1
|
Nguyen HD, Kim MS. Interactions between cadmium, lead, mercury, and arsenic and depression: A molecular mechanism involved. J Affect Disord 2023; 327:315-329. [PMID: 36758875 DOI: 10.1016/j.jad.2023.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND We aimed to assess the interactions between mixed heavy metals, genes, and miRNAs implicated in depression development and to design and create miRNA sponges. METHODS The key data-mining approaches in this study were the Comparative Toxicogenomics Database (CTD), MIENTURNET, GeneMania, Metascape, Webgestalt, miRNAsong, and Cytoscape software. RESULTS A mixture of cadmium, lead, mercury, and arsenic was related to the development of depression. Even though the genes acquired from the heavy metals of depression studied were different, the "selenium micronutrient network", "vitamin B12 and folate metabolism", and "positive regulation of peptidyl-serine phosphorylation" pathways were highlighted. The heavy metal mixture altered the genes SOD1, IL6, PTGS2, PON1, BDNF, and ALB, highlighting the role of oxidative stress, pro-inflammatory cytokines, paraoxonase activity, neurotrophic factors, and antioxidants related to depression, as well as the possibility of targeting these genes in prospective depressive treatment. Chr1q31.1, five transcription factors (NR4A3, NR1H4, ATF3, CREB3L3, and NR1I3), the "endoplasmic reticulum lumen," "blood microparticle," and "myelin sheath", were found to be important chromosomal locations, transcription factors, and cellular parts linked to depression and affected by mixed heavy metals. Furthermore, we developed a network-based approach to detect significant genes, miRNA, pathways, and illnesses related to depression development. We also observed eight important miRNAs related to depression induced by mixed heavy metals (hsa-miR-16-5p, hsa-miR-132-3p, hsa-miR-1-3p, hsa-miR-204-5p, hsa-miR-206, hsa-miR-124-3p, hsa-miR-146a-5p, and hsa-miR-26a-5p). In addition, we created and evaluated miRNA sponge sequences for these miRNAs in silico. LIMITATIONS A toxicogenomic design in silico was used. CONCLUSIONS Our findings highlight the importance of oxidative stress, notably SOD1 and the selenium micronutrient network, in depression caused by heavy metal mixtures and provide additional insights into common molecular pathways implicated in depression pathogenesis.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
2
|
Shirokova O, Zaborskaya O, Pchelin P, Kozliaeva E, Pershin V, Mukhina I. Genetic and Epigenetic Sexual Dimorphism of Brain Cells during Aging. Brain Sci 2023; 13:brainsci13020195. [PMID: 36831738 PMCID: PMC9954625 DOI: 10.3390/brainsci13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
In recent years, much of the attention paid to theoretical and applied biomedicine, as well as neurobiology, has been drawn to various aspects of sexual dimorphism due to the differences that male and female brain cells demonstrate during aging: (a) a dimorphic pattern of response to therapy for neurodegenerative disorders, (b) different age of onset and different degrees of the prevalence of such disorders, and (c) differences in their symptomatic manifestations in men and women. The purpose of this review is to outline the genetic and epigenetic differences in brain cells during aging in males and females. As a result, we hereby show that the presence of brain aging patterns in males and females is due to a complex of factors associated with the effects of sex chromosomes, which subsequently entails a change in signal cascades in somatic cells.
