1
|
Nannini G, Di Gloria L, Russo E, Sterrantino G, Kiros ST, Coppi M, Niccolai E, Baldi S, Ramazzotti M, Di Pilato V, Lagi F, Bartolucci G, Rossolini GM, Bartoloni A, Amedei A. Oral microbiota signatures associated with viremia and CD4 recovery in treatment-naïve HIV-1-infected patients. Microbes Infect 2024; 26:105339. [PMID: 38636822 DOI: 10.1016/j.micinf.2024.105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE Few reports focused on the role of oral microbiome diversity in HIV infection. We characterized the microbiota-immunity axis in a cohort of treatment-naïve HIV-1-infected patients undergoing antiretroviral therapy (ART) focusing on the oral microbiome (OM) and immunological responsivity. METHODS The sequencing of 16S rRNA V3-V4 hypervariable region was performed on salivary samples of 15 healthy control (HC) and 12 HIV + patients before starting ART and after reaching virological suppression. Then, we correlated the OM composition with serum cytokines and the Short Chain Fatty acids (SCFAs). RESULTS The comparison between HIV patients and HC oral microbiota showed differences in the bacterial α-diversity and richness. We documented a negative correlation between oral Prevotella and intestinal valeric acid at before starting ART and a positive correlation between oral Veillonella and gut acetic acid after reaching virological suppression. Finally, an increase in the phylum Proteobacteria was observed comparing saliva samples of immunological responders (IRs) patients against immunological non-responders (INRs). CONCLUSIONS For the first time, we described an increase in the oral pro-inflammatory Proteobacteria phylum in INRs compared to IRs. We provided more evidence that saliva could be a non-invasive and less expensive approach for research involving the oral cavity microbiome in HIV patients.
Collapse
Affiliation(s)
- Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical "Mario Serio", University of Florence, Florence 50134, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Gaetana Sterrantino
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Seble Tekle Kiros
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy; Clinical Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Marco Coppi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical "Mario Serio", University of Florence, Florence 50134, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Filippo Lagi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50019, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy; Clinical Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy; Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy.
| |
Collapse
|
2
|
Beall CJ, Lilly EA, Granada C, Treas K, Dubois KR, Hashmi SB, Vazquez JA, Hagensee ME, Griffen AL, Leys EJ, Fidel PL. Independent Effects of HIV and Antiretroviral Therapy on the Oral Microbiome Identified by Multivariate Analyses. mBio 2023; 14:e0040923. [PMID: 37071004 PMCID: PMC10294613 DOI: 10.1128/mbio.00409-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
The oral microbiome is an important predictor of health and disease. We recently reported significant yet modest effects of HIV under highly active antiretroviral therapy (ART) on the oral microbiome (bacterial and fungal) in a large cohort of HIV-positive (HIV+) and matched HIV-negative (HIV-) individuals. As it was unclear whether ART added to or masked further effects of HIV on the oral microbiome, the present study aimed to analyze the effects of HIV and ART independently, which also included HIV- subjects on preexposure prophylaxis (PrEP) therapy. Cross-sectional analyses of the effect of HIV devoid of ART (HIV+ ART- versus matched HIV- subjects) showed a significant effect on both the bacteriome and mycobiome (P < 0.024) after controlling for other clinical variables (permutational multivariate analysis of variance [PERMANOVA] of Bray-Curtis dissimilarity). Cross-sectional analyses evaluating the effects of ART (HIV+ ART+ versus HIV+ ART- subjects) revealed a significant effect on the mycobiome (P < 0.007) but not the bacteriome. In parallel longitudinal analyses, ART (before versus after the initiation of ART) had a significant effect on the bacteriome, but not the mycobiome, of HIV+ and HIV- PrEP subjects (P < 0.005 and P < 0.016, respectively). These analyses also revealed significant differences in the oral microbiome and several clinical variables between HIV- PrEP subjects (pre-PrEP) and the HIV-matched HIV- group (P < 0.001). At the species level, a small number of differences in both bacterial and fungal taxa were identified within the effects of HIV and/or ART. We conclude that the effects of HIV and ART on the oral microbiome are similar to those of the clinical variables but collectively are modest overall. IMPORTANCE The oral microbiome can be an important predictor of health and disease. For persons living with HIV (PLWH), HIV and highly active antiretroviral therapy (ART) may have a significant influence on their oral microbiome. We previously reported a significant effect of HIV with ART on both the bacteriome and mycobiome. It was unclear whether ART added to or masked further effects of HIV on the oral microbiome. Hence, it was important to evaluate the effects of HIV and ART independently. For this, multivariate cross-sectional and longitudinal oral microbiome analyses (bacteriome and mycobiome) were conducted within the cohort, including HIV+ ART+ subjects and HIV+ and HIV- (preexposure prophylaxis [PrEP]) subjects before and after the initiation of ART. While we report independent significant effects of HIV and ART on the oral microbiome, we conclude that their influence is similar to that of the clinical variables but collectively modest overall.
Collapse
Affiliation(s)
- Clifford J. Beall
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Elizabeth A. Lilly
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Center School of Dentistry, New Orleans, Louisiana, USA
| | - Carolina Granada
- Division of Infectious Diseases, Department of Medicine, Augusta University, Medical College of Georgia, Augusta, Georgia, USA
| | - Kelly Treas
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Center School of Dentistry, New Orleans, Louisiana, USA
| | - Kenneth R. Dubois
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Center School of Dentistry, New Orleans, Louisiana, USA
| | - Shahr B. Hashmi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Jose A. Vazquez
- Division of Infectious Diseases, Department of Medicine, Augusta University, Medical College of Georgia, Augusta, Georgia, USA
| | - Michael E. Hagensee
- Section of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Ann L. Griffen
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
- Division of Pediatric Dentistry, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Eugene J. Leys
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Paul L. Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Center School of Dentistry, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Georges FM, Do NT, Seleem D. Oral dysbiosis and systemic diseases. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.995423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this mini review is to investigate the connection between oral microbiome dysbiosis and systemic diseases. Many systemic conditions can have oral manifestations and cause worsening in oral diseases. For example, uncontrolled type 2 diabetes has been associated with worsening of periodontal disease. Other inflammatory diseases or autoimmune diseases may predispose to oral mucositis, mucosal ulcers, xerostomia, and higher susceptibility to oral infections. This review will outline common systemic diseases, such as metabolic, cardiovascular, and immunologic disorders as they relate to oral manifestations and changes in the oral microbiome composition.
Collapse
|
4
|
Russotto Y, Micali C, Pellicanò GF, Nunnari G, Venanzi Rullo E. HIV and Mediterranean Zoonoses: A Review of the Literature. Infect Dis Rep 2022; 14:694-709. [PMID: 36136825 PMCID: PMC9498920 DOI: 10.3390/idr14050075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
A zoonosis is an infectious disease that has jumped from a non-human animal to humans. Some zoonoses are very common in the Mediterranean area and endemic in specific regions, so they represent an important problem for public health. Human Immunodeficiency Virus (HIV) is a virus that has originated as a zoonosis and is now diffused globally, with the most significant numbers of infected people among the infectious diseases. Since the introduction of antiretroviral therapy (ART), the history for people living with HIV (PLWH) has changed drastically, and many diseases are now no different in epidemiology and prognosis as they are in not-HIV-infected people. Still, the underlying inflammatory state that is correlated with HIV and other alterations related to the infection itself can be a risk factor when infected with other bacteria, parasites or viruses. We reviewed the literature for infection by the most common Mediterranean zoonoses, such as Campylobacter, Salmonella, Brucella, Rickettsia, Borrelia, Listeria and Echinococcus, and a possible correlation with HIV. We included Monkeypox, since the outbreak of cases is becoming a concern lately. We found that HIV may be related with alterations of the microbiome, as for campylobacteriosis, and that there are some zoonoses with a significant prevalence in PLWH, as for salmonellosis.
Collapse
Affiliation(s)
- Ylenia Russotto
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Cristina Micali
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Giovanni Francesco Pellicanò
- Department of Human Pathology of the Adult and the Developmental Age “G. Barresi”, University of Messina, 98124 Messina, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Emmanuele Venanzi Rullo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| |
Collapse
|
5
|
Evaluation of Association of Oral Bacterial Profile with HBV and HCV Infection and T Lymphocyte Level in HIV-Positive Patients. Int J Dent 2022; 2022:8622181. [PMID: 35783688 PMCID: PMC9246570 DOI: 10.1155/2022/8622181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background This study was aimed to determine the oral bacterial profile of HIV-positive patients and their correlation with T lymphocyte and CD4 count and hepatitis B and C incidence. Methods In this study, 73 patients who were diagnosed HIV-positive and were referred to Shiraz HIV research center for routine dental treatment were enrolled. Demographic data including sex, ethnicity, CD4+ T cell, and T lymphocyte counts were collected from their medical records. Supragingival dental plaque and samples from the dorsal of the tongue were collected by sterile swabs. These samples were transferred to the microbiology laboratory of Jahrom University of Medical Sciences. After primary biochemical test of cultured samples, assessment of bacterial biofilms was done by DNA extraction. Real-time PCR with specific primer of each bacterial species was done, and assessment of the results of real time PCR led to determination of the species of the evaluated bacteria. The correlation of bacterial prevalence with hepatitis B and C was evaluated by chi-square test. Furthermore, Mann–Whitney test was used to evaluate the association of bacterial species prevalence with CD4 and T lymphocyte level. Results The prevalence of none of the detected bacteria had statistically significant relationship with hepatitis C, except for Peptostreptococcaceae (p value = 0.016) in the tongue plaque and Leptotrichia (p value = 0.022) in dental plaque. None of the evaluated bacteria showed any significant association with CD4 and T lymphocytes level, except for Kingella (p value = 0.025, 0.019, respectively), and also no significant correlation was reported with CD4, except for Gemella (p value = 0.021) and Campylobacter gracilis (p value = 0.029). Conclusions The diversity of the detected bacteria was more in dental plaque, while their density was more noticeable in the tongue plaque. No significant correlation was found between the prevalence of most of the detected bacteria and CD4 level and T lymphocyte level and incidence of hepatitis B and C.
Collapse
|
6
|
Hao Z, Zhu Y, Fu Y, Yang J, Meng C, Dong C, Liu H. Effects of Long-Term Enclosed Environment on Human Health Based on the Analysis of Salivary Microbiota and Cytokines. Microbiol Spectr 2022; 10:e0025422. [PMID: 35254118 PMCID: PMC9045383 DOI: 10.1128/spectrum.00254-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
The long-term exposure to enclosed environments may lead to chronic stress in crewmembers and affect their physical and mental state. Salivary microbiome and biomarkers of immune function are increasingly used in human health research. The "Lunar Palace 365" project, which was a 370-day, multicrew, enclosed experiment carried out in a ground-based bioregenerative life support system platform named Lunar Palace 1 (LP1). We investigated the temporal dynamics of the salivary microbiota and cytokines in the third phase of the "Lunar Palace 365" experiment, including 1 month before entering LP1 and 1 month after leaving Lp1. Results reveal no regular temporal change pattern in these parameters (highly abundant phyla and genera) during the experiment. Although the crewmembers' oral microbiota temporally changed, it recovered quickly after the study subjects left the enclosed environment. The levels of IL-6, IL-10, and TNF-α in crewmembers' saliva decreased after leaving the normal environment for the enclosed environment, indicating that their oral inflammatory response level was reduced. There were significant individual differences in crewmembers' salivary microbiota, however, the shared living space reduced these differences. Moreover, air microbiota might have also played a significant role in reducing the individual differences. In summary, the enclosed environment did not result in persistent changes in human salivary microbiota and oral immunity. This study provides some insights for studying the effect of enclosed controlled environments on human immunity and microbiome. IMPORTANCE Long-term exposure to space environments may influence the human microbiome, the human immune system, and the intricate balance between the two, causing impaired immunity and increased disease susceptibility. It was previously believed that the main potential factors of long-term spaceflight on human health were microgravity and radiation. However, the effects of long-term enclosed environments on human health were unclear. Bioregenerative life support systems (BLSS) is a good experimental model for studying the effects of enclosed environments on human systemic microbiota and immune disorders. We monitored the microbiota and cytokines in the saliva of crewmembers before they entered BLSS, during their stay in BLSS, and after leaving BLSS. The results indicated long-term closed environment will not cause persistent changes in human salivary microbiota and immunity.
