1
|
Rathod SK, Das BK, Tandel RS, Chatterjee S, Das N, Tripathi G, Kumar S, Panda SK, Patil PK, Manna SK. Isolation and characterization of Saprolegnia parasitica from cage-reared Pangasianodon hypophthalmus and its sensitivity to different antifungal compounds. Sci Rep 2024; 14:30720. [PMID: 39730460 DOI: 10.1038/s41598-024-80075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/14/2024] [Indexed: 12/29/2024] Open
Abstract
Saprolegniasis is one of the most dangerous fungal diseases of fish, causing significant mortality in fish hatcheries and young ones. The present study aimed to isolate and characterize the causative fungus from fingerlings of Pangasianodon hypophthalmus cultured intensively in freshwater cages in Indian reservoirs and to determine minimum inhibitory concentrations of different antifungal compounds against the fungal hyphae and zoospores. The fungal isolates grown on potato dextrose agar showed an abundance of gemmae, elongated mycelia, non-septate hyphae, primary zoospores, mature zoosporangia with numerous zoospores, cysts with bundles of long hairs and were further identified as Saprolegnia parasitica following PCR amplification and sequencing of internal transcribed spacer region. S. parasitica showed temperature-sensitive optimum growth in a narrow window of 12-24 ℃, which might drive its experimental pathogenesis as well as natural infections in the winter months. In vitro sensitivity testing established negligible inhibitory activity of fluconazole, boric acid, sodium thiosulfate, and potassium permanganate while clotrimazole arrested the spore and hyphal growths at 2 mgL-1 concentration suggesting potential of the imidazole antifungal in treating S. parasitica infection in fish. The present study will serve as the baseline information for developing therapeutic and management strategies for controlling saprolegniasis in the economically significant iridescent catfish.
Collapse
Affiliation(s)
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, India
| | | | - Sohini Chatterjee
- ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, India
| | - Nilemesh Das
- ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, India
| | - Gayatri Tripathi
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | | | - Sanjib Kumar Manna
- ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, India.
| |
Collapse
|
2
|
Zhang Z, Zhang X, Tian Y, Wang L, Cao J, Feng H, Li K, Wang Y, Dong S, Ye W, Wang Y. Complete telomere-to-telomere genomes uncover virulence evolution conferred by chromosome fusion in oomycete plant pathogens. Nat Commun 2024; 15:4624. [PMID: 38816389 PMCID: PMC11139960 DOI: 10.1038/s41467-024-49061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Variations in chromosome number are occasionally observed among oomycetes, a group that includes many plant pathogens, but the emergence of such variations and their effects on genome and virulence evolution remain ambiguous. We generated complete telomere-to-telomere genome assemblies for Phytophthora sojae, Globisporangium ultimum, Pythium oligandrum, and G. spinosum. Reconstructing the karyotype of the most recent common ancestor in Peronosporales revealed that frequent chromosome fusion and fission drove changes in chromosome number. Centromeres enriched with Copia-like transposons may contribute to chromosome fusion and fission events. Chromosome fusion facilitated the emergence of pathogenicity genes and their adaptive evolution. Effectors tended to duplicate in the sub-telomere regions of fused chromosomes, which exhibited evolutionary features distinct to the non-fused chromosomes. By integrating ancestral genomic dynamics and structural predictions, we have identified secreted Ankyrin repeat-containing proteins (ANKs) as a novel class of effectors in P. sojae. Phylogenetic analysis and experiments further revealed that ANK is a specifically expanded effector family in oomycetes. These results revealed chromosome dynamics in oomycete plant pathogens, and provided novel insights into karyotype and effector evolution.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaoyi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuan Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Liyuan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingting Cao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui Feng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
3
|
Elameen A, de Labrouhe DT, Bret-Mestries E, Delmotte F. Spatial Genetic Structure and Pathogenic Race Composition at the Field Scale in the Sunflower Downy Mildew Pathogen, Plasmopara halstedii. J Fungi (Basel) 2022; 8:1084. [PMID: 36294648 PMCID: PMC9605284 DOI: 10.3390/jof8101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Yield losses in sunflower crops caused by Plasmopara halstedii can be up to 100%, depending on the cultivar susceptibility, environmental conditions, and virulence of the pathogen population. The aim of this study was to investigate the genetic and phenotypic structure of a sunflower downy mildew agent at the field scale. The genetic diversity of 250 P. halstedii isolates collected from one field in southern France was assessed using single-nucleotide polymorphisms (SNPs) and single sequence repeats (SSR). A total of 109 multilocus genotypes (MLG) were identified among the 250 isolates collected in the field. Four genotypes were repeated more than 20 times and spatially spread over the field. Estimates of genetic relationships among P. halstedii isolates using principal component analysis and a Bayesian clustering approach demonstrated that the isolates are grouped into two main genetic clusters. A high level of genetic differentiation among clusters was detected (FST = 0.35), indicating overall limited exchange between them, but our results also suggest that recombination between individuals of these groups is not rare. Genetic clusters were highly related to pathotypes, as previously described for this pathogen species. Eight different races were identified (100, 300, 304, 307, 703, 704, 707, and 714), with race 304 being predominant and present at most of the sites. The co-existence of multiple races at the field level is a new finding that could have important implications for the management of sunflower downy mildew. These data provide the first population-wide picture of the genetic structure of P. halstedii at a fine spatial scale.
Collapse
Affiliation(s)
- Abdelhameed Elameen
- NIBIO, Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health, N-1431 Ås, Norway
| | | | | | - Francois Delmotte
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33140 Villenave d’Ornon, France
| |
Collapse
|
4
|
Characterizing the Mechanisms of Metalaxyl, Bronopol and Copper Sulfate against Saprolegnia parasitica Using Modern Transcriptomics. Genes (Basel) 2022; 13:genes13091524. [PMID: 36140692 PMCID: PMC9498376 DOI: 10.3390/genes13091524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Saprolegniasis, which is caused by Saprolegnia parasitica, leads to considerable economic losses. Recently, we showed that metalaxyl, bronopol and copper sulfate are good antimicrobial agents for aquaculture. In the current study, the efficacies of metalaxyl, bronopol and copper sulfate are evaluated by in vitro antimicrobial experiments, and the mechanism of action of these three antimicrobials on S. parasitica is explored using transcriptome technology. Finally, the potential target genes of antimicrobials on S. parasitica are identified by protein–protein interaction network analysis. Copper sulfate had the best inhibitory effect on S. parasitica, followed by bronopol. A total of 1771, 723 and 2118 DEGs upregulated and 1416, 319 and 2161 DEGs downregulated S. parasitica after three drug treatments (metalaxyl, bronopol and copper sulfate), separately. Additionally, KEGG pathway analysis also determined that there were 17, 19 and 13 significantly enriched metabolic pathways. PPI network analysis screened out three important proteins, and their corresponding genes were SPRG_08456, SPRG_03679 and SPRG_10775. Our results indicate that three antimicrobials inhibit S. parasitica growth by affecting multiple biological functions, including protein synthesis, oxidative stress, lipid metabolism and energy metabolism. Additionally, the screened key genes can be used as potential target genes of chemical antimicrobial drugs for S. parasitica.
Collapse
|
5
|
Stankevičiūtė M, Sauliutė G, Makaras T, Čapukoitienė B, Vansevičiūtė G, Markovskaja S. Biomarker responses in perch (Perca fluviatilis) under multiple stress: Parasite co-infection and multicomponent metal mixture exposure. ENVIRONMENTAL RESEARCH 2022; 207:112170. [PMID: 34606842 DOI: 10.1016/j.envres.2021.112170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Parasitic infections may cause damage to the host immune system (i.e. fish), thereby endangering its health and weakening its responses to other types of stressors. Therefore, exposure to different kinds of natural or anthropogenic stressors can lead to unexpected toxicity outcomes in aquatic organisms. This study examined the haematological, genotoxic and cytotoxic effects of the co-infection with the protozoan parasite (Trichodina sp.) and the pathogenic oomycete (Saprolegnia parasitica) in Perca fluviatilis alone and in combination with chemical stress (environmentally-relevant aqueous concentrations of metal mixtures). Haematological analyses such as red cell and white cell indices revealed that chemical and biological stressors, used singly and in combination, exerted adverse effects on fish health. Changes in haematological indices induced by exposure to each of the above-mentioned stressors separately and by combined exposure to all of them suggested the multiple stress-induced inflammation process in the exposed fish. The cytogenetic damage inflicted by the S. parasitica and Trichodina sp. co-infection and multiple stress was revealed in fish erythrocytes. This information is expected to contribute to the elucidation of how multiple stressors impact on responses of haematic indices, geno- and cytotoxicity endpoints in P. fluviatilis. Assessment of the risk associated with multiple stressors is expected to prove valuable for the effective aquatic environment management (Løkke et al., 2013 and references therein).
