jose Fabrega
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Amine Zorgani
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Marc Guell
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Bernhard Paetzold
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Francois Brillet
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| |
Collapse
|
36
|
Mayslich C, Grange PA, Dupin N. Cutibacterium acnes as an Opportunistic Pathogen: An Update of Its Virulence-Associated Factors. Microorganisms 2021; 9:303. [PMID: 33540667 PMCID: PMC7913060 DOI: 10.3390/microorganisms9020303] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cutibacterium acnes is a member of the skin microbiota found predominantly in regions rich in sebaceous glands. It is involved in maintaining healthy skin and has long been considered a commensal bacterium. Its involvement in various infections has led to its emergence as an opportunist pathogen. Interactions between C. acnes and the human host, including the human skin microbiota, promote the selection of C. acnes strains capable of producing several virulence factors that increase inflammatory capability. This pathogenic property may be related to many infectious mechanisms, such as an ability to form biofilms and the expression of putative virulence factors capable of triggering host immune responses or enabling C. acnes to adapt to its environment. During the past decade, many studies have identified and characterized several putative virulence factors potentially involved in the pathogenicity of this bacterium. These virulence factors are involved in bacterial attachment to target cells, polysaccharide-based biofilm synthesis, molecular structures mediating inflammation, and the enzymatic degradation of host tissues. C. acnes, like other skin-associated bacteria, can colonize various ecological niches other than skin. It produces several proteins or glycoproteins that could be considered to be active virulence factors, enabling the bacterium to adapt to the lipophilic environment of the pilosebaceous unit of the skin, but also to the various organs it colonizes. In this review, we summarize current knowledge concerning characterized C. acnes virulence factors and their possible implication in the pathogenicity of C. acnes.
Collapse
Affiliation(s)
- Constance Mayslich
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
| | - Philippe Alain Grange
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
- Service de Dermatologie-Vénéréologie, Groupe Hospitalier APHP.5, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
| | - Nicolas Dupin
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
- Service de Dermatologie-Vénéréologie, Groupe Hospitalier APHP.5, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
| |
Collapse
|
37
|
Hudek R, Brobeil A, Brüggemann H, Sommer F, Gattenlöhner S, Gohlke F. Cutibacterium acnes is an intracellular and intra-articular commensal of the human shoulder joint. J Shoulder Elbow Surg 2021; 30:16-26. [PMID: 32741563 DOI: 10.1016/j.jse.2020.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/03/2020] [Accepted: 04/12/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cutibacterium acnes (C acnes) is a mysterious member of the shoulder microbiome and is associated with chronic postoperative complications and low-grade infections. Nevertheless, it is unclear whether it represents a contaminant or whether it accounts for true infections. Because it can persist intracellularly in macrophages at several body sites, it might in fact be an intra-articular commensal of the shoulder joint. METHODS In 23 consecutive, otherwise healthy patients (17 male, 6 female; 58 years) who had no previous injections, multiple specimens were taken from the intra-articular tissue during first-time arthroscopic and open shoulder surgery. The samples were investigated by cultivation, genetic phylotyping, and immunohistochemistry using C acnes-specific antibodies and confocal laser scanning microscopy. RESULTS In 10 patients (43.5%), cultures were C acnes-positive. Phylotype IA1 dominated the subcutaneous samples (71%), whereas type II dominated the deep tissue samples (57%). Sixteen of 23 patients (69.6%) were C acnes-positive by immunohistochemistry; in total, 25 of 40 samples were positive (62.5%). Overall, 56.3% of glenohumeral immunohistochemical samples, 62.5% of subacromial samples, and 75% of acromioclavicular (AC) joint samples were positive. In 62.5% of the tested patients, C acnes was detected immunohistochemically to reside intracellularly within stromal cells and macrophages. DISCUSSION These data indicate that C acnes is a commensal of the human shoulder joint, where it persists within macrophages and stromal cells. Compared with culture-based methods, immunohistochemical staining can increase C acnes detection. Phylotype II seems to be most prevalent in the deep shoulder tissue. The high detection rate of C acnes in osteoarthritic AC joints might link its intra-articular presence to the initiation of osteoarthritis.