Collapse
Affiliation(s)
- Olesya Shirokova
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Correspondence:
| | - Olga Zaborskaya
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Pavel Pchelin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Elizaveta Kozliaeva
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Vladimir Pershin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Irina Mukhina
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| |
Collapse
|
3
|
Li Y, Fan C, Wang L, Lan T, Gao R, Wang W, Yu SY. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies. J Clin Invest 2021; 131:e148853. [PMID: 34228643 DOI: 10.1172/jci148853] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Depression is a neuropsychiatric disease associated with neuronal anomalies within specific brain regions. In the present study, we screened microRNA (miRNA) expression profiles in the dentate gyrus (DG) of the hippocampus and found that miR-26a-3p was markedly downregulated in a rat model of depression, whereas upregulation of miR-26a-3p within DG regions rescued the neuronal deterioration and depression-like phenotypes resulting from stress exposure, effects that appear to be mediated by the PTEN pathway. The knockdown of miR-26a-3p in DG regions of normal control rats induced depression-like behaviors, effects that were accompanied by activation of the PTEN/PI3K/Akt signaling pathway and neuronal deterioration via suppression of autophagy, impairments in synaptic plasticity, and promotion of neuronal apoptosis. In conclusion, these results suggest that miR-26a-3p deficits within the hippocampal DG mediated the neuronal anomalies contributing to the display of depression-like behaviors. This miRNA may serve as a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Ye Li
- Department of Physiology and
| | | | - Liyan Wang
- Morphological Experimental Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | | | - Rui Gao
- Department of Microorganism, Jinan Nursing Vocational College, Lvyoulu Road, Jinan, Shandong Province, China
| | | | - Shu Yan Yu
- Department of Physiology and.,Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
MicroRNAs as Candidate Biomarkers for Alzheimer's Disease. Noncoding RNA 2021; 7:ncrna7010008. [PMID: 33535543 PMCID: PMC7930943 DOI: 10.3390/ncrna7010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
The neurological damage of Alzheimer’s disease (AD) is thought to be irreversible upon onset of dementia-like symptoms, as it takes years to decades for occult pathologic changes to become symptomatic. It is thus necessary to identify individuals at risk for the development of the disease before symptoms manifest in order to provide early intervention. Surrogate markers are critical for early disease detection, stratification of patients in clinical trials, prediction of disease progression, evaluation of response to treatment, and also insight into pathomechanisms. Here, we review the evidence for a number of microRNAs that may serve as biomarkers with possible mechanistic insights into the AD pathophysiologic processes, years before the clinical manifestation of the disease.
Collapse
|
5
|
Wang C, Zhu J, Zhang Z, Chen H, Ji M, Chen C, Hu Y, Yu Y, Xia R, Shen J, Gong X, Wang SL. Rno-miR-224-5p contributes to 2,2',4,4'-tetrabromodiphenyl ether-induced low triiodothyronine in rats by targeting deiodinases. CHEMOSPHERE 2020; 246:125774. [PMID: 31901531 DOI: 10.1016/j.chemosphere.2019.125774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Hypothyroidism is commonly associated with substantial adverse impacts on human health, and polybrominated diphenyl ether (PBDE), a kind of classic thyroid hormone disruptor, was speculated to be a potential environmental factor, but its effect on thyroxine metabolism has received little attention. In the present study, we investigated the role and mechanism of rno-miR-224-5p in deiodinase-mediated thyroxine metabolism in rats treated with 2,2',4,4'-tetrabromodiphenyl ether (BDE47), a predominant PBDE congener in humans. BDE47 decreased plasma triiodothyronine (T3) and thyroxine (T4) and increased reverse T3 (rT3) in the rats, and the expression of type 1 deiodinase (DIO1) and type 3 deiodinase (DIO3) increased in both the rats and H4-II-E cells. Rno-miR-224-5p was predicted to target dio1 instead of dio3, according to the TargetScan, miRmap.org and microRNA.org databases. Experiments showed that the rno-miR-224-5p level was decreased by BDE47 in a dose-dependent manner and confirmed that rno-miR-224-5p downregulated both DIO1 and DIO3 in the H4-II-E cells and in the rats, as determined using mimics and an inhibitor of rno-miR-224-5p. Furthermore, DIO1 was observed to be a direct functional target of rno-miR-224-5p, whereas DIO3 was indirectly regulated by rno-miR-224-5p via the phosphorylation of the MAPK/ERK (but not p38 or JNK) pathway. Reportedly, DIO1 and DIO3 act principally as inner-ring deiodinases and are responsible for the conversion of T4 to rT3, but not to T3, and the final clearance of thyroxine (mainly in the form of T2). Our results demonstrated that BDE47 induced low levels of T3 conversion through DIO1 and DIO3, which were regulated by rno-miR-224-5p. The findings suggest a novel additional mechanism of PBDE-induced thyroxine metabolism disorder that differs from that of PBDEs as environmental thyroid disruptors.
