1
|
Gualtero DF, Lafaurie GI, Buitrago DM, Castillo Y, Vargas-Sanchez PK, Castillo DM. Oral microbiome mediated inflammation, a potential inductor of vascular diseases: a comprehensive review. Front Cardiovasc Med 2023; 10:1250263. [PMID: 37711554 PMCID: PMC10498784 DOI: 10.3389/fcvm.2023.1250263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
The dysbiosis of the oral microbiome and vascular translocation of the periodontopathic microorganism to peripheral blood can cause local and systemic extra-oral inflammation. Microorganisms associated with the subgingival biofilm are readily translocated to the peripheral circulation, generating bacteremia and endotoxemia, increasing the inflammation in the vascular endothelium and resulting in endothelial dysfunction. This review aimed to demonstrate how the dysbiosis of the oral microbiome and the translocation of oral pathogen-induced inflammation to peripheral blood may be linked to cardiovascular diseases (CVDs). The dysbiosis of the oral microbiome can regulate blood pressure and activate endothelial dysfunction. Similarly, the passage of periodontal microorganisms into the peripheral circulation and their virulence factors have been associated with a vascular compartment with a great capacity to activate endothelial cells, monocytes, macrophages, and plaquettes and increase interleukin and chemokine secretion, as well as oxidative stress. This inflammatory process is related to atherosclerosis, hypertension, thrombosis, and stroke. Therefore, oral diseases could be involved in CVDs via inflammation. The preclinic and clinical evidence suggests that periodontal disease increases the proinflammatory markers associated with endothelial dysfunction. Likewise, the evidence from clinical studies of periodontal treatment in the long term evidenced the reduction of these markers and improved overall health in patients with CVDs.
Collapse
|
2
|
Hendawy OM, Al-Sanea MM, Mohammed Elbargisy R, Ur Rahman H, Hassan YA, Elshaarawy RFM, Khedr AIM. Alginate-chitosan-microencapsulated tyrosols/oleuropein-rich olive mill waste extract for lipopolysaccharide-induced skin fibroblast inflammation treatment. Int J Pharm 2023; 643:123260. [PMID: 37481097 DOI: 10.1016/j.ijpharm.2023.123260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The Ca2+ ion-driven emulsification-ionotropic gelation method produced chitosan-alginate microspheres (CAMSs) with a narrow particle size distribution (PSD). Particle size distribution and zeta potential studies, as well as spectral electron microscopy, were used to assess the microspheres' physicochemical properties and morphology. The tyrosols (hydroxytyrosol (HT), tyrosol (TY), and oleuropein (OE) were loaded into these microspheres using a polyphenol extract (PPE) from Koroneki olive mill waste (KOMW). The microencapsulation efficiency and loading capacity of microspheres for PPE were 98.8% and 3.9%, respectively. Three simulated fluids, including gastric (pH = 1.2), intestinal (pH = 6.8), and colonic (pH = 7.4), were used to examine how the pH of the releasing medium affected the ability of CAMSs to release bioactive phenols. At a severely acidic pH (1.2, SGF), PPE release is nearly halted, while at pH 6.8 (SCF), release is at its maximum. Additionally, the PPE-CAMPs have ameliorated the endogenous antioxidant content SOD, GST, GPx with significant values from 0.05 to 0.01 in the treated LPS/human skin fibroblast cells. The anti-inflammatory response was appeared through their attenuations activity for the released cytokines TNF-α, IL6, IL1β, and IL 12 with levels significantly from 0.01 to 0.001. Microencapsulation of PPE by CAMPs significantly improved its antioxidant and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Omnia M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia.
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Rehab Mohammed Elbargisy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Al-Jouf Province, Sakaka 72341, Saudi Arabia
| | - Yasser A Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - Amgad I M Khedr
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, 42526 Port Said, Egypt
| |
Collapse
|
3
|
Wielento A, Lagosz-Cwik K, Potempa J, Grabiec A. The Role of Gingival Fibroblasts in the Pathogenesis of Periodontitis. J Dent Res 2023; 102:489-496. [PMID: 36883660 PMCID: PMC10249005 DOI: 10.1177/00220345231151921] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Gingival fibroblasts (GFs) are essential components of the periodontium, which are responsible for the maintenance of tissue structure and integrity. However, the physiological role of GFs is not restricted to the production and remodeling of the extracellular matrix. GFs also act as sentinel cells that modulate the immune response to oral pathogens invading the gingival tissue. As an important "nonclassical" component of the innate immune system, GFs respond to bacteria and damage-related signals by producing cytokines, chemokines, and other inflammatory mediators. Although the activation of GFs supports the elimination of invading bacteria and the resolution of inflammation, their uncontrolled or excessive activation may promote inflammation and bone destruction. This occurs in periodontitis, a chronic inflammatory disease of the periodontium initiated and sustained by dysbiosis. In the inflamed gingival tissue, GFs acquire imprinted proinflammatory phenotypes that promote the growth of inflammophilic pathogens, stimulate osteoclastogenesis, and contribute to the chronicity of inflammation. In this review, we discuss the biological functions of GFs in healthy and inflamed gingival tissue, highlighting recent studies that provide insight into their role in the pathogenesis of periodontal diseases. We also draw parallels with the recently discovered fibroblast populations identified in other tissues and their roles in health and disease. This knowledge should be used in future studies to discover more about the role of GFs in periodontal diseases, especially chronic periodontitis, and to identify therapeutic strategies targeting their pathological interactions with oral pathogens and the immune system.
Collapse
Affiliation(s)
- A. Wielento
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - K.B. Lagosz-Cwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - J. Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - A.M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Francis N, Sanaei R, Ayodele BA, O'Brien‐Simpson NM, Fairlie DP, Wijeyewickrema LC, Pike RN, Mackie EJ, Pagel CN. Effect of a protease‐activated receptor‐2 antagonist (
GB88
) on inflammation‐related loss of alveolar bone in periodontal disease. J Periodontal Res 2023; 58:544-552. [PMID: 37002616 DOI: 10.1111/jre.13120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Protease-activated receptor-2 (PAR2 ), a pro-inflammatory G-protein coupled receptor, has been associated with pathogenesis of periodontitis and the resulting bone loss caused by oral pathogens, including the keystone pathogen Porphyromonas gingivalis (P. gingivalis). We hypothesised that administration of a PAR2 antagonist, GB88, might prevent inflammation and subsequent alveolar bone resorption in a mouse model of periodontal disease. METHODS Periodontitis was induced in mice by oral inoculations with P. gingivalis for a total of eight times over 24 days. The infected mice were treated with either GB88 or vehicle for the duration of the trial. Following euthanasia on day 56, serum was collected and used for the detection of mast cell tryptase. The right maxillae were defleshed and stained with methylene blue to measure the exposed cementum in molar teeth. The left maxillae were prepared for cryosections followed by staining for tartrate-resistant acid phosphatase to identify osteoclasts or with toluidine blue to identify mast cells. Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of inflammatory cytokines in the gingival tissue. Supernatants of T-lymphocyte cultures isolated from the regional lymph nodes were assayed using a cytometric bead array to measure the Th1/Th2/Th17 cytokine levels. RESULTS Measurement of the exposed cementum showed that GB88 reduced P. gingivalis-induced alveolar bone loss by up to 69%. GB88 also prevented the increase in osteoclast numbers observed in the infected mice. Serum tryptase levels were significantly elevated in both the infected groups, and not altered by treatment. RT-qPCR showed that GB88 prevented the upregulation of Il1b, Il6, Ifng and Cd11b. In T-lymphocyte supernatants, only IFNγ and IL-17A levels were increased in response to infection, but this was prevented by GB88 treatment. CONCLUSIONS GB88 significantly reduced osteoclastic alveolar bone loss in mice infected with P. gingivalis, seemingly by preventing the upregulation of several inflammatory cytokines. PAR2 antagonism may be an effective treatment strategy for periodontal disease.
Collapse
Affiliation(s)
- Nidhish Francis
- Department of Veterinary Biosciences, Melbourne Veterinary School The University of Melbourne Parkville Victoria Australia
| | - Reza Sanaei
- Department of Veterinary Biosciences, Melbourne Veterinary School The University of Melbourne Parkville Victoria Australia
| | - Babatunde A. Ayodele
- Department of Veterinary Biosciences, Melbourne Veterinary School The University of Melbourne Parkville Victoria Australia
| | - Neil M. O'Brien‐Simpson
- Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology The University of Melbourne Parkville Victoria Australia
| | - David P. Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience The University of Queensland Brisbane Queensland 4072 Australia
| | - Lakshmi C. Wijeyewickrema
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science La Trobe University Melbourne Victoria Australia
| | - Robert N. Pike
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science La Trobe University Melbourne Victoria Australia
| | - Eleanor Jean Mackie
- Department of Veterinary Biosciences, Melbourne Veterinary School The University of Melbourne Parkville Victoria Australia
| | - Charles Neil Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
5
|
Wang RPH, Huang J, Chan KWY, Leung WK, Goto T, Ho YS, Chang RCC. IL-1β and TNF-α play an important role in modulating the risk of periodontitis and Alzheimer's disease. J Neuroinflammation 2023; 20:71. [PMID: 36915108 PMCID: PMC10012546 DOI: 10.1186/s12974-023-02747-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Systemic activation of the immune system can exert detrimental effects on the central nervous system. Periodontitis, a chronic disease of the oral cavity, is a common source of systemic inflammation. Neuroinflammation might be a result of this to accelerate progressive deterioration of neuronal functions during aging or exacerbate pre-existing neurodegenerative diseases, such as Alzheimer's disease. With advancing age, the progressive increase in the body's pro-inflammatory status favors the state of vulnerability to both periodontitis and Alzheimer's disease. In the present study, we sought to delineate the roles of cytokines in the pathogenesis of both diseases. METHODS To examine the impacts of periodontitis on the onset and progression of Alzheimer's disease, 6-month-old female 3 × Tg-AD mice and their age-matched non-transgenic mice were employed. Periodontitis was induced using two different experimental models: heat-killed bacterial-induced periodontitis and ligature-induced periodontitis. To delineate the roles of pro-inflammatory cytokines in the pathogenesis of periodontitis and Alzheimer's disease, interleukin 1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) were also injected into the buccal mandibular vestibule of mice. RESULTS Here, we show that IL-1β and TNF-α were two of the most important and earliest cytokines upregulated upon periodontal infection. The systemic upregulation of these two cytokines promoted a pro-inflammatory environment in the brain contributing to the development of Alzheimer's disease-like pathology and cognitive dysfunctions. Periodontitis-induced systemic inflammation also enhanced brain inflammatory responses and subsequently exacerbated Alzheimer's disease pathology and cognitive impairment in 3 × Tg-AD mice. The role of inflammation in connecting periodontitis to Alzheimer's disease was further affirmed in the conventional magnetization transfer experiment in which increased glial responses resulting from periodontitis led to decreased magnetization transfer ratios in the brain of 3 × Tg-AD mice. CONCLUSIONS Systemic inflammation resulting from periodontitis contributed to the development of Alzheimer's disease tau pathology and subsequently led to cognitive decline in non-transgenic mice. It also potentiated Alzheimer's disease pathological features and exacerbated impairment of cognitive function in 3 × Tg-AD mice. Taken together, this study provides convincing evidence that systemic inflammation serves as a connecting link between periodontitis and Alzheimer's disease.