Collapse
Affiliation(s)
- Robert Hudek
- Rhön-Klinikum Campus Bad Neustadt, Department for Shoulder and Elbow Surgery, Bad Neustadt a. d. Saale, Germany.
| | - Alexander Brobeil
- Justus-Liebig-University Gießen, Institute for Pathology, Gießen, Germany
| | | | - Frank Sommer
- Phillipps-University Marburg, Institute for Medical Microbiology and Hospital Hygiene, Marburg, Germany
| | | | - Frank Gohlke
- Rhön-Klinikum Campus Bad Neustadt, Department for Shoulder and Elbow Surgery, Bad Neustadt a. d. Saale, Germany
| |
Collapse
|
38
|
Anwar A, Kamran Ul Hassan S. Two Percentage of Ketoconazole Cream for the Treatment of Adult Female Acne: A Placebo-Controlled Trial. Cureus 2020; 12:e11581. [PMID: 33364105 PMCID: PMC7749847 DOI: 10.7759/cureus.11581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Introduction Our objective was to determine the efficacy of ketoconazole (KTZ) 2% cream for the treatment of mild adult female acne (AFA). Materials and methods This placebo-controlled trial was conducted in District Headquarters (DHQ) Teaching Hospital, Sahiwal, Pakistan. The study was completed in a period of January 2019-June 2020. A total of 60 females of age > 25 years having mild AFA were included. In Group I, the patients were advised to apply 2.0% KTZ cream covering the whole skin area twice daily for a period of eight weeks. In Group II (placebo group) patients, a topical cream containing propylene glycol was applied for similar period. After eight weeks, the cream was discontinued and participants were advised to use routine skincare products, and follow-up was done after two weeks. The main study outcome was reduction in the total count of acne lesions including both inflammatory and non-inflammatory lesions and overall success rate of treatment. Results Mean age was 36.2 ± 6.3 years in KTZ group versus 35.4 ± 6.5 years in control group. Mean duration of acne was 14.3 ± 7.3 years in KTZ group versus 15.1 ± 6.9 years in control group. Improvement in facial adult female acne scoring tool (AFAST) scale (AFAST-F) was observed in 13 (43.3%) patients in KTZ group and in only 4 (13.3%) patients in control group (p value = 0.009). Improvement in submandibular AFAST (AFAST-S) was observed in 12 (40.0%) patients in KTZ group and in eight (26.7%) patients in control group. The overall success rate of treatment was 14 (46.7%) in KTZ group versus 4 (13.3%) in control group (p value = 0.012). Conclusions In our study, we found significant improvement in reduction of acne lesions as well as complete recovery using 2.0% ketoconazole for the treatment of mild AFA. So KTZ can be used as a preferred treatment option for these patients.
Collapse
|
39
|
Fischer K, Tschismarov R, Pilz A, Straubinger S, Carotta S, McDowell A, Decker T. Cutibacterium acnes Infection Induces Type I Interferon Synthesis Through the cGAS-STING Pathway. Front Immunol 2020; 11:571334. [PMID: 33178195 PMCID: PMC7593769 DOI: 10.3389/fimmu.2020.571334] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Cutibacterium (previously Propionibacterium) acnes is an anaerobic, Gram-positive commensal of the human body. The bacterium has been associated with a variety of diseases, including acne vulgaris, prosthetic joint infections, prostate cancer, and sarcoidosis. The accumulation of C. acnes in diseases such as acne and prostate cancer has been shown to correlate with enhanced inflammation. While the C. acnes-induced proinflammatory axis, via NF-κB and MAPK signaling and inflammasome activation, has been investigated over the last few decades, the potential role of C. acnes in triggering the type I interferon (IFN-I) pathway has not been addressed. Our results show that C. acnes induces the IFN-I signaling axis in human macrophages by triggering the cGAS-STING pathway. In addition, IFN-I signaling induced by C. acnes strongly depends on the adapter protein TRIF in a non-canonical manner; these signaling events occurred in the absence of any detectable intracellular replication of the bacterium. Collectively, our results provide important insight into C. acnes-induced intracellular signaling cascades in human macrophages and suggest IFN-I as a factor in the etiology of C. acnes-induced diseases. This knowledge may be valuable for developing novel therapies targeting C. acnes in diseases where the accumulation of the bacterium leads to an inflammatory pathology.
