1
|
Yang MY, Liu BS, Huang HY, Yang YC, Chang KB, Kuo PY, Deng YH, Tang CM, Hsieh HH, Hung HS. Engineered Pullulan-Collagen-Gold Nano Composite Improves Mesenchymal Stem Cells Neural Differentiation and Inflammatory Regulation. Cells 2021; 10:cells10123276. [PMID: 34943784 PMCID: PMC8699622 DOI: 10.3390/cells10123276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue repair engineering supported by nanoparticles and stem cells has been demonstrated as being an efficient strategy for promoting the healing potential during the regeneration of damaged tissues. In the current study, we prepared various nanomaterials including pure Pul, pure Col, Pul–Col, Pul–Au, Pul–Col–Au, and Col–Au to investigate their physicochemical properties, biocompatibility, biological functions, differentiation capacities, and anti-inflammatory abilities through in vitro and in vivo assessments. The physicochemical properties were characterized by SEM, DLS assay, contact angle measurements, UV-Vis spectra, FTIR spectra, SERS, and XPS analysis. The biocompatibility results demonstrated Pul–Col–Au enhanced cell viability, promoted anti-oxidative ability for MSCs and HSFs, and inhibited monocyte and platelet activation. Pul–Col–Au also induced the lowest cell apoptosis and facilitated the MMP activities. Moreover, we evaluated the efficacy of Pul–Col–Au in the enhancement of neuronal differentiation capacities for MSCs. Our animal models elucidated better biocompatibility, as well as the promotion of endothelialization after implanting Pul–Col–Au for a period of one month. The above evidence indicates the excellent biocompatibility, enhancement of neuronal differentiation, and anti-inflammatory capacities, suggesting that the combination of pullulan, collagen, and Au nanoparticles can be potential nanocomposites for neuronal repair, as well as skin tissue regeneration in any further clinical treatments.
Collapse
Affiliation(s)
- Meng-Yin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.)
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 11490, Taiwan
- College of Nursing, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Bai-Shuan Liu
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan; (B.-S.L.); (P.-Y.K.); (Y.-H.D.)
| | - Hsiu-Yuan Huang
- Department of Cosmeceutics and Graduate, Institute of Cosmeceutics, China Medical University, Taichung 40402, Taiwan;
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
| | - Pei-Yeh Kuo
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan; (B.-S.L.); (P.-Y.K.); (Y.-H.D.)
| | - You-Hao Deng
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan; (B.-S.L.); (P.-Y.K.); (Y.-H.D.)
| | - Cheng-Ming Tang
- College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 407024, Taiwan;
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 7827); Fax: +886-4-22333641
| |
Collapse
|
2
|
Samal J, Segura T. Injectable biomaterial shuttles for cell therapy in stroke. Brain Res Bull 2021; 176:25-42. [PMID: 34391821 PMCID: PMC8524625 DOI: 10.1016/j.brainresbull.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023]
Abstract
Ischemic stroke (IS) is the leading cause of disability and contributes to a significant socio-economic cost in the western world. Brain repair strategies investigated in the pre-clinical models include the delivery of drug or cell-based therapeutics; which is hindered by the complex anatomy and functional organization of the brain. Biomaterials can be instrumental in alleviating some of these challenges by providing a structural support, localization, immunomodulation and/or modulating cellular cross-talk in the brain. This review addresses the significance of and challenges associated with cell therapy in an ischemic brain. This is followed by a detailed insight into the biomaterial-based delivery systems which have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. A biomaterial intervention uses a multifaceted approach in enhancing the survival and engraftment of cells during transplantation and this has driven them as potential candidates for the treatment of IS. The biological processes that are activated as a response to the biomaterials and how to modulate them is one of the key factors contributing to the success of the biomaterial-based therapeutic approach. Future perspectives highlight the need of a combinative approach of merging the material design with disease biology to fabricate effective biomaterial-based intervention of stroke.
Collapse
Affiliation(s)
- Juhi Samal
- Department of Biomedical Engineering, 534 Research Drive, Durham, NC 27708, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, 534 Research Drive, Durham, NC 27708, United States.
| |
Collapse
|
3
|
Darvishi M, Hamidabadi HG, Bojnordi MN, Saeednia S, Zahiri M, Niapour A, Alizadeh R. Differentiation of human dental pulp stem cells into functional motor neuron: In vitro and ex vivo study. Tissue Cell 2021; 72:101542. [PMID: 33964606 DOI: 10.1016/j.tice.2021.101542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
There are several therapeutic options for spinal cord injury (SCI), among these strategies stem cell therapy is a potential treatment. The stem cells based therapies have been investigating in acute phase of clinical trials for promoting spinal repair in humans through replacement of functional neuronal and glial cells. The aim of this study was to evaluate the differentiation of Human Dental Pulp Stem Cells (hDPSCs) into functional motor neuron like cells (MNLCs) and promote neuroregeneration by stimulating local neurogenesis in the adult spinal cord slice culture. The immunocytochemistry analysis demonstrated that hDPSCs were positive for mesenchymal stem cell markers (CD73, CD90 and CD105) and negative for the hematopoietic markers (CD34 and CD45). hDPSCs were induced to neurospheres (via implementing B27, EGF, and bFGF) and then neural stem cells (NSC). The NSC differentiated into MNLCs in two steps: first by Shh and RA and ; then with GDNF and BDNF administration. The NS and the NSC were assessed for Oct4, nestin, Nanog, Sox2 expression while the MNLCs were evaluated by ISLET1, Olig2, and HB9 genes. Our results showed that hDPSC can be differentiated into motor neuron phenotype with expression of the motor neuron genes. The functionality of MNLCs was demonstrated by FM1-43, intracellular calcium ion shift and co- culture with C2C12. We co-cultivated hDPSCs with adult rat spinal slices in vitro. Immunostaining and hoechst assay showed that hDPSCs were able to migrate, proliferate and integrate in both the anterolateral zone and the edges of the spinal slices.
Collapse
Affiliation(s)
- Marzieh Darvishi
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Maryam Nazm Bojnordi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Saeednia
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Human olfactory mesenchymal stromal cells co-expressing horizontal basal and ensheathing cell proteins in culture. ACTA ACUST UNITED AC 2020; 40:72-88. [PMID: 32220165 PMCID: PMC7357377 DOI: 10.7705/biomedica.4762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Indexed: 12/18/2022]
Abstract
Introduction: The olfactory neuro-epithelium has an intrinsic capability of renewal during lifetime provided by the existence of globose and horizontal olfactory precursor cells. Additionally, mesenchymal stromal olfactory cells also support the homeostasis of the olfactory mucosa cell population. Under in vitro culture conditions with Dulbecco modified eagle/F12 medium supplemented with 10% fetal bovine serum, tissue biopsies from upper turbinate have generated an adherent population of cells expressing mainly mesenchymal stromal phenotypic markers. A closer examination of these cells has also found co-expression of olfactory precursors and ensheathing cell phenotypic markers. These results were suggestive of a unique property of olfactory mesenchymal stromal cells as potentially olfactory progenitor cells. Objective: To study whether the expression of these proteins in mesenchymal stromal cells is modulated upon neuronal differentiation. Materials and methods: We observed the phenotype of olfactory stromal cells under DMEM/F12 plus 10% fetal bovine serum in comparison to cells from spheres induced by serum-free medium plus growth factors inducers of neural progenitors. Results: The expression of mesenchymal stromal (CD29+, CD73+, CD90+, CD45-), horizontal basal (ICAM-1/CD54+, p63+, p75NGFr+), and ensheathing progenitor cell (nestin+, GFAP+) proteins was determined in the cultured population by flow cytometry. The determination of Oct 3/4, Sox-2, and Mash-1 transcription factors, as well as the neurotrophins BDNF, NT3, and NT4 by RT-PCR in cells, was indicative of functional heterogeneity of the olfactory mucosa tissue sample. Conclusions: Mesenchymal and olfactory precursor proteins were downregulated by serum-free medium and promoted differentiation of mesenchymal stromal cells into neurons and astroglial cells.