Collapse
Affiliation(s)
- Rachel Pei-Hsuan Wang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Laboratory Block, Rm. L4-49, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Tetsuya Goto
- Division of Oral Anatomy and Histology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Laboratory Block, Rm. L4-49, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
6
|
Chen WA, Dou Y, Fletcher HM, Boskovic DS. Local and Systemic Effects of Porphyromonas gingivalis Infection. Microorganisms 2023; 11:470. [PMID: 36838435 PMCID: PMC9963840 DOI: 10.3390/microorganisms11020470] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is a leading etiological agent in periodontitis. This infectious pathogen can induce a dysbiotic, proinflammatory state within the oral cavity by disrupting commensal interactions between the host and oral microbiota. It is advantageous for P. gingivalis to avoid complete host immunosuppression, as inflammation-induced tissue damage provides essential nutrients necessary for robust bacterial proliferation. In this context, P. gingivalis can gain access to the systemic circulation, where it can promote a prothrombotic state. P. gingivalis expresses a number of virulence factors, which aid this pathogen toward infection of a variety of host cells, evasion of detection by the host immune system, subversion of the host immune responses, and activation of several humoral and cellular hemostatic factors.
Collapse
Affiliation(s)
- William A. Chen
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Danilo S. Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
7
|
Chaudhary P, Mitra D, Das Mohapatra PK, Oana Docea A, Mon Myo E, Janmeda P, Martorell M, Iriti M, Ibrayeva M, Sharifi-Rad J, Santini A, Romano R, Calina D, Cho WC. Camellia sinensis: insights on its molecular mechanisms of action towards nutraceutical, anticancer potential and other therapeutic applications. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
8
|
Saliem SS, Bede SY, Cooper PR, Abdulkareem AA, Milward MR, Abdullah BH. Pathogenesis of periodontitis - A potential role for epithelial-mesenchymal transition. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:268-278. [PMID: 36159185 PMCID: PMC9489739 DOI: 10.1016/j.jdsr.2022.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a process comprising cellular and molecular events which result in cells shifting from an epithelial to a mesenchymal phenotype. Periodontitis is a destructive chronic disease of the periodontium initiated in response to a dysbiotic microbiome, and dominated by Gram-negative bacteria in the subgingival niches accompanied by an aberrant immune response in susceptible subjects. Both EMT and periodontitis share common risk factors and drivers, including Gram-negative bacteria, excess inflammatory cytokine production, smoking, oxidative stress and diabetes mellitus. In addition, periodontitis is characterized by down-regulation of key epithelial markers such as E-cadherin together with up-regulation of transcriptional factors and mesenchymal proteins, including Snail1, vimentin and N-cadherin, which also occur in the EMT program. Clinically, these phenotypic changes may be reflected by increases in microulceration of the pocket epithelial lining, granulation tissue formation, and fibrosis. Both in vitro and in vivo data now support the potential involvement of EMT as a pathogenic mechanism in periodontal diseases which may facilitate bacterial invasion into the underlying gingival tissues and propagation of inflammation. This review surveys the available literature and provides evidence linking EMT to periodontitis pathogenesis.
Collapse
Affiliation(s)
- Saif S Saliem
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Salwan Y Bede
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Ali A Abdulkareem
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Michael R Milward
- ŌSchool of Dentistry, University of Birmingham, 5 Mill Pool Way, B5 7EG Birmingham, UK
| | - Bashar H Abdullah
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| |
Collapse
|
9
|
Blancas-Luciano BE, Becker-Fauser I, Zamora-Chimal J, Delgado-Domínguez J, Ruíz-Remigio A, Leyva-Huerta ER, Portilla-Robertson J, Fernández-Presas AM. Antimicrobial and anti-inflammatory activity of Cystatin C on human gingival fibroblast incubated with Porphyromonas gingivalis. PeerJ 2022; 10:e14232. [PMID: 36312752 PMCID: PMC9615962 DOI: 10.7717/peerj.14232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023] Open
Abstract
Background Periodontal disease is considered one of the most prevalent chronic infectious diseases, often leading to the disruption of tooth-supporting tissues, including alveolar bone, causing tooth mobility and loss. Porphyromonas gingivalis is considered the major etiological agent of this disease, having a plethora of virulence factors, including, lipopolysaccharides (LPS), hemolysins, and proteinases. Antimicrobial peptides are one of the main components of the innate immune response that inhibit the growth of P. gingivalis. The aim of this study was to analyze the antimicrobial activity of cystatin C and to assess the effect on the inflammatory and anti-inflammatory cytokines, the production of reactive oxygen species, and in the release of nitric oxide by human gingival fibroblasts incubated with P. gingivalis in the presence and absence of cystatin C. Methods P. gingivalis ATCC 33277 was exposed to cystatin C for 24h and co-cultured with human gingival fibroblasts (HGFs) ATCC CRL-2014. The effect of cystatin on growth of P. gingivalis and HGFs was evaluated. Pro-inflammatory (TNFα, IL-1β) and anti-inflammatory (IL-10) cytokines were determined by ELISA in the supernatants of HGFs incubated with P. gingivalis exposed to cystatin C. Additionally, nitrites and reactive oxygen species (ROS) production were evaluated. Results Cystatin Cinhibited the growth of P. gingivalis without affecting HGFs. Incubation of HGFs with P. gingivalis led to a significant increase of TNF-α and IL-1β. In contrast, HGFs incubated with P. gingivalis exposed to cystatin C showed a decreased production of both cytokines, whereas IL-10 was enhanced. Incubation of HGFs with P. gingivalis led to an increase of nitric oxide (NO) and ROS production, which was reduced in the presence of the peptide. Conclusions Cystatin C inhibits the growth of P. gingivalis and decreases the inflammatory cytokines, ROS, and NO production during infection of HGFs with P. gingivalis. Knowledge on the antimicrobial and immunomodulatory properties of cystatin C could aid in the design of new therapeutic approaches to facilitate the elimination of this bacterium to improve the treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Ingeborg Becker-Fauser
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - José Delgado-Domínguez
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Adriana Ruíz-Remigio
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Elba Rosa Leyva-Huerta
- Departmento de Medicina Oral y Patología, División de Posgrado, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Javier Portilla-Robertson
- Departmento de Medicina Oral y Patología, División de Posgrado, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, México,Centro de investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Mexico City, México
| |
Collapse
|
10
|
Batool F, Petit C, Stutz C, Özçelik H, Gegout PY, Benkirane-Jessel N, Delpy E, Zal F, Leize-Zal E, Huck O. M101, a therapeutic oxygen carrier derived from Arenicola marina, decreased Porphyromonas gingivalis induced hypoxia and improved periodontal healing. J Periodontol 2022; 93:1712-1724. [PMID: 35536914 DOI: 10.1002/jper.22-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND P. gingivalis exacerbates tissue hypoxia and worsens periodontal inflammation. This study investigated the effect of a therapeutic oxygen carrier (M101), derived from Arenicola marina, on hypoxia and associated inflammation in the context of periodontitis. METHODS The effect of M101 on GLUT-1, GLUT-3, HIF-1α and MMP-9 expression, hypoxia and antioxidant status in oral epithelial cells (EC) exposed to CoCl2 (1000μM), P. gingivalis (MOI 100) and CoCl2 + P. gingivalis was evaluated through hypoxia detection fluorescence assay, antioxidant concentration colorimetric assay and RTqPCR. Evaluation of M101 on EC proliferation was evaluated in an in vitro wound assay. In experimental periodontitis, periodontal wound healing and osteoclastic activity were compared among natural wound healing, placebo and gels containing M101 (1 g/L and 2 g/L) groups through histomorphometry and TRAP assay respectively. The expression of HIF-1α, MMP-9 and NFκB in periodontal tissues was also evaluated through immunofluorescence studies. RESULTS M101 downregulated GLUT-1, GLUT-3, HIF-1α and MMP-9 levels in EC exposed to CoCl2 , P. gingivalis and CoCl2 + P. gingivalis (p < 0.05). Fluorescence and colorimetric analyses confirmed hypoxia reduction and antioxidant capacity improvement in such EC upon M101 treatment. Moreover, M101 improved significantly the in vitro wound closure. In vivo, the attachment level was significantly improved, and osteoclastic activity was reduced in mice treated with M101 gels compared to placebo and natural wound healing groups (p < 0.05). HIF-1α, MMP-9 and NFκB expression in periodontal tissues was reduced in M101 gels treated mice compared to the controls. CONCLUSION M101 showed promise in resolving hypoxia and associated inflammation mediated tissue degradation. Its potential in the clinical management of periodontitis must be further investigated. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fareeha Batool
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Catherine Petit
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,University hospital, Strasbourg, France
| | - Céline Stutz
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Pierre-Yves Gegout
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | | | | | | | - Olivier Huck
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| |
Collapse
|
11
|
Proteolytic Activity-Independent Activation of the Immune Response by Gingipains from Porphyromonas gingivalis. mBio 2022; 13:e0378721. [PMID: 35491845 PMCID: PMC9239244 DOI: 10.1128/mbio.03787-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porphyromonas gingivalis, a keystone pathogen in periodontitis (PD), produces cysteine proteases named gingipains (RgpA, RgpB, and Kgp), which strongly affect the host immune system. The range of action of gingipains is extended by their release as components of outer membrane vesicles, which efficiently diffuse into surrounding gingival tissues. However, away from the anaerobic environment of periodontal pockets, increased oxygen levels lead to oxidation of the catalytic cysteine residues of gingipains, inactivating their proteolytic activity. In this context, the influence of catalytically inactive gingipains on periodontal tissues is of significant interest. Here, we show that proteolytically inactive RgpA induced a proinflammatory response in both gingival keratinocytes and dendritic cells. Inactive RgpA is bound to the cell surface of gingival keratinocytes in the region of lipid rafts, and using affinity chromatography, we identified RgpA-interacting proteins, including epidermal growth factor receptor (EGFR). Next, we showed that EGFR interaction with inactive RgpA stimulated the expression of inflammatory cytokines. The response was mediated via the EGFR–phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which when activated in the gingival tissue rich in dendritic cells in the proximity of the alveolar bone, may significantly contribute to bone resorption and the progress of PD. Taken together, these findings broaden our understanding of the biological role of gingipains, which in acting as proinflammatory factors in the gingival tissue, create a favorable milieu for the growth of inflammophilic pathobionts.