Collapse
Affiliation(s)
- Katrin Fischer
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | | | - Andreas Pilz
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Susy Straubinger
- Department of Cancer Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Sebastian Carotta
- Department of Cancer Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Andrew McDowell
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Thomas Decker
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
40
|
Martin DR, Witten JC, Tan CD, Rodriguez ER, Blackstone EH, Pettersson GB, Seifert DE, Willard BB, Apte SS. Proteomics identifies a convergent innate response to infective endocarditis and extensive proteolysis in vegetation components. JCI Insight 2020; 5:135317. [PMID: 32544089 DOI: 10.1172/jci.insight.135317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Infective endocarditis is a life-threatening infection of heart valves and adjacent structures characterized by vegetations on valves and other endocardial surfaces, with tissue destruction and risk of embolization. We used high-resolution mass spectrometry to define the proteome of staphylococcal and non-staphylococcal vegetations and Terminal Amine Isotopic Labeling of Substrates (TAILS) to define their proteolytic landscapes. These approaches identified over 2000 human proteins in staphylococcal and non-staphylococcal vegetations. Individual vegetation proteomes demonstrated comparable profiles of quantitatively major constituents that overlapped with serum, platelet, and neutrophil proteomes. Staphylococcal vegetation proteomes resembled one another more than the proteomes of non-staphylococcal vegetations. TAILS demonstrated extensive proteolysis within vegetations, with numerous previously undescribed cleavages. Several proteases and pathogen-specific proteins, including virulence factors, were identified in most vegetations. Proteolytic peptides in fibronectin and complement C3 were identified as potential infective endocarditis biomarkers. Overlap of staphylococcal and non-staphylococcal vegetation proteomes suggests a convergent thrombotic and immune response to endocardial infection by diverse pathogens. However, the differences between staphylococcal and non-staphylococcal vegetations and internal variance within the non-staphylococcal group indicate that additional pathogen- or patient-specific effects exist. Pervasive proteolysis of vegetation components may arise from vegetation-intrinsic proteases and destabilize vegetations, contributing to embolism.
Collapse
Affiliation(s)
- Daniel R Martin
- Department of Biomedical Engineering, Lerner Research Institute
| | - James C Witten
- Department of Thoracic and Cardiovascular Surgery, Miller Family Heart and Vascular Institute
| | - Carmela D Tan
- Department of Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, and
| | - E Rene Rodriguez
- Department of Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, and
| | - Eugene H Blackstone
- Department of Thoracic and Cardiovascular Surgery, Miller Family Heart and Vascular Institute
| | - Gosta B Pettersson
- Department of Thoracic and Cardiovascular Surgery, Miller Family Heart and Vascular Institute
| | | | - Belinda B Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute
| |
Collapse
|
41
|
Kim HJ, Lee BJ, Kwon AR. The grease trap: uncovering the mechanism of the hydrophobic lid in Cutibacterium acnes lipase. J Lipid Res 2020; 61:722-733. [PMID: 32165394 PMCID: PMC7193963 DOI: 10.1194/jlr.ra119000279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/05/2020] [Indexed: 01/07/2023] Open
Abstract
Acne is one of the most common dermatological conditions, but the details of its pathology are unclear, and current management regimens often have adverse effects. Cutibacterium acnes is known as a major acne-associated bacterium that derives energy from lipase-mediated sebum lipid degradation. C. acnes is commensal, but lipase activity has been observed to differ among C. acnes types. For example, higher populations of the type IA strains are present in acne lesions with higher lipase activity. In the present study, we examined a conserved lipase in types IB and II that was truncated in type IA C. acnes strains. Closed, blocked, and open structures of C. acnes ATCC11828 lipases were elucidated by X-ray crystallography at 1.6-2.4 Å. The closed crystal structure, which is the most common form in aqueous solution, revealed that a hydrophobic lid domain shields the active site. By comparing closed, blocked, and open structures, we found that the lid domain-opening mechanisms of C. acnes lipases (CAlipases) involve the lid-opening residues, Phe-179 and Phe-211. To the best of our knowledge, this is the first structure-function study of CAlipases, which may help to shed light on the mechanisms involved in acne development and may aid in future drug design.