Collapse
Affiliation(s)
- Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Jiansheng Zhu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Hang Chen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Minghui Ji
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Chao Chen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yuhuan Hu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Jiemiao Shen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Xing Gong
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China.
| |
Collapse
|
6
|
Yang FW, Wang H, Wang C, Chi GN. Upregulation of acetylcholinesterase caused by downregulation of microRNA-132 is responsible for the development of dementia after ischemic stroke. J Cell Biochem 2019; 121:135-141. [PMID: 31578769 DOI: 10.1002/jcb.28985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/12/2019] [Indexed: 11/11/2022]
Abstract
MicroRNA-132 (miR-132) has been shown to participate in many diseases. This study aimed to understand the correlation between the level of miR-132 and the severity of dementia post-ischemic stroke. An online tool (www.mirdb.org) was used to find the miR-132 binding site in acetylcholinesterase (ACHE) 3'-untranslated region (UTR), followed by a luciferase reporter assay to validate ACHE as a miR-132 target. A similar relationship between miR-132 and ACHE was also established in cerebrospinal fluid samples collected from human subjects. A negative correlation was established between ACHE and miR-132 by measuring the relative luciferase activity. Meanwhile, Western blot analysis and real-time polymerase chain reaction were also conducted to compare the levels of ACHE messenger RNA and protein between two groups (dementia positive, n = 26 and dementia negative, n = 26) or among cells treated with miR-132 mimics, ACHE small interfering RNA, and miR-132 inhibitors. As shown in the results, miR-132 can reduce the expression of ACHE. Further experiments were also carried out to study the effect of miR-132 and ACHE on cell viability and apoptosis, and the results demonstrated that miR-132 enhanced cell viability while suppressing apoptosis. In addition, ACHE reduced cell viability while promoting apoptosis. miR-132 targeted ACHE and suppressed its expression. Additionally, miR-132 and ACHE have been shown to affect the cell viability and apoptosis in the central nervous system.
Collapse
Affiliation(s)
- Fu-Wei Yang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hao Wang
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Wang
- Department of Neurosurgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Guo-Nan Chi
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Chen L, Zhang YH, Pan X, Liu M, Wang S, Huang T, Cai YD. Tissue Expression Difference between mRNAs and lncRNAs. Int J Mol Sci 2018; 19:ijms19113416. [PMID: 30384456 PMCID: PMC6274976 DOI: 10.3390/ijms19113416] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022] Open
Abstract
Messenger RNA (mRNA) and long noncoding RNA (lncRNA) are two main subgroups of RNAs participating in transcription regulation. With the development of next generation sequencing, increasing lncRNAs are identified. Many hidden functions of lncRNAs are also revealed. However, the differences in lncRNAs and mRNAs are still unclear. For example, we need to determine whether lncRNAs have stronger tissue specificity than mRNAs and which tissues have more lncRNAs expressed. To investigate such tissue expression difference between mRNAs and lncRNAs, we encoded 9339 lncRNAs and 14,294 mRNAs with 71 expression features, including 69 maximum expression features for 69 types of cells, one feature for the maximum expression in all cells, and one expression specificity feature that was measured as Chao-Shen-corrected Shannon's entropy. With advanced feature selection methods, such as maximum relevance minimum redundancy, incremental feature selection methods, and random forest algorithm, 13 features presented the dissimilarity of lncRNAs and mRNAs. The 11 cell subtype features indicated which cell types of the lncRNAs and mRNAs had the largest expression difference. Such cell subtypes may be the potential cell models for lncRNA identification and function investigation. The expression specificity feature suggested that the cell types to express mRNAs and lncRNAs were different. The maximum expression feature suggested that the maximum expression levels of mRNAs and lncRNAs were different. In addition, the rule learning algorithm, repeated incremental pruning to produce error reduction algorithm, was also employed to produce effective classification rules for classifying lncRNAs and mRNAs, which gave competitive results compared with random forest and could give a clearer picture of different expression patterns between lncRNAs and mRNAs. Results not only revealed the heterogeneous expression pattern of lncRNA and mRNA, but also gave rise to the development of a new tool to identify the potential biological functions of such RNA subgroups.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
- Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, 3000 CA Rotterdam, The Netherlands.
| | - Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Shaopeng Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
The Expression Alteration of BC1 RNA and its Interaction with Eukaryotic Translation Initiation Factor eIF4A Post-Status Epilepticus. Neurochem Res 2018; 43:1328-1338. [PMID: 29774448 DOI: 10.1007/s11064-018-2548-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 05/07/2018] [Accepted: 05/12/2018] [Indexed: 01/08/2023]
Abstract
Abnormal dendritic sprouting and synaptic remodelling are important pathological features of temporal lobe epilepsy. BC1 RNA is a translation repressor involved in the regulation of the dendritic protein synthesis and mRNA transport, which is essential for dendritic development and plasticity. The expression alteration of BC1 RNA in the pilocarpine induced epilepsy model remains unknown. It is unclear if the interactions between BC1 RNA and eukaryotic initiation factor 4A (eIF4A) exists in this model. The purpose of this study was to investigate the expression changes of BC1 RNA and its interactions with eIF4A post-status epilepticus (SE). Chloride lithium and pilocarpine were used to induce the SE rat model. Either a whole brain or hippocampus tissues were collected at different time points after SE. The expression patterns of BC1 was detected by qPCR and in situ hybridization. The levels of eIF4AI/II protein expression were analyzed via western blotting and immunohistochemistry. The BC1 RNA-eIF4AI/II interaction was determined by electrophoretic mobility shift assay (EMSA). We found that the BC1 RNA levels decreased in hippocampus 3d, 1w and 2w post-SE before the levels recovered. The eIF4AI/II began to rise 3d post-SE and reached the maximum level 1w post-SE. After 1w post-SE the levels decreased in the hippocampal CA1, CA3 and DG subregions. EMSA analysis showed that BC1 RNA specifically interacted with the eIF4AI/II. The BC1 RNA-eIF4AI/II complex reduced to the lowest level 1w post-SE. Our results suggested that BC1 has a negative regulatory correlation with eIF4AI/II, where BC1 RNA could be involved in epileptogenesis by regulating dendritic protein synthesis.
Collapse
|
9
|
Fan C, Zhu X, Song Q, Wang P, Liu Z, Yu SY. MiR-134 modulates chronic stress-induced structural plasticity and depression-like behaviors via downregulation of Limk1/cofilin signaling in rats. Neuropharmacology 2018; 131:364-376. [PMID: 29329879 DOI: 10.1016/j.neuropharm.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 12/21/2022]
Abstract
Increasing evidence has suggested that depression is a neuropsychiatric condition associated with neuroplasticity within specific brain regions. However, the mechanisms by which neuroplasticity exerts its effects in depression remain largely uncharacterized. In the present study we show that chronic stress effectively induces depression-like behaviors in rats, an effect which was associated with structural changes in dendritic spines and synapse abnormalities within neurons of the ventromedial prefrontal cortex (vmPFC). Moreover, unpredictable chronic mild stress (UCMS) exposure significantly increased the expression of miR-134 within the vmPFC, an effect which was paralleled with a decrease in the levels of expression and phosphorylation of the synapse-associated proteins, LIM-domain kinase 1 (Limk1) and cofilin. An intracerebral infusion of the adenovirus associated virus (AAV)-miR-134-sponge into the vmPFC of stressed rats, which blocks mir-134 function, significantly ameliorated neuronal structural abnormalities, biochemical changes and depression-like behaviors. Chronic administration of ginsenoside Rg1 (40 mg/kg, 5 weeks), a potential neuroprotective agent extracted from ginseng, significantly ameliorated the behavioral and biochemical changes induced by UCMS exposure. These results suggest that miR-134-mediated dysregulation of structural plasticity may be related to the display of depression-like behaviors in stressed rats. The neuroprotective effects of ginsenoside Rg1, which produces an antidepressant like effect in this model of depression, appears to result from modulation of the miR-134 signaling pathway within the vmPFC.