Collapse
|
12
|
Lan C, Chen S, Jiang S, Lei H, Cai Z, Huang X. Different expression patterns of inflammatory cytokines induced by lipopolysaccharides from Escherichia coli or Porphyromonas gingivalis in human dental pulp stem cells. BMC Oral Health 2022; 22:121. [PMID: 35413908 PMCID: PMC9004173 DOI: 10.1186/s12903-022-02161-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Lipopolysaccharide (LPS) is one of the leading causes of pulpitis. The differences in establishing an in vitro pulpitis model by using different lipopolysaccharides (LPSs) are unknown. This study aimed to determine the discrepancy in the ability to induce the expression of inflammatory cytokines and the underlying mechanism between Escherichia coli (E. coli) and Porphyromonas gingivalis (P. gingivalis) LPSs in human dental pulp stem cells (hDPSCs).
Material and methods Quantitative real-time polymerase chain reaction (QRT-PCR) was used to evaluate the mRNA levels of inflammatory cytokines including IL-6, IL-8, COX-2, IL-1β, and TNF-α expressed by hDPSCs at each time point. ELISA was used to assess the interleukin-6 (IL-6) protein level. The role of toll-like receptors (TLR)2 and TLR4 in the inflammatory response in hDPSCs initiated by LPSs was assessed by QRT-PCR and flow cytometry. Results The E. coli LPS significantly enhanced the mRNA expression of inflammatory cytokines and the production of the IL-6 protein (p < 0.05) in hDPSCs. The peaks of all observed inflammation mediators’ expression in hDPSCs were reached 3–12 h after stimulation by 1 μg/mL E. coli LPS. E. coli LPS enhanced the TLR4 expression (p < 0.05) but not TLR2 in hDPSCs, whereas P. gingivalis LPS did not affect TLR2 or TLR4 expression in hDPSCs. The TLR4 inhibitor pretreatment significantly inhibited the gene expression of inflammatory cytokines upregulated by E. coli LPS (p < 0.05). Conclusion Under the condition of this study, E. coli LPS but not P. gingivalis LPS is effective in promoting the expression of inflammatory cytokines by hDPSCs. E. coli LPS increases the TLR4 expression in hDPSCs. P. gingivalis LPS has no effect on TLR2 or TLR4 expression in hDPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02161-x.
Collapse
Affiliation(s)
- Chunhua Lan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shan Jiang
- Southern Medical University, Shenzhen Stomatology Hospital (Pingshan), Shenzhen, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China. .,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
13
|
Chlorogenic Acid as a Positive Regulator in LPS-PG-Induced Inflammation via TLR4/MyD88-Mediated NF-κB and PI3K/MAPK Signaling Cascades in Human Gingival Fibroblasts. Mediators Inflamm 2022; 2022:2127642. [PMID: 35437426 PMCID: PMC9013303 DOI: 10.1155/2022/2127642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/29/2022] Open
Abstract
Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory mechanism of chlorogenic acid (CGA) on Porphyromonas gingivalis LPS- (LPS-PG-) stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by CGA treatment in a dose-dependent manner. CGA treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor- (NF-) κB in LPS-PG-stimulated HGF-1 cells. Furthermore, LPS-PG-induced phosphorylation of extracellular regulated kinase (ERK) and Akt was abolished by CGA treatment, while c-Jun N-terminal kinase (JNK) and p38 did not have any effect. Consequently, these results suggest that CGA ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, phosphoinositide-3-kinase (PI3K)/Akt, and MAPK signaling pathways in HGF-1 cells.
Collapse
|
14
|
Rahim MI, Winkel A, Ingendoh-Tsakmakidis A, Lienenklaus S, Falk CS, Eisenburger M, Stiesch M. Bacterial-Specific Induction of Inflammatory Cytokines Significantly Decreases upon Dual Species Infections of Implant Materials with Periodontal Pathogens in a Mouse Model. Biomedicines 2022; 10:biomedicines10020286. [PMID: 35203495 PMCID: PMC8869624 DOI: 10.3390/biomedicines10020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cytokine profiles are often perturbed after infections of medical implants. With a non-invasive in vivo imaging system, we report in a mouse model that interferon expression after infection of subcutaneous implants with Streptococcus oralis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola (alone or as a combination) was species-specific, persisted longer in the presence of implants, and notably decreased upon dual species infections. This type I interferon expression disappeared within two weeks; however, histology of implant–tissue interface indicated high recruitment of immune cells even after three weeks. This was suggestive that biomaterial-associated infections could have prolonged effects, including the systemic stimulation of inflammatory cytokines. The present study investigated the systemic impact of this chronic peri-implant inflammation on the systemic expression of inflammatory cytokines (23) using a multiplex assay. Initially, the cytokine measurement in murine fibroblasts exposed to periodontal pathogens remained limited to the expression of five cytokines, namely, IL-6, G-CSF, CXCL-1/KC, MCP-1 (MCAF), and IL-12 (p40). The systemic determination of cytokines in mice increased to 19 cytokines (IL-1α, IL-2, IL-3, IL-5, IL-6, IL-9, IL-12 (p40), IL-12 (p70), IL-13, IL-17A, CCL-11/Eotaxin, G-CSF, IFN-γ, CXCL1/KC, MCP-1 (MCAF), MIP-1α/CCL3, MIP-1β/CCL4, CCL5/RANTES, and TNF-α). Systemic induction of cytokines was species-specific in the mouse model. The cytokine induction from infected implants differed significantly from sole tissue infections and sterile implants. Notably, systemic cytokine induction decreased after infections with dual species compared to single species infections. These findings describe the systemic effect of chronic peri-implant inflammation on the systemic induction of inflammatory cytokines, and this effect was strongly correlated to the type and composition of initial infection. Systemic modulations in cytokine expression upon dual species infections exhibit an exciting pattern that might explain the complications associated with biomaterial-related infection in patients. Moreover, these findings validate the requirement of multispecies infections for pre-clinical studies involving animal models.
Collapse
Affiliation(s)
- Muhammad Imran Rahim
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (A.I.-T.); (M.E.); (M.S.)
- Correspondence: ; Tel.: +49-(0)511-532-7288
| | - Andreas Winkel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (A.I.-T.); (M.E.); (M.S.)
| | - Alexandra Ingendoh-Tsakmakidis
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (A.I.-T.); (M.E.); (M.S.)
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany;
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | - Michael Eisenburger
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (A.I.-T.); (M.E.); (M.S.)
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (A.I.-T.); (M.E.); (M.S.)
| |
Collapse
|
15
|
Sugimoto M, Abe K, Takagi T, Suzuki R, Konno N, Asama H, Sato Y, Irie H, Watanabe K, Nakamura J, Kikuchi H, Takasumi M, Hashimoto M, Kato T, Kobashi R, Hikichi T, Ohira H. Dysbiosis of the duodenal microbiota as a diagnostic marker for pancreaticobiliary cancer. World J Gastrointest Oncol 2021; 13:2088-2100. [PMID: 35070044 PMCID: PMC8713320 DOI: 10.4251/wjgo.v13.i12.2088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/10/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreaticobiliary cancer (PB Ca) is a lethal disease, and a useful diagnostic marker is urgently needed. A correlation between the human microbiota and malignant gastrointestinal diseases was recently reported.
AIM To investigate the efficacy of the duodenal microbiota for diagnosing PB Ca.
METHODS We recruited 22 patients with benign pancreaticobiliary diseases (benign group) and 12 patients with PB Ca (malignant group). The duodenal microbiota of each patient was analyzed by the 16S rDNA terminal restriction fragment length polymorphism method. Patient characteristics, tumor markers, and relative abundances of the duodenal microbiota were compared between the benign and malignant groups.
RESULTS Cancer antigen 19-9 (CA19-9), Bifidobacterium, Clostridium cluster XVIII, and Prevotella levels differed significantly between the benign and malignant groups. Clostridium cluster XVIII had the greatest area under the receiver operating characteristic curve (AUC) among the four factors with respect to diagnosing PB Ca (cutoff value: 3.038%; sensitivity: 58.3%; specificity: 95.2%; AUC: 0.81). The combination of Clostridium cluster XVIII (cutoff value: 3.038%) and CA19-9 Levels (cutoff value: 18.8 U/mL) showed 91.7% sensitivity and 71.4% specificity for diagnosing PB Ca.
CONCLUSION The duodenal microbiota may be useful for PB Ca screening.