Collapse
|
5
|
Hart CG, Dyck SM, Kataria H, Alizadeh A, Nagakannan P, Thliveris JA, Eftekharpour E, Karimi-Abdolrezaee S. Acute upregulation of bone morphogenetic protein-4 regulates endogenous cell response and promotes cell death in spinal cord injury. Exp Neurol 2019; 325:113163. [PMID: 31881217 DOI: 10.1016/j.expneurol.2019.113163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 01/11/2023]
Abstract
Traumatic spinal cord injury (SCI) elicits a cascade of secondary injury mechanisms that induce profound changes in glia and neurons resulting in their activation, injury or cell death. The resultant imbalanced microenvironment of acute SCI also negatively impacts regenerative processes in the injured spinal cord. Thus, it is imperative to uncover endogenous mechanisms that drive these acute injury events. Here, we demonstrate that the active form of bone morphogenetic protein-4 (BMP4) is robustly and transiently upregulated in acute SCI in rats. BMP4 is a key morphogen in neurodevelopment; however, its role in SCI is not fully defined. Thus, we elucidated the ramification of BMP4 upregulation in a preclinical model of compressive/contusive SCI in the rat by employing noggin, an endogenous antagonist of BMP ligands, and LDN193189, an intracellular inhibitor of BMP signaling. In parallel, we studied cell-specific effects of BMP4 on neural precursor cells (NPCs), oligodendrocyte precursor cells (OPCs), neurons and astrocytes in vitro. We demonstrate that activation of BMP4 inhibits differentiation of spinal cord NPCs and OPCs into mature myelin-expressing oligodendrocytes, and acute blockade of BMPs promotes oligodendrogenesis, oligodendrocyte preservation and remyelination after SCI. Importantly, we report for the first time that BMP4 directly induces caspase-3 mediated apoptosis in neurons and oligodendrocytes in vitro, and noggin and LDN193189 remarkably attenuate caspase-3 activation and lipid peroxidation in acute SCI. BMP4 also enhances the production of inhibitory chondroitin sulfate proteoglycans (CSPGs) in activated astrocytes in vitro and after SCI. Interestingly, our work reveals that despite the beneficial effects of BMP inhibition in acute SCI, neither noggin nor LDN193189 treatment resulted in long-term functional recovery. Collectively, our findings suggest a role for BMP4 in regulating acute secondary injury mechanisms following SCI, and a potential target for combinatorial approaches to improve endogenous cell response and remyelination.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Scott M Dyck
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pandian Nagakannan
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Thliveris
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
6
|
Molecular characterization of bovine amniotic fluid derived stem cells with an underlying focus on their comparative neuronal potential at different passages. Ann Anat 2019; 228:151452. [PMID: 31778790 DOI: 10.1016/j.aanat.2019.151452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/17/2019] [Accepted: 11/13/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND The excellence in the field of stem cell therapy demands alternative and more convenient stem cells for potential applications. Researchers have opted for least invasive and broadly multipotent cells with minimum ethical concerns. Bovine amniotic fluid derived mesenchymal stem cells (BAF-MSCs) due to their ease of collection and owing similar gestational length to that of human could be presumed as an attractive large animal model for biomedical and biotechnology research. METHODS Bovine amniotic fluid derived stem cells were isolated from abattoir based samples and characterized for epithelial, neuronal, mesenchymal and pluripotent markers by qPCR and immunofluorescence studies at P1, P3, P5 and P7 alongside population doubling time, growth curve and multilineage differentiation studies. RESULTS The cells were explored for unique expression of Sox2, which was observed to be up regulated with increase in passage number and Nestin was found to be downregulated during further passaging of mesenchymal cells in this study. The cells also co-expressed Oct ¾ at initial passages which diminished within further passages. Evidence regarding diversity and heterogeneity in different cell population in amniotic fluid was recorded by positive expression of epithelial cell markers like pan Cytokeratin and p63 during early passages. The study suggested that cells with higher expression of Sox2 generated comparatively larger neurospheres with comparative strong expression of Sox2 and Nestin by immunofluorescence staining and qPCR analysis. Besides BAF-MSCs derived neurospheres were also shown to express pro-neuronal markers like ß-III Tubulin, GAP43 and ASCL-1. CONCLUSIONS This study explores and characterizes BAF-MSCs for their multipotent and neurogenic potentials and their use for clinical applications, though more detailed studies are needed to determine the exact pathways linked with neurogenic capacities of these cells and their morphological assessments at different gestational ages in bovines. The knowledge from the bovine model after detailed studies, proven safety and efficacy could also be used to understand substitutive strategies to investigate MSCs physiology at different trimesters and potential application of these cells for human and veterinary regenerative medicine provided the animal ethics are carefully monitored.
Collapse
|
7
|
Li G, Fan ZK, Gu GF, Jia ZQ, Zhang QQ, Dai JY, He SS. Epidural Spinal Cord Stimulation Promotes Motor Functional Recovery by Enhancing Oligodendrocyte Survival and Differentiation and by Protecting Myelin after Spinal Cord Injury in Rats. Neurosci Bull 2019; 36:372-384. [PMID: 31732865 DOI: 10.1007/s12264-019-00442-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Epidural spinal cord stimulation (ESCS) markedly improves motor and sensory function after spinal cord injury (SCI), but the underlying mechanisms are unclear. Here, we investigated whether ESCS affects oligodendrocyte differentiation and its cellular and molecular mechanisms in rats with SCI. ESCS improved hindlimb motor function at 7 days, 14 days, 21 days, and 28 days after SCI. ESCS also significantly increased the myelinated area at 28 days, and reduced the number of apoptotic cells in the spinal white matter at 7 days. SCI decreased the expression of 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase, an oligodendrocyte marker) at 7 days and that of myelin basic protein at 28 days. ESCS significantly upregulated these markers and increased the percentage of Sox2/CNPase/DAPI-positive cells (newly differentiated oligodendrocytes) at 7 days. Recombinant human bone morphogenetic protein 4 (rhBMP4) markedly downregulated these factors after ESCS. Furthermore, ESCS significantly decreased BMP4 and p-Smad1/5/9 expression after SCI, and rhBMP4 reduced this effect of ESCS. These findings indicate that ESCS enhances the survival and differentiation of oligodendrocytes, protects myelin, and promotes motor functional recovery by inhibiting the BMP4-Smad1/5/9 signaling pathway after SCI.
Collapse
Affiliation(s)
- Gang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Spinal Pain Research Institute, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhong-Kai Fan
- Department of Orthopaedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Guang-Fei Gu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Spinal Pain Research Institute, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhi-Qiang Jia
- Department of Spinal Surgery, The Second Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qiang-Qiang Zhang
- Department of Orthopaedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Jun-Yu Dai
- Department of Orthopaedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Shi-Sheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Spinal Pain Research Institute, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
8
|
Therapeutic Strategies for Attenuation of Retinal Ganglion Cell Injury in Optic Neuropathies: Concepts in Translational Research and Therapeutic Implications. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8397521. [PMID: 31828134 PMCID: PMC6885158 DOI: 10.1155/2019/8397521] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cell (RGC) death is the central and irreversible endpoint of optic neuropathies. Current management of optic neuropathies and glaucoma focuses on intraocular pressure-lowering treatment which is insufficient. As such, patients are effectively condemned to irreversible visual impairment. This review summarizes experimental treatments targeting RGCs over the last decade. In particular, we examine the various treatment modalities and determine their viability and limitations in translation to clinical practice. Experimental RGC treatment can be divided into (1) cell replacement therapy, (2) neuroprotection, and (3) gene therapy. For cell replacement therapy, difficulties remain in successfully integrating transplanted RGCs from various sources into the complex neural network of the human retina. However, there is significant potential for achieving full visual restoration with this technique. Neuroprotective strategies, in the form of pharmacological agents, nutritional supplementation, and neurotrophic factors, are viable strategies with encouraging results from preliminary noncomparative interventional case series. It is important to note, however, that most published studies are focused on glaucoma, with few treating optic neuropathies of other etiologies. Gene therapy, through the use of viral vectors, has shown promising results in clinical trials, particularly for diseases with specific genetic mutations like Leber's hereditary optic neuropathy. This treatment technique can be further extended to nonhereditary diseases, through transfer of genes promoting cell survival and neuroprotection. Crucially though, for gene therapy, teratogenicity remains a significant issue in translation to clinical practice.
Collapse
|
9
|
Krause M, Phan TG, Ma H, Sobey CG, Lim R. Cell-Based Therapies for Stroke: Are We There Yet? Front Neurol 2019; 10:656. [PMID: 31293500 PMCID: PMC6603096 DOI: 10.3389/fneur.2019.00656] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Stroke is the second leading cause of death and physical disability, with a global lifetime incidence rate of 1 in 6. Currently, the only FDA approved treatment for ischemic stroke is the administration of tissue plasminogen activator (tPA). Stem cell clinical trials for stroke have been underway for close to two decades, with data suggesting that cell therapies are safe, feasible, and potentially efficacious. However, clinical trials for stroke account for <1% of all stem cell trials. Nevertheless, the resources devoted to clinical research to identify new treatments for stroke is still significant (53–64 million US$, Phase 1–4). Notably, a quarter of cell therapy clinical trials for stroke have been withdrawn (15.2%) or terminated (6.8%) to date. This review discusses the bottlenecks in delivering a successful cell therapy for stroke, and the cost-to-benefit ratio necessary to justify these expensive trials. Further, this review will critically assess the currently available data from completed stroke trials, the importance of standardization in outcome reporting, and the role of industry-led research in the development of cell therapies for stroke.
Collapse
Affiliation(s)
- Mirja Krause
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Thanh G Phan
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Henry Ma
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia.,Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Lee JY, Acosta S, Tuazon JP, Xu K, Nguyen H, Lippert T, Liska MG, Semechkin A, Garitaonandia I, Gonzalez R, Kern R, Borlongan CV. Human parthenogenetic neural stem cell grafts promote multiple regenerative processes in a traumatic brain injury model. Am J Cancer Res 2019; 9:1029-1046. [PMID: 30867814 PMCID: PMC6401413 DOI: 10.7150/thno.29868] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
International Stem Cell Corporation human parthenogenetic neural stem cells (ISC-hpNSC) have potential therapeutic value for patients suffering from traumatic brain injury (TBI). Here, we demonstrate the behavioral and histological effects of transplanting ISC-hpNSC intracerebrally in an animal model of TBI. Methods: Sprague-Dawley rats underwent a moderate controlled cortical impact TBI surgery. Transplantation occurred at 72 h post-TBI with functional readouts of behavioral and histological deficits conducted during the subsequent 3-month period after TBI. We characterized locomotor, neurological, and cognitive performance at baseline (before TBI), then on days 0, 1, 7, 14, 30, 60, and 90 (locomotor and neurological), and on days 28-30, 58-60, and 88-90 (cognitive) after TBI. Following completion of behavioral testing at 3 months post-TBI, animals were euthanized by transcardial perfusion and brains harvested to histologically characterize the extent of brain damage. Neuronal survival was revealed by Nissl staining, and stem cell engraftment and host tissue repair mechanisms such as the anti-inflammatory response in peri-TBI lesion areas were examined by immunohistochemical analyses. Results: We observed that TBI groups given high and moderate doses of ISC-hpNSC had an improved swing bias on an elevated body swing test for motor function, increased scores on forelimb akinesia and paw grasp neurological tests, and committed significantly fewer errors on a radial arm water maze test for cognition. Furthermore, histological analyses indicated that high and moderate doses of stem cells increased the expression of phenotypic markers related to the neural lineage and myelination and decreased reactive gliosis and inflammation in the brain, increased neuronal survival in the peri-impact area of the cortex, and decreased inflammation in the spleen at 90 days post-TBI. Conclusion: These results provide evidence that high and moderate doses of ISC-hpNSC ameliorate TBI-associated histological alterations and motor, neurological, and cognitive deficits.