Collapse
Affiliation(s)
- Milda Stankevičiūtė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania.
| | - Gintarė Sauliutė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Tomas Makaras
- Laboratory of Fish Ecology, Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Brigita Čapukoitienė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Gelminė Vansevičiūtė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Svetlana Markovskaja
- Laboratory of Mycology, Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| |
Collapse
|
6
|
Gurnani B, Kaur K, Venugopal A, Srinivasan B, Bagga B, Iyer G, Christy J, Prajna L, Vanathi M, Garg P, Narayana S, Agarwal S, Sahu S. Pythium insidiosum keratitis - A review. Indian J Ophthalmol 2022; 70:1107-1120. [PMID: 35325996 PMCID: PMC9240499 DOI: 10.4103/ijo.ijo_1534_21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pythium insidiosum is an oomycete and is also called “parafungus” as it closely mimics fungal keratitis. The last decade saw an unprecedented surge in Pythium keratitis cases, especially from Asia and India, probably due to growing research on the microorganism and improved diagnostic and treatment modalities. The clinical features such as subepithelial infiltrate, cotton wool-like fluffy stromal infiltrate, satellite lesions, corneal perforation, endoexudates, and anterior chamber hypopyon closely resemble fungus. The classical clinical features of Pythium that distinguish it from other microorganisms are reticular dots, tentacular projections, peripheral furrowing, and early limbal spread, which require a high index of clinical suspicion. Pythium also exhibits morphological and microbiological resemblance to fungus on routine smearing, revealing perpendicular or obtuse septate or aseptate branching hyphae. Culture on blood agar or any other nutritional agar is the gold standard for diagnosis. It grows as cream-colored white colonies with zoospores formation, further confirmed using the leaf incarnation method. Due to limited laboratory diagnostic modalities and delayed growth on culture, there was a recent shift toward various molecular diagnostic modalities such as polymerase chain reaction, confocal microscopy, ELISA, and immunodiffusion. As corneal scraping (10% KOH, Gram) reveals fungal hyphae, antifungals are started before the culture results are available. Recent in vitro molecular studies have suggested antibacterials as the first-line drugs in the form of 0.2% linezolid and 1% azithromycin. Early therapeutic keratoplasty is warranted in nonresolving cases. This review aims to describe the epidemiology, clinical features, laboratory and molecular diagnosis, and treatment of Pythium insidiosum keratitis.
Collapse
Affiliation(s)
- Bharat Gurnani
- Cataract, Cornea, External Disease, Trauma and Refractive Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Pondicherry, India
| | - Kirandeep Kaur
- Pediatric and Squint Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Pondicherry, India
| | - Anitha Venugopal
- Cornea, Ocular surface, Trauma and Refractive services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Tirunelveli, Tamil Nadu, India
| | - Bhaskar Srinivasan
- Dr G Sitalakshmi Memorial Clinic for Ocular Surface Disorders, CJ Shah Cornea Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Bhupesh Bagga
- Cornea Clinic, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India
| | - Geetha Iyer
- Dr G Sitalakshmi Memorial Clinic for Ocular Surface Disorders, CJ Shah Cornea Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Josephine Christy
- Cataract, Cornea and Refractive Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Pondicherry, India
| | - Lalitha Prajna
- Microbiology Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Murugesan Vanathi
- Cornea and Ocular Surface, Cataract and Refractive Services, Dr R P Centre, AIIMS, New Delhi, India
| | - Prashant Garg
- Director and Kallam Anji Reddy Chair of Ophthalmology Paul Dubord Chair of Cornea, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India
| | - Shivanand Narayana
- Cataract, Cornea, External Diseases, Trauma and Refractive Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Pondicherry, India
| | - Shweta Agarwal
- Dr G Sitalakshmi Memorial Clinic for Ocular Surface Disorders, CJ Shah Cornea Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Srikant Sahu
- Cornea and Anterior Segment, Contact Lens, Cataract, Laser Refractive Surgery Services, Mithu Tulsi Chanrai Campus, LV Prasad Eye Institute, Bhubaneswar, Orissa, India
| |
Collapse
|
7
|
Sarkar P, Stefi Raju V, Kuppusamy G, Rahman MA, Elumalai P, Harikrishnan R, Arshad A, Arockiaraj J. Pathogenic fungi affecting fishes through their virulence molecules. AQUACULTURE 2022; 548:737553. [DOI: 10.1016/j.aquaculture.2021.737553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
8
|
Ghosh S, Straus DL, Good C, Phuntumart V. Development and comparison of loop-mediated isothermal amplification with quantitative PCR for the specific detection of Saprolegnia spp. PLoS One 2021; 16:e0250808. [PMID: 34898622 PMCID: PMC8668100 DOI: 10.1371/journal.pone.0250808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022] Open
Abstract
Saprolegniasis is an important disease in freshwater aquaculture, and is associated with oomycete pathogens in the genus Saprolegnia. Early detection of significant levels of Saprolegnia spp. pathogens would allow informed decisions for treatment which could significantly reduce losses. This study is the first to report the development of loop-mediated isothermal amplification (LAMP) for the detection of Saprolegnia spp. and compares it with quantitative PCR (qPCR). The developed protocols targeted the internal transcribed spacer (ITS) region of ribosomal DNA and the cytochrome C oxidase subunit 1 (CoxI) gene and was shown to be specific only to Saprolegnia genus. This LAMP method can detect as low as 10 fg of S. salmonis DNA while the qPCR method has a detection limit of 2 pg of S. salmonis DNA, indicating the superior sensitivity of LAMP compared to qPCR. When applied to detect the pathogen in water samples, both methods could detect the pathogen when only one zoospore of Saprolegnia was present. We propose LAMP as a quick (about 20–60 minutes) and sensitive molecular diagnostic tool for the detection of Saprolegnia spp. suitable for on-site applications.
Collapse
Affiliation(s)
- Satyaki Ghosh
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - David L. Straus
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree-Stuttgart National Aquaculture Research Center, Stuttgart, Arkansas, United States of America
| | - Christopher Good
- The Conservation Fund’s Freshwater Institute, Shepherdstown, West Virginia, United States of America
| | - Vipaporn Phuntumart
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
- * E-mail:
| |
Collapse
|
9
|
Chemical Analysis and In Vitro Bioactivity of Essential Oil of Laurelia sempervirens and Safrole Derivatives against Oomycete Fish Pathogens. Molecules 2021; 26:molecules26216551. [PMID: 34770960 PMCID: PMC8588113 DOI: 10.3390/molecules26216551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022] Open
Abstract
In this study, the essential oil (EO) from Laurelia sempervirens was analyzed by GC/MS and safrole (1) was identified as the major metabolite 1, was subjected to direct reactions on the oxygenated groups in the aromatic ring and in the side chain, and eight compounds (4 to 12) were obtained by the process. EO and compounds 4–12 were subjected to biological assays on 24 strains of the genus Saprolegnia, specifically of the species 12 S. parasitica and 12 S. australis. EO showed a significant effect against Saprolegnia strains. Compound 6 presents the highest activity against two resistant strains, with minimum inhibitory concentration (MIC) and minimum oomyceticidal concentration (MOC) values of 25 to 100 and 75 to 125 µg/mL, respectively. The results show that compound 6 exhibited superior activities compared to the commercial controls bronopol and azoxystrobin used to combat these pathogens.
Collapse
|
10
|
Genetic Analyses of Saprolegnia Strains Isolated from Salmonid Fish of Different Geographic Origin Document the Connection between Pathogenicity and Molecular Diversity. J Fungi (Basel) 2021; 7:jof7090713. [PMID: 34575751 PMCID: PMC8470814 DOI: 10.3390/jof7090713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022] Open
Abstract
Saprolegnia parasitica is recognized as one of the most important oomycetes pests of salmon and trout species. The amplified fragment length polymorphism (AFLP) and method sequence data of the internal transcribed spacer (ITS) were used to study the genetic diversity and relationships of Saprolegnia spp. collected from Canada, Chile, Japan, Norway and Scotland. AFLP analysis of 37 Saprolegnia spp. isolates using six primer combinations gave a total of 163 clear polymorphic bands. Bayesian cluster analysis using genetic similarity divided the isolates into three main groups, suggesting that there are genetic relationships among the isolates. The unweighted pair group method with arithmetic mean (UPGMA) and principal coordinate analysis (PCO) confirmed the pattern of the cluster analyses. ITS analyses of 48 Saprolegnia sequences resulted in five well-defined clades. Analysis of molecular variance (AMOVA) revealed greater variation within countries (91.01%) than among countries (8.99%). We were able to distinguish the Saprolegnia isolates according to their species, ability to produce oogonia with and without long spines on the cysts and their ability to or not to cause mortality in salmonids. AFLP markers and ITS sequencing data obtained in the study, were found to be an efficient tool to characterize the genetic diversity and relationships of Saprolegnia spp. The comparison of AFLP analysis and ITS sequence data using the Mantel test showed a very high and significant correlation (r2 = 0.8317).
Collapse
|
11
|
Andronis CE, Hane JK, Bringans S, Hardy GESJ, Jacques S, Lipscombe R, Tan KC. Gene Validation and Remodelling Using Proteogenomics of Phytophthora cinnamomi, the Causal Agent of Dieback. Front Microbiol 2021; 12:665396. [PMID: 34394023 PMCID: PMC8360494 DOI: 10.3389/fmicb.2021.665396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Phytophthora cinnamomi is a pathogenic oomycete that causes plant dieback disease across a range of natural ecosystems and in many agriculturally important crops on a global scale. An annotated draft genome sequence is publicly available (JGI Mycocosm) and suggests 26,131 gene models. In this study, soluble mycelial, extracellular (secretome), and zoospore proteins of P. cinnamomi were exploited to refine the genome by correcting gene annotations and discovering novel genes. By implementing the diverse set of sub-proteomes into a generated proteogenomics pipeline, we were able to improve the P. cinnamomi genome annotation. Liquid chromatography mass spectrometry was used to obtain high confidence peptides with spectral matching to both the annotated genome and a generated 6-frame translation. Two thousand seven hundred sixty-four annotations from the draft genome were confirmed by spectral matching. Using a proteogenomic pipeline, mass spectra were used to edit the P. cinnamomi genome and allowed identification of 23 new gene models and 60 edited gene features using high confidence peptides obtained by mass spectrometry, suggesting a rate of incorrect annotations of 3% of the detectable proteome. The novel features were further validated by total peptide support, alongside functional analysis including the use of Gene Ontology and functional domain identification. We demonstrated the use of spectral data in combination with our proteogenomics pipeline can be used to improve the genome annotation of important plant diseases and identify missed genes. This study presents the first use of spectral data to edit and manually annotate an oomycete pathogen.