Collapse
Affiliation(s)
- Zikai Hao
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Yinzhen Zhu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuming Fu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, China
| | - Jianlou Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chen Meng
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chen Dong
- Laboratory of Sport Nutrition and Intelligent Cooking, Shandong Sport University, Jinan, China
| | - Hong Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
7
|
Jafari N, Khoradmehr A, Moghiminasr R, Seyed Habashi M. Mesenchymal Stromal/Stem Cells-Derived Exosomes as an Antimicrobial Weapon for Orodental Infections. Front Microbiol 2022; 12:795682. [PMID: 35058912 PMCID: PMC8764367 DOI: 10.3389/fmicb.2021.795682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 11/14/2022] Open
Abstract
The oral cavity as the second most various microbial community in the body contains a broad spectrum of microorganisms which are known as the oral microbiome. The oral microbiome includes different types of microbes such as bacteria, fungi, viruses, and protozoa. Numerous factors can affect the equilibrium of the oral microbiome community which can eventually lead to orodental infectious diseases. Periodontitis, dental caries, oral leukoplakia, oral squamous cell carcinoma are some multifactorial infectious diseases in the oral cavity. In defending against infection, the immune system has an essential role. Depending on the speed and specificity of the reaction, immunity is divided into two different types which are named the innate and the adaptive responses but also there is much interaction between them. In these responses, different types of immune cells are present and recent evidence demonstrates that these cell types both within the innate and adaptive immune systems are capable of secreting some extracellular vesicles named exosomes which are involved in the response to infection. Exosomes are 30-150 nm lipid bilayer vesicles that consist of variant molecules, including proteins, lipids, and genetic materials and they have been associated with cell-to-cell communications. However, some kinds of exosomes can be effective on the pathogenicity of various microorganisms and promoting infections, and some other ones have antimicrobial and anti-infective functions in microbial diseases. These discrepancies in performance are due to the origin of the exosome. Exosomes can modulate the innate and specific immune responses of host cells by participating in antigen presentation for activation of immune cells and stimulating the release of inflammatory factors and the expression of immune molecules. Also, mesenchymal stromal/stem cells (MSCs)-derived exosomes participate in immunomodulation by different mechanisms. Ease of expansion and immunotherapeutic capabilities of MSCs, develop their applications in hundreds of clinical trials. Recently, it has been shown that cell-free therapies, like exosome therapies, by having more advantages than previous treatment methods are emerging as a promising strategy for the treatment of several diseases, in particular inflammatory conditions. In orodental infectious disease, exosomes can also play an important role by modulating immunoinflammatory responses. Therefore, MSCs-derived exosomes may have potential therapeutic effects to be a choice for controlling and treatment of orodental infectious diseases.
Collapse
Affiliation(s)
- Nazanin Jafari
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Moghiminasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mina Seyed Habashi
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
8
|
Coker MO, Akhigbe P, Osagie E, Idemudia NL, Igedegbe O, Chukwumah N, Adebiyi R, Mann AE, O'Connell LM, Obuekwe O, Omoigberale A, Charurat ME, Richards VP. Dental caries and its association with the oral microbiomes and HIV in young children-Nigeria (DOMHaIN): a cohort study. BMC Oral Health 2021; 21:620. [PMID: 34863179 PMCID: PMC8642767 DOI: 10.1186/s12903-021-01944-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
Background This study seeks to understand better the mechanisms underlying the increased risk of caries in HIV-infected school-aged Nigerian children by examining the relationship between the plaque microbiome and perinatal HIV infection and exposure. We also seek to investigate how perinatal HIV infection and exposure impact tooth-specific microbiomes' role on caries disease progression. Methods The participants in this study were children aged 4 to 11 years recruited from the University of Benin Teaching Hospital (UBTH), Nigeria, between May to November 2019. Overall, 568 children were enrolled in three groups: 189 HIV-infected (HI), 189 HIV-exposed but uninfected (HEU) and 190 HIV-unexposed and uninfected (HUU) as controls at visit 1 with a 2.99% and 4.90% attrition rate at visit 2 and visit 3 respectively. Data were obtained with standardized questionnaires. Blood samples were collected for HIV, HBV and HCV screening; CD4, CD8 and full blood count analysis; and plasma samples stored for future investigations; oral samples including saliva, buccal swabs, oropharyngeal swab, tongue swab, dental plaque were collected aseptically from participants at different study visits. Conclusions Results from the study will provide critical information on how HIV exposure, infection, and treatment, influence the oral microbiome and caries susceptibility in children. By determining the effect on community taxonomic structure and gene expression of dental microbiomes, we will elucidate mechanisms that potentially create a predisposition for developing dental caries. As future plans, the relationship between respiratory tract infections, immune and inflammatory markers with dental caries in perinatal HIV infection and exposure will be investigated. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01944-y.
Collapse
Affiliation(s)
- Modupe O Coker
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, 110 Bergen Street, Room C-845, Newark, NJ, 07103, USA. .,Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria.
| | - Paul Akhigbe
- Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria
| | - Esosa Osagie
- Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria
| | - Nosakhare L Idemudia
- Medical Microbiology Division, Medical Laboratory Services, University of Benin Teaching Hospital, Benin City, Nigeria
| | - Oghenero Igedegbe
- Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria
| | - Nneka Chukwumah
- Department of Preventive Dentistry, University of Benin, Benin City, Nigeria
| | - Ruxton Adebiyi
- Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria
| | - Allison E Mann
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | - Ozo Obuekwe
- Department of Oral and Maxillofacial Surgery, University of Benin, Benin City, Nigeria
| | | | - Manhattan E Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
9
|
Perez Rosero E, Heron S, Jovel J, O'Neil CR, Turvey SL, Parashar P, Elahi S. Differential Signature of the Microbiome and Neutrophils in the Oral Cavity of HIV-Infected Individuals. Front Immunol 2021; 12:780910. [PMID: 34858437 PMCID: PMC8630784 DOI: 10.3389/fimmu.2021.780910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
HIV infection is associated with a wide range of changes in microbial communities and immune cell components of the oral cavity. The purpose of this study was to evaluate the oral microbiome in relationship to oral neutrophils in HIV-infected compared to healthy individuals. We evaluated oral washes and saliva samples from HIV-infected individuals (n=52) and healthy controls (n=43). Using 16S-rRNA gene sequencing, we found differential β-diversity using Principal Coordinate Analysis (PCoA) with Bray-Curtis distances. The α-diversity analysis by Faith’s, Shannon, and observed OTUs indexes indicated that the saliva samples from HIV-infected individuals harbored significantly richer bacterial communities compared to the saliva samples from healthy individuals. Notably, we observed that five species of Spirochaeta including Spirochaetaceae, Spirochaeta, Treponema, Treponema amylovorum, and Treponema azotonutricum were significantly abundant. In contrast, Helicobacter species were significantly reduced in the saliva of HIV-infected individuals. Moreover, we found a significant reduction in the frequency of oral neutrophils in the oral cavity of HIV-infected individuals, which was positively related to their CD4+ T cell count. In particular, we noted a significant decline in CD44 expressing neutrophils and the intensity of CD44 expression on oral neutrophils of HIV-infected individuals. This observation was supported by the elevation of soluble CD44 in the saliva of HIV-infected individuals. Overall, the core oral microbiome was distinguishable between HIV-infected individuals on antiretroviral therapy compared to the HIV-negative group. The observed reduction in oral neutrophils might likely be related to the low surface expression of CD44, resulting in a higher bacterial diversity and richness in HIV-infected individuals.
Collapse
Affiliation(s)
| | - Samantha Heron
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Juan Jovel
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Conar R O'Neil
- Department of Medicine, Division of Infectious Disease, University of Alberta, Edmonton, AB, Canada
| | - Shannon Lee Turvey
- Department of Medicine, Division of Infectious Disease, University of Alberta, Edmonton, AB, Canada
| | - Pallavi Parashar
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Barbi W, Shalini K, Kumari A, Raaj V, Gupta H, Gauniyal P, Rangari P. Assessment of Oral Health and Prevalence of oral Conditions in Human Immunodeficiency Virus-infected Subjects Visiting Antiretroviral Therapy Centers. J Pharm Bioallied Sci 2021; 13:S1470-S1473. [PMID: 35018012 PMCID: PMC8686892 DOI: 10.4103/jpbs.jpbs_256_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 05/09/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Weakened immune system from acquired immunodeficiency syndrome (AIDS) makes the individual prone to various opportunistic infections which are life-threatening including various carcinomas and disorders affecting the neurological system. AIMS The present trial was done to assess the prevalence of oral presentations and treatment needs in AIDS/human immunodeficiency virus (HIV)-infected subjects visiting antiretroviral therapy centers. MATERIALS AND METHODS The study included 126 subjects. Oral cavity was assessed and dentition, periodontal condition, and lesions and conditions affecting the oral mucosa were identified along with their treatment needs. The collected data were subjected to statistical evaluation and the results were formulated. RESULTS Candidiasis was seen in 25.39% (n = 32) of total subjects. Concerning the periodontal status of HIV-infected study population, it was seen that maximum attachment loss both in males and females was within the range of 0-3 mm. Regarding decayed, missing, and filled teeth scores, these were statistically significantly higher in males (P = 0.001). CONCLUSION The present study concluded that the majority of subjects infected with HIV present one or more oral presentation and lesion, with candidiasis being the most common condition.
Collapse
Affiliation(s)
- Wagisha Barbi
- Senior Resident, Department of Dentistry, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Kumari Shalini
- Department of Oral Medicine and Radiology, Hazaribag College of Dental Sciences and Hospital, Hazaribag, Jharkhand, India
| | - Anjali Kumari
- Reader, Department of oral medicine and radiology, Buddha Institute Of Dental Sciences And Hospital, Patna, Bihar, India
| | - Vaibhava Raaj
- Department of Periodontics, Dental Officer, ECHS Polyclinic, Ministry of Defence, Hajipur, Vaishali, Bihar, India
| | - Hitesh Gupta
- Department Of Conservative Dentistry And Endodontics, Himachal Institute Of Dental Sciences, Paonta Sahib, Himachal Pradesh, India,Address for correspondence: Dr. Hitesh Gupta, Professor, Department of Conservative Dentistry and Endodontics, Himachal Institute of Dental Science, Paonta Sahib, Himachal Pradesh, India. E-mail:
| | - Preeti Gauniyal
- Department of Microbiology, Himachal institute of dental sciences, Paonta sahib, Himachal Pradesh, India
| | - Priyadarshini Rangari
- Associate professor, Department of Dentistry, Sri Shankaracharya Medical College, Bhilai, Durg Chhattisgarh, India
| |
Collapse
|
11
|
Coker MO, Cairo C, Garzino-Demo A. HIV-Associated Interactions Between Oral Microbiota and Mucosal Immune Cells: Knowledge Gaps and Future Directions. Front Immunol 2021; 12:676669. [PMID: 34616391 PMCID: PMC8488204 DOI: 10.3389/fimmu.2021.676669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
Even with sustained use of antiretroviral therapy (ART), HIV-infected individuals have an increased risk of systemic comorbid conditions and oral pathologies, including opportunistic infections, oral mucosal inflammation, and gingival and periodontal diseases. The immune-mediated mechanisms that drive this increased risk, in the context of sustained viral suppression, are unclear. HIV infection, even when controlled, alters microbial communities contributing to a chronic low-grade inflammatory state that underlies these non-HIV co-morbidities. The higher prevalence of dental caries, and mucosal and periodontal inflammation reported in HIV-infected individuals on ART is often associated with differentially abundant oral microbial communities, possibly leading to a heightened susceptibility to inflammation. This mini-review highlights current gaps in knowledge regarding the microbe-mediated oral mucosal immunity with HIV infection while discussing opportunities for future research investigations and implementation of novel approaches to elucidate these gaps. Interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-infected individuals. More broadly, additional research is needed to bolster general models of microbiome-mediated chronic immune activation and aid the development of precise microbiota-targeted interventions to reverse or mitigate adverse outcomes.