Collapse
Affiliation(s)
- Mitsuru Sugimoto
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tadayuki Takagi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Rei Suzuki
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Naoki Konno
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hiroyuki Asama
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yuki Sato
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hiroki Irie
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Ko Watanabe
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan
| | - Jun Nakamura
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan
| | - Hitomi Kikuchi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan
| | - Mika Takasumi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Minami Hashimoto
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan
| | - Tsunetaka Kato
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan
| | - Ryoichiro Kobashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan
| | - Takuto Hikichi
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
16
|
Albuquerque-Souza E, Ishikawa KH, Amado PP, Nicoli JR, Holzhausen M, Mayer MPA. Probiotics improve re-epithelialization of scratches infected by Porphyromonas gingivalis through up-regulating CXCL8-CXCR1/CXCR2 axis. Anaerobe 2021; 72:102458. [PMID: 34547426 DOI: 10.1016/j.anaerobe.2021.102458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Porphyromonas gingivalis inhibits the release of CXCL8 by gingival epithelial cells and reduces their proliferation. We previously reported that Bifidocaterium sp. and Lactobacillus sp. immunomodulate gingival epithelial cells response to this periodontal pathogen, but their effects on re-epithelialization properties are still unknown. Herein we explored these activities of potential probiotics on gingival epithelial cells and clarified their mechanisms. The immortalized OBA-9 lineage was used to perform in vitro scratches. Twelve clinical isolates and commercially available strains of Bifidobacterium sp. and Lactobacillus sp. were screened. L. casei 324 m and B. pseudolongum 1191A were selected to perform mechanistic assays with P. gingivalis W83 infection and the following parameters were measured: percentage of re-epithelialization by DAPI immunofluorescence area measurement; cell number by Trypan Blue exclusion assay; CXCL8 regulation by ELISA and RT-qPCR; and expression of CXCL8 cognate receptors-CXCR1 and CXCR2 by Flow Cytometry. Complementary mechanistic assays were performed with CXCL8, in the presence or absence of the CXCR1/CXCR2 inhibitor-reparixin. L. casei 324 m and B. pseudolongum 1191A enhanced re-epithelialization/cell proliferation as well as inhibited the harmful effects of P. gingivalis W83 on these activities through an increase in the expression and release of CXCL8 and in the number of cells positive for CXCR1/CXCR2. Further, we revealed that the beneficial effects of these potential probiotics were dependent on activation of the CXCL8-CXCR1/CXCR2 axis. The current findings indicate that these potential probiotics strains may improve wound healing in the context of the periodontal tissues by a CXCL8 dependent mechanism.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, SP, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Karin Hitomi Ishikawa
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, SP, Brazil
| | - Pâmela Penas Amado
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Jacques Robert Nicoli
- Department of Microbiology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marinella Holzhausen
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, SP, Brazil
| | - Marcia P A Mayer
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, SP, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Sp N, Kang DY, Kim HD, Rugamba A, Jo ES, Park JC, Bae SW, Lee JM, Jang KJ. Natural Sulfurs Inhibit LPS-Induced Inflammatory Responses through NF-κB Signaling in CCD-986Sk Skin Fibroblasts. Life (Basel) 2021; 11:life11050427. [PMID: 34068523 PMCID: PMC8151259 DOI: 10.3390/life11050427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced inflammatory response leads to serious damage, up to and including tumorigenesis. Natural mineral sulfur, non-toxic sulfur (NTS), and methylsulfonylmethane (MSM) have anti-inflammatory activity that may inhibit LPS-induced inflammation. We hypothesized that sulfur compounds could inhibit LPS-induced inflammatory responses in CCD-986Sk skin fibroblasts. We used Western blotting and real-time PCR to analyze molecular signaling in treated and untreated cultures. We also used flow cytometry for cell surface receptor analysis, comet assays to evaluate DNA damage, and ELISA-based cytokine detection. LPS induced TLR4 activation and NF-κB signaling via canonical and protein kinase C (PKC)-dependent pathways, while NTS and MSM downregulated that response. NTS and MSM also inhibited LPS-induced nuclear accumulation and binding of NF-κB to proinflammatory cytokines COX-2, IL-1β, and IL-6. Finally, the sulfur compounds suppressed LPS-induced ROS accumulation and DNA damage in CCD-986Sk cells. These results suggest that natural sulfur compounds could be used to treat inflammation and may be useful in the development of cosmetics.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
| | - Hyoung Do Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
| | - Alexis Rugamba
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
| | - Eun Seong Jo
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Jong-Chan Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea;
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
- Correspondence: ; Tel.: +82-2-2030-7812
| |
Collapse
|
18
|
Yang D, Jiang C, Ning B, Kong W, Shi Y. The PorX/PorY system is a virulence factor of Porphyromonas gingivalis and mediates the activation of the type IX secretion system. J Biol Chem 2021; 296:100574. [PMID: 33757767 PMCID: PMC8050853 DOI: 10.1016/j.jbc.2021.100574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
PorX/PorY is a two-component system (TCS) of Porphyromonas gingivalis that governs transcription of numerous genes including those encoding a type IX secretion system (T9SS) for gingipain secretion and heme accumulation. Here, an in vitro analysis showed that the response regulator PorX specifically bound to two regions in the promoter of porT, a known PorX-regulated T9SS gene, thus demonstrating that PorX/PorY can directly regulate specific target genes. A truncated PorX protein containing the N-terminal receiver and effector domains retained a wild-type ability in both transcription regulation and heme accumulation, ruling out the role of the C-terminal ALP domain in gene regulation. The PorX/PorY system was the only TCS essential for heme accumulation and concomitantly responded to hemin to stimulate transcription of several known PorX-dependent genes in a concentration-dependent manner. We found that PorX/PorY activated the sigH gene, which encodes a sigma factor known for P. gingivalis adaptation to hydrogen peroxide (H2O2). Consistently, both ΔporX and ΔsigH mutants were susceptible to H2O2, suggesting a PorX/PorY-σH regulatory cascade to confer resistance to oxidative stress. Furthermore, the ΔporX mutant became susceptible to high hemin levels that could induce oxidative stress. Therefore, a possible reason why hemin activates PorX/PorY is to confer resistance to hemin-induced oxidative stress. We also demonstrated that PorX/PorY was essential for P. gingivalis virulence because the ΔporX mutant was avirulent in a mouse model. Specifically, this TCS was required for the repression of proinflammatory cytokines secreted by dendritic cells and T cells in the P. gingivalis–infected mice.
Collapse
Affiliation(s)
- Dezhi Yang
- The School of Life Sciences, Arizona State University, Tempe, Arizona, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona, USA
| | - Chizhou Jiang
- The School of Life Sciences, Arizona State University, Tempe, Arizona, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona, USA
| | - Bo Ning
- The Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Wei Kong
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona, USA.
| | - Yixin Shi
- The School of Life Sciences, Arizona State University, Tempe, Arizona, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
19
|
Aquino-Martinez R, Khosla S, Farr JN, Monroe DG. Periodontal Disease and Senescent Cells: New Players for an Old Oral Health Problem? Int J Mol Sci 2020; 21:E7441. [PMID: 33050175 PMCID: PMC7587987 DOI: 10.3390/ijms21207441] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
The recent identification of senescent cells in periodontal tissues has the potential to provide new insights into the underlying mechanisms of periodontal disease etiology. DNA damage-driven senescence is perhaps one of the most underappreciated delayed consequences of persistent Gram-negative bacterial infection and inflammation. Although the host immune response rapidly protects against bacterial invasion, oxidative stress generated during inflammation can indirectly deteriorate periodontal tissues through the damage to vital cell macromolecules, including DNA. What happens to those healthy cells that reside in this harmful environment? Emerging evidence indicates that cells that survive irreparable genomic damage undergo cellular senescence, a crucial intermediate mechanism connecting DNA damage and the immune response. In this review, we hypothesize that sustained Gram-negative bacterial challenge, chronic inflammation itself, and the constant renewal of damaged tissues create a permissive environment for the abnormal accumulation of senescent cells. Based on emerging data we propose a model in which the dysfunctional presence of senescent cells may aggravate the initial immune reaction against pathogens. Further understanding of the role of senescent cells in periodontal disease pathogenesis may have clinical implications by providing more sophisticated therapeutic strategies to combat tissue destruction.
Collapse
Affiliation(s)
- Ruben Aquino-Martinez
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Joshua N. Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Elmanfi S, Sintim HO, Zhou J, Gürsoy M, Könönen E, Gürsoy UK. Activation of Gingival Fibroblasts by Bacterial Cyclic Dinucleotides and Lipopolysaccharide. Pathogens 2020; 9:E792. [PMID: 32993127 PMCID: PMC7600373 DOI: 10.3390/pathogens9100792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Human gingival fibroblasts (HGFs) recognize microbe-associated molecular patterns (MAMPs) and respond with inflammatory proteins. Simultaneous impacts of bacterial cyclic di-guanosine monophosphate (c-di-GMP), cyclic di-adenosine monophosphate (c-di-AMP), and lipopolysaccharide (LPS) on gingival keratinocytes have been previously demonstrated, but the effects of these MAMPs on other periodontal cell types, such as gingival fibroblasts, remain to be clarified. The present aim was to examine the independent and combined effects of these cyclic dinucleotides and LPS on interleukin (IL) and matrix metalloproteinase (MMP) response of HGFs. The cells were incubated with c-di-GMP and c-di-AMP, either in the presence or absence of Porphyromonas gingivalis LPS, for 2 h and 24 h. The levels of IL-8, -10, and -34, and MMP-1, -2, and -3 secreted were measured by the Luminex technique. LPS alone or together with cyclic dinucleotides elevated IL-8 levels. IL-10 levels were significantly increased in the presence of c-di-GMP and LPS after 2 h but disappeared after 24 h of incubation. Concurrent treatment of c-di-AMP and LPS elevated MMP-1 levels, whereas c-di-GMP with LPS suppressed MMP-2 levels but increased MMP-3 levels. To conclude, we produce evidence that cyclic dinucleotides interact with LPS-mediated early response of gingival fibroblasts, while late cellular response is mainly regulated by LPS.