Collapse
Affiliation(s)
- Christina E Andronis
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.,Proteomics International, Nedlands, WA, Australia
| | - James K Hane
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.,Faculty of Science and Engineering, Curtin Institute for Computation, Curtin University, Perth, WA, Australia
| | | | - Giles E S J Hardy
- Centre for Phytophthora Science and Management, Murdoch University, Murdoch, WA, Australia
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| |
Collapse
|
12
|
Effects of the Ionic and Nanoparticle Forms of Cu and Ag on These Metals' Bioaccumulation in the Eggs and Fry of Rainbow Trout ( Oncorhynchus mykiss W.). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176392. [PMID: 32887354 PMCID: PMC7504287 DOI: 10.3390/ijerph17176392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/17/2020] [Accepted: 08/29/2020] [Indexed: 01/04/2023]
Abstract
Nanotechnology is a rapidly growing field of science, and an increasing number of nanoproducts, including nanometals, can be found on the market. Various nanometals and the products that are manufactured based on them can help to fight bacteria and fungi, but they can also penetrate organisms and accumulate in them. This study aimed to compare the effects of two metals, silver (Ag) and copper (Cu), with known antibacterial and fungicidal properties in their ionic (AgNO3, CuSO4·5H2O) and nanoparticle (AgNPs, CuNPs) forms on rainbow trout eggs and fry. Concentrations of metals ranging from 0 to 16 mg/L were used during egg swelling for 2 h. The swelling of eggs in Cu solutions resulted in an increase in Cu content in the eggs (just like in the case of Ag); however, the changes in fry were not significant in the case of both Ag and Cu. The concentrations of these metals in eggs was greatly affected by the applied form of Ag and Cu. Because CuNPs penetrated the embryo in fish eggs at lower concentrations compared to AgNPs, it would be worth considering them for antibacterial applications during egg incubation.
Collapse
|
13
|
Werner E, Montenegro I, Said B, Godoy P, Besoain X, Caro N, Madrid A. Synthesis and Anti- Saprolegnia Activity of New 2',4'-Dihydroxydihydrochalcone Derivatives. Antibiotics (Basel) 2020; 9:antibiotics9060317. [PMID: 32532060 PMCID: PMC7344530 DOI: 10.3390/antibiotics9060317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
In the present study, seven 2',4'-dihydroxydihydrochalcone derivatives (compounds 3-9) were synthesized and their capacity as anti-Saprolegnia agents were evaluated against Saprolegnia parasitica, S. australis, S. diclina. Derivative 9 showed the best activity against the different strains, with minimum inhibitory concentration (MIC) and minimum oomyceticidal concentration (MOC) values between 100-175 μg/mL and 100-200 μg/mL, respectively, compared with bronopol and fluconazole as positive controls. In addition, compound 9 caused damage and disintegration cell membrane of all Saprolegnia strains over the action of commercial controls.
Collapse
Affiliation(s)
- Enrique Werner
- Departamento de Ciencias Básicas, Campus Fernando May, Universidad del Bío-Bío. Avda. Andrés Bello 720, casilla 447, Chillán 3780000, Chile;
| | - Iván Montenegro
- Escuela de Obstetricia y Puericultura, Centro de Investigaciones Biomedicas (CIB), Facultad de medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Bastian Said
- Departamento de Química, Universidad Técnica Federico Santa María, Av. Santa María 6400, Vitacura 7630000, Santiago, Chile;
| | - Patricio Godoy
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Los Laureles s/n, Isla Teja, Valdivia 5090000, Chile;
| | - Ximena Besoain
- Escuela de Agronomía Pontificia Universidad Católica de Valparaíso, Quillota, SanFrancisco s/n La Palma, Quillota 2260000, Chile;
| | - Nelson Caro
- Centro de Investigación Australbiotech, Universidad Santo Tomás, Avda. Ejército 146, Santiago 8320000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile
- Correspondence: ; Tel.: +56-032-250-0526
| |
Collapse
|
14
|
Ali SE, Gamil AAA, Skaar I, Evensen Ø, Charo-Karisa H. Efficacy and safety of boric acid as a preventive treatment against Saprolegnia infection in Nile tilapia (Oreochromis niloticus). Sci Rep 2019; 9:18013. [PMID: 31784693 PMCID: PMC6884594 DOI: 10.1038/s41598-019-54534-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Saprolegniosis is a worldwide fungal-like infection affecting freshwater fishes and their eggs. Reports show high mortalities and subsequent economic losses annually from Saprolegnia infections. Most therapeutants against Saprolegnia spp. infections are inefficient and some have negative impact on the environment. In this study, we have investigated the ability of boric acid (BA) to prevent Saprolegnia infection in Nile tilapia (Oreochromis niloticus). BA inhibited radial growth of Saprolegnia hyphae in vitro. Complete in vitro growth inhibition was found at a concentration of ≥0.6 g/L. Inhibitory effects were also observed in vivo when Nile tilapia were experimentally challenged with Saprolegnia spores and followed over 10 days post challenge and under continuous exposure to different BA concentrations. No signs of saprolegniosis were observed in fish treated with BA at concentrations of 0.4 g/L and above. Comet assay revealed that BA has low toxicity in tilapia continuously exposed to concentrations of 0.2–0.6 g/L for 96 h. Additionally, no significant histomorphological changes were observed in BA-treated fish compared to non-treated controls. Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) enzyme levels indicated reduction in systemic tissue damage associated with Saprolegnia infection. This study demonstrates the potential of BA as a prophylactic measure against Saprolegnia infection in tilapia, and we recommend additional studies on environmental impact.
Collapse
Affiliation(s)
- Shimaa E Ali
- Worldfish, Cairo, Egypt. .,Department of Hydrobiology, National Research Centre, Dokki, Giza, Egypt.
| | - Amr A A Gamil
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ida Skaar
- Norwegian Veterinary Institute, Oslo, Norway
| | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | |
Collapse
|
15
|
Bonansea M, Mancini M, Ledesma M, Ferrero S, Rodriguez C, Pinotti L. Remote sensing application to estimate fish kills by Saprolegniasis in a reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:930-937. [PMID: 30970459 DOI: 10.1016/j.scitotenv.2019.02.442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Saprolegniasis is one of the most economical and ecologically harmful diseases in different species of fish. Low water temperature is one of the most important factors which increases stress and creates favourable conditions for the proliferation of Saprolegniasis. Therefore, the monitoring of water surface temperature (WST) is fundamental for a better understanding of Saprolegniasis. The objective of this study was to develop a predictive algorithm to estimate the probability of fish kills caused by Saprolegniasis in Río Tercero reservoir (Argentina). WST was estimated by Landsat 7 and 8 imagery using the Single-Channel method. Logistic regression was used to relate WST estimated from 2007 to 2017 with different episodes of fish kills by Saprolegniasis registered in the reservoir during this period of time. Results showed that the algorithm created with the first quartile (25th percentile) of the WST values estimated by Landsat sensors was the most suitable model to estimate Saprolegniasis in the studied reservoir.
Collapse
Affiliation(s)
- Matias Bonansea
- Instituto de Ciencias de la Tierra, Biodiversidad y Sustentabilidad Ambiental (ICBIA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina; Departamento de Estudios Básico y Agropecuarios, Facultad de Agronomía y Veterinaria (FAyV), Universidad Nacional de Río Cuarto (UNRC), Argentina.
| | - Miguel Mancini
- Departamento de Estudios Básico y Agropecuarios, Facultad de Agronomía y Veterinaria (FAyV), Universidad Nacional de Río Cuarto (UNRC), Argentina
| | - Micaela Ledesma
- Departamento de Estudios Básico y Agropecuarios, Facultad de Agronomía y Veterinaria (FAyV), Universidad Nacional de Río Cuarto (UNRC), Argentina
| | - Susana Ferrero
- Departamento Matemática, Facultad de Ciencias Exactas, Físico-Químicas y Naturales (FCEFQyN), UNRC, Argentina
| | - Claudia Rodriguez
- Departamento de Estudios Básico y Agropecuarios, Facultad de Agronomía y Veterinaria (FAyV), Universidad Nacional de Río Cuarto (UNRC), Argentina
| | - Lucio Pinotti
- Instituto de Ciencias de la Tierra, Biodiversidad y Sustentabilidad Ambiental (ICBIA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| |
Collapse
|
16
|
Magray AR, Lone SA, Ganai BA, Ahmad F, Dar GJ, Dar JS, Rehman S. Comprehensive, classical and molecular characterization methods of Saprolegnia (Oomycota; Stramnipila), an important fungal pathogen of fish. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Frenken T, Agha R, Schmeller DS, van West P, Wolinska J. Biological Concepts for the Control of Aquatic Zoosporic Diseases. Trends Parasitol 2019; 35:571-582. [PMID: 31076352 DOI: 10.1016/j.pt.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/26/2022]
Abstract
Aquatic zoosporic diseases are threatening global biodiversity and ecosystem services, as well as economic activities. Current means of controlling zoosporic diseases are restricted primarily to chemical treatments, which are usually harmful or likely to be ineffective in the long term. Furthermore, some of these chemicals have been banned due to adverse effects. As a result, there is a need for alternative methods with minimal side-effects on the ecosystem or environment. Here, we integrate existing knowledge of three poorly interconnected areas of disease research - amphibian conservation, aquaculture, and plankton ecology - and arrange it into seven biological concepts to control zoosporic diseases. These strategies may be less harmful and more sustainable than chemical approaches. However, more research is needed before safe application is possible.