Collapse
Affiliation(s)
- Modupe O Coker
- Department of Oral Biology, School of Dental Medicine at Rutgers, Newark, NJ, United States.,Department of Epidemiology, School of Public Health at Rutgers, Newark, NJ, United States
| | - Cristiana Cairo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alfredo Garzino-Demo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Ali Mohammed MM, Al Kawas S, Al-Qadhi G. Tongue-coating microbiome as a cancer predictor: A scoping review. Arch Oral Biol 2021; 132:105271. [PMID: 34610507 DOI: 10.1016/j.archoralbio.2021.105271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The tongue microbiome has emerged as a non-invasive diagnostic and tracking prognostic tool in the detection of diseases mainly cancer. This scoping review aimed to identify the association between tongue microbiome and pre-cancer or cancer lesions. DESIGN A comprehensive electronic database search including PubMed, Web of Science, and Scopus was undertaken up to March 2021, without language or date restrictions. This review was conducted following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guideline. All observational studies that compared microbial community on the dorsal surface of the tongue between cancer or precancerous cases and healthy controls using NGS techniques were included. RESULTS Of 274 records identified, nine studies were eligible to be included. Despite the inconsistent observations in terms of diversity and richness, most studies reported alteration in bacterial communities between pre-cancer or cancer cases and control groups. The bacterial profile among cases was so far correlated at the phylum level with a noticeable diverse degree at the genus level. The majority of included studies reported a higher abundance of certain kinds of microorganisms as compared to healthy participants including Firmicutes, Fusobacteria and Actinobacteria at phyla level as well as Streptococcus, Actinomyces, Leptotrichia, Campylobacter, and Fusobacterium at the genus level. CONCLUSION The alteration of the tongue microbial community has been associated with several diseases mainly cancer. So, the tongue microbiome may serve as a promising diagnostic tool or as a long-term monitor in precancerous or cancer cases.
Collapse
Affiliation(s)
- Marwan Mansoor Ali Mohammed
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates.
| | - Sausan Al Kawas
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates.
| | - Gamilah Al-Qadhi
- Department of Basic Dental Sciences, Faculty of Dentistry, University of Science and Technology, Yemen.
| |
Collapse
|
13
|
Li S, Zhu J, Su B, Wei H, Chen F, Liu H, Wei J, Yang X, Zhang Q, Xia W, Wu H, He Q, Zhang T. Alteration in Oral Microbiome Among Men Who Have Sex With Men With Acute and Chronic HIV Infection on Antiretroviral Therapy. Front Cell Infect Microbiol 2021; 11:695515. [PMID: 34336719 PMCID: PMC8317457 DOI: 10.3389/fcimb.2021.695515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the antiretroviral therapy (ART), human immunodeficiency virus (HIV)-related oral disease remains a common problem for people living with HIV (PLWH). Evidence suggests that impairment of immune function in HIV infection might lead to the conversion of commensal bacteria to microorganisms with increased pathogenicity. However, limited information is available about alteration in oral microbiome in PLWH on ART. We performed a longitudinal comparative study on men who have sex with men (MSM) with acute HIV infection (n=15), MSM with chronic HIV infection (n=15), and HIV-uninfected MSM controls (n=15). Throat swabs were collected when these subjects were recruited (W0) and 12 weeks after ART treatment (W12) from the patients. Genomic DNAs were extracted and 16S rRNA gene sequencing was performed. Microbiome diversity was significantly decreased in patients with acute and chronic HIV infections compared with those in controls at the sampling time of W0 and the significant difference remained at W12. An increased abundance of unidentified Prevotellaceae was found in patients with acute and chronic HIV infections. Moreover, increased abundances of Prevotella in subjects with acute HIV infection and Streptococcus in subjects with chronic HIV infection were observed. In contrast, greater abundance in Lactobacillus, Rothia, Lautropia, and Bacteroides was found in controls. After effective ART, Bradyrhizobium was enriched in both acute and chronic HIV infections, whereas in controls, Lactobacillus, Rothia, Clostridia, Actinobacteria, and Ruminococcaceae were enriched. In addition, we found that lower CD4+ T-cell counts (<200 cells/mm3) were associated with lower relative abundances of Haemophilus, Actinomyces, unidentified Ruminococcaceae, and Rothia. This study has shown alteration in oral microbiome resulting from HIV infection and ART. The results obtained warrant further studies in a large number of subjects with different ethnics. It might contribute to improved oral health in HIV-infected individuals.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junping Zhu
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huanhuan Wei
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Fei Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Hongshan Liu
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiuyue Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku, Finland
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Schissel M, Best R, Liesemeyer S, Tan YD, Carlson DJ, Shaffer JJ, Avuthu N, Guda C, Carlson KA. Effect of Nora virus infection on native gut bacterial communities of Drosophila melanogaster. AIMS Microbiol 2021; 7:216-237. [PMID: 34250376 PMCID: PMC8255909 DOI: 10.3934/microbiol.2021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal microflora is a key component in the maintenance of health and longevity across many species. In humans and mice, nonpathogenic viruses present in the gastrointestinal tract enhance the effects of the native bacterial microbiota. However, it is unclear whether nonpathogenic gastrointestinal viruses, such as Nora virus that infects Drosophila melanogaster, lead to similar observations. Longevity analysis of Nora virus infected (NV+) and uninfected (NV-) D. melanogaster in relationship to presence (B+) or absence (B-) of the native gut bacteria using four different treatment groups, NV+/B+, NV+/B-, NV-/B+, and NV-/B-, was conducted. Data from the longevity results were tested via Kaplan-Meier analysis and demonstrated that Nora virus can be detrimental to the longevity of the organism, whereas bacterial presence is beneficial. These data led to the hypothesis that gastrointestinal bacterial composition varies from NV+ to NV- flies. To test this, NV+ and NV- virgin female flies were collected and aged for 4 days. Surface sterilization followed by dissections of the fat body and the gastrointestinal tract, divided into crop (foregut), midgut, and hindgut, were performed. Ribosomal 16S DNA samples were sequenced to determine the bacterial communities that comprise the microflora in the gastrointestinal tract of NV+ and NV- D. melanogaster. When analyzing operational taxonomic units (OTUs), the data demonstrate that the NV+ samples consist of more OTUs than NV- samples. The NV+ samples were both more rich and diverse in OTUs compared to NV-. When comparing whole body samples to specific organs and organ sections, the whole fly was more diverse in OTUs, whereas the crop was the most rich. These novel data are pertinent in describing where Nora virus infection may be occurring within the gastrointestinal tract, as well as continuing discussion between the relationship of persistent viral and bacterial interaction.
Collapse
Affiliation(s)
- Makayla Schissel
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Rebecca Best
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Shelby Liesemeyer
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Yuan-De Tan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Darby J. Carlson
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Julie J. Shaffer
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Nagavardhini Avuthu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Kimberly A. Carlson
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| |
Collapse
|
15
|
Salivary microbial diversity at different stages of human immunodeficiency virus infection. Microb Pathog 2021; 155:104913. [PMID: 33915204 DOI: 10.1016/j.micpath.2021.104913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) disrupts the host microbial balance. During disease progression, the oral microbial environment is altered in untreated people living with HIV/AIDS (PLWHA); however, no studies have reported changes in salivary microbial diversity during different stages of HIV infection. Therefore, in this study, we aimed to assess the relationships between immune dysfunction and changes in saliva microbiota. To this end, we collected saliva samples from 11 HIV-negative individuals and 44 PLWHA during different stages based on the Centers for Disease Control and Prevention criteria (stage 0, early stage during the first 6 months after infection; stages 1, 2, and 3 associated with CD4+ T-lymphocyte counts of ≥500, 200-499, and ≤200 or opportunistic infection, respectively). We analyzed salivary microbial community diversity using polymerase chain reaction amplification and Illumina MiSeq sequencing. We found that HIV-positive individuals had significantly greater alpha-diversity in the microbial community composition compared with HIV-negative controls (P < 0.05) except for AIDS (stage 3); however, the predominant salivary microbiota in the five groups remained similar. Porphyromonas in the four positive groups was the only genus that was significantly less abundant in the HIV-positive groups than in the control group (P < 0.05). There were some consistencies between the general abundance of salivary microbiota and AIDS disease progression. Lots of bacterial abundances in the saliva increased dramatically during the acute HIV infection (stage 0), and some of the negligible and abnormally proliferating bacteria in the asymptomatic stage showed a downward trend. Additionally, in the AIDS stage, partial inhibition was observed. Notably, Porphyromonas was closely related to the immune activation of HIV, showing a decline in abundance once infected with HIV. Solobacterium, which induces inflammation, was negatively correlated with CD4 counts. Overall, our findings provided important insights into changes in salivary microbial diversity in PLWHA.
Collapse
|
16
|
Abstract
The oral microbiome is likely a key element of homeostasis in the oral cavity. With >600 bacterial species and >160 fungal species comprising the oral microbiome, influences on its composition can have an impact on both local and systemic health. The oral microbiome is considered an important factor in health and disease. We recently reported significant effects of HIV and several other clinical variables on the oral bacterial communities in a large cohort of HIV-positive and -negative individuals. The purpose of the present study was to similarly analyze the oral mycobiome in the same cohort. To identify fungi, the internal transcribed spacer 2 (ITS2) of the fungal rRNA genes was sequenced using oral rinse samples from 149 HIV-positive and 88 HIV-negative subjects that had previously undergone bacterial amplicon sequencing. Quantitative PCR was performed for total fungal content and total bacterial content. Interestingly, samples often showed predominance of a single fungal species with four major clusters predominated by Candida albicans, Candida dubliniensis, Malassezia restricta, or Saccharomyces cerevisiae. Quantitative PCR analysis showed the Candida-dominated sample clusters had significantly higher total fungal abundance than the Malassezia or Saccharomyces species. Of the 25 clinical variables evaluated for potential influences on the oral mycobiome, significant effects were associated with caries status, geographical site of sampling, sex, HIV under highly active antiretroviral therapy (HAART), and missing teeth, in rank order of statistical significance. Investigating specific interactions between fungi and bacteria in the samples often showed Candida species positively correlated with Firmicutes or Actinobacteria and negatively correlated with Fusobacteria, Proteobacteria, and Bacteroidetes. Our data suggest that the oral mycobiome, while diverse, is often dominated by a limited number of species per individual; is affected by several clinical variables, including HIV positivity and HAART; and shows genera-specific associations with bacterial groups.
Collapse
|
17
|
Srinivasan S, Beamer MA, Fiedler TL, Austin MN, Sizova MV, Strenk SM, Agnew KJ, Gowda GAN, Raftery D, Epstein SS, Fredricks DN, Hillier SL. Megasphaera lornae sp. nov., Megasphaera hutchinsoni sp. nov., and Megasphaera vaginalis sp. nov.: novel bacteria isolated from the female genital tract. Int J Syst Evol Microbiol 2021; 71. [PMID: 33616513 DOI: 10.1099/ijsem.0.004702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Six strictly anaerobic Gram-negative bacteria representing three novel species were isolated from the female reproductive tract. The proposed type strains for each species were designated UPII 199-6T, KA00182T and BV3C16-1T. Phylogenetic analyses based on 16S rRNA gene sequencing indicated that the bacterial isolates were members of the genus Megasphaera. UPII 199-6T and KA00182T had 16S rRNA gene sequence identities of 99.9 % with 16S rRNA clone sequences previously amplified from the human vagina designated as Megasphaera type 1 and Megasphaera type 2, members of the human vaginal microbiota associated with bacterial vaginosis, preterm birth and HIV acquisition. UPII 199-6T exhibited sequence identities ranging from 92.9 to 93.6 % with validly named Megasphaera isolates and KA00182T had 16S rRNA gene sequence identities ranging from 92.6-94.2 %. BV3C16-1T was most closely related to Megasphaera cerevisiae with a 16S rRNA gene sequence identity of 95.4 %. Cells were coccoid or diplococcoid, non-motile and did not form spores. Genital tract isolates metabolized organic acids but were asaccharolytic. The isolates also metabolized amino acids. The DNA G+C content for the genome sequences of UPII 199-6T, KA00182T and BV3C16-1T were 46.4, 38.9 and 49.8 mol%, respectively. Digital DNA-DNA hybridization and average nucleotide identity between the genital tract isolates and other validly named Megasphaera species suggest that each isolate type represents a new species. The major fatty acid methyl esters include the following: C12 : 0, C16 : 0, C16 : 0 dimethyl acetal (DMA) and summed feature 5 (C15 : 0 DMA and/or C14 : 0 3-OH) in UPII 199-6T; C16 : 0 and C16 : 1 cis 9 in KA00182T; C12 : 0; C14 : 0 3-OH; and summed feature 5 in BV3C16-1T. The isolates produced butyrate, isobutyrate, and isovalerate but there were specific differences including production of formate and propionate. Together, these data indicate that UPII 199-6T, KA00182T and BV3C16-1T represent novel species within the genus Megasphaera. We propose the following names: Megasphaera lornae sp. nov. for UPII 199-6T representing the type strain of this species (=DSM 111201T=ATCC TSD-205T), Megasphaera hutchinsoni sp. nov. for KA00182T representing the type strain of this species (=DSM 111202T=ATCC TSD-206T) and Megasphaera vaginalis sp. nov. for BV3C16-1T representing the type strain of this species (=DSM 111203T=ATCC TSD-207T).