Collapse
Affiliation(s)
- Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Herman O. Sintim
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA;
| | - Jie Zhou
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA;
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
- Oral Health Care, Welfare Division, City of Turku, 20520 Turku, Finland
| | - Ulvi K. Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| |
Collapse
|
21
|
Bartnicka D, Gonzalez-Gonzalez M, Sykut J, Koziel J, Ciaston I, Adamowicz K, Bras G, Zawrotniak M, Karkowska-Kuleta J, Satala D, Kozik A, Zyla E, Gawron K, Lazarz-Bartyzel K, Chomyszyn-Gajewska M, Rapala-Kozik M. Candida albicans Shields the Periodontal Killer Porphyromonas gingivalis from Recognition by the Host Immune System and Supports the Bacterial Infection of Gingival Tissue. Int J Mol Sci 2020; 21:E1984. [PMID: 32183255 PMCID: PMC7139284 DOI: 10.3390/ijms21061984] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a pathogenic fungus capable of switching its morphology between yeast-like cells and filamentous hyphae and can associate with bacteria to form mixed biofilms resistant to antibiotics. In these structures, the fungal milieu can play a protective function for bacteria as has recently been reported for C. albicans and a periodontal pathogen-Porphyromonas gingivalis. Our current study aimed to determine how this type of mutual microbe protection within the mixed biofilm affects the contacting host cells. To analyze C. albicans and P. gingivalis persistence and host infection, several models for host-biofilm interactions were developed, including microbial exposure to a representative monocyte cell line (THP1) and gingival fibroblasts isolated from periodontitis patients. For in vivo experiments, a mouse subcutaneous chamber model was utilized. The persistence of P. gingivalis cells was observed within mixed biofilm with C. albicans. This microbial co-existence influenced host immunity by attenuating macrophage and fibroblast responses. Cytokine and chemokine production decreased compared to pure bacterial infection. The fibroblasts isolated from patients with severe periodontitis were less susceptible to fungal colonization, indicating a modulation of the host environment by the dominating bacterial infection. The results obtained for the mouse model in which a sequential infection was initiated by the fungus showed that this host colonization induced a milder inflammation, leading to a significant reduction in mouse mortality. Moreover, high bacterial counts in animal organisms were noted on a longer time scale in the presence of C. albicans, suggesting the chronic nature of the dual-species infection.
Collapse
Affiliation(s)
- Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Joanna Sykut
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.S.); (A.K.)
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.S.); (A.K.)
| | - Edyta Zyla
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland;
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland;
| | - Katarzyna Lazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University, Medical College, 31-155 Krakow, Poland; (K.L.-B.); (M.C.-G.)
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University, Medical College, 31-155 Krakow, Poland; (K.L.-B.); (M.C.-G.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| |
Collapse
|
22
|
Clark R, Zwicker S, Bureik D, Johannsen G, Boström EA. Expression of colony‐stimulating factor 1 and interleukin‐34 in gingival tissue and gingival fibroblasts from periodontitis patients and controls. J Periodontol 2020; 91:828-835. [DOI: 10.1002/jper.19-0296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/23/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Reuben Clark
- Department of Dental MedicineDivision of Oral DiseasesKarolinska Institutet Huddinge Sweden
| | - Stephanie Zwicker
- Department of Dental MedicineDivision of Oral DiseasesKarolinska Institutet Huddinge Sweden
| | - Daniela Bureik
- Department of Dental MedicineDivision of Oral DiseasesKarolinska Institutet Huddinge Sweden
| | - Gunnar Johannsen
- Department of Dental MedicineDivision of Oral DiseasesKarolinska Institutet Huddinge Sweden
| | - Elisabeth A. Boström
- Department of Dental MedicineDivision of Oral DiseasesKarolinska Institutet Huddinge Sweden
| |
Collapse
|
23
|
Identification of PGN_1123 as the Gene Encoding Lipid A Deacylase, an Enzyme Required for Toll-Like Receptor 4 Evasion, in Porphyromonas gingivalis. J Bacteriol 2019; 201:JB.00683-18. [PMID: 30782639 DOI: 10.1128/jb.00683-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
Removal of one acyl chain from bacterial lipid A by deacylase activity is a mechanism used by many pathogenic bacteria to evade the host's Toll-like receptor 4 (TLR4)-mediated innate immune response. In Porphyromonas gingivalis, a periodontal pathogen, lipid A deacylase activity converts a majority of the initially synthesized penta-acylated lipid A, a TLR4 agonist, to tetra-acylated structures, which effectively evade TLR4 sensing by being either inert or antagonistic at TLR4. In this paper, we report successful identification of the gene that encodes the P. gingivalis lipid A deacylase enzyme. This gene, PGN_1123 in P. gingivalis 33277, is highly conserved within P. gingivalis, and putative orthologs are phylogenetically restricted to the Bacteroidetes phylum. Lipid A of ΔPGN_1123 mutants is penta-acylated and devoid of tetra-acylated structures, and the mutant strain provokes a strong TLR4-mediated proinflammatory response, in contrast to the negligible response elicited by wild-type P. gingivalis Heterologous expression of PGN_1123 in Bacteroides thetaiotaomicron promoted lipid A deacylation, confirming that PGN_1123 encodes the lipid A deacylase enzyme.IMPORTANCE Periodontitis, commonly referred to as gum disease, is a chronic inflammatory condition that affects a large proportion of the population. Porphyromonas gingivalis is a bacterium closely associated with periodontitis, although how and if it is a cause for the disease are not known. It has a formidable capacity to dampen the host's innate immune response, enabling its persistence in diseased sites and triggering microbial dysbiosis in animal models of infection. P. gingivalis is particularly adept at evading the host's TLR4-mediated innate immune response by modifying the structure of lipid A, the TLR4 ligand. In this paper, we report identification of the gene encoding lipid A deacylase, a key enzyme that modifies lipid A to TLR4-evasive structures.
Collapse
|
24
|
Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 2018; 15:671-682. [PMID: 29844585 DOI: 10.1038/s41575-018-0025-6] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overweight and obesity are associated with increased risk of developing metabolic disorders such as diabetes and cardiovascular diseases. However, besides these metabolic diseases, excess body weight is also associated with different cancers, including gastrointestinal cancers, such as liver, pancreatic and colon cancers. Inflammation is a common feature of both obesity and cancer; however, the origin of this inflammation has been largely debated. Over the past decade, growing evidence has shown that the composition of the gut microbiota and its activity might be associated not only with the onset of inflammation but also with metabolic disorders and cancer. Here, we review the links between the gut microbiota, gut barrier function and the onset of low-grade inflammation in the development of gastrointestinal cancer. We also describe the mechanisms by which specific microorganism-associated molecular patterns crosstalk with the immune system and how the metabolic activity of bacteria induces specific signalling pathways beyond the gut that eventually trigger carcinogenesis.
Collapse
Affiliation(s)
- Patrice D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition Research Group, Brussels, Belgium.
| | - Benedicte F Jordan
- Université catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| |
Collapse
|
25
|
Francis N, Ayodele BA, O'Brien-Simpson NM, Birchmeier W, Pike RN, Pagel CN, Mackie EJ. Keratinocyte-specific ablation of protease-activated receptor 2 prevents gingival inflammation and bone loss in a mouse model of periodontal disease. Cell Microbiol 2018; 20:e12891. [PMID: 30009515 DOI: 10.1111/cmi.12891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/13/2018] [Accepted: 07/06/2018] [Indexed: 01/10/2023]
Abstract
Chronic periodontitis is characterised by gingival inflammation and alveolar bone loss. A major aetiological agent is Porphyromonas gingivalis, which secretes proteases that activate protease-activated receptor 2 (PAR2 ). PAR2 expressed on oral keratinocytes is activated by proteases released by P. gingivalis, inducing secretion of interleukin 6 (IL-6), and global knockout of PAR2 prevents bone loss and inflammation in a periodontal disease model in mice. To test the hypothesis that PAR2 expressed on gingival keratinocytes is required for periodontal disease pathology, keratinocyte-specific PAR2 -null mice were generated using K14-Cre targeted deletion of the PAR2 gene (F2rl1). These mice were subjected to a model of periodontitis involving placement of a ligature around a tooth, combined with P. gingivalis infection ("Lig + Inf"). The intervention caused a significant 44% decrease in alveolar bone volume (assessed by microcomputed tomography) in wildtype (K14-Cre:F2rl1wt/wt ), but not littermate keratinocyte-specific PAR2 -null (K14-Cre:F2rl1fl/fl ) mice. Keratinocyte-specific ablation of PAR2 prevented the significant Lig + Inf-induced increase (2.8-fold) in the number of osteoclasts in alveolar bone and the significant up-regulation (2.4-4-fold) of the inflammatory markers IL-6, IL-1β, interferon-γ, myeloperoxidase, and CD11b in gingival tissue. These data suggest that PAR2 expressed on oral epithelial cells is a critical regulator of periodontitis-induced bone loss and will help in designing novel therapies with which to treat the disease.
Collapse
Affiliation(s)
- Nidhish Francis
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Babatunde A Ayodele
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | - Robert N Pike
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Charles N Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
26
|
Bengtsson T, Zhang B, Selegård R, Wiman E, Aili D, Khalaf H. Dual action of bacteriocin PLNC8 αβ through inhibition of Porphyromonas gingivalis infection and promotion of cell proliferation. Pathog Dis 2018; 75:3866614. [PMID: 28605543 PMCID: PMC5808647 DOI: 10.1093/femspd/ftx064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/09/2017] [Indexed: 12/04/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that is characterised by accumulation of pathogenic bacteria, including Porphyromonas gingivalis, in periodontal pockets. The lack of effective treatments has emphasised in an intense search for alternative methods to prevent bacterial colonisation and disease progression. Bacteriocins are bacterially produced antimicrobial peptides gaining increased consideration as alternatives to traditional antibiotics. We show rapid permeabilisation and aggregation of P. gingivalis by the two-peptide bacteriocin PLNC8 αβ. In a cell culture model, P. gingivalis was cytotoxic against gingival fibroblasts. The proteome profile of fibroblasts is severely affected by P. gingivalis, including induction of the ubiquitin-proteasome pathway. PLNC8 αβ enhanced the expression of growth factors and promoted cell proliferation, and suppressed proteins associated with apoptosis. PLNC8 αβ efficiently counteracted P. gingivalis-mediated cytotoxicity, increased expression of a large number of proteins and restored the levels of inflammatory mediators. In conclusion, we show that bacteriocin PLNC8 αβ displays dual effects by acting as a potent antimicrobial agent killing P. gingivalis and as a stimulatory factor promoting cell proliferation. We suggest preventive and therapeutical applications of PLNC8 αβ in periodontitis to supplement the host immune defence against P. gingivalis infection and support wound healing processes.