Collapse
Affiliation(s)
- Thijs Frenken
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - Ramsy Agha
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Dirk S Schmeller
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Pieter van West
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
18
|
Eissa AE, Abdelsalam M, Tharwat N, Zaki M. Detection of Saprolegnia parasitica in eggs of angelfish Pterophyllum scalare (Cuvier–Valenciennes) with a history of decreased hatchability. Int J Vet Sci Med 2019. [DOI: 10.1016/j.ijvsm.2013.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Alaa Eldin Eissa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Mohamed Abdelsalam
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Nagwa Tharwat
- Department of Botany, Faculty of Science, Cairo University, Giza,11221, Egypt
| | - Manal Zaki
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| |
Collapse
|
19
|
Wuensch A, Trusch F, Iberahim NA, van West P. Galleria melonella as an experimental in vivo host model for the fish-pathogenic oomycete Saprolegnia parasitica. Fungal Biol 2019; 122:182-189. [PMID: 29458721 PMCID: PMC5840505 DOI: 10.1016/j.funbio.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 11/05/2022]
Abstract
Oomycetes are eukaryotic pathogens infecting animals and plants. Amongst them Saprolegnia parasitica is a fish pathogenic oomycete causing devastating losses in the aquaculture industry. To secure fish supply, new drugs are in high demand and since fish experiments are time consuming, expensive and involve animal welfare issues the search for adequate model systems is essential. Galleria mellonella serves as a heterologous host model for bacterial and fungal infections. This study extends the use of G. mellonella for studying infections with oomycetes. Saprolegniales are highly pathogenic to the insects while in contrast, the plant pathogen Phytophthora infestans showed no pathogenicity. Melanisation of hyphae below the cuticle allowed direct macroscopic monitoring of disease progression. However, the melanin response is not systemic as for other pathogens but instead is very local. The mortality of the larvae is dose-dependent and can be induced by cysts or regenerating protoplasts as an alternative source of inoculation. Galleria mellonella serves as a heterologous host model system for Saprolegniales. The melanisation of the larvae is local around the growing hyphae. Regenerating protoplasts can be used as an alternative inoculum to cysts.
Collapse
Affiliation(s)
- Andreas Wuensch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, UK.
| | - Franziska Trusch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, UK.
| | - Nurul A Iberahim
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, UK.
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, UK.
| |
Collapse
|
20
|
la Bastide PYD, Naumann C, Hintz WE. Assessment of intra-specific variability in Saprolegnia parasitica populations of aquaculture facilities in British Columbia, Canada. DISEASES OF AQUATIC ORGANISMS 2018; 128:235-248. [PMID: 29862981 DOI: 10.3354/dao03224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Among the Saprolegnia species found in aquaculture facilities, S. parasitica is recognized as the primary fish pathogen and remains an ongoing concern in fish health management. Until recently, these pathogens were kept in check by use of malachite green; due to its toxicity, this chemical has now been banned from use in many countries. It is difficult to predict and control S. parasitica outbreaks in freshwater systems and there is a need to understand the population genetic structure of this pathogen. Genetic characterization of this species in aquaculture systems would provide information to track introductions and determine possible sources of inoculum. Degenerate PCR primers containing short sequence repeats were used to create microsatellite-associated genetic markers (random amplified microsatellites) for the comparison of S. parasitica isolates collected primarily from commercial Atlantic salmon aquaculture systems in British Columbia, Canada, over a 15 mo period to describe their spatial and temporal variability. The frequencies of amplified products were compared and the population genetic diversity was measured using Nei's genetic distance and Shannon's information index, while the species population structure was evaluated by phylogenetic analysis. S. parasitica was detected in all facilities sampled. Genetic diversity was low but not clonal, most likely due to repeated introduction events and a low level of sexual recombination over time. A better understanding of pathogen population structure will assist the development of effective preventative measures and targeted treatments for disease outbreaks.
Collapse
Affiliation(s)
- Paul Y de la Bastide
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | | | | |
Collapse
|
21
|
Shin S, Kulatunga DCM, Dananjaya SHS, Nikapitiya C, Lee J, De Zoysa M. Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti- Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model. MYCOBIOLOGY 2017; 45:297-311. [PMID: 29371797 PMCID: PMC5780361 DOI: 10.5941/myco.2017.45.4.297] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 06/01/2023]
Abstract
Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin [IL]-1β, tumor necrosis factor α, IL-6, IL-8, interferon γ, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules (CD8+ and CD4+) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as 200 μg/mL and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.
Collapse
Affiliation(s)
- Sangyeop Shin
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - D C M Kulatunga
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - S H S Dananjaya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Chamilani Nikapitiya
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea
- Fish Vaccine Research Center, Jeju National University, Jeju 63243, Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea
- Fish Vaccine Research Center, Jeju National University, Jeju 63243, Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Fish Vaccine Research Center, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
22
|
Majeed M, Kumar G, Schlosser S, El-Matbouli M, Saleh M. In vitro investigations on extracellular proteins secreted by Aphanomyces invadans, the causative agent of epizootic ulcerative syndrome. Acta Vet Scand 2017; 59:78. [PMID: 29121973 PMCID: PMC5680770 DOI: 10.1186/s13028-017-0347-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Proteases produced by many microorganisms, including oomycetes, are crucial for their growth and development. They may also play a critical role in disease manifestation. Epizootic ulcerative syndrome is one of the most destructive fish diseases known. It is caused by the oomycete Aphanomyces invadans and leads to mass mortalities of cultured and wild fish in many countries. The areas of concern are Australia, China, Japan, South and Southeast Asian countries and the USA. Extracellular proteases produced by this oomycete are believed to trigger EUS pathogenesis in fish. To address this activity, we collected the extracellular products (ECP) of A. invadans and identified the secreted proteins using SDS-PAGE and mass spectrometery. A. invadans was cultivated in liquid Glucose-Peptone-Yeats media. The culture media was ultra-filtered through 10 kDa filters and analysed using SDS-PAGE. Three prominent protein bands from the SDS gel were excised and identified by mass spectrometery. Furthermore, we assessed their proteolytic effect on casein and immunoglobulin M (IgM) of rainbow trout (Oncorhynchus mykiss) and giant gourami (Osphronemus goramy). Antiprotease activity of the fish serum was also investigated. RESULTS BLASTp analysis revealed that the prominent secreted proteins were proteases, mainly of the serine and cysteine types. Proteins containing fascin-like domain and bromodomain were also identified. We could demonstrate that the secreted proteases showed proteolytic activity against the casein and the IgM of both fish species. The anti-protease activity experiment showed that the percent inhibition of the common carp serum was 94.2% while that of rainbow trout and giant gourami serum was 7.7 and 12.9%, respectively. CONCLUSIONS The identified proteases, especially serine proteases, could be the potential virulence factors in A. invadans and, hence, are candidates for further functional and host-pathogen interaction studies. The role of identified structural proteins in A. invadans also needs to be investigated further.
Collapse
Affiliation(s)
- Muhammad Majeed
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sarah Schlosser
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
23
|
Ali SE, Skaar I. A fluorescence-based assay for in vitro screening of Saprolegnia inhibitors. JOURNAL OF FISH DISEASES 2017; 40:1333-1339. [PMID: 28252208 DOI: 10.1111/jfd.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
The incidence of fish pathogenic oomycetes, Saprolegnia, has increased significantly in aquaculture since the ban of malachite green. For the efficient characterization of anti-Saprolegnia therapeutics, simple accurate methods are required. However, the current screening methods are limited by time, and none of them are confirming the viability of treated spores or hyphae. In this study, a modified fluorescence-based assay for the in vitro screening of Saprolegnia inhibitors has been developed. This method involves the use of FUN-1 viability dye combined with calcofluor white M2R, and is based on the formation of orange-red cylindrical intravacuolar structures (CIVS) in metabolically active spores, hyphae and biofilms. Heat-killed and bronopol-treated Saprolegnia spores, hyphae and biofilms exhibited diffuse bright green fluorescence which confirms complete loss of viability. For boric acid-treated spores, no germination was observed. However, tiny CIVS were observed in 50% of treated spores which indicated reduction in their viability. Our results proved that FUN-1 dye is an efficient tool to distinguish between live and dead Saprolegnia spores, hyphae and biofilms and to monitor the change in Saprolegnia viability during qualitative evaluation of potential anti-Saprolegnia compounds.
Collapse
Affiliation(s)
- S E Ali
- Veterinary Research Division, Department of Hydrobiology, National Research Centre, Dokki, Giza, Egypt
| | - I Skaar
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
24
|
Rocchi S, Tisserant M, Valot B, Laboissière A, Frossard V, Reboux G. Quantification of Saprolegnia parasitica in river water using real-time quantitative PCR: from massive fish mortality to tap drinking water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:1-10. [PMID: 27750437 DOI: 10.1080/09603123.2016.1246653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
Since 2010, the Loue River (Franche-Comté, East of France) has been suffering from massive fish kills infested by Saprolegnia parasitica. The river supplies inhabitants of the city of Besançon in drinking water, raising the question of a potential risk through both water consumption and use. We developed a real-time quantitative PCR (qPCR) to quantify S. parasitica in the Loue River as well as in the drinking water. A weak spatial trend is suggested with greater quantities of S. parasitica observed at the sampling station close to the main pumping station. No S. parasitica DNA was detected in the tap water connected to pumping stations. The use of qPCR, which combines specificity, practicality, speed and reliability, appears to be an effective tool to monitor the spatial and temporal dynamics of this oomycete and identify the risk period for wild salmonid populations in the field, for fishery management or in aquaculture.