Collapse
Affiliation(s)
- Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - May A Beamer
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Tina L Fiedler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Maria V Sizova
- Present address: Evelo Biosciences, 620 Memorial Drive, Cambridge, MA, USA.,Department of Biology, Northeastern University, Boston, MA, USA
| | - Susan M Strenk
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kathy J Agnew
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Washington Medical Center, Seattle, WA, USA
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center and Mitochondrial and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Daniel Raftery
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Northwest Metabolomics Research Center and Mitochondrial and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Slava S Epstein
- Department of Biology, Northeastern University, Boston, MA, USA
| | - David N Fredricks
- Department of Medicine, University of Washington, Seattle, WA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon L Hillier
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh, PA, USA.,Magee-Womens Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Gut Microbiome Profiles and Associated Metabolic Pathways in HIV-Infected Treatment-Naïve Patients. Cells 2021; 10:cells10020385. [PMID: 33668457 PMCID: PMC7917727 DOI: 10.3390/cells10020385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
The normal composition of the intestinal microbiota is a key factor for maintaining healthy homeostasis, and accordingly, dysbiosis is well known to be present in HIV-1 patients. This article investigates the gut microbiota profile of antiretroviral therapy-naive HIV-1 patients and healthy donors living in Latin America in a cohort of 13 HIV positive patients (six elite controllers, EC, and seven non-controllers, NC) and nine healthy donors (HD). Microbiota compositions in stool samples were determined by sequencing the V3-V4 region of the bacterial 16S rRNA, and functional prediction was inferred using PICRUSt. Several taxa were enriched in EC compared to NC or HD groups, including Acidaminococcus, Clostridium methylpentosum, Barnesiella, Eubacterium coprostanoligenes, and Lachnospiraceae UCG-004. In addition, our data indicate that the route of infection is an important factor associated with changes in gut microbiome composition, and we extend these results by identifying several metabolic pathways associated with each route of infection. Importantly, we observed several bacterial taxa that might be associated with different viral subtypes, such as Succinivibrio, which were more abundant in patients infected by HIV subtype B, and Streptococcus enrichment in patients infected by subtype C. In conclusion, our data brings a significant contribution to the understanding of dysbiosis-associated changes in HIV infection and describes, for the first time, differences in microbiota composition according to HIV subtypes. These results warrant further confirmation in a larger cohort of patients.
Collapse
|
19
|
Impact of long-term antiretroviral therapy on gut and oral microbiotas in HIV-1-infected patients. Sci Rep 2021; 11:960. [PMID: 33441754 PMCID: PMC7806981 DOI: 10.1038/s41598-020-80247-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
In HIV-1-infected patients, antiretroviral therapy (ART) is a key factor that may impact commensal microbiota and cause the emergence of side effects. However, it is not fully understood how long-term ART regimens have diverse impacts on the microbial compositions over time. Here, we performed 16S ribosomal RNA gene sequencing of the fecal and salivary microbiomes in patients under different long-term ART. We found that ART, especially conventional nucleotide/nucleoside reverse transcriptase inhibitor (NRTI)-based ART, has remarkable impacts on fecal microbial diversity: decreased α-diversity and increased ß-diversity over time. In contrast, dynamic diversity changes in the salivary microbiome were not observed. Comparative analysis of bacterial genus compositions showed a propensity for Prevotella-enriched and Bacteroides-poor gut microbiotas in patients with ART over time. In addition, we observed a gradual reduction in Bacteroides but drastic increases in Succinivibrio and/or Megasphaera under conventional ART. These results suggest that ART, especially NRTI-based ART, has more suppressive impacts on microbiota composition and diversity in the gut than in the mouth, which potentially causes intestinal dysbiosis in patients. Therefore, NRTI-sparing ART, especially integrase strand transfer inhibitor (INSTI)- and/or non-nucleotide reverse transcriptase inhibitor (NNRTI)-containing regimens, might alleviate the burden of intestinal dysbiosis in HIV-1-infected patients under long-term ART.
Collapse
|
20
|
Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Haddad Kashani H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact 2020; 19:217. [PMID: 33243230 PMCID: PMC7689646 DOI: 10.1186/s12934-020-01483-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
All of humans and other mammalian species are colonized by some types of microorganisms such as bacteria, archaea, unicellular eukaryotes like fungi and protozoa, multicellular eukaryotes like helminths, and viruses, which in whole are called microbiota. These microorganisms have multiple different types of interaction with each other. A plethora of evidence suggests that they can regulate immune and digestive systems and also play roles in various diseases, such as mental, cardiovascular, metabolic and some skin diseases. In addition, they take-part in some current health problems like diabetes mellitus, obesity, cancers and infections. Viral infection is one of the most common and problematic health care issues, particularly in recent years that pandemics like SARS and COVID-19 caused a lot of financial and physical damage to the world. There are plenty of articles investigating the interaction between microbiota and infectious diseases. We focused on stimulatory to suppressive effects of microbiota on viral infections, hoping to find a solution to overcome this current pandemic. Then we reviewed mechanistically the effects of both microbiota and probiotics on most of the viruses. But unlike previous studies which concentrated on intestinal microbiota and infection, our focus is on respiratory system's microbiota and respiratory viral infection, bearing in mind that respiratory system is a proper entry site and residence for viruses, and whereby infection, can lead to asymptomatic, mild, self-limiting, severe or even fatal infection. Finally, we overgeneralize the effects of microbiota on COVID-19 infection. In addition, we reviewed the articles about effects of the microbiota on coronaviruses and suggest some new therapeutic measures.
Collapse
Affiliation(s)
- Taha Baghbani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicin, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food & Drug Administration of Iran, MOH & ME, Tehran, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
21
|
Teles F, Wang Y, Hajishengallis G, Hasturk H, Marchesan JT. Impact of systemic factors in shaping the periodontal microbiome. Periodontol 2000 2020; 85:126-160. [PMID: 33226693 DOI: 10.1111/prd.12356] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since 2010, next-generation sequencing platforms have laid the foundation to an exciting phase of discovery in oral microbiology as it relates to oral and systemic health and disease. Next-generation sequencing has allowed large-scale oral microbial surveys, based on informative marker genes, such as 16S ribosomal RNA, community gene inventories (metagenomics), and functional analyses (metatranscriptomics), to be undertaken. More specifically, the availability of next-generation sequencing has also paved the way for studying, in greater depth and breadth, the effect of systemic factors on the periodontal microbiome. It was natural to investigate systemic diseases, such as diabetes, in such studies, along with systemic conditions or states, , pregnancy, menopause, stress, rheumatoid arthritis, and systemic lupus erythematosus. In addition, in recent years, the relevance of systemic "variables" (ie, factors that are not necessarily diseases or conditions, but may modulate the periodontal microbiome) has been explored in detail. These include ethnicity and genetics. In the present manuscript, we describe and elaborate on the new and confirmatory findings unveiled by next-generation sequencing as it pertains to systemic factors that may shape the periodontal microbiome. We also explore the systemic and mechanistic basis for such modulation and highlight the importance of those relationships in the management and treatment of patients.
Collapse
Affiliation(s)
- Flavia Teles
- Department of Basic and Translational Sciences, Center for Innovation & Precision Dentistry, School of Dental Medicine & School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Yu Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hatice Hasturk
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| | - Julie T Marchesan
- Department of Comprehensive Oral Health, Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Li J, Chang S, Guo H, Ji Y, Jiang H, Ruan L, Du M. Altered Salivary Microbiome in the Early Stage of HIV Infections among Young Chinese Men Who Have Sex with Men (MSM). Pathogens 2020; 9:pathogens9110960. [PMID: 33228000 PMCID: PMC7699166 DOI: 10.3390/pathogens9110960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/07/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections are spiking in Chinese young men who have sex with men (MSM). To explore alterations in the salivary microbiome and its correlation with demographic characteristics, CD4+ T cell count and viral load (VL) in HIV infections, samples of unstimulated whole saliva were analyzed by 16S rRNA gene sequencing using the Illumina MiSeq platform in 20 HIV newly infected patients before the initiation of antiretroviral therapy (ART) and at three and six months after, and in 20 age- and gender-paired healthy Chinese people. The results showed that the alpha diversity of salivary microbiota in HIV infections did not show differences from the healthy controls, but was reduced after six months under ART treatment. Comparative analysis revealed that Streptococcus was enriched in HIV-infected individuals, while Neisseria was enriched in the healthy control group. After effective ART, the salivary microbiota composition was not completely restored, although some microbiota recovered. In addition, we found Provotella_7, Neisseria and Haemophilus were correlated negatively with CD4+ T cell count, while Neisseria was correlated positively with VL. We conclude that HIV infections experience a dysbiosis of the salivary microbiome. The salivary microbiome test could be a substitute for the blood tests in the diagnosis and prognosis of diseases.
Collapse
Affiliation(s)
- Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Shenghua Chang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Haiying Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Han Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Lianguo Ruan
- Department of Infectious Diseases, Jin Yin-tan Hospital, Wuhan 430023, China
- Correspondence: (L.R.); (M.D.)
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
- Correspondence: (L.R.); (M.D.)
| |
Collapse
|
23
|
Fidel PL, Moyes D, Samaranayake L, Hagensee ME. Interplay between oral immunity in HIV and the microbiome. Oral Dis 2020; 26 Suppl 1:59-68. [PMID: 32862522 DOI: 10.1111/odi.13515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This Basic Science Workshop addressed the oral microbiome. At the 7th World Workshop on Oral Health & Disease in HIV/AIDS in India in 2014, some aspects of the human microbiome were discussed, and research questions formulated. Since that time, there have been major advances in technology, which have stimulated a number of publications on many aspects of the human microbiome, including the oral cavity. This workshop aimed to summarize current understanding of the "normal" microbiome of the oral cavity compared to that during HIV infection, and how oral immune factors and other clinical variables alter or control the oral microbiome. An important question is whether successful treatment with anti-retroviral therapy, which leads to a significant drop in viral loads and immune reconstitution, is associated with any change or recovery of the oral microbiome. Additionally, the workshop addressed the issue of which parameters are most appropriate/correct to evaluate the oral microbiome and how clinically relevant are shifts/changes in the oral microbiome. The workshop evaluated current knowledge in five research areas related to five basic questions and identified further topics where further research is required.