Collapse
Affiliation(s)
- Hyo Jung Kim
- College of Pharmacy,Woosuk University, Wanju 55338, Republic of Korea,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Ae-Ran Kwon
- Department of Beauty Care, College of Medical Science, Deagu Haany University, Gyeongsan 38610, Republic of Korea,To whom correspondence should be addressed. e-mail:
| |
Collapse
|
42
|
Catalase expression of Propionibacterium acnes may contribute to intracellular persistence of the bacterium in sinus macrophages of lymph nodes affected by sarcoidosis. Immunol Res 2020; 67:182-193. [PMID: 31187451 DOI: 10.1007/s12026-019-09077-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacterial catalase is important for intracellular survival of the bacteria. This protein of Propionibacterium acnes, one of possible causes of sarcoidosis, induces hypersensitive Th1 immune responses in sarcoidosis patients. We examined catalase expression in cultured P. acnes isolated from 19 sarcoid and 18 control lymph nodes and immunohistochemical localization of the protein in lymph nodes from 43 sarcoidosis and 102 control patients using a novel P. acnes-specific antibody (PAC) that reacts with the catalase protein, together with the previously reported P. acnes-specific PAB and TIG antibodies. High catalase expression of P. acnes cells was found during stationary phase in more isolates from sarcoid than from non-sarcoid lymph nodes and was associated with bacterial survival under H2O2-induced oxidative stress. In many sarcoid and some control lymph nodes, catalase expression was detected at the outer margins of PAB-reactive Hamazaki-Wesenberg (HW) bodies in sinus macrophages, the same location as catalase expression on the surface of cultured P. acnes and the same distribution as bacterial cell membrane-bound lipoteichoic acid in HW bodies. Some or no catalase expression was detected in sarcoid granulomas with PAB reactivity or in clustered paracortical macrophages packed with many PAB-reactive small-round bodies. HW bodies expressing catalase may be persistent P. acnes in sinus macrophages whereas PAB-reactive small-round bodies with undetectable catalase may be activated P. acnes proliferating in paracortical macrophages. Intracellular proliferation of P. acnes in paracortical macrophages may lead to granuloma formation by this commensal bacterium in sarcoidosis patients with Th1 hypersensitivity to certain P. acnes antigens, including catalase.
Collapse
|
43
|
Josse G, Mias C, Le Digabel J, Filiol J, Ipinazar C, Villaret A, Gomiero C, Bevilacqua M, Redoules D, Nocera T, Saurat J, Gontier E. High bacterial colonization and lipase activity in microcomedones. Exp Dermatol 2020; 29:168-176. [PMID: 31863492 PMCID: PMC7586799 DOI: 10.1111/exd.14069] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/28/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Although acne vulgaris has a multifactorial aetiology, comedogenesis and bacteria colonization of the pilosebaceous unit are known to play a major role in the onset of inflammatory acne lesions. However, many aspects remain poorly understood such as where and when is the early stage of the Propionibacterium acnes colonization in follicular unit? Our research aimed at providing a precise analysis of microcomedone's structure to better understand the interplay between Propionibacterium acnes and follicular units, and therefore, the role of its interplay in the formation of acne lesions. METHODS Microcomedones were sampled using cyanoacrylate skin surface stripping (CSSS). Their morphology was investigated with multiphoton imaging and their ultrastructure with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Bacterial lipase activity in the microcomedones was quantified using a dedicated enzymatic test as well as a Fourier Transform Infra-Red (FTIR) analysis. The porphyrin produced by bacteria was analysed with HPTLC and fluorescence spectroscopy. RESULTS The imaging analysis showed that microcomedones' structure resembles a pouch, whose interior is mostly composed of lipids with clusters of bacteria and whose outer shell is made up of corneocyte layers. The extensive bacteria colonization is clearly visible using TEM. Even after sampling, clear lipase activity was still seen in the microcomedone. A high correlation, r = .85, was observed between porphyrin content measured with HPTLC and with fluorescence spectroscopy. These observations show that microcomedones, which are generally barely visible clinically, already contain a bacterial colonization.