Collapse
Affiliation(s)
- Steffi Rocchi
- a Chrono-Environnement UMR CNRS 6249 , Bourgogne Franche-Comté University , Besançon , France
- b Parasitology-Mycology Department , University Hospital , Besançon , France
| | - Maxime Tisserant
- a Chrono-Environnement UMR CNRS 6249 , Bourgogne Franche-Comté University , Besançon , France
| | - Benoit Valot
- a Chrono-Environnement UMR CNRS 6249 , Bourgogne Franche-Comté University , Besançon , France
| | - Audrey Laboissière
- a Chrono-Environnement UMR CNRS 6249 , Bourgogne Franche-Comté University , Besançon , France
- b Parasitology-Mycology Department , University Hospital , Besançon , France
| | - Victor Frossard
- c CARRTEL Laboratory , Savoie University , Chambéry , France
| | - Gabriel Reboux
- a Chrono-Environnement UMR CNRS 6249 , Bourgogne Franche-Comté University , Besançon , France
- b Parasitology-Mycology Department , University Hospital , Besançon , France
| |
Collapse
|
25
|
Wang XW, Guo LY, Han M, Shan K. Diversity, evolution and expression profiles of histone acetyltransferases and deacetylases in oomycetes. BMC Genomics 2016; 17:927. [PMID: 27852223 PMCID: PMC5112689 DOI: 10.1186/s12864-016-3285-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Oomycetes are a group of fungus-like eukaryotes with diverse microorganisms living in marine, freshwater and terrestrial environments. Many of them are important pathogens of plants and animals, causing severe economic losses. Based on previous study, gene expression in eukaryotic cells is regulated by epigenetic mechanisms such as DNA methylation and histone modification. However, little is known about epigenetic mechanisms of oomycetes. RESULTS In this study, we investigated the candidate genes in regulating histone acetylation in oomycetes genomes through bioinformatics approaches and identified a group of diverse histone acetyltransferases (HATs) and histone deacetylases (HDACs), along with three putative novel HATs. Phylogenetic analyses suggested that most of these oomycetes HATs and HDACs derived from distinct evolutionary ancestors. Phylogenetic based analysis revealed the complex and distinct patterns of duplications and losses of HATs and HDACs in oomycetes. Moreover, gene expression analysis unveiled the specific expression patterns of the 33 HATs and 11 HDACs of Phytophthora infestans during the stages of development, infection and stress response. CONCLUSIONS In this study, we reveal the structure, diversity and the phylogeny of HATs and HDACs of oomycetes. By analyzing the expression data, we provide an overview of the specific biological stages of these genes involved. Our datasets provide useful inputs to help explore the epigenetic mechanisms and the relationship between genomes and phenotypes of oomycetes.
Collapse
Affiliation(s)
- Xiao-Wen Wang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Li-Yun Guo
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, China.
| | - Miao Han
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Kun Shan
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Thoen E, Evensen Ø, Skaar I. Factors influencing Saprolegnia spp. spore numbers in Norwegian salmon hatcheries. JOURNAL OF FISH DISEASES 2016; 39:657-65. [PMID: 26123005 DOI: 10.1111/jfd.12392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 05/07/2023]
Abstract
A quantitative survey of Saprolegnia spp. in the water systems of Norwegian salmon hatcheries was performed. Water samples from 14 salmon hatcheries distributed along the Norwegian coastline were collected during final incubation in the hatcheries. Samples of inlet and effluent water were analyzed to estimate Saprolegnia propagule numbers. Saprolegnia spores were found in all samples at variable abundance. Number of spores retrieved varied from 50 to 3200 L(-1) in inlet water and from 30 to >5000 L(-1) in effluent water. A significant elevation of spore levels in effluent water compared to inlet water was detected. The estimated spore levels were related to recorded managerial and environmental parameters, and the number of spores in inlet water and temperature was the factor having most influence on the spore concentration in the incubation units (effluent water). Further, the relative impact of spore concentration on hatching rates was investigated by correlation analysis. From this was found that even high spore counts did not impact significantly on hatching success.
Collapse
Affiliation(s)
- E Thoen
- Norwegian Veterinary Institute, Oslo, Norway
| | - Ø Evensen
- Norwegian School of Veterinary Science, Oslo, Norway
| | - I Skaar
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
27
|
Analysis of Saprolegnia parasitica Transcriptome following Treatment with Copper Sulfate. PLoS One 2016; 11:e0147445. [PMID: 26895329 PMCID: PMC4760756 DOI: 10.1371/journal.pone.0147445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 01/03/2016] [Indexed: 11/19/2022] Open
Abstract
Background Massive infection caused by oomycete fungus Saprolegnia parasitica is detrimental to freshwater fish. Recently, we showed that copper sulfate demonstrated good efficacy for controlling S. parasitica infection in grass carp. In this study, we investigated the mechanism of inhibition of S. parasitica growth by copper sulfate by analyzing the transcriptome of copper sulfate—treated S. parasitica. To examine the mechanism of copper sulfate inhibiting S. parasitica, we utilized RNA-seq technology to compare differential gene expression in S. parasitica treated with or without copper sulfate. Results The total mapped rates of the reads with the reference genome were 90.50% in the control group and 73.50% in the experimental group. In the control group, annotated splice junctions, partial novel splice junctions and complete novel splice junctions were about 83%, 3% and 14%, respectively. In the treatment group, the corresponding values were about 75%, 6% and 19%. Following copper sulfate treatment, a total 310 genes were markedly upregulated and 556 genes were markedly downregulated in S. parasitica. Material metabolism related GO terms including cofactor binding (33 genes), 1,3-beta-D-glucan synthase complex (4 genes), carboxylic acid metabolic process (40 genes) were the most significantly enriched. KEGG pathway analysis also determined that the metabolism-related biological pathways were significantly enriched, including the metabolic pathways (98 genes), biosynthesis of secondary metabolites pathways (42 genes), fatty acid metabolism (13 genes), phenylalanine metabolism (7 genes), starch and sucrose metabolism pathway (12 genes). The qRT-PCR results were largely consistent with the RNA-Seq results. Conclusion Our results indicate that copper sulfate inhibits S. parasitica growth by affecting multiple biological functions, including protein synthesis, energy biogenesis, and metabolism.
Collapse
|
28
|
Sharma R, Xia X, Cano LM, Evangelisti E, Kemen E, Judelson H, Oome S, Sambles C, van den Hoogen DJ, Kitner M, Klein J, Meijer HJG, Spring O, Win J, Zipper R, Bode HB, Govers F, Kamoun S, Schornack S, Studholme DJ, Van den Ackerveken G, Thines M. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. BMC Genomics 2015; 16:741. [PMID: 26438312 PMCID: PMC4594904 DOI: 10.1186/s12864-015-1904-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/27/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Downy mildews are the most speciose group of oomycetes and affect crops of great economic importance. So far, there is only a single deeply-sequenced downy mildew genome available, from Hyaloperonospora arabidopsidis. Further genomic resources for downy mildews are required to study their evolution, including pathogenicity effector proteins, such as RxLR effectors. Plasmopara halstedii is a devastating pathogen of sunflower and a potential pathosystem model to study downy mildews, as several Avr-genes and R-genes have been predicted and unlike Arabidopsis downy mildew, large quantities of almost contamination-free material can be obtained easily. RESULTS Here a high-quality draft genome of Plasmopara halstedii is reported and analysed with respect to various aspects, including genome organisation, secondary metabolism, effector proteins and comparative genomics with other sequenced oomycetes. Interestingly, the present analyses revealed further variation of the RxLR motif, suggesting an important role of the conservation of the dEER-motif. Orthology analyses revealed the conservation of 28 RxLR-like core effectors among Phytophthora species. Only six putative RxLR-like effectors were shared by the two sequenced downy mildews, highlighting the fast and largely independent evolution of two of the three major downy mildew lineages. This is seemingly supported by phylogenomic results, in which downy mildews did not appear to be monophyletic. CONCLUSIONS The genome resource will be useful for developing markers for monitoring the pathogen population and might provide the basis for new approaches to fight Phytophthora and downy mildew pathogens by targeting core pathogenicity effectors.
Collapse
Affiliation(s)
- Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany. .,Center for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany.
| | - Xiaojuan Xia
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany.
| | - Liliana M Cano
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK. .,Present address: Department of Plant Pathology, North Carolina State University Raleigh, Raleigh, NC, 27695, USA.
| | | | - Eric Kemen
- Max Planck Institute for Plant Breeding Research, Carl von Linne´ Weg 10, Cologne, 50829, Germany.
| | - Howard Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
| | - Stan Oome
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Christine Sambles
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - D Johan van den Hoogen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Miloslav Kitner
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 11, 78371, Olomouc, Czech Republic.
| | - Joël Klein
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Otmar Spring
- University of Hohenheim, Institute of Botany 210, D-70593, Stuttgart, Germany.
| | - Joe Win
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Reinhard Zipper
- University of Hohenheim, Institute of Botany 210, D-70593, Stuttgart, Germany.
| | - Helge B Bode
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | | | - David J Studholme
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany. .,Center for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Integrative Fungal Research (IPF), Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325, Frankfurt am Main, Germany.
| |
Collapse
|
29
|
Chemical Characterization and Anti-Oomycete Activity of Laureliopsis philippianna Essential Oils against Saprolegnia parasitica and S. australis. Molecules 2015; 20:8033-47. [PMID: 25951001 PMCID: PMC6272517 DOI: 10.3390/molecules20058033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/04/2022] Open
Abstract
Laureliopsis philippiana (Looser) R. Schodde (Monimiaceae) is a native tree widespread in the forest areas in the south of Chile and Argentina, known for its medicinal properties and excellent wood. The aim of this study was to evaluate the chemical composition of L. philippiana leaf and bark essential oils (EOs) using gas chromatography-mass spectrometry (GC-MS), and to quantify its anti-oomycete activity, specifically against Saprolegniaparasitica and S. australis. Only six components were identified in leaf EO, 96.92% of which are phenylpropanoids and 3.08% are terpenes. As for bark EO, 29 components were identified, representing 67.61% for phenylpropanoids and 32.39% for terpenes. Leaf EO was characterized mainly by safrole (96.92%) and β-phellandrene (1.80%). Bark EO was characterized mainly by isosafrole (30.07%), safrole (24.41%), eucalyptol (13.89%), methyleugenol (7.12%), and eugenol (6.01%). Bark EO has the most promising anti-Saprolegnia activity, with a minimum inhibition concentration (MIC) value of 30.0 µg/mL against mycelia growth and a minimum fungicidal concentration (MFC) value of 50.0 μg/mL against spores; for leaf EO, the MIC and MFC values are 100 and 125 µg/mL, respectively. These findings demonstrate that bark EO has potential to be developed as a remedy for the control of Saprolegnia spp. in aquaculture.