Collapse
|
11
|
Vibhuti, Khan R, Sharma A, Jain S, Mohanty S, Prasad K. Intra-arterial transplantation of human bone marrow mesenchymal stem cells (hBMMSCs) improves behavioral deficits and alters gene expression in rodent stroke model. J Neurochem 2017; 143:722-735. [PMID: 29049855 DOI: 10.1111/jnc.14241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022]
Abstract
Stroke is a multi-factorial polygenic disease and is a major cause of death and adult disability. Administration of bone marrow stem cells protects ischemic rat brain by facilitating recovery of neurological functions. But the molecular mechanism of stem cells action and their effect on gene expression is not well explored. In this study, we have transplanted 1 × 106 human bone marrow mesenchymal stem cells (hBMMSCs) in middle cerebral artery occluded (MCAo) adult male Wistar rats through intracarotid artery route at 24 h after surgery. Motor behavioral tests (rotarod and open field) were performed to assess the changes in motor functions at day 0 and day1, 4, 8 and 14. The expression of studied genes at mRNA and protein level was quantified by using Q-PCR and western blotting, respectively. Further, we have assessed the methylation pattern of promoter of these genes by using methylation-specific PCR. Data were analyzed statistically and correlated. A significant improvement in behavioral deficits was observed in stem cells treated group after 14th day post stroke. Significantly (p < 0.05) increased mRNA and protein levels of brain derived neurotrophic factor and ANP genes in hBMMSCs treated group along with decrease in methylation level at their promoter was observed. On the other hand, significantly decreased mRNA and protein level of TSP1 and WNK1 in hBMMSCs treated group was observed. In conclusion, hBMMSCs administration significantly improves the behavioral deficits by improving motor and locomotor coordination. The promoter of TSP1 and WNK1 genes was found to be hyper-methylated in hBMMSCs group resulting in their decreased expression while the promoter of ANP and brain derived neurotrophic factor was found to be hypo-methylated. This study might shed a light on how hBMMSCs affect the gene expression by modulating methylation status.
Collapse
Affiliation(s)
- Vibhuti
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rehan Khan
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kameshwar Prasad
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
12
|
Guo AC, Chu T, Liu XQ, Su HX, Wu WT. Reactivated astrocytes as a possible source of oligodendrocyte precursors for remyelination in remitting phase of experimental autoimmune encephalomyelitis rats. Am J Transl Res 2016; 8:5637-5645. [PMID: 28078034 PMCID: PMC5209514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Multiple sclerosis (MS) is ademyelinating disease in the central nervous system (CNS). Majority of the MS patients show relapsing-remitting disease course. Evidences show that oligodendrocyte precursor cells (OPCs), which remain relatively quiescent in normal adult CNS, play a key role in the remitting phase by proliferation and remyelination. In the present study, we found that spinal cord astrocytesco-expressed progenitor cell marker and oligodendroglial lineage markers in the remittance phase in adult rat experimental autoimmune encephalomyelitis (EAE) model. We suggest that activated astrocyte could de-differentiate into OPCs and re-differentiate into mature oligodendrocytes, raising the possibility that astrocytes can be a potential source of OPCs in the adult demyelinated spinal cord.
Collapse
Affiliation(s)
- An-Chen Guo
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong KongPokfulam, Hong Kong SAR, China
- Laboratory of Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijing, China
| | - Takho Chu
- Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong KongPokfulam, Hong Kong SAR, China
| | - Xu-Qing Liu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong KongPokfulam, Hong Kong SAR, China
| | - Huan-Xing Su
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong KongPokfulam, Hong Kong SAR, China
| | - Wu-Tian Wu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong KongPokfulam, Hong Kong SAR, China
- State Key Laboratory for Brain and Cognitive Sciences, The University of Hong KongPokfulam, Hong Kong SAR, China
- GHM Institute of CNS Regeneration, Jinan UniversityGuangzhou, China
| |
Collapse
|
13
|
Azedi F, Kazemnejad S, Zarnani AH, Soleimani M, Shojaei A, Arasteh S. Comparative capability of menstrual blood versus bone marrow derived stem cells in neural differentiation. Mol Biol Rep 2016; 44:169-182. [PMID: 27981446 DOI: 10.1007/s11033-016-4095-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/03/2016] [Indexed: 12/29/2022]
Abstract
In order to characterize the potency of menstrual blood stem cells (MenSCs) for future cell therapy of neurological disorders instead of bone marrow stem cells (BMSCs) as a well-known and conventional source of adult stem cells, we examined the in vitro differentiation potential of these stem cells into neural-like cells. The differentiation potential of MenSCs to neural cells in comparison with BMSCs was assessed under two step neural differentiation including conversion to neurosphere-like cells and final differentiation. The expression levels of Nestin, Microtubule-associated protein 2, gamma-aminobutyric acid type B receptor subunit 1 and 2, and Tubulin, beta 3 class III mRNA and/or protein were up-regulated during development of MenSCs into neurosphere-like cells (NSCs) and neural-like cells. The up-regulation level of these markers in differentiated neural-like cells from MenSCs was comparable with differentiated cells from BMSCs. Moreover, both differentiated MenSCs and BMSCs expressed high levels of potassium, calcium and sodium channel genes developing functional channels with electrophysiological recording. For the first time, we demonstrated that MenSCs are a unique cell population with differentiation ability into neural-like cells comparable to BMSCs. In addition, we have introduced an approach to generate NSCs from MenSCs and BMSCs and their further differentiation into neural-like cells in vitro. Our results hold a promise to future stem cell therapy of neurological disorders using NSCs derived from menstrual blood, an accessible source in every woman.
Collapse
Affiliation(s)
- Fereshteh Azedi
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615, Tehran, Iran
- Department of Neuroscience, Faculty of advanced technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615, Tehran, Iran.
| | - Amir Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shaghayegh Arasteh
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615, Tehran, Iran
| |
Collapse
|
14
|
Iordache F, Constantinescu A, Andrei E, Amuzescu B, Halitzchi F, Savu L, Maniu H. Electrophysiology, immunophenotype, and gene expression characterization of senescent and cryopreserved human amniotic fluid stem cells. J Physiol Sci 2016; 66:463-476. [PMID: 27053101 PMCID: PMC10717473 DOI: 10.1007/s12576-016-0441-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/12/2016] [Indexed: 01/16/2023]
Abstract
We characterized human amniotic fluid stem cells (AFSC) in senescent cultures (6 weeks) versus cryopreserved cells using whole-cell patch-clamp, immunophenotyping, and differential gene expression profiling for senescence genes. We evidenced five ion current components (outward rectifier, A-type, inward rectifier, and big conductance Ca2+-dependent K+ currents, fast voltage-dependent Na+ currents). Senescent AFSC showed reduced expression of CD90, CD44, CD133, over 500-fold increase of interferon gamma and telomerase reverse transcriptase genes, increased cycle-dependent kinase 4 inhibitors, p53-binding protein 1, and decreased calreticulin and CD44. HLA-ABC immune expression was similar, and HLA-DR expression very low in both cell types. A subset of cryopreserved AFSC featured large inward rectifier K+ currents, voltage-dependent Na+ currents, and neural progenitor markers evidenced by immunophenotyping and RT-PCR. In all AFSC, in both culture conditions, at patch rupture the outward currents were very low, and they increased progressively over several minutes upon cytoplasm dialysis with pipette solution.
Collapse
Affiliation(s)
- Florin Iordache
- Flow Cytometry and Cell Therapy Laboratory, "N. Simionescu" Institute of Cellular Biology and Pathology, B.P. Hasdeu Str. 8, 050568, Bucharest, Romania
| | - Andrei Constantinescu
- Flow Cytometry and Cell Therapy Laboratory, "N. Simionescu" Institute of Cellular Biology and Pathology, B.P. Hasdeu Str. 8, 050568, Bucharest, Romania
| | - Eugen Andrei
- Flow Cytometry and Cell Therapy Laboratory, "N. Simionescu" Institute of Cellular Biology and Pathology, B.P. Hasdeu Str. 8, 050568, Bucharest, Romania
| | - Bogdan Amuzescu
- Department Biophysics and Physiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania.
| | - Ferdinand Halitzchi
- Department Biophysics and Physiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania
| | - Lorand Savu
- Genetic Lab SRL, Cpt. Av. N. Drossu Str. 9, 012071, Bucharest, Romania
| | - Horia Maniu
- Flow Cytometry and Cell Therapy Laboratory, "N. Simionescu" Institute of Cellular Biology and Pathology, B.P. Hasdeu Str. 8, 050568, Bucharest, Romania
| |
Collapse
|
15
|
Omidi A, Ragerdi Kashani I, Akbari M, Mortezaee K, Ghasemi S, Beyer C, Zendedel A. Homing of allogeneic nestin-positive hair follicle-associated pluripotent stem cells after maternal transplantation in experimental model of cortical dysplasia. Biochem Cell Biol 2015; 93:619-25. [DOI: 10.1139/bcb-2015-0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An embryo has the capability to accept allo- or xeno-geneic cells, which probably makes it an ideal candidate for stem cell transplantation of various cerebral cortex abnormalities, such as cortical dysplasia. The aim of this study was to determine hair follicle-associated pluripotent (HAP) stem cells homing into various organs of mother and fetus. Cells were obtained, analyzed for immunophenotypic features, and then labelled with CM-Dil; nestin+HAP stem cells or media phosphate-buffered saline (PBS) were intravenously delivered on day 16 of gestation in BALB/c mice, which intraperitoneally received methylazoxymethanol (MAM) one day in advance, and homing was assessed at 24 h after cell injection. Flow cytometry and immunocytochemistry manifested positive expression of nestin in HAP stem cells. For both mother and fetus, brain, lungs, liver, and spleen were the host organs for cell implants. For the brain, the figure was considerably higher in fetus, 4.05 ± 0.5% (p ≤ 0.05 vs. mother). MAM-injected mice had a downward trend for SDF-1α and CXCR4 (p ≤ 0.05 vs. control), but HAP stem cells group showed an upward trend for CXCR4 (p ≤ 0.05 vs. MAM). We conclude the HAP stem cells show homing potential in experimental cortical dysplasia, which may permit these cells to be a target in future work on prenatal therapy of neural disorders.