Collapse
Affiliation(s)
- Paul L Fidel
- LSU Health School of Dentistry, New Orleans, LA, USA
| | - David Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | | | | |
Collapse
|
24
|
Jasinska AJ, Dong TS, Lagishetty V, Katzka W, Jacobs JP, Schmitt CA, Cramer JD, Ma D, Coetzer WG, Grobler JP, Turner TR, Freimer N, Pandrea I, Apetrei C. Shifts in microbial diversity, composition, and functionality in the gut and genital microbiome during a natural SIV infection in vervet monkeys. MICROBIOME 2020; 8:154. [PMID: 33158452 PMCID: PMC7648414 DOI: 10.1186/s40168-020-00928-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The microbiota plays an important role in HIV pathogenesis in humans. Microbiota can impact health through several pathways such as increasing inflammation in the gut, metabolites of bacterial origin, and microbial translocation from the gut to the periphery which contributes to systemic chronic inflammation and immune activation and the development of AIDS. Unlike HIV-infected humans, SIV-infected vervet monkeys do not experience gut dysfunction, microbial translocation, and chronic immune activation and do not progress to immunodeficiency. Here, we provide the first reported characterization of the microbial ecosystems of the gut and genital tract in a natural nonprogressing host of SIV, wild vervet monkeys from South Africa. RESULTS We characterized fecal, rectal, vaginal, and penile microbiomes in vervets from populations heavily infected with SIV from diverse locations across South Africa. Geographic site, age, and sex affected the vervet microbiome across different body sites. Fecal and vaginal microbiome showed marked stratification with three enterotypes in fecal samples and two vagitypes, which were predicted functionally distinct within each body site. External bioclimatic factors, biome type, and environmental temperature influenced microbiomes locally associated with vaginal and rectal mucosa. Several fecal microbial taxa were linked to plasma levels of immune molecules, for example, MIG was positively correlated with Lactobacillus and Escherichia/Shigella and Helicobacter, and IL-10 was negatively associated with Erysipelotrichaceae, Anaerostipes, Prevotella, and Anaerovibrio, and positively correlated with Bacteroidetes and Succinivibrio. During the chronic phase of infection, we observed a significant increase in gut microbial diversity, alterations in community composition (including a decrease in Proteobacteria/Succinivibrio in the gut) and functionality (including a decrease in genes involved in bacterial invasion of epithelial cells in the gut), and partial reversibility of acute infection-related shifts in microbial abundance observed in the fecal microbiome. As part of our study, we also developed an accurate predictor of SIV infection using fecal samples. CONCLUSIONS The vervets infected with SIV and humans infected with HIV differ in microbial responses to infection. These responses to SIV infection may aid in preventing microbial translocation and subsequent disease progression in vervets, and may represent host microbiome adaptations to the virus. Video Abstract.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
- Eye on Primates, Los Angeles, CA, USA.
| | - Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William Katzka
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Jennifer Danzy Cramer
- Department of Sociology, Anthropology, and General Studies, American Public University System, Charles Town, WV, USA
| | - Dongzhu Ma
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Willem G Coetzer
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Trudy R Turner
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Ivona Pandrea
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Immune status, and not HIV infection or exposure, drives the development of the oral microbiota. Sci Rep 2020; 10:10830. [PMID: 32616727 PMCID: PMC7331591 DOI: 10.1038/s41598-020-67487-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022] Open
Abstract
Even with antiretroviral therapy, children born to HIV-infected (HI) mothers are at a higher risk of early-life infections and morbidities including dental disease. The increased risk of dental caries in HI children suggest immune-mediated changes in oral bacterial communities, however, the impact of perinatal HIV exposure on the oral microbiota remains unclear. We hypothesized that the oral microbiota of HI and perinatally HIV-exposed-but-uninfected (HEU) children will significantly differ from HIV-unexposed-and-uninfected (HUU) children. Saliva samples from 286 child-participants in Nigeria, aged ≤ 6 years, were analyzed using 16S rRNA gene sequencing. Perinatal HIV infection was significantly associated with community composition (HI vs. HUU—p = 0.04; HEU vs. HUU—p = 0.11) however, immune status had stronger impacts on bacterial profiles (p < 0.001). We observed age-stratified associations of perinatal HIV exposure on community composition, with HEU children differing from HUU children in early life but HEU children becoming more similar to HUU children with age. Our findings suggest that, regardless of age, HIV infection or exposure, low CD4 levels persistently alter the oral microbiota during this critical developmental period. Data also indicates that, while HIV infection clearly shapes the developing infant oral microbiome, the effect of perinatal exposure (without infection) appears transient.
Collapse
|
26
|
Ivanov S, Lagunin A, Filimonov D, Tarasova O. Network-Based Analysis of OMICs Data to Understand the HIV-Host Interaction. Front Microbiol 2020; 11:1314. [PMID: 32625189 PMCID: PMC7311653 DOI: 10.3389/fmicb.2020.01314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022] Open
Abstract
The interaction of human immunodeficiency virus with human cells is responsible for all stages of the viral life cycle, from the infection of CD4+ cells to reverse transcription, integration, and the assembly of new viral particles. To date, a large amount of OMICs data as well as information from functional genomics screenings regarding the HIV–host interaction has been accumulated in the literature and in public databases. We processed databases containing HIV–host interactions and found 2910 HIV-1-human protein-protein interactions, mostly related to viral group M subtype B, 137 interactions between human and HIV-1 coding and non-coding RNAs, essential for viral lifecycle and cell defense mechanisms, 232 transcriptomics, 27 proteomics, and 34 epigenomics HIV-related experiments. Numerous studies regarding network-based analysis of corresponding OMICs data have been published in recent years. We overview various types of molecular networks, which can be created using OMICs data, including HIV–human protein–protein interaction networks, co-expression networks, gene regulatory and signaling networks, and approaches for the analysis of their topology and dynamics. The network-based analysis can be used to determine the critical pathways and key proteins involved in the HIV life cycle, cellular and immune responses to infection, viral escape from host defense mechanisms, and mechanisms mediating different susceptibility of humans to infection. The proteins and pathways identified in these studies represent a basis for developing new anti-HIV therapeutic strategies such as new drugs preventing infection of CD4+ cells and viral replication, effective vaccines, “shock and kill” and “block and lock” approaches to cure latent infection.
Collapse
Affiliation(s)
- Sergey Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexey Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Olga Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
27
|
Ryder MI, Shiboski C, Yao TJ, Moscicki AB. Current trends and new developments in HIV research and periodontal diseases. Periodontol 2000 2020; 82:65-77. [PMID: 31850628 DOI: 10.1111/prd.12321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advent of combined antiretroviral therapies, the face of HIV infection has changed dramatically from a disease with almost certain mortality from serious comorbidities, to a manageable chronic condition with an extended lifespan. In this paper we present the more recent investigations into the epidemiology, microbiology, and pathogenesis of periodontal diseases in patients with HIV, and the effects of combined antiretroviral therapies on the incidence and progression of these diseases both in adults and perinatally infected children. In addition, comparisons and potential interactions between the HIV-associated microbiome, host responses, and pathogenesis in the oral cavity with the gastrointestinal tract and other areas of the body are presented. Also, the effects of HIV and combined antiretroviral therapies on comorbidities such as hyposalivation, dementia, and osteoporosis on periodontal disease progression are discussed.
Collapse
Affiliation(s)
- Mark I Ryder
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Caroline Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Tzy-Jyun Yao
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anna-Barbara Moscicki
- Division of Adolescent Medicine, Department of Pediatrics, University of California, Los Angeles, California, USA
| |
Collapse
|
28
|
Jenkins WD, Beach LB, Rodriguez C, Choat L. How the evolving epidemics of opioid misuse and HIV infection may be changing the risk of oral sexually transmitted infection risk through microbiome modulation. Crit Rev Microbiol 2020; 46:49-60. [PMID: 31999202 DOI: 10.1080/1040841x.2020.1716683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The epidemiology of sexually transmitted infections (STI) is constantly evolving, and the mechanisms of infection risk in the oral cavity (OC) are poorly characterized. Evidence indicates that microbial community (microbiota) compositions vary widely between the OC, genitalia and the intestinal and rectal mucosa, and microbiome-associated STI susceptibility may also similarly vary. The opioid misuse epidemic is at an epidemic scale, with >11 million US residents misusing in the past 30 days. Opioids can substantially influence HIV progression, microbiota composition and immune function, and these three factors are all mutually influential via direct and indirect pathways. While many of these pathways have been explored independently, the supporting data are mostly derived from studies of gut and vaginal microbiotas and non-STI infectious agents. Our purpose is to describe what is known about the combination of these pathways, how they may influence microbiome composition, and how resultant oral STI susceptibility may change. A better understanding of how opioid misuse influences oral microbiomes and STI risk may inform better mechanisms for oral STI screening and intervention. Further, the principles of interaction described may well be applied to other aspects of disease risk of other health conditions which may be impacted by the opioid epidemic.
Collapse
Affiliation(s)
- Wiley D Jenkins
- Department of Population Science and Policy, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Lauren B Beach
- Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Christofer Rodriguez
- Department of Population Science and Policy, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Lesli Choat
- Illinois Department of Public Health, Springfield, IL, USA
| |
Collapse
|
29
|
Griffen AL, Thompson ZA, Beall CJ, Lilly EA, Granada C, Treas KD, DuBois KR, Hashmi SB, Mukherjee C, Gilliland AE, Vazquez JA, Hagensee ME, Leys EJ, Fidel PL. Significant effect of HIV/HAART on oral microbiota using multivariate analysis. Sci Rep 2019; 9:19946. [PMID: 31882580 PMCID: PMC6934577 DOI: 10.1038/s41598-019-55703-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/15/2019] [Indexed: 01/27/2023] Open
Abstract
Persons infected with HIV are particularly vulnerable to a variety of oral microbial diseases. Although various study designs and detection approaches have been used to compare the oral microbiota of HIV-negative and HIV-positive persons, both with and without highly active antiretroviral therapy (HAART), methods have varied, and results have not been consistent or conclusive. The purpose of the present study was to compare the oral bacterial community composition in HIV-positive persons under HAART to an HIV-negative group using 16S rRNA gene sequence analysis. Extensive clinical data was collected, and efforts were made to balance the groups on clinical variables to minimize confounding. Multivariate analysis was used to assess the independent contribution of HIV status. Eighty-nine HIV-negative participants and 252 HIV-positive participants under HAART were sampled. The independent effect of HIV under HAART on the oral microbiome was statistically significant, but smaller than the effect of gingivitis, periodontal disease, smoking, caries, and other clinical variables. In conclusion, a multivariate comparison of a large sample of persons with HIV under HAART to an HIV-negative control group showed a complex set of clinical features that influenced oral bacterial community composition, including the presence of HIV under HAART.
Collapse
Affiliation(s)
- Ann L Griffen
- Division of Pediatric Dentistry, The Ohio State University College of Dentistry, Columbus, OH, USA.
| | - Zachary A Thompson
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Clifford J Beall
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Elizabeth A Lilly
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Carolina Granada
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia/Augusta University, Augusta, GA, USA
| | - Kelly D Treas
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Kenneth R DuBois
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Shahr B Hashmi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Chiranjit Mukherjee
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Aubrey E Gilliland
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Jose A Vazquez
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia/Augusta University, Augusta, GA, USA
| | - Michael E Hagensee
- Section of Infectious Disease, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Eugene J Leys
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - Paul L Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| |
Collapse
|
30
|
Shemesh S, Marom T, Vaknine H, Tamir SO. Neisseria flavescens Infection in Atypical Multiple Vallecular Cysts. Indian J Otolaryngol Head Neck Surg 2019; 71:11-13. [PMID: 31741919 DOI: 10.1007/s12070-015-0871-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022] Open
Abstract
A 53 year-old female patient presented with symptoms of intermittent odynophagia and halitosis persisting for 2 months. Physical examination revealed bilateral lingual tonsillar cysts and multiple vallecular cysts with clear fluid. Laboratory studies were unremarkable. The patient underwent surgery, during which uncapping of the multiple vallecular cysts was performed, and multiple microbiological samples and biopsies were taken. After surgery, the patient had complete resolution of all her symptoms. Pathological results demonstrated lymphoepithelial cysts. Microbiological tests demonstrated an infection by Neisseria flavescens, which is a non-pathogenic commensal of the oropharynx, and has never been described as causing agent of infected vallecular cysts.