Collapse
Affiliation(s)
| | - Boxi Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Robert Selegård
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden.,Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Emanuel Wiman
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Daniel Aili
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Hazem Khalaf
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| |
Collapse
|
27
|
Bengtsson T, Lönn J, Khalaf H, Palm E. The lantibiotic gallidermin acts bactericidal against Staphylococcus epidermidis and Staphylococcus aureus and antagonizes the bacteria-induced proinflammatory responses in dermal fibroblasts. Microbiologyopen 2018. [PMID: 29536668 PMCID: PMC6291784 DOI: 10.1002/mbo3.606] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial resistance needs to be tackled from new angles, and antimicrobial peptides could be future candidates for combating bacterial infections. This study aims to investigate in vitro the bactericidal effects of the lantibiotic gallidermin on Staphylococcus epidermidis and Staphylococcus aureus, possible cytotoxic effects and its impact on host-microbe interactions. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of gallidermin were determined, and cytotoxicity and proinflammatory effects of gallidermin on fibroblasts, red blood cells (RBCs) and in whole blood were investigated. Both MIC and MBC for all four tested strains of S. epidermidis was 6.25 μg/ml. Both MIC and MBC for methicillin-sensitive S. aureus was 12.5 μg/ml and for methicillin-resistant S. aureus (MRSA) 1.56 μg/ml. Gallidermin displayed no cytotoxic effects on fibroblasts, only a high dose of gallidermin induced low levels of CXCL8 and interleukin-6. Gallidermin hemolyzed less than 1% of human RBCs, and did not induce reactive oxygen species production or cell aggregation in whole blood. In cell culture, gallidermin inhibited the cytotoxic effects of the bacteria and totally suppressed the bacteria-induced release of CXCL8 and interleukin-6 from fibroblasts. We demonstrate that gallidermin, expressing low cell cytotoxicity, is a promising candidate for treating bacterial infections caused by S. epidermidis and S. aureus, especially MRSA.
Collapse
Affiliation(s)
| | - Johanna Lönn
- Department of Oral Biology, Institute of Odontology, Malmö University, Malmö, Sweden.,PEAS Research Institute, Linköping, Sweden
| | - Hazem Khalaf
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Eleonor Palm
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
28
|
Fürsatz M, Skog M, Sivlér P, Palm E, Aronsson C, Skallberg A, Greczynski G, Khalaf H, Bengtsson T, Aili D. Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine. ACTA ACUST UNITED AC 2018; 13:025014. [PMID: 29047451 DOI: 10.1088/1748-605x/aa9486] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Wound dressings based on bacterial cellulose (BC) can form a soft and conformable protective layer that can stimulate wound healing while preventing bacteria from entering the wound. Bacteria already present in the wound can, however, thrive in the moist environment created by the BC dressing which can aggravate the healing process. Possibilities to render the BC antimicrobial without affecting the beneficial structural and mechanical properties of the material would hence be highly attractive. Here we present methods for functionalization of BC with ε-poly-L-Lysine (ε-PLL), a non-toxic biopolymer with broad-spectrum antimicrobial activity. Low molecular weight ε-PLL was cross-linked in pristine BC membranes and to carboxymethyl cellulose functionalized BC using carbodiimide chemistry. The functionalization of BC with ε-PLL inhibited growth of S. epidermidis on the membranes but did not affect the cytocompatibility to cultured human fibroblasts as compared to native BC. The functionalization had no significant effects on the nanofibrous structure and mechanical properties of the BC. The possibility to functionalize BC with ε-PLL is a promising, green and versatile approach to improve the performance of BC in wound care and other biomedical applications.
Collapse
Affiliation(s)
- Marian Fürsatz
- Division of Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Meyle J, Dommisch H, Groeger S, Giacaman RA, Costalonga M, Herzberg M. The innate host response in caries and periodontitis. J Clin Periodontol 2017; 44:1215-1225. [PMID: 28727164 DOI: 10.1111/jcpe.12781] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Innate immunity rapidly defends the host against infectious insults. These reactions are of limited specificity and exhaust without providing long-term protection. Functional fluids and effector molecules contribute to the defence against infectious agents, drive the immune response, and direct the cellular players. AIM To review the literature and present a summary of current knowledge about the function of tissues, cellular players and soluble mediators of innate immunity relevant to caries and periodontitis. METHODS Historical and recent literature was critically reviewed based on publications in peer-reviewed scientific journals. RESULTS The innate immune response is vital to resistance against caries and periodontitis and rapidly attempts to protect against infectious agents in the dental hard and soft tissues. Soluble mediators include specialized proteins and lipids. They function to signal to immune and inflammatory cells, provide antimicrobial resistance, and also induce mechanisms for potential repair of damaged tissues. CONCLUSIONS Far less investigated than adaptive immunity, innate immune responses are an emerging scientific and therapeutic frontier. Soluble mediators of the innate response provide a network of signals to organize the near immediate molecular and cellular response to infection, including direct and immediate antimicrobial activity. Further studies in human disease and animal models are generally needed.
Collapse
Affiliation(s)
- Joerg Meyle
- Department of Periodontology, University of Giessen, Giessen, Germany
| | - Henrik Dommisch
- Department of Periodontology and Synoptic Dentistry, Charité - Medical University Berlin, Berlin, Germany
| | - Sabine Groeger
- Department of Periodontology, University of Giessen, Giessen, Germany
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEIES), University of Talca, Talca, Chile
| | - Massimo Costalonga
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Mark Herzberg
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
30
|
Bautista-Hernández LA, Gómez-Olivares JL, Buentello-Volante B, Bautista-de Lucio VM. Fibroblasts: The Unknown Sentinels Eliciting Immune Responses Against Microorganisms. Eur J Microbiol Immunol (Bp) 2017; 7:151-157. [PMID: 29034104 PMCID: PMC5632742 DOI: 10.1556/1886.2017.00009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/14/2017] [Indexed: 12/25/2022] Open
Abstract
Fibroblasts are present in all tissues but predominantly in connective tissues. Some of their functions include contractility, locomotion, collagen and elastin fiber production, and the regulation and degradation of the extracellular matrix. Also, fibroblasts act as sentinels to produce inflammatory mediators in response to several microorganisms. There is evidence that fibroblasts can synthesize toll-like receptors (TLRs), antimicrobial peptides, proinflammatory cytokines, chemokines, and growth factors, which are important molecules involved in innate immune response against microorganisms. Fibroblasts can express TLRs (TLR-1 to TLR-10) to sense microbial components or microorganisms. They can synthesize antimicrobial peptides, such as LL-37, defensins hBD-1, and hBD-2, molecules that perform antimicrobial activity. Also, they can produce proinflammatory cytokines, such as TNFα, INFγ, IL-6, IL-12p70, and IL-10; other chemokines, such as CCL1, CCL2, CCL5, CXCL1, CXCL8, CXCL10, and CX3CL1; and the growth factors granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) to induce and recruit inflammatory cells. According to their immunological attributes, we can conclude that fibroblasts are sentinel cells that recognize pathogens, induce the recruitment of inflammatory cells via cytokines and growth factors, and release antimicrobial peptides, complying with the characteristics of real sentinels.
Collapse
Affiliation(s)
- Luis Antonio Bautista-Hernández
- Microbiology and Ocular Proteomics, Institute of Ophthalmology "Fundación de Asistencia Privada Conde de Valenciana", Mexico City, Mexico.,Department of Health Sciences, Autonomous Metropolitan University, Mexico City, Mexico.,Doctorate Biological Science and Health, Autonomous Metropolitan University, Mexico City, Mexico
| | | | - Beatriz Buentello-Volante
- Cellular and Tissue Biology, Institute of Ophthalmology "Fundación de Asistencia Privada Conde de Valenciana", Mexico City, Mexico
| | - Victor Manuel Bautista-de Lucio
- Microbiology and Ocular Proteomics, Institute of Ophthalmology "Fundación de Asistencia Privada Conde de Valenciana", Mexico City, Mexico
| |
Collapse
|
31
|
Fleetwood AJ, Lee MKS, Singleton W, Achuthan A, Lee MC, O'Brien-Simpson NM, Cook AD, Murphy AJ, Dashper SG, Reynolds EC, Hamilton JA. Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles. Front Cell Infect Microbiol 2017; 7:351. [PMID: 28824884 PMCID: PMC5543041 DOI: 10.3389/fcimb.2017.00351] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022] Open
Abstract
Porphyromonas gingivalis is one of the bacterial species most closely associated with periodontitis and can shed large numbers of outer membrane vesicles (OMVs), which are increasingly thought to play a significant role in bacterial virulence and pathogenicity. Macrophages are amongst the first immune cells to respond to bacteria and their products, so we sought to directly compare the response of macrophages to P. gingivalis or its purified OMVs. Macrophages stimulated with OMVs produced large amounts of TNFα, IL-12p70, IL-6, IL-10, IFNβ, and nitric oxide compared to cells infected with P. gingivalis, which produced very low levels of these mediators. Both P. gingivalis and OMVs induced a shift in macrophage metabolism from oxidative phosphorylation (OXPHOS) to glycolysis, which was supported by enhanced lactate release, decreased mitochondrial oxygen consumption with reduced spare respiratory capacity, as well as increased mitochondrial reactive oxygen species (ROS) production. Corresponding to this metabolic shift, gene expression analysis of macrophages infected with P. gingivalis or stimulated with OMVs revealed a broad transcriptional upregulation of genes critical to glycolysis and a downregulation of genes associated with the TCA cycle. Upon examination of inflammasome signaling and pyroptosis it was found that P. gingivalis did not activate the inflammasome in macrophages as the mature forms of caspase-1, IL-1β, and IL-18 were not detected and there was no extracellular release of lactate dehydrogenase (LDH) or 7-AAD staining. In comparison, macrophages stimulated with OMVs potently activated caspase-1, produced large amounts of IL-1β, IL-18, released LDH, and were positive for 7-AAD indicative of pyroptotic cell death. These data directly quantitate the distinct effects of P. gingivalis and its OMVs on macrophage inflammatory phenotype, mitochondrial function, inflammasome activation, and pyroptotic cell death that may have potential implications for their roles in chronic periodontitis.