Collapse
Affiliation(s)
- Ameneh Omidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, 16 Azar Street, Pour Sina Street, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, 16 Azar Street, Pour Sina Street, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, 16 Azar Street, Pour Sina Street, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, 16 Azar Street, Pour Sina Street, Tehran, Iran
| | - Soudabeh Ghasemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, 16 Azar Street, Pour Sina Street, Tehran, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, School of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, School of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
16
|
Rat Nasal Respiratory Mucosa-Derived Ectomesenchymal Stem Cells Differentiate into Schwann-Like Cells Promoting the Differentiation of PC12 Cells and Forming Myelin In Vitro. Stem Cells Int 2015; 2015:328957. [PMID: 26339250 PMCID: PMC4539076 DOI: 10.1155/2015/328957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/03/2015] [Accepted: 01/04/2015] [Indexed: 01/23/2023] Open
Abstract
Schwann cell (SC) transplantation as a cell-based therapy can enhance peripheral and central nerve repair experimentally, but it is limited by the donor site morbidity for clinical application. We investigated weather respiratory mucosa stem cells (REMSCs), a kind of ectomesenchymal stem cells (EMSCs), isolated from rat nasal septum can differentiate into functional Schwann-like cells (SC-like cells). REMSCs proliferated quickly in vitro and expressed the neural crest markers (nestin, vimentin, SOX10, and CD44). Treated with a mixture of glial growth factors for 7 days, REMSCs differentiated into SC-like cells. The differentiated REMSCs (dREMSCs) exhibited a spindle-like morphology similar to SC cells. Immunocytochemical staining and Western blotting indicated that SC-like cells expressed the glial markers (GFAP, S100β, Galc, and P75) and CNPase. When cocultured with dREMSCs for 5 days, PC12 cells differentiated into mature neuron-like cells with long neurites. More importantly, dREMSCs could form myelin structures with the neurites of PC12 cells at 21 days in vitro. Our data indicated that REMSCs, a kind of EMSCs, could differentiate into SC-like cells and have the ability to promote the differentiation of PC12 cells and form myelin in vitro.
Collapse
|
17
|
Emre E, Yüksel N, Duruksu G, Pirhan D, Subaşi C, Erman G, Karaöz E. Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy 2015; 17:543-59. [PMID: 25618560 DOI: 10.1016/j.jcyt.2014.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS The purpose of this study was to investigate the neuroprotective effects of bone marrow bone marrow-derived and adipose tissue-derived mesenchymal stromal cells (MSCs) that were intravitreally transplanted in an experimental ocular hypertension (OHT) model. METHODS An OHT rat model was generated by means of intracameral injection of hyaluronic acid into the anterior chamber. MSCs labeled with green fluorescence protein were transplanted intravitreally 1 week after OHT induction. At the end of the second and fourth weeks, retinal ganglion cells were visualized with the use of a flat-mount retina method and were evaluated by means of immunofluorescence staining against green fluorescence protein, vimentin, CD105, and cytokines (interleukin [IL]-1Ra, prostaglandin E2 receptor, IL-6, transforming growth factor-β1, interferon-γ and tumor necrosis factor-α). RESULTS The retinal ganglion cell numbers per area were significantly improved in stem cell-treated OHT groups compared with that in the non-treated OHT group (P < 0.05). The results of immunohistochemical analyses indicated that a limited number of stem cells had integrated into the ganglion cell layer and the inner nuclear layer. The number of cells expressing proinflammatory cytokines (interferon-γ and tumor necrosis factor-α) decreased in the MSC-transferred group compared with that in the OHT group after 4 weeks (P < 0.01). On the other hand, IL-1Ra and prostaglandin E2 receptor expressions were increased in the rat bone marrow-derived MSC group but were more significant in the rat adipose tissue-derived MSC group (P < 0.01). CONCLUSIONS After intravitreal transplantation, MSCs showed a neuroprotective effect in the rat OHT model. Therefore, MSCs promise an alternative therapy approach for functional recovery in the treatment of glaucoma.
Collapse
Affiliation(s)
- Esra Emre
- Department of Ophthalmology, Çerkezköy State Hospital, Tekirdağ, Turkey.
| | - Nurşen Yüksel
- Department of Ophthalmology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gökhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Dilara Pirhan
- Department of Ophthalmology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Cansu Subaşi
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (Liv MedCell) Istanbul, Turkey
| | - Gülay Erman
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (Liv MedCell) Istanbul, Turkey
| |
Collapse
|
18
|
Sygnecka K, Heider A, Scherf N, Alt R, Franke H, Heine C. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model. Stem Cells Dev 2014; 24:824-35. [PMID: 25390472 DOI: 10.1089/scd.2014.0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion.
Collapse
Affiliation(s)
- Katja Sygnecka
- 1 Translational Centre for Regenerative Medicine (TRM), University of Leipzig , Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Ikegame Y, Yamashita K, Nakashima S, Nomura Y, Yonezawa S, Asano Y, Shinoda J, Hara H, Iwama T. Fate of graft cells: what should be clarified for development of mesenchymal stem cell therapy for ischemic stroke? Front Cell Neurosci 2014; 8:322. [PMID: 25374506 PMCID: PMC4204523 DOI: 10.3389/fncel.2014.00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are believed to be promising for cell administration therapy after ischemic stroke. Because of their advantageous characteristics, such as ability of differentiation into neurovascular lineages, avoidance of immunological problems, and abundance of graft cells in mesodermal tissues, studies regarding MSC therapy have increased recently. However, several controversies are yet to be resolved before a worldwide consensus regarding a standard protocol is obtained. In particular, the neuroprotective effects, the rate of cell migration to the lesion, and differentiation direction differ depending on preclinical observations. Analyses of these differences and application of recent developments in stem cell biology or engineering in imaging modality may contribute to identification of criteria for optimal stem cell therapy in which reliable protocols, which control cell quality and include safe administration procedures, are defined for each recovery phase after cerebral ischemia. In this mini review, we examine controversies regarding the fate of grafts and the prospects for advanced therapy that could be obtained through recent developments in stem cell research as direct conversion to neural cells.
Collapse
Affiliation(s)
- Yuka Ikegame
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan ; Department of Cell Signaling, Gifu University Graduate School of Medicine Gifu, Japan
| | - Kentaro Yamashita
- Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan ; Department of Neurosurgery, Murakami Memorial Hospital, Asahi University Gifu, Japan
| | - Shigeru Nakashima
- Department of Cell Signaling, Gifu University Graduate School of Medicine Gifu, Japan
| | - Yuichi Nomura
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan
| | - Shingo Yonezawa
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan
| | - Yoshitaka Asano
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan
| | - Jun Shinoda
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan
| |
Collapse
|
20
|
Ding J, He Z, Ruan J, Liu Y, Gong C, Sun S, Chen H. Influence of endogenous ciliary neurotrophic factor on neural differentiation of adult rat hippocampal progenitors. Neural Regen Res 2014; 8:301-12. [PMID: 25206670 PMCID: PMC4107532 DOI: 10.3969/j.issn.1673-5374.2013.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 11/27/2012] [Indexed: 01/18/2023] Open
Abstract
Ciliary neurotrophic factor is the only known neurotrophic factor that can promote differentiation of hippocampal neural progenitor cells to glial cells and neurons in adult rats. This process is similar to spontaneous differentiation. Therefore, ciliary neurotrophic factor may be involved in spontaneous differentiation of neural stem cells. To verify this hypothesis, the present study isolated neural progenitor cells from adult male rats and cultured them in vitro. Results showed that when neural progenitor cells were cultured in the absence of mitogen fibroblast growth factor-2 or epidermal growth factor, they underwent spontaneous differentiation into neurons and glial cells. Western blot and immunocytochemical staining showed that exogenous ciliary neurotrophic factor strongly induced adult hippocampal progenitor cells to differentiate into neurons and glial cells. Moreover, passage 4 adult hippocampal progenitor cells expressed high levels of endogenous ciliary neurotrophic factor, and a neutralizing antibody against ciliary neurotrophic factor prevented the spontaneous neuronal and glial differentiation of adult hippocampal progenitor cells. These results suggest that the spontaneous differentiation of adult hippocampal progenitor cells is mediated partially by endogenous ciliary neurotrophic factor.
Collapse
Affiliation(s)
- Jun Ding
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China ; Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Zhili He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China ; Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Juan Ruan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ying Liu
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Chengxin Gong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Shenggang Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Honghui Chen
- Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
21
|
Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. Stroke Res Treat 2014; 2014:234095. [PMID: 25126443 PMCID: PMC4121152 DOI: 10.1155/2014/234095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/17/2014] [Accepted: 06/22/2014] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is being widely explored in the management of stroke and has demonstrated great potential. It has been shown to assist in the remodeling of the central nervous system by inducing neurorestorative effect through the process of angiogenesis, neurogenesis, and reduction of glial scar formation. In this study, the effect of intrathecal administration of autologous bone marrow mononuclear cells (BMMNCs) is analyzed on the recovery process of patients with chronic stroke. 24 patients diagnosed with chronic stroke were administered cell therapy, followed by multidisciplinary neurorehabilitation. They were assessed on functional independence measure (FIM) objectively, along with assessment of standing and walking balance, ambulation, and hand functions. Out of 24 patients, 12 improved in ambulation, 10 in hand functions, 6 in standing balance, and 9 in walking balance. Further factor analysis was done. Patients of the younger groups showed higher percentage of improvement in all the areas. Patients who underwent cell therapy within 2 years after the stroke showed better changes. Ischemic type of stroke had better recovery than the hemorrhagic stroke. This study demonstrates the potential of autologous BMMNCs intrathecal transplantation in improving the prognosis of functional recovery in chronic stage of stroke. Further clinical trials are recommended. This trial is registered with NCT02065778.
Collapse
|
22
|
Anisimov SV, Paul G. Transplantation of mesenchymal stem cells: a future therapy for Parkinson’s disease? FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Parkinson’s disease (PD) is a common, progressive neurodegenerative disorder associated with a loss of dopaminergic cells in the substantia nigra pars compacta and a lack of dopamine in the striatum. To halt or reverse this disease, neurorestorative approaches or neuroprotective treatments are urgently needed. Recently, the first clinical trials transplanting mesenchymal stem cells (MSCs) have been performed in PD. MSCs are adult stem cells abundant in several tissues, such as the umbilical cord, the bone marrow, the adipose tissue and other tissues. These cells are multipotent, and able to synthesize and secrete a wide spectrum of biologically active factors. MSCs of various origins have been explored as possible substrates for cell therapy in PD animal models. In this review, we summarize MSC-based experimental transplantation studies in PD, and discuss biological mechanisms that may explain the effects of MSC seen in PD models. Furthermore, we critically evaluate the recent clinical transplantation trials using MSCs in patients with PD.