Collapse
Affiliation(s)
- Shay Shemesh
- 1Department of Otolaryngology - Head and Neck Surgery, Edith Wolfson Medical Center, Tel Aviv University Sackler School of Medicine, P.O. Box 5, 58100 Holon, Israel
| | - Tal Marom
- 1Department of Otolaryngology - Head and Neck Surgery, Edith Wolfson Medical Center, Tel Aviv University Sackler School of Medicine, P.O. Box 5, 58100 Holon, Israel
| | - Hananya Vaknine
- 2Institute of Pathology, Edith Wolfson Medical Center, Tel Aviv University Sackler School of Medicine, 58100 Holon, Israel
| | - Sharon Ovnat Tamir
- 1Department of Otolaryngology - Head and Neck Surgery, Edith Wolfson Medical Center, Tel Aviv University Sackler School of Medicine, P.O. Box 5, 58100 Holon, Israel
| |
Collapse
|
31
|
Gonçalves LS, Ferreira DDC, Heng NCK, Vidal F, Santos HF, Zanicotti DG, Vasconcellos M, Stambovsky M, Lawley B, Rubini NDPM, Santos KRN, Seymour GJ. Oral bacteriome of HIV‐1‐infected children from Rio de Janeiro, Brazil: Next‐generation DNA sequencing analysis. J Clin Periodontol 2019; 46:1192-1204. [DOI: 10.1111/jcpe.13176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Lucio Souza Gonçalves
- Programa de Pós‐Graduação em Odontologia Universidade Estácio de Sá Rio de Janeiro Brazil
| | - Dennis de Carvalho Ferreira
- Programa de Pós‐Graduação em Odontologia Universidade Estácio de Sá Rio de Janeiro Brazil
- Universidade Veiga de Almeida Rio de Janeiro Brazil
| | | | - Fabio Vidal
- Programa de Pós‐Graduação em Odontologia Universidade Estácio de Sá Rio de Janeiro Brazil
| | | | | | | | | | - Blair Lawley
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
| | | | - Katia Regina Netto Santos
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | |
Collapse
|
32
|
Li N, Ma WT, Pang M, Fan QL, Hua JL. The Commensal Microbiota and Viral Infection: A Comprehensive Review. Front Immunol 2019; 10:1551. [PMID: 31333675 PMCID: PMC6620863 DOI: 10.3389/fimmu.2019.01551] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
The human body is inhabited by a diverse microbial community that is collectively coined as commensal microbiota. Recent research has greatly advanced our understanding of how the commensal microbiota affects host health. Among the various kinds of pathogenic infections of the host, viral infections constitute one of the most serious public health problems worldwide. During the infection process, viruses may have substantial and intimate interactions with the commensal microbiota. A plethora of evidence suggests that the commensal microbiota regulates and is in turn regulated by invading viruses through diverse mechanisms, thereby having stimulatory or suppressive roles in viral infections. Furthermore, the integrity of the commensal microbiota can be disturbed by invading viruses, causing dysbiosis in the host and further influencing virus infectivity. In the present article, we discuss current insights into the regulation of viral infection by the commensal microbiota. We also draw attention to the disruption of microbiota homeostasis by several viruses.
Collapse
Affiliation(s)
- Na Li
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Wen-Tao Ma
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Ming Pang
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Qin-Lei Fan
- Animal Health and Epidemiology Center, Qingdao, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| |
Collapse
|
33
|
Pandiyan P, Bhaskaran N, Zou M, Schneider E, Jayaraman S, Huehn J. Microbiome Dependent Regulation of T regs and Th17 Cells in Mucosa. Front Immunol 2019; 10:426. [PMID: 30906299 PMCID: PMC6419713 DOI: 10.3389/fimmu.2019.00426] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
Mammals co-exist with resident microbial ecosystem that is composed of an incredible number and diversity of bacteria, viruses and fungi. Owing to direct contact between resident microbes and mucosal surfaces, both parties are in continuous and complex interactions resulting in important functional consequences. These interactions govern immune homeostasis, host response to infection, vaccination and cancer, as well as predisposition to metabolic, inflammatory and neurological disorders. Here, we discuss recent studies on direct and indirect effects of resident microbiota on regulatory T cells (Tregs) and Th17 cells at the cellular and molecular level. We review mechanisms by which commensal microbes influence mucosa in the context of bioactive molecules derived from resident bacteria, immune senescence, chronic inflammation and cancer. Lastly, we discuss potential therapeutic applications of microbiota alterations and microbial derivatives, for improving resilience of mucosal immunity and combating immunopathology.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mangge Zou
- Experimental Immunology, Helmholtz Centre for Infection Research, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Elizabeth Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Lewy T, Hong BY, Weiser B, Burger H, Tremain A, Weinstock G, Anastos K, George MD. Oral Microbiome in HIV-Infected Women: Shifts in the Abundance of Pathogenic and Beneficial Bacteria Are Associated with Aging, HIV Load, CD4 Count, and Antiretroviral Therapy. AIDS Res Hum Retroviruses 2019; 35:276-286. [PMID: 29808701 DOI: 10.1089/aid.2017.0200] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated nonacquired immunodeficiency syndrome (AIDS) conditions, such as cardiovascular disease, diabetes, osteoporosis, and dementia are more prevalent in older than in young adult HIV-infected subjects. Although the oral microbiome has been studied as a window into pathogenesis in aging populations, its relationship to HIV disease progression, opportunistic infections, and HIV-associated non-AIDS conditions is not well understood. We utilized 16S rDNA-based pyrosequencing to compare the salivary microbiome in three groups: (1) Chronically HIV-infected women >50 years of age (aging); (2) HIV-infected women <35 years of age (young adult); and (3) HIV-uninfected age-matched women. We also examined correlations between salivary dysbiosis, plasma HIV RNA, CD4+ T cell depletion, and opportunistic oral infections. In both aging and young adult women, HIV infection was associated with salivary dysbiosis characterized by increased abundance of Prevotella melaninogenica and Rothia mucilaginosa. Aging was associated with increased bacterial diversity in both uninfected and HIV-infected women. In HIV-infected women with oral coinfections, aging was also associated with reduced abundance of the common commensal Veillonella parvula. Patients taking antiretroviral therapy showed increased numbers of Neisseria and Haemophilus. High plasma HIV RNA levels correlated positively with the presence of Prevotella and Veillonella, and negatively with the abundance of potentially beneficial Streptococcus and Lactobacillus. Circulating CD4+ T cell numbers correlated positively with the abundance of Streptococcus and Lactobacillus. Our findings extend previous studies of the role of the microbiome in HIV pathogenesis, providing new evidence that HIV infection is associated with a shift toward an increased pathogenic footprint of the salivary microbiome. Taken together, the data suggest a complex relationship, worthy of additional study, between chronic dysbiosis in the oral cavity, aging, viral burden, CD4+ T cell depletion, and long-term antiretroviral therapy.
Collapse
Affiliation(s)
- Tyler Lewy
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California
| | | | - Barbara Weiser
- Department of Medicine, Division of Infectious Disease, University of California, Davis, Davis, California
- Sacramento VA Medical Center, Sacramento, California
| | - Harold Burger
- Department of Medicine, Division of Infectious Disease, University of California, Davis, Davis, California
- Sacramento VA Medical Center, Sacramento, California
| | - Andrew Tremain
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California
| | | | | | - Michael D. George
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California
| |
Collapse
|
35
|
Fukui Y, Aoki K, Ishii Y, Tateda K. The palatine tonsil bacteriome, but not the mycobiome, is altered in HIV infection. BMC Microbiol 2018; 18:127. [PMID: 30290791 PMCID: PMC6173881 DOI: 10.1186/s12866-018-1274-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023] Open
Abstract
Background Microbial flora in several organs of HIV-infected individuals have been characterized; however, the palatine tonsil bacteriome and mycobiome and their relationship with each other remain unclear. Determining the palatine tonsil microbiome may provide a better understanding of the pathogenesis of oral and systemic complications in HIV-infected individuals. We conducted a cross-sectional study to characterize the palatine tonsil microbiome in HIV-infected individuals. Results Palatine tonsillar swabs were collected from 46 HIV-infected and 20 HIV-uninfected individuals. The bacteriome and mycobiome were analyzed by amplicon sequencing using Illumina MiSeq. The palatine tonsil bacteriome of the HIV-infected individuals differed from that of HIV-uninfected individuals in terms of the decreased relative abundances of the commensal genera Neisseria and Haemophilus. At the species level, the relative abundances and presence of Capnocytophaga ochracea, Neisseria cinerea, and Selenomonas noxia were higher in the HIV-infected group than those in the HIV-uninfected group. In contrast, fungal diversity and composition did not differ significantly between the two groups. Microbial intercorrelation analysis revealed that Candida and Neisseria were negatively correlated with each other in the HIV-infected group. HIV immune status did not influence the palatine tonsil microbiome in the HIV-infected individuals. Conclusions HIV-infected individuals exhibit dysbiotic changes in their palatine tonsil bacteriome, independent of immunological status. Electronic supplementary material The online version of this article (10.1186/s12866-018-1274-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuto Fukui
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Infectious Diseases, Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan.
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
36
|
Bhaskaran N, Quigley C, Paw C, Butala S, Schneider E, Pandiyan P. Role of Short Chain Fatty Acids in Controlling T regs and Immunopathology During Mucosal Infection. Front Microbiol 2018; 9:1995. [PMID: 30197637 PMCID: PMC6117408 DOI: 10.3389/fmicb.2018.01995] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/08/2018] [Indexed: 01/12/2023] Open
Abstract
Interactions between mucosal tissues and commensal microbes control appropriate host immune responses and inflammation, but very little is known about these interactions. Here we show that the depletion of resident bacteria using antibiotics (Abx) causes oral and gut immunopathology during oropharyngeal candidiasis (OPC) infection. Antibiotic treatment causes reduction in the frequency of Foxp3+ regulatory cells (Tregs) and IL-17A producers, with a concomitant increase in oral tissue pathology. While C. albicans (CA) is usually controlled in the oral cavity, antibiotic treatment led to CA dependent oral and gut inflammation. A combination of short chain fatty acids (SCFA) controlled the pathology in Abx treated mice, correlating to an increase in the frequency of Foxp3+, IL-17A+, and Foxp3+IL-17A+ double positive (Treg17) cells in tongue and oral draining lymph nodes. However, SCFA treatment did not fully reverse the gut inflammation suggesting that resident microbiota have SCFA independent homeostatic mechanisms in gut mucosa. We also found that SCFA potently induce Foxp3 and IL-17A expression in CD4+ T cells, depending on the cytokine milieu in vitro. Depletion of Tregs alone in FDTR mice recapitulated oral inflammation in CA infected mice, showing that Abx mediated reduction of Tregs was involved in infection induced pathology. SCFA did not control inflammation in Treg depleted mice in CA infected FDTR mice, showing that Foxp3+ T cell induction was required for the protective effect mediated by SCFA. Taken together, our data reveal that SCFA derived from resident bacteria play a critical role in controlling immunopathology by regulating T cell cytokines during mucosal infections. This study has broader implications on protective effects of resident microbiota in regulating pathological infections.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Cheriese Quigley
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Clarissa Paw
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Shivani Butala
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Elizabeth Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
37
|
Alterations in the oral microbiome in HIV-infected participants after antiretroviral therapy administration are influenced by immune status. AIDS 2018; 32:1279-1287. [PMID: 29851662 DOI: 10.1097/qad.0000000000001811] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To characterize the oral bacterial microbiome in HIV-infected participants at baseline and after 24 weeks of EFV/FTC/TDF. DESIGN Thirty-five participants co-enrolled in two AIDS Clinical Trials Group (ACTG) studies, A5272 and A5280, with paired saliva samples and complete data sets were assessed. METHODS Paired saliva samples were evaluated for bacterial microbiome using 16S rDNA PCR followed by Illumina sequencing. Diversity and differential abundance was compared between groups. A random forest classification scheme was used to determine the contribution of parameters in classifying participants' CD4+ T-cell count. RESULTS Bacterial communities demonstrated considerable variability both within participants and between timepoints, although they became more similar after 24 weeks of ART. At baseline, both the number of taxa detected and the average alpha diversity were variable between participants, but did not differ significantly based on CD4+ cell count, viral load or other factors. After 24 weeks of ART samples obtained from participants with persistently low CD4+ T-cell counts had significantly higher bacterial richness and diversity. Several differentially abundant taxa, including Porphyromonas species associated with periodontal disease, were identified, which discriminated between baseline and posttreatment samples. Analysis demonstrated that although inflammatory markers are important in untreated disease, the salivary microbiome may play an important role in CD4+ T-cell count recovery after ART. CONCLUSION Shifts in the oral microbiome after ART initiation are complex, and may play an important role in immune function and inflammatory disease.