Collapse
Affiliation(s)
- Andrew J Fleetwood
- Department of Medicine, University of Melbourne, Royal Melbourne HospitalParkville, VIC, Australia
| | - Man K S Lee
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes InstituteMelbourne, VIC, Australia
| | - William Singleton
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of MelbourneVIC, Australia
| | - Adrian Achuthan
- Department of Medicine, University of Melbourne, Royal Melbourne HospitalParkville, VIC, Australia
| | - Ming-Chin Lee
- Department of Medicine, University of Melbourne, Royal Melbourne HospitalParkville, VIC, Australia
| | - Neil M O'Brien-Simpson
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of MelbourneVIC, Australia
| | - Andrew D Cook
- Department of Medicine, University of Melbourne, Royal Melbourne HospitalParkville, VIC, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes InstituteMelbourne, VIC, Australia
| | - Stuart G Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of MelbourneVIC, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of MelbourneVIC, Australia
| | - John A Hamilton
- Department of Medicine, University of Melbourne, Royal Melbourne HospitalParkville, VIC, Australia
| |
Collapse
|
32
|
Abdi K, Chen T, Klein BA, Tai AK, Coursen J, Liu X, Skinner J, Periasamy S, Choi Y, Kessler BM, Palmer RJ, Gittis A, Matzinger P, Duncan MJ, Singh NJ. Mechanisms by which Porphyromonas gingivalis evades innate immunity. PLoS One 2017; 12:e0182164. [PMID: 28771533 PMCID: PMC5542538 DOI: 10.1371/journal.pone.0182164] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/13/2017] [Indexed: 01/08/2023] Open
Abstract
The oral cavity is home to unique resident microbial communities whose interactions with host immunity are less frequently studied than those of the intestinal microbiome. We examined the stimulatory capacity and the interactions of two oral bacteria, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum), on Dendritic Cell (DC) activation, comparing them to the effects of the well-studied intestinal microbe Escherichia coli (E. coli). Unlike F. nucleatum and E. coli, P. gingivalis failed to activate DCs, and in fact silenced DC responses induced by F. nucleatum or E. coli. We identified a variant strain of P. gingivalis (W50) that lacked this immunomodulatory activity. Using biochemical approaches and whole genome sequencing to compare the two substrains, we found a point mutation in the hagA gene. This protein is though to be involved in the alteration of the PorSS/gingipain pathway, which regulates protein secretion into the extracellular environment. A proteomic comparison of the secreted products of the two substrains revealed enzymatic differences corresponding to this phenotype. We found that P. gingivalis secretes gingipain(s) that inactivate several key proinflammatory mediators made by DCs and/or T cells, but spare Interleukin-1 (IL-1) and GM-CSF, which can cause capillary leaks that serve as a source of the heme that P. gingivalis requires for its survival, and GM-CSF, which can cause epithelial-cell growth. Taken together, our results suggest that P. gingivalis has evolved potent mechanisms to modulate its virulence factors and dampen the innate immune response by selectively inactivating most proinflammatory cytokines.
Collapse
Affiliation(s)
- Kaveh Abdi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
- * E-mail:
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Brian A. Klein
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Albert K. Tai
- TUCF Genomics, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jill Coursen
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
| | - Xiangdong Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
| | - Saravanan Periasamy
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, United States of America
| | - Youngnim Choi
- Department of Oromaxillofacial Infection & Immunity, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Benedikt M. Kessler
- Target Discovery Institute, Nuffield Department of Clinical Medicine Oxford University, Oxford, United Kingdom
| | - Robert J. Palmer
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, United States of America
| | - Apostolos Gittis
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
| | - Polly Matzinger
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
| | - Margaret J. Duncan
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Nevil J. Singh
- University of Maryland School of Medicine, Department of Microbiology & Immunology, Baltimore, Maryland United States of America
| |
Collapse
|
33
|
Glowczyk I, Wong A, Potempa B, Babyak O, Lech M, Lamont RJ, Potempa J, Koziel J. Inactive Gingipains from P. gingivalis Selectively Skews T Cells toward a Th17 Phenotype in an IL-6 Dependent Manner. Front Cell Infect Microbiol 2017; 7:140. [PMID: 28497028 PMCID: PMC5406403 DOI: 10.3389/fcimb.2017.00140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023] Open
Abstract
Gingipain cysteine proteases are considered key virulence factors of Porphyromonas gingivalis. They significantly influence antibacterial and homeostatic functions of macrophages, neutrophils, the complement system, and cytokine networks. Recent data indicate the role of P. gingivalis in T cell differentiation; however, the involvement of gingipains in this process remains elusive. Therefore, the aim of this study was to investigate the contribution of danger signals triggered by the gingipains on the generation of Th17 cells, which play a key role in protection against bacterial diseases but may cause chronic inflammation and bone resorption. To this end we compared the effects of the wild-type strain of P. gingivalis (W83) with its isogenic mutant devoid of gingipain activity (ΔKΔRAB), and bacterial cells pretreated with a highly-specific inhibitor of gingipains activity (KYTs). Antigen presenting cells (APCs), both professional (dendritic cells), and non-professional (gingival keratinocytes), exposed to viable bacteria expressed high amounts of cytokines (IL-6, IL-21, IL-23). These cytokines are reported to either stimulate or balance the Th17-dependent immune response. Surprisingly, cells infected with P. gingivalis devoid of gingipain activity showed increased levels of all tested cytokines compared to bacteria with fully active enzymes. The effect was dependent on both the reduction of cytokine proteolysis and the lack of cross-talk with other bacterial virulence factors, including LPS and fimbriae that induce de novo synthesis of cytokines. The profile of lymphocyte T differentiation from naive T cells showed enhanced generation of Th17 in response to bacteria with inactive gingipains. Moreover, we found that gingipain-dependent induction of Th17 cells was highly specific, since other T cell-subsets remained unchanged. Finally, inhibition of IL-6 signaling in dendritic cells led to a significant depletion of the Th17 population. Cumulatively, this study revealed a previously undisclosed role of gingipain activity in the process of Th17 differentiation reliant on blocking signaling through IL-6. Since inactivation of gingipains accelerates the skewing of T cells toward Th17 cells, which are detrimental in periodontitis, IL-6 signaling may serve as an attractive target for treatment of the disease.
Collapse
Affiliation(s)
- Izabela Glowczyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Alicia Wong
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Barbara Potempa
- Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of LouisvilleLouisville, KY, USA
| | - Olena Babyak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Maciej Lech
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland.,Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IVMunich, Germany
| | - Richard J Lamont
- Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of LouisvilleLouisville, KY, USA
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland.,Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of LouisvilleLouisville, KY, USA
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
34
|
Palm E, Demirel I, Bengtsson T, Khalaf H. The role of toll-like and protease-activated receptors and associated intracellular signaling in Porphyromonas gingivalis-infected gingival fibroblasts. APMIS 2017; 125:157-169. [PMID: 28120492 DOI: 10.1111/apm.12645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/04/2016] [Indexed: 11/28/2022]
Abstract
Porphyromonas gingivalis, which is considered a keystone agent in periodontitis, has evolved elaborate mechanisms to grow and survive in a hostile milieu. The gingival fibroblast is the major cell type in the gingiva and is considered to be important in the periodontitis-associated inflammation. As a part of the innate immune response, they produce cytokines such as CXCL8 and interleukin (IL)-6 which are believed to contribute to the destruction of the tooth-supporting tissues. This study investigates how the expression of protease-activated receptors (PAR1, PAR2) and toll-like receptors (TLR2, TLR4) changes with P. gingivalis exposure and how silencing of one receptor affects the expression of the other receptors. The importance of protein kinase C (PKC) and p38 in the regulation of CXCL8 and IL-6 was also examined. Receptors were knockdown with small-interfering RNA. PKC or p38 was blocked prior to stimulation with P. gingivalis. Fibroblasts were able to compensate for PAR1 knockdown with increased expression of PAR2. PKC and p38 were involved in the regulation of P. gingivalis-induced CXCL8 and IL-6. Our results indicate that PAR1 and PAR2 could be implicated in periodontitis and that PKC and P38 play a role in the inflammatory response in P. gingivalis-infected gingival fibroblasts.
Collapse
Affiliation(s)
- Eleonor Palm
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Torbjörn Bengtsson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hazem Khalaf
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
35
|
Mendi A, Köse S, Uçkan D, Akca G, Yilmaz D, Aral L, Gültekin SE, Eroğlu T, Kiliç E, Uçkan S. Lactobacillus rhamnosus could inhibit Porphyromonas gingivalis derived CXCL8 attenuation. J Appl Oral Sci 2016; 24:67-75. [PMID: 27008259 PMCID: PMC4775012 DOI: 10.1590/1678-775720150145] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023] Open
Abstract
An increasing body of evidence suggests that the use of probiotic bacteria is a promising intervention approach for the treatment of inflammatory diseases with a polymicrobial etiology. P. gingivalis has been noted to have a different way of interacting with the innate immune response of the host compared to other pathogenic bacteria, which is a recognized feature that inhibits CXCL8 expression.
Collapse
Affiliation(s)
- Ayşegül Mendi
- Department of Medical Microbiology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Sevil Köse
- PEDI-STEM Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Duygu Uçkan
- PEDI-STEM Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Gülçin Akca
- Department of Medical Microbiology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Derviş Yilmaz
- Department of Oral and Maxilofacial Surgery, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Levent Aral
- Department of Oral and Maxilofacial Surgery, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Sibel Elif Gültekin
- Department of Oral Pathology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Tamer Eroğlu
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Başkent University, Ankara, Turkey
| | - Emine Kiliç
- PEDI-STEM Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Sina Uçkan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Başkent University, Ankara, Turkey
| |
Collapse
|
36
|
Arjunan P, El-Awady A, Dannebaum RO, Kunde-Ramamoorthy G, Cutler CW. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants. Mol Oral Microbiol 2015; 31:78-93. [PMID: 26466817 DOI: 10.1111/omi.12131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis.