Collapse
Affiliation(s)
- Sergey V Anisimov
- Research Unit of Cellular & Genetic Engineering, Federal V.A. Almazov Medical Research Center, Saint-Petersburg, Russia
- Department of Intracellular Signaling & Transport, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Gesine Paul
- Division of Neurology, Department of Clinical Sciences, Translational Neurology Group, Lund University, Lund, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden
| |
Collapse
|
23
|
Han C, Song L, Liu Y, Zou W, Jiang C, Liu J. Rat cortex and hippocampus-derived soluble factors for the induction of adipose-derived mesenchymal stem cells into neuron-like cells. Cell Biol Int 2014; 38:768-76. [PMID: 24500988 DOI: 10.1002/cbin.10256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/27/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Chao Han
- Regenerative Medicine Centre; First Affiliated Hospital of Dalian Medical University; Dalian 116011 P.R. China
- Institute of Integrative Medicine; Dalian Medical University; Dalian 116011 P.R. China
| | - Lin Song
- Regenerative Medicine Centre; First Affiliated Hospital of Dalian Medical University; Dalian 116011 P.R. China
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 P.R. China
| | - Yang Liu
- Regenerative Medicine Centre; First Affiliated Hospital of Dalian Medical University; Dalian 116011 P.R. China
- Institute of Integrative Medicine; Dalian Medical University; Dalian 116011 P.R. China
| | - Wei Zou
- College of Life Science; Liaoning Normal University; Dalian 116029 P.R. China
| | - Chen Jiang
- Department of Otolaryngology-Head and Neck Surgery; First Affiliated Hospital of Dalian Medical University; Dalian 116011 P.R. China
| | - Jing Liu
- Regenerative Medicine Centre; First Affiliated Hospital of Dalian Medical University; Dalian 116011 P.R. China
- Institute of Integrative Medicine; Dalian Medical University; Dalian 116011 P.R. China
| |
Collapse
|
24
|
Azedi F, Kazemnejad S, Zarnani AH, Behzadi G, Vasei M, Khanmohammadi M, Khanjani S, Edalatkhah H, Lakpour N. Differentiation potential of menstrual blood- versus bone marrow-stem cells into glial-like cells. Cell Biol Int 2014; 38:615-24. [PMID: 24446420 DOI: 10.1002/cbin.10245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/30/2013] [Indexed: 11/08/2022]
Abstract
Menstrual blood is easily accessible, renewable, and inexpensive source of stem cells that have been interested for cell therapy of neurodegenerative diseases. In this study, we showed conversion of menstrual blood stem cells (MenSCs) into clonogenic neurosphere- like cells (NSCs), which can be differentiated into glial-like cells. Moreover, differentiation potential of MenSCs into glial lineage was compared with bone marrow stem cells (BMSCs). Differentiation potential of individual converted NSCs derived from MenSCs or BMSCs into glial-like cells was investigated using immunofluorescence staining and real-time polymerase chain reaction.The fibroblastic morphology of both MenSCs and BMSCs was turned into NSCs shape during first step of differentiation. NSCs derived from both BMSCs and MenSCs expressed higher levels of Olig-2 and Nestin markers compared to undifferentiated cells. The expression levels of myelin basic protein (MBP) mRNA up regulated only in BMSCs-NSCs no in MenSCs-NSCs. However, outgrowth of individual NSCs derived from both MenSCs and BMSCs into glial-like cells led to significant up regulation of glial fibrillary acidic protein,Olig-2 and MBP at mRNA and protein level accompanied with down regulation of Nestin protein.This is the first study demonstrating that MenSCs can be converted to NSCs with differentiation ability into glial-like cells. Accumulative data show different expression pattern of glial markers in differentiated MenSCs compared to BMSCs. The comparable differentiation potential, more accessibility and no invasive technique for sample collection of MenSCs in comparison with BMSCs introduce MenSCs as an apt, consistent and safe alternative to BMSCs for cell therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fereshteh Azedi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee TJ, Jang J, Kang S, Bhang SH, Jeong GJ, Shin H, Kim DW, Kim BS. Mesenchymal stem cell-conditioned medium enhances osteogenic and chondrogenic differentiation of human embryonic stem cells and human induced pluripotent stem cells by mesodermal lineage induction. Tissue Eng Part A 2013; 20:1306-13. [PMID: 24224833 DOI: 10.1089/ten.tea.2013.0265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) have the ability to differentiate into mesenchymal lineages. In this study, we hypothesized that treatment of embryoid bodies (EBs) composed of either human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) with a hMSC-conditioned medium (CM) can stimulate the induction of the mesodermal lineage and subsequent differentiation toward the osteogenic and chondrogenic lineage. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) analysis indicated that the hMSC-CM treatment increased gene expression related to the mesodermal lineage and decreased gene expression related to the endodermal and ectodermal lineage in EBs. Fourteen days after culturing the mesodermal lineage-induced EBs in the osteogenic or chondrogenic differentiation medium, we observed enhanced osteogenic and chondrogenic differentiation compared with untreated EBs, as evaluated using qRT-PCR, cytochemistry, immunocytochemistry, and flow cytometry. This method may be useful for enhancing the osteogenic or chondrogenic differentiation of hESCs or hiPSCs.
Collapse
Affiliation(s)
- Tae-Jin Lee
- 1 Department of Bioengineering, Hanyang University , Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Siegel G, Kluba T, Hermanutz-Klein U, Bieback K, Northoff H, Schäfer R. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med 2013; 11:146. [PMID: 23758701 PMCID: PMC3694028 DOI: 10.1186/1741-7015-11-146] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/17/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are attractive for cell-based therapies ranging from regenerative medicine and tissue engineering to immunomodulation. However, clinical efficacy is variable and it is unclear how the phenotypes defining bone marrow (BM)-derived MSCs as well as donor characteristics affect their functional properties. METHODS BM-MSCs were isolated from 53 (25 female, 28 male; age: 13 to 80 years) donors and analyzed by: (1) phenotype using flow cytometry and cell size measurement; (2) in vitro growth kinetics using population doubling time; (3) colony formation capacity and telomerase activity; and (4) function by in vitro differentiation capacity, suppression of T cell proliferation, cytokines and trophic factors secretion, and hormone and growth factor receptor expression. Additionally, expression of Oct4, Nanog, Prdm14 and SOX2 mRNA was compared to pluripotent stem cells. RESULTS BM-MSCs from younger donors showed increased expression of MCAM, VCAM-1, ALCAM, PDGFRβ, PDL-1, Thy1 and CD71, and led to lower IL-6 production when co-cultured with activated T cells. Female BM-MSCs showed increased expression of IFN-γR1 and IL-6β, and were more potent in T cell proliferation suppression. High-clonogenic BM-MSCs were smaller, divided more rapidly and were more frequent in BM-MSC preparations from younger female donors. CD10, β1integrin, HCAM, CD71, VCAM-1, IFN-γR1, MCAM, ALCAM, LNGFR and HLA ABC were correlated to BM-MSC preparations with high clonogenic potential and expression of IFN-γR1, MCAM and HLA ABC was associated with rapid growth of BM-MSCs. The mesodermal differentiation capacity of BM-MSCs was unaffected by donor age or gender but was affected by phenotype (CD10, IFN-γR1, GD2). BM-MSCs from female and male donors expressed androgen receptor and FGFR3, and secreted VEGF-A, HGF, LIF, Angiopoietin-1, basic fibroblast growth factor (bFGF) and NGFB. HGF secretion correlated negatively to the expression of CD71, CD140b and Galectin 1. The expression of Oct4, Nanog and Prdm14 mRNA in BM-MSCs was much lower compared to pluripotent stem cells and was not related to donor age or gender. Prdm14 mRNA expression correlated positively to the clonogenic potential of BM-MSCs. CONCLUSIONS By identifying donor-related effects and assigning phenotypes of BM-MSC preparations to functional properties, we provide useful tools for assay development and production for clinical applications of BM-MSC preparations.
Collapse
Affiliation(s)
- Georg Siegel
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University Hospital Tübingen, Otfried-Müller-Strasse 4/1, Tübingen, D-72076, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Lin CH, Lee HT, Lee SD, Lee W, Cho CWC, Lin SZ, Wang HJ, Okano H, Su CY, Yu YL, Hsu CY, Shyu WC. Role of HIF-1α-activated Epac1 on HSC-mediated neuroplasticity in stroke model. Neurobiol Dis 2013; 58:76-91. [PMID: 23702312 DOI: 10.1016/j.nbd.2013.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/02/2013] [Accepted: 05/10/2013] [Indexed: 12/27/2022] Open
Abstract
Exchange protein activated by cAMP-1 (Epac1) plays an important role in cell proliferation, cell survival and neuronal signaling, and activation of Epac1 in endothelial progenitor cells increases their homing to ischemic muscles and promotes neovascularization in a model of hind limb ischemia. Moreover, upregulation of Epac1 occurs during organ development and in diseases such as myocardial hypertrophy, diabetes, and Alzheimer's disease. We report here that hypoxia upregulated Epac1 through HIF-1α induction in the CD34-immunosorted human umbilical cord blood hematopoietic stem cells (hUCB(34)). Importantly, implantation of hUCB(34) subjected to hypoxia-preconditioning (HP-hUCB(34)) improved stroke outcome, more than did implantation of untreated hUCB(34), in rodents subjected to cerebral ischemia, and this required Epac1-to-matrix metalloprotease (MMP) signaling. This improved therapeutic efficacy correlated with better engraftment and differentiation of these cells in the ischemic host brain. In addition, more than did implantation of untreated HP-hUCB(34), implantation of HP-hUCB(34) improved cerebral blood flow into the ischemic brain via induction of angiogenesis, facilitated proliferation/recruitment of endogenous neural progenitor cells in the ischemic brain, and promoted neurite outgrowth following cerebral ischemia. Consistent with our proposed role of Epac1-to-MMP signaling in hypoxia-preconditioning, the above mentioned effects of implanting HP-hUCB(34) could be abolished by pharmacological inhibition and genetic disruption/deletion of Epac1 or MMPs. We have discovered a HIF-1α-to-Epac1-to-MMP signaling pathway that is required for the improved therapeutic efficacy resulting from hypoxia preconditioning of hUCB(34) in vitro prior to their implantation into the host brain in vivo.