Collapse
Affiliation(s)
- Cuiqin Fan
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Xiuzhi Zhu
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Qiqi Song
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Peng Wang
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Zhuxi Liu
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Shu Yan Yu
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China; Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China.
| |
Collapse
|
10
|
Chen T, Yang YJ, Li YK, Liu J, Wu PF, Wang F, Chen JG, Long LH. Chronic administration tetrahydroxystilbene glucoside promotes hippocampal memory and synaptic plasticity and activates ERKs, CaMKII and SIRT1/miR-134 in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:74-82. [PMID: 27275773 DOI: 10.1016/j.jep.2016.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/10/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb is a traditional Chinese medicine with anti-aging effect. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is generally considered as the main active component in Polygonum multiflorum Thunb. However, the effect of TSG on memory in adult is unclear till now. AIM OF STUDY 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is a polyphenols compound from Polygonum multiflorum Thunb. The present study aimed to evaluate the effect of chronic administration of TSG on hippocampal memory in normal mice. MATERIALS AND METHODS Behavioral test, electrophysiology and golgi staining were used to evaluate the effect of TSG on hippocampus-dependent memory and synaptic plasticity. Western blotting was used to determine the expression of ERK1/2, CaMKII, and SIRT1. Real-time quantitative PCR was explored to measure miR-134. RESULTS It was found that TSG enhanced hippocampus-dependent contextual fear memory and novel object recognition, facilitated hippocampal LTP and increased dendrite spine density in the CA1 region of hippocampus. TSG obviously promoted the phosphorylations of ERK1/2, CaMKII, CREB and the expression of BDNF in the hippocampus, with upregulation of silent information regulator 1 (SIRT1) and downregulation of miR-134. CONCLUSIONS Chronic administration of TSG promotes hippocampal memory in normal mice, suggesting that supplementary of TSG might serve as an enhancement of memory.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan-Jian Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan-Kun Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| |
Collapse
|
11
|
Simon L, Song K, Vande Stouwe C, Hollenbach A, Amedee A, Mohan M, Winsauer P, Molina P. Δ9-Tetrahydrocannabinol (Δ9-THC) Promotes Neuroimmune-Modulatory MicroRNA Profile in Striatum of Simian Immunodeficiency Virus (SIV)-Infected Macaques. J Neuroimmune Pharmacol 2016; 11:192-213. [PMID: 26607731 PMCID: PMC4773048 DOI: 10.1007/s11481-015-9645-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
Abstract
Cannabinoid administration before and after simian immunodeficiency virus (SIV)-inoculation ameliorated disease progression and decreased inflammation in male rhesus macaques. Δ9-tetrahydrocannabinol (Δ9-THC) did not increase viral load in brain tissue or produce additive neuropsychological impairment in SIV-infected macaques. To determine if the neuroimmunomodulation of Δ9-THC involved differential microRNA (miR) expression, miR expression in the striatum of uninfected macaques receiving vehicle (VEH) or Δ9-THC (THC) and SIV-infected macaques administered either vehicle (VEH/SIV) or Δ9-THC (THC/SIV) was profiled using next generation deep sequencing. Among the 24 miRs that were differentially expressed among the four groups, 16 miRs were modulated by THC in the presence of SIV. These 16 miRs were classified into four categories and the biological processes enriched by the target genes determined. Our results indicate that Δ9-THC modulates miRs that regulate mRNAs of proteins involved in 1) neurotrophin signaling, 2) MAPK signaling, and 3) cell cycle and immune response thus promoting an overall neuroprotective environment in the striatum of SIV-infected macaques. This is also reflected by increased Brain Derived Neurotrophic Factor (BDNF) and decreased proinflammatory cytokine expression compared to the VEH/SIV group. Whether Δ9-THC-mediated modulation of epigenetic mechanisms provides neuroprotection in other regions of the brain and during chronic SIV-infection remains to be determined.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences, 1901 Perdido Street, Medical Education Building 7205, P7-3, New Orleans, LA, 70112, USA