Collapse
Affiliation(s)
- P Arjunan
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - A El-Awady
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - R O Dannebaum
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - G Kunde-Ramamoorthy
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Biochemistry, National University of Singapore, Singapore
| | - C W Cutler
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
37
|
The role of toll-like and protease-activated receptors in the expression of cytokines by gingival fibroblasts stimulated with the periodontal pathogen Porphyromonas gingivalis. Cytokine 2015; 76:424-432. [PMID: 26318255 DOI: 10.1016/j.cyto.2015.08.263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 12/25/2022]
Abstract
Porphyromonas gingivalis is a periodontitis-associated pathogen and interactions between the bacterium and gingival fibroblasts play an important role in development and progression of periodontitis, an inflammatory disease leading to degeneration of tooth-supporting structures. Gingival fibroblasts, which expresses protease activated receptors (PARs) as well as toll-like receptors (TLRs), produces inflammatory mediators upon bacterial challenges. In this study, we elucidated the importance of PAR1, PAR2, TLR2 and TLR4 for the expression and secretion of CXCL8, interleukin-6 (IL-6), transforming growth factor-β1 (TGF-β1) and secretory leukocyte inhibitor (SLPI). Human gingival fibroblasts were transfected with small-interfering RNA against the target genes, and then stimulated with P. gingivalis wild-type W50 and W50-derived double rgp mutant E8 and kgp mutant K1A. TLR2-silencing reduced P. gingivalis-induced CXCL8 and IL-6. IL-6 was also reduced after PAR1-silencing. No effects were observed for TGF-β1. SLPI was suppressed by P. gingivalis and silencing of PAR1 as well as TLR2, gave additional suppression at the mRNA level. TLR4 was not involved in the regulation of the investigated mediators. CXCL8 and IL-6 are important for progression and development of periodontitis, leading to a chronic inflammation that may contribute to the tissue destruction that follows an exacerbated host response. Therefore, regulating the expression of TLR2 and subsequent release of CXCL8 and IL-6 in periodontitis could attenuate the tissue destruction seen in periodontitis.
Collapse
|
38
|
Secreted gingipains from Porphyromonas gingivalis colonies exert potent immunomodulatory effects on human gingival fibroblasts. Microbiol Res 2015; 178:18-26. [PMID: 26302843 DOI: 10.1016/j.micres.2015.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/05/2015] [Accepted: 05/28/2015] [Indexed: 11/23/2022]
Abstract
Periodontal pathogens, including Porphyromonas gingivalis, can form biofilms in dental pockets and cause inflammation, which is one of the underlying mechanisms involved in the development of periodontal disease, ultimately leading to tooth loss. Although P. gingivalis is protected in the biofilm, it can still cause damage and modulate inflammatory responses from the host, through secretion of microvesicles containing proteinases. The aim of this study was to evaluate the role of cysteine proteinases in P. gingivalis colony growth and development, and subsequent immunomodulatory effects on human gingival fibroblast. By comparing the wild type W50 with its gingipain deficient strains we show that cysteine proteinases are required by P. gingivalis to form morphologically normal colonies. The lysine-specific proteinase (Kgp), but not arginine-specific proteinases (Rgps), was associated with immunomodulation. P. gingivalis with Kgp affected the viability of gingival fibroblasts and modulated host inflammatory responses, including induction of TGF-β1 and suppression of CXCL8 and IL-6 accumulation. These results suggest that secreted products from P. gingivalis, including proteinases, are able to cause damage and significantly modulate the levels of inflammatory mediators, independent of a physical host-bacterial interaction. This study provides new insight of the pathogenesis of P. gingivalis and suggests gingipains as targets for diagnosis and treatment of periodontitis.
Collapse
|
39
|
Abstract
Only 30% of patients with a diagnosis of pancreatic cancer survive 1 year after the diagnosis. Progress in understanding the causes of pancreatic cancer has been made, including solidifying the associations with obesity and diabetes, and a proportion of cases should be preventable through lifestyle modifications. Unfortunately, identifying reliable biomarkers of early pancreatic cancer has been extremely challenging, and no effective screening modality is currently available for this devastating form of cancer. Recent data suggest that the microbiota may play a role in the disease process, but many questions remain. Future studies focusing on the human microbiome, both etiologically and as a marker of disease susceptibility, should shed light on how to better tackle prevention, early detection, and treatment of this highly fatal disease.
Collapse
Affiliation(s)
- Dominique S Michaud
- From the *Department of Epidemiology, School of Public Health, Brown University, Providence, RI; †Department of Epidemiology and Public Health, Imperial College, London, United Kingdom; ‡The Forsyth Institute, Cambridge MA; and §Harvard School of Dental Medicine, Boston MA
| | | |
Collapse
|
40
|
Paulson NB, Gilbertsen AJ, Dalluge JJ, Welchlin CW, Hughes J, Han W, Blackwell TS, Laguna TA, Williams BJ. The arginine decarboxylase pathways of host and pathogen interact to impact inflammatory pathways in the lung. PLoS One 2014; 9:e111441. [PMID: 25350753 PMCID: PMC4211729 DOI: 10.1371/journal.pone.0111441] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/28/2014] [Indexed: 12/16/2022] Open
Abstract
The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic.
Collapse
Affiliation(s)
- Nick B. Paulson
- Pulmonary, Allergy, Critical Care and Sleep Division, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Adam J. Gilbertsen
- Pulmonary, Allergy, Critical Care and Sleep Division, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joseph J. Dalluge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cole W. Welchlin
- Division of Pediatric Pulmonology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - John Hughes
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei Han
- Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Theresa A. Laguna
- Division of Pediatric Pulmonology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bryan J. Williams
- Pulmonary, Allergy, Critical Care and Sleep Division, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
41
|
Klarström Engström K, Khalaf H, Kälvegren H, Bengtsson T. The role of Porphyromonas gingivalis gingipains in platelet activation and innate immune modulation. Mol Oral Microbiol 2014; 30:62-73. [PMID: 25043711 DOI: 10.1111/omi.12067] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2014] [Indexed: 12/31/2022]
Abstract
Platelets are considered to have important functions in inflammatory processes and as actors in the innate immunity. Several studies have shown associations between cardiovascular disease and periodontitis, where the oral anaerobic pathogen Porphyromonas gingivalis has a prominent role in modulating the immune response. Porphyromonas gingivalis has been found in atherosclerotic plaques, indicating spreading of the pathogen via the circulation, with an ability to interact with and activate platelets via e.g. Toll-like receptors (TLR) and protease-activated receptors. We aimed to evaluate how the cysteine proteases, gingipains, of P. gingivalis affect platelets in terms of activation and chemokine secretion, and to further investigate the mechanisms of platelet-bacteria interaction. This study shows that primary features of platelet activation, i.e. changes in intracellular free calcium and aggregation, are affected by P. gingivalis and that arg-gingipains are of great importance for the ability of the bacterium to activate platelets. The P. gingivalis induced a release of the chemokine RANTES, however, to a much lower extent compared with the TLR2/1-agonist Pam3 CSK4 , which evoked a time-dependent release of the chemokine. Interestingly, the TLR2/1-evoked response was abolished by a following addition of viable P. gingivalis wild-types and gingipain mutants, showing that both Rgp and Kgp cleave the secreted chemokine. We also demonstrate that Pam3 CSK4 -stimulated platelets release migration inhibitory factor and plasminogen activator inhibitor-1, and that also these responses were antagonized by P. gingivalis. These results supports immune-modulatory activities of P. gingivalis and further clarify platelets as active players in innate immunity and in sensing bacterial infections, and as target cells in inflammatory reactions induced by P. gingivalis infection.
Collapse
Affiliation(s)
- K Klarström Engström
- Department of Biomedicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | | | | | | |
Collapse
|
42
|
Palm E, Khalaf H, Bengtsson T. Suppression of inflammatory responses of human gingival fibroblasts by gingipains fromPorphyromonas gingivalis. Mol Oral Microbiol 2014; 30:74-85. [DOI: 10.1111/omi.12073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 12/13/2022]
Affiliation(s)
- E. Palm
- Department of Biomedicine; School of Health and Medical Sciences; Örebro University; Örebro Sweden
| | - H. Khalaf
- Department of Biomedicine; School of Health and Medical Sciences; Örebro University; Örebro Sweden
| | - T. Bengtsson
- Department of Biomedicine; School of Health and Medical Sciences; Örebro University; Örebro Sweden
| |
Collapse
|
43
|
Choi EK, Kim SY, Kim SH, Paek YW, Kang IC. Proteolytic activity of Porphyromonas gingivalis attenuates MCP-1 mRNA expression in LPS-stimulated THP-1 cells. Microb Pathog 2014; 73:13-8. [DOI: 10.1016/j.micpath.2014.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 12/27/2022]
|
44
|
Jayaprakash K, Khalaf H, Bengtsson T. Gingipains from Porphyromonas gingivalis play a significant role in induction and regulation of CXCL8 in THP-1 cells. BMC Microbiol 2014; 14:193. [PMID: 25037882 PMCID: PMC4115476 DOI: 10.1186/1471-2180-14-193] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/10/2014] [Indexed: 12/23/2022] Open
Abstract
Background Porphyromonas gingivalis is an important bacterial etiological agent involved in periodontitis. The bacterium expresses two kinds of cysteine proteases called gingipains: arginine gingipains (RgpA/B) and lysine gingipain (Kgp). This study evaluated the interaction between P. gingivalis and THP-1 cells, a widely used monocytic cell line, in vitro with a focus on CXCL8 at the gene and protein levels and its fate thereafter in cell culture supernatants. THP-1 cells were stimulated with viable and heat-killed wild-type strains ATCC 33277 or W50 or viable isogenic gingipain mutants of W50, E8 (Rgp mutant) or K1A (Kgp mutant), for 24 hours. Results ELISA and qPCR results show an elevated CXCL8 expression and secretion in THP-1 cells in response to P. gingivalis, where the heat-killed ATCC33277 and W50 induced higher levels of CXCL8 in comparison to their viable counterparts. Furthermore, the Kgp-deficient mutant K1A caused a higher CXCL8 response compared to the Rgp-deficient E8. Chromogenic quantification of lipopolysaccharide (LPS) in supernatant showed no significant differences between viable and heat killed bacteria except that W50 shed highest levels of LPS. The wild-type strains secreted relatively more Rgp during the co-culture with THP-1 cells. The CXCL8 degradation assay of filter-sterilized supernatant from heat-killed W50 treated cells showed that Rgp was most efficient at CXCL8 hydrolysis. Of all tested P. gingivalis strains, adhesion and internalization in THP-1 cells was least conspicuous by Rgp-deficient P. gingivalis (E8), as demonstrated by confocal imaging. Conclusions W50 and its Kgp mutant K1A exhibit a higher immunogenic and proteolytic function in comparison to the Rgp mutant E8. Since K1A differs from E8 in the expression of Rgp, it is rational to conclude that Rgp contributes to immunomodulation in a more dynamic manner in comparison to Kgp. Also, W50 is a more virulent strain when compared to the laboratory strain ATCC33277.
Collapse
|