Collapse
Affiliation(s)
- Chen-Huan Lin
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Most therapeutics are based on the traditional method of reductionism where a clinically defined condition is broken down into a defined biochemical pathway underlying the condition, then a target in the pathway is identified, followed by developing a drug to interact with the target, modifying the target such that the disease is ameliorated. Biology acts as a system, therefore reductionist approaches to developing therapeutics are limited in therapeutic value because disease or traumatized tissue involves multiple underlying pathways, only a part of the pathways underlying the disease is manipulated by the traditional therapeutic. Much data regarding stem cells shows that their beneficial effects are not restricted to their ability to differentiate, but is more likely due in large part to their ability to release a multitude of molecules. Stem cells release potent combinations of factors that modulate the composition of the cellular milieu to evoke a multitude of responses from neighboring cells. Therefore, stem cells represent a natural systems-based biological factory for the production and release of a multitude of molecules that interact with the system of biomolecular circuits underlying an indication. Current research includes efforts to define, stimulate, enhance, and harness stem cell released molecules (SRM) to develop systems-therapeutics.
Collapse
|
29
|
Characterization of in vitro cultured bone marrow and adipose tissue-derived mesenchymal stem cells and their ability to express neurotrophic factors. Cell Biol Int 2013; 36:1239-49. [PMID: 22994924 DOI: 10.1042/cbi20110618] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
MSCs (mesenchymal stem cells) have attracted attention as a promising tool for regenerative medicine and transplantation therapy. MSCs exert neuroprotective effects by secreting a number of factors in vitro and in vivo. Similar characteristics are found in ADSCs (adipose-derived stem cells) and BMSCs (bone marrow stromal cells). Multipotent capability, easy accessibility and rapid proliferation of ADSCs have been established. Our main objective was to compare cell viability, growth rate, expression of neurotrophic factors and nestin genes in ADSCs and BMSCs. Cell doubling time and proliferation rate indicate that ADSCs has a higher proliferation rate than BMSCs. ADSCs and BMSCs express a similar pattern of CD71 and CD90 markers. Nestin immunostaining showed that ADSCs and BMSCs are immunopositive. The expression of neurotrophic factors genes in ADSCs proved similar to that of BMSCs genes. Thus adipose tissue stem cells with a high proliferation rate can express nestin and neurotrophic factor genes. Therefore ADSCs may be useful in future cell replacement therapies and help improve neurodegenerative diseases.
Collapse
|
30
|
Aizman I, McGrogan M, Case CC. Quantitative microplate assay for studying mesenchymal stromal cell-induced neuropoiesis. Stem Cells Transl Med 2013; 2:223-32. [PMID: 23430693 DOI: 10.5966/sctm.2012-0119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transplanting mesenchymal stromal cells (MSCs) or their derivatives in a neurodegenerative environment is believed to be beneficial because of the trophic support, migratory guidance, and neurogenic stimuli they provide. There is a growing need for in vitro models of mesenchymal-neural cell interactions to enable identification of mediators of the MSC activity and quantitative assessment of neuropoietic potency of MSC preparations. Here, we characterize a microplate-format coculture system in which primary embryonic rat cortex cells are directly cocultured with human MSCs on cell-derived extracellular matrix (ECM) in the absence of exogenous growth factors. In this system, expression levels of the rat neural stem/early progenitor marker nestin, as well as neuronal and astrocytic markers, directly depended on MSC dose, whereas an oligodendrogenic marker exhibited a biphasic MSC-dose response, as measured using species-specific quantitative reverse transcription-polymerase chain reaction in total cell lysates and confirmed using immunostaining. Both neural cell proliferation and differentiation contributed to the MSC-mediated neuropoiesis. ECM's heparan sulfate proteoglycans were essential for the growth of the nestin-positive cell population. Neutralization studies showed that MSC-derived fibroblast growth factor 2 was a major and diffusible inducer of rat nestin, whereas MSC-derived bone morphogenetic proteins (BMPs), particularly, BMP4, were astrogenesis mediators, predominantly acting in a coculture setting. This system enables analysis of multifactorial MSC-neural cell interactions and can be used for elucidating the neuropoietic potency of MSCs and their derivative preparations.
Collapse
|
31
|
Fibroblast growth factor-2 counteracts the effect of ciliary neurotrophic factor on spontaneous differentiation in adult hippocampal progenitor cells. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2012; 32:867-871. [PMID: 23271288 DOI: 10.1007/s11596-012-1049-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Indexed: 12/19/2022]
Abstract
Neural stem/progenitor cells (NSCs) can spontaneously differentiate into neurons and glial cells in the absence of mitogen fibroblast growth factor-2 (FGF-2) or epidermal growth factor (EGF) in medium and the spontaneous differentiation of NSCs is mediated partially by endogenous ciliary neurotrophic factor (CNTF). This study examined the relationship of FGF-2 and CNTF in the spontaneous differentiation of adult hippocampal progenitor cells (AHPs). AHPs were cultured in the medium containing different concentration of FGF-2 (1-100 ng/mL). Western blotting and immunofluorescence staining were applied to detect the expression of the astrocytic marker GFAP, the neuronal marker Tuj1, the oligodendrocytic marker CNPase and, Nestin, the marker of AHPs. The expression of endogenous CNTF in AHPs at early (passage 4) and late stage (passage 22) was also measured by Western blotting. The results showed that FGF-2 increased the expression of Nestin, dramatically inhibited the expression of GFAP and Tuj1 and slightly suppressed the expression of CNPase. FGF-2 down-regulated the expression of endogenous CNTF in AHPs at both early (passage 4) and late stage (passage 22). These results suggested that FGF-2 could inhibit the spontaneous differentiation of cultured AHPs by negatively regulating the expression of endogenous CNTF in AHPs.
Collapse
|
32
|
Ozdemir M, Attar A, Kuzu I, Ayten M, Ozgencil E, Bozkurt M, Dalva K, Uckan D, Kılıc E, Sancak T, Kanpolat Y, Beksac M. Stem cell therapy in spinal cord injury: in vivo and postmortem tracking of bone marrow mononuclear or mesenchymal stem cells. Stem Cell Rev Rep 2012; 8:953-62. [PMID: 22552878 DOI: 10.1007/s12015-012-9376-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to address the question of whether bone marrow-originated mononuclear cells (MNC) or mesenchymal stem cells (MSC) induce neural regeneration when implanted intraspinally. MATERIALS AND METHODS The study design included 4 groups of mice: Group 1, non-traumatized control group; Groups 2, 3 and 4 spinal cord traumatized mice with 1 g force Tator clips, which received intralesionally either no cellular implants (Group 2), luciferase (Luc) (+) MNC (Group 3) or MSC (Group 4) obtained from CMV-Luc or beta-actin Luc donor transgenic mice. Following the surgery until decapitation, periodical radioluminescence imaging (RLI) and Basso Mouse Scale (BMS) evaluations was performed to monitor neural activity. Postmortem immunohistochemical techniques were used to analyze the fate of donor type implanted cells. RESULTS All mice of Groups 3 and 4 showed various degrees of improvement in the BMS scores, whereas there was no change in Groups 1 and 2. The functional improvement was significantly better in Group 4 compared to Group 3 (18 vs 8, p=0.002). The immunohistochemical staining demonstrated GFP(+)Luc(+) neuronal/glial cells that were also positive with one or more of these markers: nestin, myelin associated glycoprotein, microtubule associated protein or myelin oligodendrocyte specific protein, which is considered as indicator of donor type neuronal regeneration. Frequency of donor type neuronal cells; Luc + signals and median BMS scores were observed 48-64% and 68-72%; 44-80%; 8 and 18 within Groups III and IV respectively. DISCUSSION MSCs were more effective than MNC in obtaining neuronal recovery. Substantial but incomplete functional improvement was associated with donor type in vivo imaging signals more frequently than the number of neuronal cells expressing donor markers in spinal cord sections in vitro. Our results are in favor of functional recovery arising from both donor MSC and MNCs, contributing to direct neuronal regeneration and additional indirect mechanisms.
Collapse
Affiliation(s)
- Mevci Ozdemir
- School of Medicine, Department of Neurosurgery, Pamukkale University, 20070, Kinikli, Denizli, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Electrophysiological properties and synaptic function of mesenchymal stem cells during neurogenic differentiation - a mini-review. Int J Artif Organs 2012; 35:323-37. [PMID: 22505200 DOI: 10.5301/ijao.5000085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) have gained considerable interest due to their potential use in cell therapies and tissue engineering. They have been reported to differentiate into various anchorage-dependent cell types, including bone, cartilage, and tendon. Our focus is on the differentiation of MSCs into neuron-like cells through the use of soluble chemical stimuli or specific growth factor supplements. The resulting cells appear to adopt neural phenotypes and express some typical neuronal markers, however, their electrophysiological properties and synaptic function remains unclear. RESULTS This mini-review illustrates how particular characteristics, electrophysiological properties, and synaptic functions of MSCs change during their neuronal differentiation. In particular we focus on changes in ion currents, ion channels, synaptic communication, and neurotransmitter release. We also highlight conflicting results, caused by inconsistencies in the experimental conditions used and in the methodologies adopted. CONCLUSIONS We conclude that there is insufficient data and that further, carefully controlled investigations are required in order to ascertain whether MSC-derived neuron-like cells can exhibit the necessary neuronal functions to become clinically relevant for use in neural repairs.