Collapse
Affiliation(s)
- Gwendal Josse
- Pierre Fabre LaboratoriesSkin Research CenterToulouseFrance
| | - Céline Mias
- Pierre Fabre LaboratoriesSkin Research CenterToulouseFrance
| | | | - Jérôme Filiol
- Pierre Fabre LaboratoriesSkin Research CenterToulouseFrance
| | - Célia Ipinazar
- Pierre Fabre LaboratoriesSkin Research CenterToulouseFrance
| | | | | | | | | | - Thérèse Nocera
- Pierre Fabre LaboratoriesSkin Research CenterToulouseFrance
| | - Jean‐Hilaire Saurat
- Department of Clinical Pharmacology and ToxicologyUniversity of GenevaGenevaSwitzerland
| | | |
Collapse
|
44
|
Chottawornsak N, Chongpison Y, Asawanonda P, Kumtornrut C. Topical 2% ketoconazole cream monotherapy significantly improves adult female acne: A double-blind, randomized placebo-controlled trial. J Dermatol 2019; 46:1184-1189. [PMID: 31599059 DOI: 10.1111/1346-8138.15113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022]
Abstract
The emergence of bacterial resistance is a global crisis. Prolonged use of antibiotics especially in acne is one issue of concern among dermatologists. Ketoconazole (KTZ) cream, a topical antifungal with anti-inflammatory and antiandrogenic actions, can decrease lipase activity of Cutibacterium acnes in vitro. We evaluated the efficacy and safety of KTZ cream in mild adult female acne (AFA) by conducting a randomized, double-blind, placebo-controlled trial using KTZ 2% and placebo cream twice daily for 10 weeks. We assessed the improvement of clinical severity, measured by AFA score graded by investigators and participants, and the change of acne count. Forty-one participants enrolled in our study. The proportion of participants with acne improvement from baseline (42.9% vs 9.5%, P = 0.015) and the success rate (45.0% vs 14.3%, P = 0.043) in the KTZ group were significantly higher than that of the placebo group. The most common adverse events were dryness and itching. The percentage change of acne count decreased significantly compared with baseline but did not differ statistically between the two groups (P = 0.268). We concluded that the KTZ monotherapy showed a plausible effect in improving AFA with excellent safety profile. It should be considered as a viable option for mild AFA treatment.
Collapse
Affiliation(s)
- Natcha Chottawornsak
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,The Thai Red Cross Society of Thailand, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Yuda Chongpison
- Research Affairs, Center for Excellence in Biostatistics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pravit Asawanonda
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,The Thai Red Cross Society of Thailand, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chanat Kumtornrut
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,The Thai Red Cross Society of Thailand, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
45
|
Borrel V, Thomas P, Catovic C, Racine PJ, Konto-Ghiorghi Y, Lefeuvre L, Duclairoir-Poc C, Zouboulis CC, Feuilloley MGJ. Acne and Stress: Impact of Catecholamines on Cutibacterium acnes. Front Med (Lausanne) 2019; 6:155. [PMID: 31355200 PMCID: PMC6635461 DOI: 10.3389/fmed.2019.00155] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022] Open
Abstract
Cutibacterium acnes (former Propionibacterium acnes), is a bacterium characterized by high genomic variability, consisting of four subtypes and six major ribotypes. Skin is the largest neuroendocrine organ of the human body and many cutaneous hormones and neurohormones can modulate bacterial physiology. Here, we investigated the effect of catecholamines, i.e., epinephrine and norepinephrine, on two representative strains of C. acnes, of which the genome has been fully sequenced, identified as RT4 acneic and RT6 non-acneic strains. Epinephrine and norepinephrine (10-6 M) had no impact on the growth of C. acnes but epinephrine increased RT4 and RT6 biofilm formation, as measured by crystal violet staining, whereas norepinephrine was only active on the RT4 strain. We obtained the same results by confocal microscopy with the RT4 strain, whereas there was no effect of either catecholamine on the RT6 strain. However, this strain was also sensitive to catecholamines, as shown by MATs tests, as epinephrine and norepinephrine affected its surface polarity. Flow cytometry studies revealed that epinephrine and norepinephrine are unable to induce major changes of bacterial surface properties and membrane integrity. Exposure of sebocytes to control or catecholamine-treated bacteria showed epinephrine and norepinephrine to have no effect on the cytotoxic or inflammatory potential of either C. acnes strains but to stimulate their effect on sebocyte lipid synthesis. Uriage thermal spring water was previously shown to inhibit biofilm production by C. acnes. We thus tested its effect after exposure of the bacteria to epinephrine and norepinephrine. The effect of the thermal water on the response of C. acnes to catecholamines depended on the surface on which the biofilm was grown. Finally, an in-silico study revealed the presence of a protein in the genome of C. acnes that shows homology with the catecholamine receptor of Escherichia coli and eukaryotes. This study suggests that C. acnes may play a role as a relay between stress mediators (catecholamines) and acne.