Collapse
|
30
|
Guigón-López C, Vargas-Albores F, Guerrero-Prieto V, Ruocco M, Lorito M. Changes in Trichoderma asperellum enzyme expression during parasitism of the cotton root rot pathogen Phymatotrichopsis omnivora. Fungal Biol 2015; 119:264-73. [DOI: 10.1016/j.funbio.2014.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/14/2014] [Accepted: 12/23/2014] [Indexed: 01/16/2023]
|
31
|
Earle G, Hintz W. New Approaches for Controlling Saprolegnia parasitica, the Causal Agent of a Devastating Fish Disease. Trop Life Sci Res 2014; 25:101-109. [PMID: 27073602 PMCID: PMC4814142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
Pathogenic oomycetes have the ability to infect a wide range of plant and animal hosts and are responsible for a number of economically important diseases. Saprolegniasis, a disease affecting fish eggs and juvenile fish in hatcheries worldwide, is caused by the pathogenic oomycete Saprolegnia parasitica. This disease presents as greyish-white patches of filamentous mycelium on the body or fins of fish and is associated with tissue damage leading to death of the animal. Traditionally, saprolegniasis was controlled using Malachite green; however, this chemical was banned in 2002 due to its carcinogenic and toxicological effects. As a direct result of this ban, there has been a recent resurgence of saprolegniasis in the aquaculture industry, leading to economic losses world-wide. Hence, there is an urgent need to find alternative methods to control this pathogen. We discuss the use of molecular approaches for the study of saprolegniasis, which are anticipated to enable the development of effective fish vaccines and the potential for the development of new methods to control this devastating disease.
Collapse
|
32
|
Ali SE, Thoen E, Evensen Ø, Wiik-Nielsen J, Gamil AAA, Skaar I. Mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia. PLoS One 2014; 9:e110343. [PMID: 25354209 PMCID: PMC4212911 DOI: 10.1371/journal.pone.0110343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/20/2014] [Indexed: 12/23/2022] Open
Abstract
There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L) over a period 4-24 h post treatment. Using transmission electron microscopy (TEM), early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM). Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp.
Collapse
Affiliation(s)
| | - Even Thoen
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian University of Life Sciences, Oslo, Norway
| | | | | | | | - Ida Skaar
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
33
|
Sarowar MN, van den Berg AH, McLaggan D, Young MR, van West P. Reprint of: Saprolegnia strains isolated from river insects and amphipods are broad spectrum pathogens. Fungal Biol 2014; 118:579-90. [DOI: 10.1016/j.funbio.2014.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 11/29/2022]
|
34
|
Krajaejun T, Lerksuthirat T, Garg G, Lowhnoo T, Yingyong W, Khositnithikul R, Tangphatsornruang S, Suriyaphol P, Ranganathan S, Sullivan TD. Transcriptome analysis reveals pathogenicity and evolutionary history of the pathogenic oomycete Pythium insidiosum. Fungal Biol 2014; 118:640-53. [DOI: 10.1016/j.funbio.2014.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 12/03/2013] [Accepted: 01/24/2014] [Indexed: 12/14/2022]
|
35
|
Rubin E, Tanguy A, Perrigault M, Pales Espinosa E, Allam B. Characterization of the transcriptome and temperature-induced differential gene expression in QPX, the thraustochytrid parasite of hard clams. BMC Genomics 2014; 15:245. [PMID: 24678810 PMCID: PMC3986615 DOI: 10.1186/1471-2164-15-245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/06/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The hard clam or northern quahog, Mercenaria mercenaria, is one of the most valuable seafood products in the United States representing the first marine resource in some Northeastern states. Severe episodes of hard clam mortality have been consistently associated with infections caused by a thraustochytrid parasite called Quahog Parasite Unknown (QPX). QPX is considered as a cold/temperate water organism since the disease occurs only in the coastal waters of the northwestern Atlantic Ocean from Maritime Canada to Virginia. High disease development at cold temperatures was also confirmed in laboratory studies and is thought to be caused predominantly by immunosuppression of the clam host even though the effect of temperature on QPX virulence has not been fully investigated. In this study, the QPX transcriptome was sequenced using Roche 454 technology to better characterize this microbe and initiate research on the molecular basis of QPX virulence towards hard clams. RESULTS Close to 18,000 transcriptomic sequences were generated and functionally annotated. Results revealed a wide array of QPX putative virulence factors including a variety of peptidases, antioxidant enzymes, and proteins involved in extracellular mucus production and other secretory proteins potentially involved in interactions with the clam host. Furthermore, a 15 K oligonucleotide array was constructed and used to investigate the effect of temperature on QPX fitness and virulence factors. Results identified a set of QPX molecular chaperones that could explain its adaptation to cold temperatures. Finally, several virulence-related factors were up-regulated at low temperature providing molecular targets for further investigations of increased QPX pathogenicity in cold water conditions. CONCLUSIONS This is one of the first studies to characterize the transcriptome of a parasitic labyrinthulid, offering new insights into the molecular bases of the pathogenicity of members of this group. Results from the oligoarray study demonstrated the ability of QPX to cope with a wide range of environmental temperatures, including those considered to be suboptimal for clam immunity (low temperature) providing a mechanistic scenario for disease distribution in the field and for high disease prevalence and intensity at low temperature. These results will serve as basis for studies aimed at a better characterization of specific putative virulence factors.
Collapse
Affiliation(s)
- Ewelina Rubin
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | - Arnaud Tanguy
- UPMC Université Paris 6, UMR 7144, Equipe Génétique et Adaptation en Milieu Extrême, Station Biologique de Roscoff, 29682 Roscoff, France
| | - Mickael Perrigault
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
36
|
Gozlan RE, Marshall WL, Lilje O, Jessop CN, Gleason FH, Andreou D. Current ecological understanding of fungal-like pathogens of fish: what lies beneath? Front Microbiol 2014. [PMID: 24600442 DOI: 10.3389/fmicb.2014.00062/bibtex] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.
Collapse
Affiliation(s)
- Rodolphe E Gozlan
- Unité Mixte de Recherche Biologie des Organismes et Écosystèmes Aquatiques (IRD 207, CNRS 7208, MNHN, UPMC), Muséum National d'Histoire Naturelle Paris Cedex, France ; Centre for Conservation Ecology and Environmental Sciences, School of Applied Sciences, Bournemouth University Poole, Dorset, UK
| | - Wyth L Marshall
- BC Centre for Aquatic Health Sciences Campbell River, BC, Canada
| | - Osu Lilje
- School of Biological Sciences, University of Sydney Sydney, NSW, Australia
| | - Casey N Jessop
- School of Biological Sciences, University of Sydney Sydney, NSW, Australia
| | - Frank H Gleason
- School of Biological Sciences, University of Sydney Sydney, NSW, Australia
| | - Demetra Andreou
- Centre for Conservation Ecology and Environmental Sciences, School of Applied Sciences, Bournemouth University Poole, Dorset, UK
| |
Collapse
|
37
|
Gozlan RE, Marshall WL, Lilje O, Jessop CN, Gleason FH, Andreou D. Current ecological understanding of fungal-like pathogens of fish: what lies beneath? Front Microbiol 2014; 5:62. [PMID: 24600442 PMCID: PMC3928546 DOI: 10.3389/fmicb.2014.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.