Collapse
|
34
|
Pirzad Jahromi G, Seidi S, Sadr SS, Shabanzadeh AP, Keshavarz M, Kaka GR, Hosseini SK, Sohanaki H, Charish J. Therapeutic Effects of a Combinatorial Treatment of Simvastatin and Bone Marrow Stromal Cells on Experimental Embolic Stroke. Basic Clin Pharmacol Toxicol 2012; 110:487-93. [DOI: 10.1111/j.1742-7843.2011.00848.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/05/2011] [Indexed: 12/29/2022]
Affiliation(s)
- G. Pirzad Jahromi
- Department of Physiology & Electrophysiology research Centre; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | - S. Seidi
- Department of Physiology & Electrophysiology research Centre; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | - S. S. Sadr
- Department of Physiology & Electrophysiology research Centre; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | | | - M. Keshavarz
- Department of Physiology & Electrophysiology research Centre; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | - G. R. Kaka
- Neuroscience Research Center of Baqiyatallah University of Medical Sciences
| | - S. K. Hosseini
- Tissue Bank & Preparation Research Center; Tehran University of Medical Sciences; Tehran; Iran
| | - H. Sohanaki
- Department of Physiology & Electrophysiology research Centre; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | - J. Charish
- Department of Genetics and Development; University Health Network; Toronto Western Research Institute; University of Toronto; Toronto; Canada
| |
Collapse
|
35
|
Moradi F, Haji Ghasem Kashani M, Ghorbanian MT, Lashkarbolouki T. Spontaneous Expression of Neurotrophic Factors and TH, Nurr1, Nestin Genes in Long-term Culture of Bone Marrow Mesenchymal Stem Cells. CELL JOURNAL 2012; 13:243-50. [PMID: 23508200 PMCID: PMC3584480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/22/2011] [Indexed: 11/02/2022]
Abstract
OBJECTIVE It has been reported that rat bone marrow stromal cells (BMSCs) can be spontaneously differentiated into neural-like cells without any supplemental growth factors and/or chemical treatment after long-term culture.This study aims to determineWhether, growth factors secreted by MSCs could induce self-differentiation into neural-like cells in a long-term culture. MATERIALS AND METHODS THIS STUDY CONSISTED OF TWO GROUPS: i. rat BMSCs (passage 5) were cultured in alfa- minimal essential medium (α-MEM) and 10% fetal bovine serum (FBS) without the addition of inducer and exchanging medium for three weeks, as the experimental group and ii.rat BMSCs (passage 5) as the control group. Each group was analysed by reverse transcriptase polymerase chain reaction (RT-PCR) to evaluate the expressions of neurotrophic factors and neural marker genes. Statistical analyses were carried out using one-way analysis of variance (ANOVA) and Tukey's multiple comparison with SPSS software (version 16). P< 0.05 was considered statistically significant. RESULTS The experimental group (fifth passage of BMSCs) obtained from adult rats spontaneously differentiated into neural precursor cells after long-term culture. Cultured cells expressed tyrosine hydroxylase (TH), Nurr1 and nestin genes. Furthermore, some growing cells in suspension became neurosphere-like. Self-differentiated rat MSCs (SDrMSCs) expressed significantly higher levels of NGF (0.96 ± 0.16), nestin (0.63 ± 0.08), and Nurr1 (0.80 ± 0.10) genes (p<0.05). CONCLUSION In this study, we reported that rMSCs in long-term culture underwent spontaneous transformation to neural precursors without the supplement of growth factors and specific chemicals. Cells expressed neural markers such as: TH, Nurr1, and nestin genes.
Collapse
Affiliation(s)
| | - Maryam Haji Ghasem Kashani
- *; Corresponding Address:
P.O.Box: 36717Biology DepartmentDamghan UniversityDamghanIran kashani_tmu @yahoo.com
| | | | | |
Collapse
|
36
|
Transplantation of neurospheres derived from bone marrow stromal cells promotes neurological recovery in rats with spinal cord injury. Med Mol Morphol 2011; 44:131-8. [DOI: 10.1007/s00795-010-0519-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/02/2010] [Indexed: 10/17/2022]
|
37
|
Role of mesenchymal stem cells in neurogenesis and nervous system repair. Neurochem Int 2011; 59:347-56. [PMID: 21718735 DOI: 10.1016/j.neuint.2011.06.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 02/08/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are attractive candidates for use in regenerative medicine since they are easily accessible and can be readily expanded in vivo, and possess unique immunogenic properties. Moreover, these multipotent cells display intriguing environmental adaptability and secretory capacity. The ability of MSCs to migrate and engraft in a range of tissues has received significant attention. Evidence indicating that MSC transplantation results in functional improvement in animal models of neurological disorders has highlighted exciting potential for their use in neurological cell-based therapies. The manner in which MSCs elicit positive effects in the damaged nervous system remains unclear. Cell fusion and/or 'transdifferentiation' phenomena, by which MSCs have been proposed to adopt neural cell phenotypes, occur at very low frequency and are unlikely to fully account for observed neurological improvement. Alternatively, MSC-mediated neural recovery may result from the release of soluble molecules, with MSC-derived growth factors and extracellular matrix components influencing the activity of endogenous neural cells. This review discusses the potential of MSCs as candidates for use in therapies to treat neurological disorders and the molecular and cellular mechanisms by which they are understood to act.
Collapse
|
38
|
Xu Q, Zhang HT, Liu K, Rao JH, Liu XM, Wu L, Xu BN. In vitro and in vivo magnetic resonance tracking of Sinerem-labeled human umbilical mesenchymal stromal cell-derived Schwann cells. Cell Mol Neurobiol 2011; 31:365-75. [PMID: 21120599 DOI: 10.1007/s10571-010-9628-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Tracking of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles-labeled embryonic stem cells, neural stem cells, or adult mesenchymal stem cells in vitro and in vivo by using magnetic resonance (MR) imaging have been reported. However, whether the transdifferentiated cells can be effectively labeled by USPIO has not yet been investigated. The requirement for nerve donor material evokes additional morbidity and inability to generate a sufficiently large number of cells in a short time to hamper the clinic application of Schwann cells (SCs) transplantation. These limitations may be avoided if SCs can be generated from clinically accessible sources, such as bone marrow and umbilical cord. However, a reliable means of inducing the selective differentiation of human mesenchymal stromal cells isolated from the umbilical cord (HUMSCs) into SCs in vitro has not yet been established. In this study, we induce HUMSCs into Schwann-like cells in terms of morphology, phenotype, and function by an improved protocol basing on our previous studies. Furthermore, HUMSCs-derived SCs are labeled efficiently in vitro with ultrasmall superparamagnetic iron oxide contrast agent (USPIO) Sinerem and poly-L-lysine (PLL) without affecting morphology, cell cycle, proliferation, and differentiation ability of the labeled cells between the concentration of 200 to 800 μg/ml. Importantly, when grafted into the intact cerebral cortex and striatum, the survival and migration of these Sinerem-labeled cells were observed using MRI. Our study suggest the effective concentration field for Sinerem use in tracking transdifferentiated HUMSCs, and Sinerem labeling transdifferentiated HUMSCs is feasible, efficient, and safe for MRI tracing following grafting into nervous system.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Neurosurgery, The General Hospital of PLA, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Cristofanilli M, Harris VK, Zigelbaum A, Goossens AM, Lu A, Rosenthal H, Sadiq SA. Mesenchymal stem cells enhance the engraftment and myelinating ability of allogeneic oligodendrocyte progenitors in dysmyelinated mice. Stem Cells Dev 2011; 20:2065-76. [PMID: 21299379 DOI: 10.1089/scd.2010.0547] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Multiple sclerosis is an autoimmune disease characterized by demyelination and axonal loss throughout the central nervous system. No regenerative treatment exists for patients who fail to respond to conventional immunosuppressive and immunomodulating drugs. In this scenario, stem cell therapy poses as a rational approach for neurological regeneration. Transplantation of embryonic-derived oligodendrocyte progenitor cells (OPCs) has been shown to promote remyelination and ameliorate animal models of neurodegenerative diseases. However, its therapeutic application is limited due to potential transplant rejection. In multiple sclerosis, an added concern is that transplant rejection would be most pronounced at sites of previous lesions, exacerbating a hyperactive immune response which could prevent remyelination and precipitate additional demyelination. Routine systemic immunosuppression may not be sufficient to prevent transplant rejection-associated immune reactions in the cerebral microenvironment. Mesenchymal stem cells (MSCs), due to their homing properties and inherent immunosuppressive nature, are a promising tool for clinical application targeted toward immunosuppression at sites of injury. In this study, we used a co-transplantation strategy to investigate the effect of syngeneic MSCs on the survival and remyelination abilities of allogeneic OPCs in adult nonimmunosuppressed shiverer mice. At all time points examined, cotransplantation with MSCs increased OPC engraftment, migration, and maturation in myelinating oligodendrocytes, which produced widespread myelination in the host corpus callosum. In addition, MSCs reduced microglia activation and astrocytosis in the brain of transplanted animals as well as T-cell proliferation in vitro. These data suggest that combining the immunomodulatory and trophic properties of MSCs with the myelinating ability of OPCs might be a suitable strategy for promoting neurological regeneration in demyelinating diseases.
Collapse
|
40
|
Ribeiro CA, Salgado AJ, Fraga JS, Silva NA, Reis RL, Sousa N. The secretome of bone marrow mesenchymal stem cells-conditioned media varies with time and drives a distinct effect on mature neurons and glial cells (primary cultures). J Tissue Eng Regen Med 2011; 5:668-72. [DOI: 10.1002/term.365] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/29/2010] [Indexed: 01/01/2023]
|
41
|
Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neuroscience 2010; 175:394-405. [PMID: 21144885 DOI: 10.1016/j.neuroscience.2010.11.054] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 11/23/2010] [Accepted: 11/27/2010] [Indexed: 12/19/2022]
Abstract
Hematic administration of bone marrow-derived mesenchymal stem cells (MSCs) in acute ischemic stroke may not only be an effective reparative treatment but also a brain protective therapy that improves neurological recovery. Our purpose was to study whether either i.v. or intracarotid (i.c.) administration of allogenic MSCs during the acute phase were effective in improving neurological recovery and decreasing brain damage in an experimental rat model. In a model of permanent middle cerebral artery occlusion (pMCAO), we analyzed: neurological evaluation; MSCs migration and implantation; interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels; lesion volume; cell death; cellular proliferation; vascular endothelial growth factor (VEGF) expression and blood vessel number. Regardless of the administration route, treated groups showed better neurological recovery, without significant differences between the two groups. Migration and implantation of MSCs in the lesion area was observed in animals receiving i.c. but not i.v. treatment. The highest cytokine values were observed in the i.v. MSCs and i.c. control groups, and these levels were significantly different from the corresponding i.v. control and i.c. MSCs groups, respectively. In addition, there were significant differences between the i.v. MSCs and i.c. MSCs groups in IL-6 levels. Neither treatment reduced infarction volume. However, cell death, measured as TUNEL+ cells was decreased with significant differences between control groups. BrdU+ cells were also significantly increased in the peri-infarct zone at 14 days. VEGF expression was significantly higher in the i.c. MSCs group than in the i.c. control group and blood vessel number was significantly higher in treated groups than control groups with significant differences in the peri-infarct zone at 14 days. We conclude that allogenic MSCs administration shows therapeutic efficacy in our acute ischemic stroke model. Both routes demonstrably improved neurological recovery and provided brain protection.