Collapse
Affiliation(s)
- Valérie Borrel
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Pauline Thomas
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Chloé Catovic
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Pierre-Jean Racine
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Luc Lefeuvre
- R&D Uriage Dermatological Laboratory, Neuilly sur Seine, France
| | - Cécile Duclairoir-Poc
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology, and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| |
Collapse
|
46
|
Lee YB, Byun EJ, Kim HS. Potential Role of the Microbiome in Acne: A Comprehensive Review. J Clin Med 2019; 8:jcm8070987. [PMID: 31284694 PMCID: PMC6678709 DOI: 10.3390/jcm8070987] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
Acne is a highly prevalent inflammatory skin condition involving sebaceous sties. Although it clearly develops from an interplay of multiple factors, the exact cause of acne remains elusive. It is increasingly believed that the interaction between skin microbes and host immunity plays an important role in this disease, with perturbed microbial composition and activity found in acne patients. Cutibacterium acnes (C. acnes; formerly called Propionibacterium acnes) is commonly found in sebum-rich areas and its over-proliferation has long been thought to contribute to the disease. However, information provided by advanced metagenomic sequencing has indicated that the cutaneous microbiota in acne patients and acne-free individuals differ at the virulent-specific lineage level. Acne also has close connections with the gastrointestinal tract, and many argue that the gut microbiota could be involved in the pathogenic process of acne. The emotions of stress (e.g., depression and anxiety), for instance, have been hypothesized to aggravate acne by altering the gut microbiota and increasing intestinal permeability, potentially contributing to skin inflammation. Over the years, an expanding body of research has highlighted the presence of a gut–brain–skin axis that connects gut microbes, oral probiotics, and diet, currently an area of intense scrutiny, to acne severity. This review concentrates on the skin and gut microbes in acne, the role that the gut–brain–skin axis plays in the immunobiology of acne, and newly emerging microbiome-based therapies that can be applied to treat acne.
Collapse
Affiliation(s)
- Young Bok Lee
- Department of Dermatology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Jung Byun
- Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea.
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| |
Collapse
|
47
|
Bouslimani A, da Silva R, Kosciolek T, Janssen S, Callewaert C, Amir A, Dorrestein K, Melnik AV, Zaramela LS, Kim JN, Humphrey G, Schwartz T, Sanders K, Brennan C, Luzzatto-Knaan T, Ackermann G, McDonald D, Zengler K, Knight R, Dorrestein PC. The impact of skin care products on skin chemistry and microbiome dynamics. BMC Biol 2019; 17:47. [PMID: 31189482 PMCID: PMC6560912 DOI: 10.1186/s12915-019-0660-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Use of skin personal care products on a regular basis is nearly ubiquitous, but their effects on molecular and microbial diversity of the skin are unknown. We evaluated the impact of four beauty products (a facial lotion, a moisturizer, a foot powder, and a deodorant) on 11 volunteers over 9 weeks. RESULTS Mass spectrometry and 16S rRNA inventories of the skin revealed decreases in chemical as well as in bacterial and archaeal diversity on halting deodorant use. Specific compounds from beauty products used before the study remain detectable with half-lives of 0.5-1.9 weeks. The deodorant and foot powder increased molecular, bacterial, and archaeal diversity, while arm and face lotions had little effect on bacterial and archaeal but increased chemical diversity. Personal care product effects last for weeks and produce highly individualized responses, including alterations in steroid and pheromone levels and in bacterial and archaeal ecosystem structure and dynamics. CONCLUSIONS These findings may lead to next-generation precision beauty products and therapies for skin disorders.
Collapse
Affiliation(s)
- Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA
| | - Ricardo da Silva
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Stefan Janssen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
- Department for Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Chris Callewaert
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
- Center for Microbial Ecology and Technology, Ghent University, 9000, Ghent, Belgium
| | - Amnon Amir
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathleen Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA
| | - Livia S Zaramela
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Ji-Nu Kim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Tara Schwartz
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Karenina Sanders
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Caitriona Brennan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92307, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92307, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92307, USA.