| | - Keijing Song
- Department of Physiology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Curtis Vande Stouwe
- Department of Physiology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Andrew Hollenbach
- Department of Genetics, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Angela Amedee
- Department of Microbiology, Immunology, & Parasitology; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Mahesh Mohan
- Department of Comparative Pathology, Tulane National Primate Research Center, 18703 3 Rivers Rd, Covington, LA, 70433, USA
| | - Peter Winsauer
- Department of Pharmacology; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Patricia Molina
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences, 1901 Perdido Street, Medical Education Building 7205, P7-3, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Dwivedi Y. Emerging role of microRNAs in major depressive disorder: diagnosis and therapeutic implications. DIALOGUES IN CLINICAL NEUROSCIENCE 2014. [PMID: 24733970 PMCID: PMC3984890 DOI: 10.31887/dcns.2014.16.1/ydwivedi] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Major depressive disorder (MDD) is a major public health concern. Despite tremendous advances, the pathogenic mechanisms associated with MDD are still unclear. Moreover, a significant number of MDD subjects do not respond to the currently available medication. MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by modulating translation, messenger RNA (mRNA) degradation, or stability of mRNA targets. The role of miRNAs in disease pathophysiology is emerging rapidly. Recent studies demonstrating the involvement of miRNAs in several aspects of neural plasticity, neurogenesis, and stress response, and more direct studies in human postmortem brain provide strong evidence that miRNAs can not only play a critical role in MDD pathogenesis, but can also open up new avenues for the development of therapeutic targets. Circulating miRNAs are now being considered as possible biomarkers in disease pathogenesis and in monitoring therapeutic responses because of the presence and/or release of miRNAs in blood cells as well as in other peripheral tissues. In this review, these aspects are discussed in a comprehensive and critical manner.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
13
|
An J, Cai T, Che H, Yu T, Cao Z, Liu X, Zhao F, Jing J, Shen X, Liu M, Du K, Chen J, Luo W. The changes of miRNA expression in rat hippocampus following chronic lead exposure. Toxicol Lett 2014; 229:158-66. [DOI: 10.1016/j.toxlet.2014.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 05/24/2014] [Accepted: 06/01/2014] [Indexed: 11/24/2022]
|
14
|
Serafini G, Pompili M, Hansen KF, Obrietan K, Dwivedi Y, Shomron N, Girardi P. The involvement of microRNAs in major depression, suicidal behavior, and related disorders: a focus on miR-185 and miR-491-3p. Cell Mol Neurobiol 2014; 34:17-30. [PMID: 24213247 DOI: 10.1007/s10571-013-9997-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/12/2013] [Indexed: 01/08/2023]
Abstract
Major depressive disorders are common and disabling conditions associated with significant psychosocial impairment and suicide risk. At least 3-4 % of all depressive individuals die by suicide. Evidence suggests that small non-coding RNAs, in particular microRNAs (miRNAs), play a critical role in major affective disorders as well as suicide. We performed a detailed review of the current literature on miRNAs and their targets in major depression and related disorders as well as suicidal behavior, with a specific focus on miR-185 and miR-491-3p, which have been suggested to participate in the pathogenesis of major depression and/or suicide. miRNAs play a fundamental role in the development of the brain. Several miRNAs are reported to influence neuronal and circuit formation by negatively regulating gene expression. Global miRNA reduced expression was found in the prefrontal cortex of depressed suicide completers when compared to that of nonpsychiatric controls who died of other causes. One particular miRNA, miR-185, was reported to regulate TrkB-T1, which has been associated with suicidal behavior upon truncation. Furthermore, cAMP response element-binding protein-brain-derived neurotrophic factor pathways may regulate, through miRNAs, the homeostasis of neural and synaptic pathways playing a crucial role in major depression. miRNAs have gained attention as key players involved in nervous system development, physiology, and disease. Further evidence is needed to clarify the exact role that miRNAs play in major depression and related disorders and suicidal behavior.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1037, 00189, Rome, Italy,