Collapse
Affiliation(s)
- Rodolphe E. Gozlan
- Unité Mixte de Recherche Biologie des Organismes et Écosystèmes Aquatiques (IRD 207, CNRS 7208, MNHN, UPMC), Muséum National d'Histoire NaturelleParis Cedex, France
- Centre for Conservation Ecology and Environmental Sciences, School of Applied Sciences, Bournemouth UniversityPoole, Dorset, UK
| | | | - Osu Lilje
- School of Biological Sciences, University of SydneySydney, NSW, Australia
| | - Casey N. Jessop
- School of Biological Sciences, University of SydneySydney, NSW, Australia
| | - Frank H. Gleason
- School of Biological Sciences, University of SydneySydney, NSW, Australia
| | - Demetra Andreou
- Centre for Conservation Ecology and Environmental Sciences, School of Applied Sciences, Bournemouth UniversityPoole, Dorset, UK
| |
Collapse
|
38
|
Sarowar MN, van den Berg AH, McLaggan D, Young MR, van West P. Saprolegnia strains isolated from river insects and amphipods are broad spectrum pathogens. Fungal Biol 2013; 117:752-63. [DOI: 10.1016/j.funbio.2013.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
|
39
|
The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2013.05.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Jiang RHY, de Bruijn I, Haas BJ, Belmonte R, Löbach L, Christie J, van den Ackerveken G, Bottin A, Bulone V, Díaz-Moreno SM, Dumas B, Fan L, Gaulin E, Govers F, Grenville-Briggs LJ, Horner NR, Levin JZ, Mammella M, Meijer HJG, Morris P, Nusbaum C, Oome S, Phillips AJ, van Rooyen D, Rzeszutek E, Saraiva M, Secombes CJ, Seidl MF, Snel B, Stassen JHM, Sykes S, Tripathy S, van den Berg H, Vega-Arreguin JC, Wawra S, Young SK, Zeng Q, Dieguez-Uribeondo J, Russ C, Tyler BM, van West P. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. PLoS Genet 2013; 9:e1003272. [PMID: 23785293 PMCID: PMC3681718 DOI: 10.1371/journal.pgen.1003272] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/10/2012] [Indexed: 01/31/2023] Open
Abstract
Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica. Fish are an increasingly important source of animal protein globally, with aquaculture production rising dramatically over the past decade. Saprolegnia is a fungal-like oomycete and one of the most destructive fish pathogens, causing millions of dollars in losses to the aquaculture industry annually. Saprolegnia has also been linked to a worldwide decline in wild fish and amphibian populations. Here we describe the genome sequence of the first animal pathogenic oomycete and compare the genome content with the available plant pathogenic oomycetes. We found that Saprolegnia lacks the large effector families that are hallmarks of plant pathogenic oomycetes, showing evolutionary adaptation to the host. Moreover, Saprolegnia harbors pathogenesis-related genes that were derived by lateral gene transfer from the host and other animal pathogens. The retrotransposon LINE family also appears to be acquired from animal lineages. By transcriptome analysis we show a high rate of allelic variation, which reveals rapidly evolving genes and potentially adaptive evolutionary mechanisms coupled to selective pressures exerted by the animal host. The genome and transcriptome data, as well as subsequent biochemical analyses, provided us with insight in the disease process of Saprolegnia at a molecular and cellular level, providing us with targets for sustainable control of Saprolegnia.
Collapse
Affiliation(s)
- Rays H Y Jiang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wawra S, Belmonte R, Löbach L, Saraiva M, Willems A, van West P. Secretion, delivery and function of oomycete effector proteins. Curr Opin Microbiol 2012. [DOI: 10.1016/j.mib.2012.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Dynamics and innovations within oomycete genomes: insights into biology, pathology, and evolution. EUKARYOTIC CELL 2012; 11:1304-12. [PMID: 22923046 DOI: 10.1128/ec.00155-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eukaryotic microbes known as oomycetes are common inhabitants of terrestrial and aquatic environments and include saprophytes and pathogens. Lifestyles of the pathogens extend from biotrophy to necrotrophy, obligate to facultative pathogenesis, and narrow to broad host ranges on plants or animals. Sequencing of several pathogens has revealed striking variation in genome size and content, a plastic set of genes related to pathogenesis, and adaptations associated with obligate biotrophy. Features of genome evolution include repeat-driven expansions, deletions, gene fusions, and horizontal gene transfer in a landscape organized into gene-dense and gene-sparse sectors and influenced by transposable elements. Gene expression profiles are also highly dynamic throughout oomycete life cycles, with transcriptional polymorphisms as well as differences in protein sequence contributing to variation. The genome projects have set the foundation for functional studies and should spur the sequencing of additional species, including more diverse pathogens and nonpathogens.
Collapse
|
43
|
Beakes GW, Glockling SL, Sekimoto S. The evolutionary phylogeny of the oomycete "fungi". PROTOPLASMA 2012; 249:3-19. [PMID: 21424613 DOI: 10.1007/s00709-011-0269-2] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/28/2011] [Indexed: 05/09/2023]
Abstract
Molecular sequencing has helped resolve the phylogenetic relationships amongst the diverse groups of algal, fungal-like and protist organisms that constitute the Chromalveolate "superkingdom" clade. It is thought that the whole clade evolved from a photosynthetic ancestor and that there have been at least three independent plastid losses during their evolutionary history. The fungal-like oomycetes and hyphochytrids, together with the marine flagellates Pirsonia and Developayella, form part of the clade defined by Cavalier-Smith and Chao (2006) as the phylum "Pseudofungi", which is a sister to the photosynthetic chromistan algae (phylum Ochrophyta). Within the oomycetes, a number of predominantly marine holocarpic genera appear to diverge before the main "saprolegnian" and "peronosporalean" lines, into which all oomycetes had been traditionally placed. It is now clear that oomycetes have their evolutionary roots in the sea. The earliest diverging oomycete genera so far documented, Eurychasma and Haptoglossa, are both obligate parasites that show a high degree of complexity and sophistication in their host parasite interactions and infection structures. Key morphological and cytological features of the oomycetes will be reviewed in the context of our revised understanding of their likely phylogeny. Recent genomic studies have revealed a number of intriguing similarities in host-pathogen interactions between the oomycetes with their distant apicocomplexan cousins. Therefore, the earlier view that oomycetes evolved from the largely saprotrophic "saprolegnian line" is not supported and current evidence shows these organisms evolved from simple holocarpic marine parasites. Both the hyphal-like pattern of growth and the acquisition of oogamous sexual reproduction probably developed largely after the migration of these organisms from the sea to land.
Collapse
Affiliation(s)
- Gordon W Beakes
- School of Biology, Newcastle University, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
44
|
Abstract
Many destructive diseases of plants and animals are caused by oomycetes, a group of eukaryotic pathogens important to agricultural, ornamental, and natural ecosystems. Understanding the mechanisms underlying oomycete virulence and the genomic processes by which those mechanisms rapidly evolve is essential to developing effective long-term control measures for oomycete diseases. Several common mechanisms underlying oomycete virulence, including protein toxins and cell-entering effectors, have emerged from comparing oomycetes with different genome characteristics, parasitic lifestyles, and host ranges. Oomycete genomes display a strongly bipartite organization in which conserved housekeeping genes are concentrated in syntenic gene-rich blocks, whereas virulence genes are dispersed into highly dynamic, repeat-rich regions. There is also evidence that key virulence genes have been acquired by horizontal transfer from other eukaryotic and prokaryotic species.
Collapse
Affiliation(s)
- Rays H Y Jiang
- The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
45
|
Novel cellulose-binding-domain protein in Phytophthora is cell wall localized. PLoS One 2011; 6:e23555. [PMID: 21887271 PMCID: PMC3160888 DOI: 10.1371/journal.pone.0023555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022] Open
Abstract
Cellulose binding domains (CBD) in the carbohydrate binding module family 1 (CBM1) are structurally conserved regions generally linked to catalytic regions of cellulolytic enzymes. While widespread amongst saprophytic fungi that subsist on plant cell wall polysaccharides, they are absent amongst most plant pathogenic fungal cellulases. A genome wide survey for CBM1 was performed on the highly destructive plant pathogen Phytophthora infestans, a fungal-like Stramenopile, to determine if it harbored cellulolytic enzymes with CBM1. Only five genes were found to encode CBM1, and none were associated with catalytic domains. Surveys of other genomes indicated that the CBM1-containing proteins, lacking other domains, represent a unique group of proteins largely confined to the Stramenopiles. Immunolocalization of one of these proteins, CBD1, indicated that it is embedded in the hyphal cell wall. Proteins with CBM1 domains can have plant host elicitor activity, but tests with Agrobacterium-mediated in planta expression and synthetic peptide infiltration failed to identify plant hypersensitive elicitation with CBD1. A structural basis for differential elicitor activity is proposed.
Collapse
|
46
|
Expressed sequence tags reveal genetic diversity and putative virulence factors of the pathogenic oomycete Pythium insidiosum. Fungal Biol 2011; 115:683-96. [PMID: 21724174 DOI: 10.1016/j.funbio.2011.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 01/06/2023]
Abstract
Oomycetes are unique eukaryotic microorganisms that share a mycelial morphology with fungi. Many oomycetes are pathogenic to plants, and a more limited number are pathogenic to animals. Pythium insidiosum is the only oomycete that is capable of infecting both humans and animals, and causes a life-threatening infectious disease, called "pythiosis". In the majority of pythiosis patients life-long handicaps result from the inevitable radical excision of infected organs, and many die from advanced infection. Better understanding P. insidiosum pathogenesis at molecular levels could lead to new forms of treatment. Genetic and genomic information is lacking for P. insidiosum, so we have undertaken an expressed sequence tag (EST) study, and report on the first dataset of 486 ESTs, assembled into 217 unigenes. Of these, 144 had significant sequence similarity with known genes, including 47 with ribosomal protein homology. Potential virulence factors included genes involved in antioxidation, thermal adaptation, immunomodulation, and iron and sterol binding. Effectors resembling pathogenicity factors of plant-pathogenic oomycetes were also discovered, such as, a CBEL-like protein (possible involvement in host cell adhesion and hemagglutination), a putative RXLR effector (possibly involved in host cell modulation) and elicitin-like (ELL) proteins. Phylogenetic analysis mapped P. insidiosum ELLs to several novel clades of oomycete elicitins (ELIs), and homology modeling predicted that P. insidiosum ELLs should bind sterols. Most of the P. insidiosum ESTs showed homology to sequences in the genome or EST databases of other oomycetes, but one putative gene, with unknown function, was found to be unique to P. insidiosum. The EST dataset reported here represents the first steps in identifying genes of P. insidiosum and beginning transcriptome analysis. This genetic information will facilitate understanding of pathogenic mechanisms of this devastating pathogen.