Collapse
|
42
|
Jiang TM, Yang ZJ, Kong CZ, Zhang HT. Schwann-like cells can be induction from human nestin-positive amniotic fluid mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2010; 46:793-800. [DOI: 10.1007/s11626-010-9335-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/16/2010] [Indexed: 02/03/2023]
|
43
|
Salgado AJ, Fraga JS, Mesquita AR, Neves NM, Reis RL, Sousa N. Role of Human Umbilical Cord Mesenchymal Progenitors Conditioned Media in Neuronal/Glial Cell Densities, Viability, and Proliferation. Stem Cells Dev 2010; 19:1067-74. [DOI: 10.1089/scd.2009.0279] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Antonio J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Joana S. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Ana R. Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Nuno M. Neves
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães, Portugal
- Institute for Biotechnology and Bioengineering, PT Government Associated Lab, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães, Portugal
- Institute for Biotechnology and Bioengineering, PT Government Associated Lab, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| |
Collapse
|
44
|
Habisch HJ, Liebau S, Lenk T, Ludolph AC, Brenner R, Storch A. Neuroectodermally converted human mesenchymal stromal cells provide cytoprotective effects on neural stem cells and inhibit their glial differentiation. Cytotherapy 2010; 12:491-504. [DOI: 10.3109/14653241003649502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Abstract
Stem cells have emerged as a key element of regenerative medicine therapies due to their inherent ability to differentiate into a variety of cell phenotypes, thereby providing numerous potential cell therapies to treat an array of degenerative diseases and traumatic injuries. A recent paradigm shift has emerged suggesting that the beneficial effects of stem cells may not be restricted to cell restoration alone, but also due to their transient paracrine actions. Stem cells can secrete potent combinations of trophic factors that modulate the molecular composition of the environment to evoke responses from resident cells. Based on this new insight, current research directions include efforts to elucidate, augment and harness stem cell paracrine mechanisms for tissue regeneration. This article discusses the existing studies on stem/progenitor cell trophic factor production, implications for tissue regeneration and cancer therapies, and development of novel strategies to use stem cell paracrine delivery for regenerative medicine.
Collapse
Affiliation(s)
- Priya R Baraniak
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | |
Collapse
|
46
|
Koussoulakou DS, Margaritis LH, Koussoulakos SL. Antagonists of retinoic acid and BMP4 affect fetal mouse osteogenesis and odontoblast differentiation. ACTA ACUST UNITED AC 2010; 18:103-9. [PMID: 20303242 DOI: 10.1016/j.pathophys.2010.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 02/19/2010] [Indexed: 10/19/2022]
Abstract
Retinoic acid and bone morphogenetic protein (BMP4) are endogenous factors indispensable for the physiological development of vertebrates. The proximate aim of the present study was to investigate whether the natural compound citral (a retinoic acid synthesis inhibitor) and a monoclonal, anti-BMP4 antibody, administered to pregnant mice affect in the fetuses cranial osteogenesis and odontoblast differentiation. The present investigation was motivated by the fact that, retinoic acid inhibitors and BMP4 neutralizers may frequently contact human tissues (both intentional and unintentional, and/or unconsciously) inducing unanticipated effects. Our ultimate goal is the prevention of side effects and, future clinical implementation of the results. To this end, pregnant, white mice (balb-c Mus musculus) were intra-abdominally injected with either citral or anti-BMP4 antibody at the 9th gestational day. Newborns were processed within 5h, postnatal. Results were evaluated (a) macroscopically, (b) stereoscopically, following histochemical double staining of cartilage and osseous tissues and, (c) microscopically after (c(1)) histological staining of paraffin sections, and, (c(2)) immunohistochemical detection of apoptosis. Data indicate that in vivo administration of citral (biomimicking hypovitaminosis A) caused restriction/retardation of cranial chondrogenesis and osteogenesis. Apoptosis was not detected in teeth tissues. In vivo administration of anti-BMP4 antibody resulted in a transitory interference with the normal course of odontoblast differentiation and the production of pre-dentin, whereas, delay in the ossification also included the alveoli. Animals inspected in adulthood displayed a fairly normal phenotype. It is concluded that those two substances, under their concentrations experienced, are quite safe for the public.
Collapse
Affiliation(s)
- Despina S Koussoulakou
- Department of Cell Biology and Biophysics, Faculty of Biology, N. & K. University of Athens, Panepistimiopolis 15784, Greece
| | | | | |
Collapse
|
47
|
Morphofunctional study of the therapeutic efficacy of human mesenchymal and neural stem cells in rats with diffuse brain injury. Bull Exp Biol Med 2009; 147:132-46. [PMID: 19526149 DOI: 10.1007/s10517-009-0432-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We studied the effect of transplantation of human stem cells from various tissues on reparative processes in the brain of rats with closed craniocerebral injury. Combined treatment with standard drugs and systemic administration of xenogeneic stem cells had a neuroprotective effect. The morphology of neurons rapidly returned to normal after administration of fetal neural stem cells. Fetal mesenchymal stem cells produced a prolonged effect on proliferative activity of progenitor cells in the subventricular zone of neurogenesis. Adult mesenchymal stem cells had a strong effect on recovery of the vascular bed in ischemic regions.
Collapse
|
48
|
Radtke C, Schmitz B, Spies M, Kocsis JD, Vogt PM. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int J Dev Neurosci 2009; 27:817-23. [PMID: 19699793 DOI: 10.1016/j.ijdevneu.2009.08.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Accepted: 08/14/2009] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow and adipose tissue are being considered for use in neural repair because they can differentiate after appropriate induction in culture into neurons and glia. The question we asked was if neurospheres could be harvested from adipose-derived stem cells and if they then could differentiate in culture to peripheral glial-like cells. Here, we demonstrate that adipose-derived mesenchymal stem cells can form nestin-positive non-adherent neurosphere cellular aggregates when cultured with basic fibroblast growth factor and epidermal growth factor. Dissociation of these neurospheres and removal of mitogens results in expression of the characteristic Schwann cell markers S100 and p75 nerve growth factor receptor and GFAP. The simultaneous expression of these glia markers are characteristic features of Schwann cells and olfactory ensheathing cells which have unique properties regarding remyelination and enhancement of axonal regeneration. When co-cultured with dorsal root ganglion neurons, the peripheral glial-like cells derived from adipose mesenchymal stem cells aligned with neuritis and stimulated neuritic outgrowth. These results indicate that neurospheres can be generated from adipose-derived mesenchymal stem cells, and upon mitogen withdrawal can differentiate into peripheral glial cells with neurotrophic effects.
Collapse
Affiliation(s)
- C Radtke
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30659 Hannover, German.
| | | | | | | | | |
Collapse
|
49
|
Boucherie C, Hermans E. Adult stem cell therapies for neurological disorders: benefits beyond neuronal replacement? J Neurosci Res 2009; 87:1509-21. [PMID: 19115417 DOI: 10.1002/jnr.21970] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The modest capacity of endogenous repair processes in the central nervous system (CNS) justifies the broad interest in the development of effective stem cell based therapies for neurodegenerative disorders and other acute or chronic lesions. Motivated by the ambitious expectation to achieve functional neuronal replacement, several studies have already evidenced a potential benefit of stem cell grafts in animal models of human disorders. Nevertheless, growing evidence suggests that the effects orchestrated by stem cells, in most experimental cases, are not necessarily associated with the generation of new neurons. This hypothesis correlates with the versatile properties of adult and embryonic stem cells. When introduced into the lesioned CNS, nondifferentiated stem cells can have a positive influence through intrinsic neuroprotective capacities related to the production of neurotrophic factors, stimulation of endogenous neurogenesis, and modulation of neuroinflammation. Stem cells are also endowed with a multipotent differentiation profile, suggesting that a positive outcome could result from the replacement of nonneuronal cell types, in particular astrocytes and oligodendrocytes. Focusing on adult stem cells, this Review aims at summarizing experimental observations supporting the concept that, in cell-based therapies, stem cells operate not through a unidirectional mechanism (e.g., generating neurons) but rather as cellular mediators of a multitude of biological activities that could provide a favorable outcome for diverse nervous disorders.
Collapse
Affiliation(s)
- Cédric Boucherie
- Laboratory of Experimental Pharmacology, Institute of Neurosciences (INES), Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
50
|
Davydova D, Vorotelyak E, Smirnova Y, Zinovieva R, Romanov Y, Kabaeva N, Terskikh V, Vasiliev A. Cell phenotypes in human amniotic fluid. Acta Naturae 2009; 1:98-103. [PMID: 22649611 PMCID: PMC3347518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem cells capable of long-term proliferation and differentiation into different cell types may be a promising source of cells for regenerative medicine. Recently, much attention has been paid to fetal stem cells, among which are cells from amniotic fluid (AF). We have isolated amniotic stem cells from 3 AF samples. Flow cytometry, RT -PCR and immunohistochemistry have shown that these cells express mesenchymal (CD90, CD73, CD105, CD13, CD29, CD44, and CD146), neural (≤3-tubulin, Nestin, and Pax6), epithelial (keratin 19 and p63) markers and also markers of pluripotency (Oct4, Nanog, and Rex-1). Transplantation of the cells to nude mice does not lead to tumor formation. Thus, putative stem/progenitor cells from AF are capable of long-term proliferation in vitro and the profile of gene expression led us to speculate that they have greater differentiation potential than mesenchymal stem cells and may be useful for cell therapy.
Collapse
Affiliation(s)
- D.A. Davydova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences;
| | - E.A. Vorotelyak
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences;
| | - Yu.A. Smirnova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences;
| | - R.D. Zinovieva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences;
| | | | - N.V. Kabaeva
- Russian Cardiology Research-and-Production Complex
| | | | - A.V. Vasiliev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences;
| |
Collapse
|