Collapse
|
38
|
Starr JR, Huang Y, Lee KH, Murphy CM, Moscicki AB, Shiboski CH, Ryder MI, Yao TJ, Faller LL, Van Dyke RB, Paster BJ. Oral microbiota in youth with perinatally acquired HIV infection. MICROBIOME 2018; 6:100. [PMID: 29855347 PMCID: PMC5984365 DOI: 10.1186/s40168-018-0484-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/15/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Microbially mediated oral diseases can signal underlying HIV/AIDS progression in HIV-infected adults. The role of the oral microbiota in HIV-infected youth is not known. The Adolescent Master Protocol of the Pediatric HIV/AIDS Cohort Study is a longitudinal study of perinatally HIV-infected (PHIV) and HIV-exposed, uninfected (PHEU) youth. We compared oral microbiome levels and associations with caries or periodontitis in 154 PHIV and 100 PHEU youth. RESULTS Species richness and alpha diversity differed little between PHIV and PHEU youth. Group differences in average counts met the significance threshold for six taxa; two Corynebacterium species were lower in PHIV and met thresholds for noteworthiness. Several known periodontitis-associated organisms (Prevotella nigrescens, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, and Filifactor alocis) exhibited expected associations with periodontitis in PHEU youth, associations not observed in PHIV youth. In both groups, odds of caries increased with counts of taxa in four genera, Streptococcus, Scardovia, Bifidobacterium, and Lactobacillus. CONCLUSIONS The microbiomes of PHIV and PHEU youth were similar, although PHIV youth seemed to have fewer "health"-associated taxa such as Corynebacterium species. These results are consistent with the hypothesis that HIV infection, or its treatment, may contribute to oral dysbiosis.
Collapse
Affiliation(s)
- Jacqueline R Starr
- Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
- Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yanmei Huang
- Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kyu Ha Lee
- Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
- Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, USA
| | - C M Murphy
- Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
| | - Anna-Barbara Moscicki
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Caroline H Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Mark I Ryder
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Tzy-Jyun Yao
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Bruce J Paster
- Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA.
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
39
|
Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 2018; 9:488-500. [PMID: 29736705 PMCID: PMC5960472 DOI: 10.1007/s13238-018-0548-1] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Abstract
Microbes appear in every corner of human life, and microbes affect every aspect of human life. The human oral cavity contains a number of different habitats. Synergy and interaction of variable oral microorganisms help human body against invasion of undesirable stimulation outside. However, imbalance of microbial flora contributes to oral diseases and systemic diseases. Oral microbiomes play an important role in the human microbial community and human health. The use of recently developed molecular methods has greatly expanded our knowledge of the composition and function of the oral microbiome in health and disease. Studies in oral microbiomes and their interactions with microbiomes in variable body sites and variable health condition are critical in our cognition of our body and how to make effect on human health improvement.
Collapse
Affiliation(s)
- Lu Gao
- Central Laboratory, Peking University Hospital of Stomatology, Beijing, 100081, China
- Department of Orthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
| | - Tiansong Xu
- Central Laboratory, Peking University Hospital of Stomatology, Beijing, 100081, China
| | - Gang Huang
- Central Laboratory, Peking University Hospital of Stomatology, Beijing, 100081, China
| | - Song Jiang
- Central Laboratory, Peking University Hospital of Stomatology, Beijing, 100081, China
| | - Yan Gu
- Department of Orthodontics, Peking University Hospital of Stomatology, Beijing, 100081, China
| | - Feng Chen
- Central Laboratory, Peking University Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
40
|
Pólvora TLS, Nobre ÁVV, Tirapelli C, Taba M, Macedo LDD, Santana RC, Pozzetto B, Lourenço AG, Motta ACF. Relationship between human immunodeficiency virus (HIV-1) infection and chronic periodontitis. Expert Rev Clin Immunol 2018; 14:315-327. [PMID: 29595347 DOI: 10.1080/1744666x.2018.1459571] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Current studies show that, even in the era of antiretroviral therapies, HIV-1 infection is associated with more severe and frequent refractory chronic periodontitis. Areas covered: This review, based on a systematic analysis of the literature, intends to provide an update on factors that may be involved in the pathogenesis of periodontal disease in HIV-1-infected patients, including local immunosuppression, oral microbial factors, systemic inflammation, salivary markers, and the role of gingival tissue as a possible reservoir of HIV-1. Expert commentary: The therapeutic revolution of ART made HIV-1 infection a chronic controllable disease, reduced HIV-1 mortality rate, restored at least partially the immune response and dramatically increased life expectancy of HIV-1-infected patients. Despite all these positive aspects, chronic periodontitis assumes an important role in the HIV-1 infection status for activating systemic inflammation favoring viral replication and influencing HIV-1 status, and also acting as a possible reservoir of HIV-1. All these issues still need to be clarified and validated, but have important clinical implications that certainly will benefit the diagnosis and management of chronic periodontitis in HIV-1-infected patients, and also contributes to HIV-1 eradication.
Collapse
Affiliation(s)
| | - Átila Vinícius V Nobre
- b Department of Oral & Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Camila Tirapelli
- c Department of Dental Material and Prosthesis, School of Dentistry of Ribeirão Preto , USP - University of São Paulo , Ribeirão Preto , Brazil
| | - Mário Taba
- b Department of Oral & Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Leandro Dorigan de Macedo
- d Division of Dentistry and Stomatology, Clinical Hospital, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Rodrigo Carvalho Santana
- e Department of Internal Medicine, Ribeirão Preto Medical School , USP - University of São Paulo , Ribeirão Preto , Brazil
| | - Bruno Pozzetto
- f GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes) , University of Lyon , Saint-Etienne , France
| | - Alan Grupioni Lourenço
- g Department of Stomatology, Public Oral Health and Forensic Dentistry, School of Dentistry of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Ana Carolina F Motta
- g Department of Stomatology, Public Oral Health and Forensic Dentistry, School of Dentistry of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
41
|
Ferreira MVM, Cavalcanti ÉFF, PM Rubini ND, Ferreira DC, Gonçalves LS, V Colombo AP. Oral status and periodontal microbiota of HIV-infected youth infected by vertical transmission. Future Virol 2018. [DOI: 10.2217/fvl-2018-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: This study evaluated the oral status and microbiota of HIV+ youth infected by vertical transmission. Materials & methods: 34 HIV+ and 36 HIV- individuals (14–24 years of age) were examined for oral infections/lesions. Subgingival biofilm was collected and the microbiota determined by checkerboard DNA–DNA hybridization. Results: Over 90% of the HIV+ youth were under highly active antiretroviral therapy, but 64.6% had AIDS and 47% presented oral manifestations. HIV+ youth showed more periodontal attachment loss and inflammation than HIV- (p < 0.05), and also high prevalence of caries. Most species were detected in higher prevalence in the microbiota of HIV+ than controls. Conclusion: HIV+ youth infected by vertical transmission presented more periodontal destruction and inflammation, and greater prevalence of microbial pathogens compared with HIV- individuals.
Collapse
Affiliation(s)
- Mariana VM Ferreira
- School of Dentistry, Department of Clinics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Medical Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Édila FF Cavalcanti
- School of Dentistry, Department of Clinics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Norma de PM Rubini
- Department of Allergy & Immunology, Gafrée e Guinle University Hospital, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Dennis C Ferreira
- School of Dentistry, Estácio de Sá University, Rio de Janeiro, RJ, Brazil
| | - Lucio S Gonçalves
- School of Dentistry, Estácio de Sá University, Rio de Janeiro, RJ, Brazil
| | - Ana Paula V Colombo
- Department of Medical Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
42
|
Abstract
INTRODUCTION The respiratory tract is constantly exposed to various environmental and endogenous microbes; however, unlike other similar mucosal surfaces, there has been limited investigation of the microbiome of the respiratory tract. AREAS COVERED In this review, we summarize the current state of knowledge of the bacterial, fungal, and viral respiratory microbiomes during HIV infection and how the microbiome might relate to HIV-associated lung disease. Expert commentary: HIV infection is associated with alterations in the respiratory microbiome. The clinical implications of lung microbial dysbiosis are however currently unknown. Mechanistic studies are needed to establish causality between shifts in the respiratory microbiome and pulmonary complications in HIV-infected individuals.
Collapse
Affiliation(s)
- M B Lawani
- a University of Pittsburgh , School of Medicine, Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine , Pittsburgh , PA , USA
| | - A Morris
- a University of Pittsburgh , School of Medicine, Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine , Pittsburgh , PA , USA
| |
Collapse
|
43
|
Human diseases, immunity and the oral microbiota—Insights gained from metagenomic studies. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/s1348-8643(16)30024-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Noma in an HIV infected patient in Guinea-Bissau: a case report. Infection 2017; 45:897-901. [PMID: 28589415 DOI: 10.1007/s15010-017-1034-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Noma is a multifactorial and multibacterial opportunistic infection that initially causes necrotic gingivitis but rapidly spreads to the nearby orofacial tissue resulting in sloughing and severe deformation of the facial structures. The majority of cases are seen in young children under the age of 6 years. Noma is strongly associated with poverty, malnutrition and immunosuppression, and is often preceded by severe systemic infections such as measles and malaria. Only few cases of noma infection in adults have been described. CASE REPORT We present here a case report with a 32-year-old Guinean woman who was diagnosed with noma infection and on that occasion discovered that she was HIV-1 seropositive. After treatment with amoxicillin/clavulanic acid and metronidazole for her noma infection the woman was transferred to the national hospital where antiretroviral treatment was initiated. CONCLUSION Noma is an opportunistic infection and immunodeficiencies such as HIV should always be suspected when presenting in an adult patient.