Collapse
|
47
|
Gaastra W, Lipman LJA, De Cock AWAM, Exel TK, Pegge RBG, Scheurwater J, Vilela R, Mendoza L. Pythium insidiosum: an overview. Vet Microbiol 2010; 146:1-16. [PMID: 20800978 DOI: 10.1016/j.vetmic.2010.07.019] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/19/2010] [Accepted: 07/19/2010] [Indexed: 02/08/2023]
Abstract
Pythium insidiosum is an oomycete pathogenic in mammals. The infection occurs mainly in tropical and subtropical areas, particularly in horses, dogs and humans. Infection is acquired through small wounds via contact with water that contains motile zoospores or other propagules (zoospores or hyphae). The disease, though described as emerging has in fact already been described since 1884. Depending on the site of entry, infection can lead to different forms of pythiosis i.e. a cutaneous, vascular, ocular, gastrointestinal and a systemic form, which is rarely seen. The infection is not contagious; no animal-animal or animal-human transmission has been reported so far. Therapy includes radical surgery, antifungal drugs, immunotherapy or a combination of these therapies. The prevention to contract the disease in endemic areas is difficult. Avoiding stagnant waters could be of help, although the presence of P. insidiosum on grass and soil in enzootic areas renders this practice useless.
Collapse
Affiliation(s)
- Wim Gaastra
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP, Thines M, Win J, Zerillo MM, Beakes GW, Boore JL, Busam D, Dumas B, Ferriera S, Fuerstenberg SI, Gachon CMM, Gaulin E, Govers F, Grenville-Briggs L, Horner N, Hostetler J, Jiang RHY, Johnson J, Krajaejun T, Lin H, Meijer HJG, Moore B, Morris P, Phuntmart V, Puiu D, Shetty J, Stajich JE, Tripathy S, Wawra S, van West P, Whitty BR, Coutinho PM, Henrissat B, Martin F, Thomas PD, Tyler BM, De Vries RP, Kamoun S, Yandell M, Tisserat N, Buell CR. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 2010; 11:R73. [PMID: 20626842 PMCID: PMC2926784 DOI: 10.1186/gb-2010-11-7-r73] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/02/2010] [Accepted: 07/13/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pythium ultimum is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species. RESULTS The P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions, although, surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host-specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome, including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report of these in a genome outside the metazoans. CONCLUSIONS Access to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage-specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae.
Collapse
Affiliation(s)
- C André Lévesque
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Henk Brouwer
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | | | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Carson Holt
- Eccles Institute of Human Genetics, University of Utah, 15 North 2030 East, Room 2100, Salt Lake City, UT 84112-5330, USA
| | | | | | - Gregg P Robideau
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Marco Thines
- Biodiversity and Climate Research Centre, Georg-Voigt-Str 14-16, D-60325, Frankfurt, Germany
- Department of Biological Sciences, Insitute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University, Siesmayerstr. 70, D-60323 Frankfurt, Germany
| | - Joe Win
- The Sainsbury Laboratory, Norwich, NR4 7UH, UK
| | - Marcelo M Zerillo
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - Gordon W Beakes
- School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jeffrey L Boore
- Genome Project Solutions, 1024 Promenade Street, Hercules, CA 94547, USA
| | - Dana Busam
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Bernard Dumas
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR5546 CNRS-Université de Toulouse, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
| | - Steve Ferriera
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | | | | | - Elodie Gaulin
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR5546 CNRS-Université de Toulouse, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, NL-1-6708 PB, Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), PO Box 98, 6700 AB Wageningen, The Netherlands
| | - Laura Grenville-Briggs
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Neil Horner
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jessica Hostetler
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Rays HY Jiang
- The Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Justin Johnson
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine-Ramathibodi Hospital, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Haining Lin
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Harold JG Meijer
- Laboratory of Phytopathology, Wageningen University, NL-1-6708 PB, Wageningen, The Netherlands
| | - Barry Moore
- Eccles Institute of Human Genetics, University of Utah, 15 North 2030 East, Room 2100, Salt Lake City, UT 84112-5330, USA
| | - Paul Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Vipaporn Phuntmart
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Daniela Puiu
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Jyoti Shetty
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Jason E Stajich
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - Sucheta Tripathy
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington Street, Blacksburg, VA 24061-0477, USA
| | - Stephan Wawra
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Pieter van West
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Brett R Whitty
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolecules Biologiques, UMR6098, CNRS, Univ. Aix-Marseille I & II, 163 Avenue de Luminy, 13288 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolecules Biologiques, UMR6098, CNRS, Univ. Aix-Marseille I & II, 163 Avenue de Luminy, 13288 Marseille, France
| | - Frank Martin
- USDA-ARS, 1636 East Alisal St, Salinias, CA, 93905, USA
| | - Paul D Thomas
- Evolutionary Systems Biology, SRI International, Room AE207, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington Street, Blacksburg, VA 24061-0477, USA
| | - Ronald P De Vries
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | | | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, 15 North 2030 East, Room 2100, Salt Lake City, UT 84112-5330, USA
| | - Ned Tisserat
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
49
|
Hochwimmer G, Tober R, Bibars-Reiter R, Licek E, Steinborn R. Identification of two GH18 chitinase family genes and their use as targets for detection of the crayfish-plague oomycete Aphanomyces astaci. BMC Microbiol 2009; 9:184. [PMID: 19719847 PMCID: PMC2751781 DOI: 10.1186/1471-2180-9-184] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 08/31/2009] [Indexed: 01/04/2023] Open
Abstract
Background The oomycete Aphanomyces astaci is regarded as the causative agent of crayfish plague and represents an evident hazard for European crayfish species. Native crayfish populations infected with this pathogen suffer up to 100% mortality. The existence of multiple transmission paths necessitates the development of a reliable, robust and efficient test to detect the pathogen. Currently, A. astaci is diagnosed by a PCR-based assay that suffers from cross-reactivity to other species. We developed an alternative closed-tube assay for A. astaci, which achieves robustness through simultaneous amplification of multiple functionally constrained genes. Results Two novel constitutively expressed members of the glycosyl hydrolase (GH18) gene family of chitinases were isolated from the A. astaci strain Gb04. The primary amino acid sequence of these chitinase genes, termed CHI2 and CHI3, is composed of an N-terminal signal peptide directing the post-translational transport of the protein into the extracellular space, the catalytic GH18 domain, a proline-, serine-, and threonine-rich domain and a C-terminal cysteine-rich putative chitin-binding site. The A. astaci mycelium grown in a pepton-glucose medium showed significant temporal changes in steady-state CHI2 and CHI3 mRNA amounts indicating functional constraint. Their different temporal occurrence with maxima at 48 and 24 hours of incubation for CHI2 and CHI3, respectively, is in accordance with the multifunctionality of GH18 family members. To identify A. astaci-specific primer target sites in these novel genes, we determined the partial sequence homologs in the related oomycetes A. frigidophilus, A. invadans, A. helicoides, A. laevis, A. repetans, Achlya racemosa, Leptolegnia caudata, and Saprolegnia parasitica, as well as in the relevant fungi Fusarium solani and Trichosporon cutaneum. An A. astaci-specific primer pair targeting the novel genes CHI2 and CHI3 as well as CHI1 - a third GH18 family member - was multiplexed with primers targeting the 5.8S rRNA used as an endogenous control. A species was typed unambiguously as A. astaci if two peaks were concomitantly detected by melting curve analysis (MCA). For sensitive detection of the pathogen, but also for quantification of agent levels in susceptible crayfish and carrier crayfish, a TaqMan-probe based real-time PCR (qPCR) assay was developed. It targets the same chitinase genes and allows quantification down to 25 target sequences. Conclusion The simultaneous qualitative detection of multiple sequences by qPCR/MCA represents a promising approach to detect species with elevated levels of genetic variation and/or limited available sequence information. The homogenous closed-tube format, reduced detection time, higher specificity, and the considerably reduced chance of false negative detection achieved by targeting multiple genes (CHI1, CHI2, CHI3, and the endogenous control) at least two of which are subject to high functional constraint, are the major advantages of this multiplex assay compared to other diagnostic methods. Sensitive quantification achieved with TaqMan qPCR facilitates to monitor infection status and pathogen distribution in different tissues and can help prevent disease transmission.
Collapse
Affiliation(s)
- Gerald Hochwimmer
- Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | | | | | | | | |
Collapse
|
50
|
Hein I, Gilroy EM, Armstrong MR, Birch PRJ. The zig-zag-zig in oomycete-plant interactions. MOLECULAR PLANT PATHOLOGY 2009; 10:547-62. [PMID: 19523107 PMCID: PMC6640229 DOI: 10.1111/j.1364-3703.2009.00547.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In addition to a range of preformed barriers, plants defend themselves against microbial invasion by detecting conserved, secreted molecules, called pathogen-associated molecular patterns (PAMPs). PAMP-triggered immunity (PTI) is the first inducible layer of plant defence that microbial pathogens must navigate by the delivery of effector proteins that act to suppress or otherwise manipulate key components of resistance. Effectors may themselves be targeted by a further layer of defence, effector-triggered immunity (ETI), as their presence inside or outside host cells may be detected by resistance proteins. This 'zig-zag-zig' of tightly co-evolving molecular interactions determines the outcome of attempted infection. In this article, we consider the complex molecular interplay between plants and plant pathogenic oomycetes, drawing on recent literature to illustrate what is known about oomycete PAMPs and elicitors of defence responses, the effectors they utilize to suppress PTI, and the phenomenal molecular 'battle' between effector and resistance (R) genes that dictates the establishment or evasion of ETI.
Collapse
Affiliation(s)
- Ingo Hein
- Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | | | | | |
Collapse
|