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
48
|
Propionibacterium acnes and Acne Vulgaris: New Insights from the Integration of Population Genetic, Multi-Omic, Biochemical and Host-Microbe Studies. Microorganisms 2019; 7:microorganisms7050128. [PMID: 31086023 PMCID: PMC6560440 DOI: 10.3390/microorganisms7050128] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/25/2022] Open
Abstract
The anaerobic bacterium Propionibacterium acnes is believed to play an important role in the pathophysiology of the common skin disease acne vulgaris. Over the last 10 years our understanding of the taxonomic and intraspecies diversity of this bacterium has increased tremendously, and with it the realisation that particular strains are associated with skin health while others appear related to disease. This extensive review will cover our current knowledge regarding the association of P. acnes phylogroups, clonal complexes and sequence types with acne vulgaris based on multilocus sequence typing of isolates, and direct ribotyping of the P. acnes strain population in skin microbiome samples based on 16S rDNA metagenomic data. We will also consider how multi-omic and biochemical studies have facilitated our understanding of P. acnes pathogenicity and interactions with the host, thus providing insights into why certain lineages appear to have a heightened capacity to contribute to acne vulgaris development, while others are positively associated with skin health. We conclude with a discussion of new therapeutic strategies that are currently under investigation for acne vulgaris, including vaccination, and consider the potential of these treatments to also perturb beneficial lineages of P. acnes on the skin.
Collapse
|
49
|
Borrel V, Gannesen AV, Barreau M, Gaviard C, Duclairoir-Poc C, Hardouin J, Konto-Ghiorghi Y, Lefeuvre L, Feuilloley MGJ. Adaptation of acneic and non acneic strains of Cutibacterium acnes to sebum-like environment. Microbiologyopen 2019; 8:e00841. [PMID: 30950214 PMCID: PMC6741132 DOI: 10.1002/mbo3.841] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cutibacterium acnes, former Proprionibacterium acnes, is a heterogeneous species including acneic bacteria such as the RT4 strain, and commensal bacteria such as the RT6 strain. These strains have been characterized by metagenomic analysis but their physiology was not investigated until now. Bacteria were grown in different media, brain heart infusion medium (BHI), reinforced clostridial medium (RCM), and in sebum like medium (SLM) specifically designed to reproduce the lipid rich environment of the sebaceous gland. Whereas the RT4 acneic strain showed maximal growth in SLM and lower growth in RCM and BHI, the RT6 non acneic strain was growing preferentially in RCM and marginally in SLM. These differences were correlated with the lipophilic surface of the RT4 strain and to the more polar surface of the RT6 strain. Both strains also showed marked differences in biofilm formation activity which was maximal for the RT4 strain in BHI and for the RT6 strain in SLM. However, cytotoxicity of both strains on HaCaT keratinocytes remained identical and limited. The RT4 acneic strain showed higher inflammatory potential than the RT6 non acneic strain, but the growth medium was without significant influence. Both bacteria were also capable to stimulate β‐defensine 2 secretion by keratinocytes but no influence of the bacterial growth conditions was observed. Comparative proteomics analysis was performed by nano LC‐MS/MS and revealed that whereas the RT4 strain only expressed triacylglycerol lipase, the principal C. acnes virulence factor, when it was grown in SLM, the RT6 strain expressed another virulence factor, the CAMP factor, exclusively when it was grown in BHI and RCM. This study demonstrates the key influence of growth conditions on virulence expression by C. acnesand suggest that acneic and non acneic strains are related to different environmental niches.
Collapse
Affiliation(s)
- Valérie Borrel
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Andrei V Gannesen
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France.,Laboratory of Viability of Microorganisms of Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnologies", Russian Academy of Sciences, Moscow, Russia
| | - Magalie Barreau
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | | | - Cécile Duclairoir-Poc
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Julie Hardouin
- Laboratory « Polymères, Biopolymères, Surfaces » (UMR 6270 CNRS), Proteomic Platform PISSARO University of Rouen, Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Luc Lefeuvre
- R&D Uriage Dermatologic Laboratory, Neuilly sur Seine, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| |
Collapse
|
50
|
Keshari S, Kumar M, Balasubramaniam A, Chang TW, Tong Y, Huang CM. Prospects of acne vaccines targeting secreted virulence factors of Cutibacterium acnes. Expert Rev Vaccines 2019; 18:433-437. [DOI: 10.1080/14760584.2019.1593830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sunita Keshari
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Manish Kumar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Arun Balasubramaniam
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Ting-Wei Chang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Yun Tong
- Department of Dermatology, School of Medicine, University of California, San Diego, CA, USA
| | - Chun-Ming Huang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
- Department of Dermatology, School of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|