Collapse
|
45
|
Heron SE, Elahi S. HIV Infection and Compromised Mucosal Immunity: Oral Manifestations and Systemic Inflammation. Front Immunol 2017; 8:241. [PMID: 28326084 PMCID: PMC5339276 DOI: 10.3389/fimmu.2017.00241] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
Abstract
Mucosal surfaces account for the vast majority of HIV transmission. In adults, HIV transmission occurs mainly by vaginal and rectal routes but rarely via oral route. By contrast, pediatric HIV infections could be as the result of oral route by breastfeeding. As such mucosal surfaces play a crucial role in HIV acquisition, and spread of the virus depends on its ability to cross a mucosal barrier. HIV selectively infects, depletes, and/or dysregulates multiple arms of the human immune system particularly at the mucosal sites and causes substantial irreversible damage to the mucosal barriers. This leads to microbial products translocation and subsequently hyper-immune activation. Although introduction of antiretroviral therapy (ART) has led to significant reduction in morbidity and mortality of HIV-infected patients, viral replication persists. As a result, antigen presence and immune activation are linked to “inflammaging” that attributes to a pro-inflammatory environment and the accelerated aging process in HIV patients. HIV infection is also associated with the prevalence of oral mucosal infections and dysregulation of oral microbiota, both of which may compromise the oral mucosal immunity of HIV-infected individuals. In addition, impaired oral immunity in HIV infection may predispose the patients to periodontal diseases that are associated with systemic inflammation and increased risk of cardiovascular diseases. The purpose of this review is to examine existing evidence regarding the role of innate and cellular components of the oral cavity in HIV infection and how HIV infection may drive systemic hyper-immune activation in these patients. We will also discuss current knowledge on HIV oral transmission, HIV immunosenescence in relation to the oral mucosal alterations during the course of HIV infection and periodontal disease. Finally, we discuss oral manifestations associated with HIV infection and how HIV infection and ART influence the oral microbiome. Therefore, unraveling how HIV compromises the integrity of the oral mucosal tissues and innate immune components of the oral cavity and its association with induction of chronic inflammation are critical for the development of effective preventive interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Samantha E Heron
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada; Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
46
|
Heron SE, Elahi S. HIV Infection and Compromised Mucosal Immunity: Oral Manifestations and Systemic Inflammation. Front Immunol 2017; 8:241. [PMID: 28326084 DOI: 10.3389/fimmu.2017.00241doi|] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 05/25/2023] Open
Abstract
Mucosal surfaces account for the vast majority of HIV transmission. In adults, HIV transmission occurs mainly by vaginal and rectal routes but rarely via oral route. By contrast, pediatric HIV infections could be as the result of oral route by breastfeeding. As such mucosal surfaces play a crucial role in HIV acquisition, and spread of the virus depends on its ability to cross a mucosal barrier. HIV selectively infects, depletes, and/or dysregulates multiple arms of the human immune system particularly at the mucosal sites and causes substantial irreversible damage to the mucosal barriers. This leads to microbial products translocation and subsequently hyper-immune activation. Although introduction of antiretroviral therapy (ART) has led to significant reduction in morbidity and mortality of HIV-infected patients, viral replication persists. As a result, antigen presence and immune activation are linked to "inflammaging" that attributes to a pro-inflammatory environment and the accelerated aging process in HIV patients. HIV infection is also associated with the prevalence of oral mucosal infections and dysregulation of oral microbiota, both of which may compromise the oral mucosal immunity of HIV-infected individuals. In addition, impaired oral immunity in HIV infection may predispose the patients to periodontal diseases that are associated with systemic inflammation and increased risk of cardiovascular diseases. The purpose of this review is to examine existing evidence regarding the role of innate and cellular components of the oral cavity in HIV infection and how HIV infection may drive systemic hyper-immune activation in these patients. We will also discuss current knowledge on HIV oral transmission, HIV immunosenescence in relation to the oral mucosal alterations during the course of HIV infection and periodontal disease. Finally, we discuss oral manifestations associated with HIV infection and how HIV infection and ART influence the oral microbiome. Therefore, unraveling how HIV compromises the integrity of the oral mucosal tissues and innate immune components of the oral cavity and its association with induction of chronic inflammation are critical for the development of effective preventive interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Samantha E Heron
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada; Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Noguera-Julian M, Guillén Y, Peterson J, Reznik D, Harris EV, Joseph SJ, Rivera J, Kannanganat S, Amara R, Nguyen ML, Mutembo S, Paredes R, Read TD, Marconi VC. Oral microbiome in HIV-associated periodontitis. Medicine (Baltimore) 2017; 96:e5821. [PMID: 28328799 PMCID: PMC5371436 DOI: 10.1097/md.0000000000005821] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
HIV-associated periodontal diseases (PD) could serve as a source of chronic inflammation. Here, we sought to characterize the oral microbial signatures of HIV+ and HIV- individuals at different levels of PD severity.This cross-sectional study included both HIV+ and HIV- patients with varying degrees of PD. Two tooth, 2 cheek, and 1 saliva samples were obtained for microbiome analysis. Mothur/SILVADB were used to classify sequences. R/Bioconductor (Vegan, PhyloSeq, and DESeq2) was employed to assess overall microbiome structure differences and differential abundance of bacterial genera between groups. Polychromatic flow cytometry was used to assess immune activation in CD4 and CD8 cell populations.Around 250 cheek, tooth, and saliva samples from 50 participants (40 HIV+ and 10 HIV-) were included. Severity of PD was classified clinically as None/Mild (N), Moderate (M), and Severe (S) with 18 (36%), 16 (32%), and 16 (32%) participants in each category, respectively. Globally, ordination analysis demonstrated clustering by anatomic site (R2 = 0.25, P < 0.001). HIV status and PD severity showed a statistically significant impact on microbiome composition but only accounted for a combined 2% of variation. HIV+ samples were enriched in genera Abiotrophia, Neisseria, Kingella, and unclassified Neisseriaceae and depleted in Leptotrichia and Selenomonas. The Neisseria genus was consistently enriched in HIV+ participants regardless of sampling site and PD level. Immune markers were altered in HIV+ participants but did not show association with the oral microbiome.HIV-associated changes in oral microbiome result in subtle microbial signatures along different stages of PD that are common in independent oral anatomic sites.
Collapse
Affiliation(s)
- Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Badalona
- University Autònoma de Barcelona, Bellaterra
- University de Vic-University Central de Catalunya, Vic, Catalonia, Spain
| | - Yolanda Guillén
- IrsiCaixa AIDS Research Institute, Badalona
- University Autònoma de Barcelona, Bellaterra
| | - Jessica Peterson
- Division of Infectious Diseases, Emory University School of Medicine
| | - David Reznik
- Division of Infectious Diseases, Emory University School of Medicine
- Infectious Diseases Program, Grady Health System
| | - Erica V. Harris
- Department of Biology, Emory University, O. Wayne Rollins Research Center
| | - Sandeep J. Joseph
- Division of Infectious Diseases, Emory University School of Medicine
| | - Javier Rivera
- IrsiCaixa AIDS Research Institute, Badalona
- University de Vic-University Central de Catalunya, Vic, Catalonia, Spain
| | - Sunil Kannanganat
- Division of Infectious Diseases, Emory University School of Medicine
- Department of Global Health, Emory University Rollins School of Public Health, Atlanta, GA
| | - Rama Amara
- Division of Infectious Diseases, Emory University School of Medicine
- Department of Global Health, Emory University Rollins School of Public Health, Atlanta, GA
| | - Minh Ly Nguyen
- Division of Infectious Diseases, Emory University School of Medicine
| | | | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona
- University Autònoma de Barcelona, Bellaterra
- University de Vic-University Central de Catalunya, Vic, Catalonia, Spain
- Unitat VIH, Hosp. University Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Timothy D. Read
- Division of Infectious Diseases, Emory University School of Medicine
| | - Vincent C. Marconi
- Division of Infectious Diseases, Emory University School of Medicine
- Department of Global Health, Emory University Rollins School of Public Health, Atlanta, GA
| |
Collapse
|
48
|
Presti R, Pantaleo G. The Immunopathogenesis of HIV-1 Infection. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Williams B, Landay A, Presti RM. Microbiome alterations in HIV infection a review. Cell Microbiol 2016; 18:645-51. [PMID: 26945815 DOI: 10.1111/cmi.12588] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 12/25/2022]
Abstract
Recent developments in molecular techniques have allowed researchers to identify previously uncultured organisms, which has propelled a vast expansion of our knowledge regarding our commensal microbiota. Interest in the microbiome specific to HIV grew from earlier findings suggesting that bacterial translocation from the intestines is the cause of persistent immune activation despite effective viral suppression with antiretroviral therapy (ART). Studies of SIV infected primates have demonstrated that Proteobacteria preferentially translocate and that mucosal immunity can be restored with probiotics. Pathogenic SIV infection results in a massive expansion of the virome, whereas non-pathogenic SIV infection does not. Human HIV infected cohorts have been shown to have microbiota distinctive from that of HIV negative controls and efforts to restore the intestinal microbiome via probiotics have often had positive results on host markers. The microbiota of the genital tract may play a significant role in acquisition and transmission of HIV. Modification of commensal microbial communities likely represents an important therapeutic adjunct to treatment of HIV. Here we review the literature regarding human microbiome in HIV infection.
Collapse
Affiliation(s)
- Brett Williams
- Division of Infectious Diseases, Rush University Medical Center, USA
| | - Alan Landay
- Department of Immunology/microbiology, Rush University Medical Center, USA
| | - Rachel M Presti
- Division of Infectious Disease, Washington University School of Medicine, USA
| |
Collapse
|
50
|
Powell MK, Benková K, Selinger P, Dogoši M, Kinkorová Luňáčková I, Koutníková H, Laštíková J, Roubíčková A, Špůrková Z, Laclová L, Eis V, Šach J, Heneberg P. Opportunistic Infections in HIV-Infected Patients Differ Strongly in Frequencies and Spectra between Patients with Low CD4+ Cell Counts Examined Postmortem and Compensated Patients Examined Antemortem Irrespective of the HAART Era. PLoS One 2016; 11:e0162704. [PMID: 27611681 PMCID: PMC5017746 DOI: 10.1371/journal.pone.0162704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/27/2016] [Indexed: 12/05/2022] Open
Abstract
Objective AIDS-related mortality has changed dramatically with the onset of highly active antiretroviral therapy (HAART), which has even allowed compensated HIV-infected patients to withdraw from secondary therapy directed against opportunistic pathogens. However, in recently autopsied HIV-infected patients, we observed that associations with a broad spectrum of pathogens remain, although detailed analyses are lacking. Therefore, we focused on the possible frequency and spectrum shifts in pathogens associated with autopsied HIV-infected patients. Design We hypothesized that the pathogens frequency and spectrum changes found in HIV-infected patients examined postmortem did not recapitulate the changes found previously in HIV-infected patients examined antemortem in both the pre- and post-HAART eras. Because this is the first comprehensive study originating from Central and Eastern Europe, we also compared our data with those obtained in the West and Southwest Europe, USA and Latin America. Methods We performed autopsies on 124 HIV-infected patients who died from AIDS or other co-morbidities in the Czech Republic between 1985 and 2014. The pathological findings were retrieved from the full postmortem examinations and autopsy records. Results We collected a total of 502 host-pathogen records covering 82 pathogen species, a spectrum that did not change according to patients’ therapy or since the onset of the epidemics, which can probably be explained by the fact that even recently deceased patients were usually decompensated (in 95% of the cases, the last available CD4+ cell count was falling below 200 cells*μl-1) regardless of the treatment they received. The newly identified pathogen taxa in HIV-infected patients included Acinetobacter calcoaceticus, Aerococcus viridans and Escherichia hermannii. We observed a very limited overlap in both the spectra and frequencies of the pathogen species found postmortem in HIV-infected patients in Europe, the USA and Latin America. Conclusions The shifts documented previously in compensated HIV-infected patients examined antemortem in the post-HAART era are not recapitulated in mostly decompensated HIV-infected patients examined postmortem.
Collapse
Affiliation(s)
- Marta K. Powell
- Charles University in Prague, Third Faculty of Medicine, Prague, Czech Republic
- Na Bulovce Hospital, Pathological-Anatomical Department, Prague, Czech Republic
| | - Kamila Benková
- Na Bulovce Hospital, Pathological-Anatomical Department, Prague, Czech Republic
| | - Pavel Selinger
- Na Bulovce Hospital, Pathological-Anatomical Department, Prague, Czech Republic
- Charles University in Prague, Second Faculty of Medicine, Department of Forensic Medicine, Prague, Czech Republic
| | - Marek Dogoši
- Na Bulovce Hospital, Pathological-Anatomical Department, Prague, Czech Republic
- Charles University in Prague, First Faculty of Medicine, Department of Forensic Medicine and Toxicology, Prague, Czech Republic
| | - Iva Kinkorová Luňáčková
- Na Bulovce Hospital, Pathological-Anatomical Department, Prague, Czech Republic
- Bioptická laboratoř s.r.o., Plzeň, Czech Republic
| | - Hana Koutníková
- Na Bulovce Hospital, Pathological-Anatomical Department, Prague, Czech Republic
| | - Jarmila Laštíková
- Na Bulovce Hospital, Pathological-Anatomical Department, Prague, Czech Republic
| | - Alena Roubíčková
- Na Bulovce Hospital, Pathological-Anatomical Department, Prague, Czech Republic
| | - Zuzana Špůrková
- Na Bulovce Hospital, Pathological-Anatomical Department, Prague, Czech Republic
| | - Lucie Laclová
- Na Bulovce Hospital, Pathological-Anatomical Department, Prague, Czech Republic
- Charles University in Prague, Second Faculty of Medicine, Department of Forensic Medicine, Prague, Czech Republic
| | - Václav Eis
- Charles University in Prague, Third Faculty of Medicine, Prague, Czech Republic
- Teaching Hospital Královské Vinohrady, Department of Pathology, Prague, Czech Republic
| | - Josef Šach
- Charles University in Prague, Third Faculty of Medicine, Prague, Czech Republic
- Teaching Hospital Královské Vinohrady, Department of Pathology, Prague, Czech Republic
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, Prague, Czech Republic
- * E-mail:
| |
Collapse
|