| | | | | | | | | | | | | |
Collapse
|
15
|
Banigan MG, Kao PF, Kozubek JA, Winslow AR, Medina J, Costa J, Schmitt A, Schneider A, Cabral H, Cagsal-Getkin O, Vanderburg CR, Delalle I. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One 2013; 8:e48814. [PMID: 23382797 PMCID: PMC3559697 DOI: 10.1371/journal.pone.0048814] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/05/2012] [Indexed: 12/20/2022] Open
Abstract
Exosomes are cellular secretory vesicles containing microRNAs (miRNAs). Once secreted, exosomes are able to attach to recipient cells and release miRNAs potentially modulating the function of the recipient cell. We hypothesized that exosomal miRNA expression in brains of patients diagnosed with schizophrenia (SZ) and bipolar disorder (BD) might differ from controls, reflecting either disease-specific or common aberrations in SZ and BD patients. The sources of the analyzed samples included McLean 66 Cohort Collection (Harvard Brain Tissue Resource Center), BrainNet Europe II (BNE, a consortium of 18 brain banks across Europe) and Boston Medical Center (BMC). Exosomal miRNAs from frozen postmortem prefrontal cortices with well-preserved RNA were isolated and submitted to profiling by Luminex FLEXMAP 3D microfluidic device. Multiple statistical analyses of microarray data suggested that certain exosomal miRNAs were differentially expressed in SZ and BD subjects in comparison to controls. RT-PCR validation confirmed that two miRNAs, miR-497 in SZ samples and miR-29c in BD samples, have significantly increased expression when compared to control samples. These results warrant future studies to evaluate the potential of exosome-derived miRNAs to serve as biomarkers of SZ and BD.
Collapse
Affiliation(s)
- Meredith G. Banigan
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Advanced Tissue Resource Center, Harvard NeuroDiscovery Center, Charlestown, Massachusetts, United States of America
| | - Patricia F. Kao
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - James A. Kozubek
- Department of Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ashley R. Winslow
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Juan Medina
- Neurological Tissue Bank, Parc Sanitari Sant Joan de Deu, Sant Boi de Llobregat, Barcelona, Spain
| | - Joan Costa
- Neurological Tissue Bank, Parc Sanitari Sant Joan de Deu, Sant Boi de Llobregat, Barcelona, Spain
| | - Andrea Schmitt
- Department of Psychiatry, Ludwig Maximilian University, Munich, Germany
- Laboratory of Neuroscience, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anja Schneider
- Department of Psychiatry, University Medicine Goettingen and German Research Center for Neurodegenerative Diseases, Goettingen, Germany
| | - Howard Cabral
- Department of Biostatistics, Boston University School of Public Health and Boston University Clinical and Translational Science Institute, Massachusetts, United States of America
| | - Ozge Cagsal-Getkin
- Advanced Tissue Resource Center, Harvard NeuroDiscovery Center, Charlestown, Massachusetts, United States of America
| | - Charles R. Vanderburg
- Advanced Tissue Resource Center, Harvard NeuroDiscovery Center, Charlestown, Massachusetts, United States of America
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zhou L, Pupo GM, Gupta P, Liu B, Tran SL, Rahme R, Wang B, Rua R, Rizos H, Carroll A, Cairns MJ, Saksena NK. A parallel genome-wide mRNA and microRNA profiling of the frontal cortex of HIV patients with and without HIV-associated dementia shows the role of axon guidance and downstream pathways in HIV-mediated neurodegeneration. BMC Genomics 2012; 13:677. [PMID: 23190615 PMCID: PMC3560210 DOI: 10.1186/1471-2164-13-677] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 11/20/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HIV-associated dementia (HAD) is the most common dementia type in young adults less than 40 years of age. Although the neurotoxins, oxidative/metabolic stress and impaired activity of neurotrophic factors are believed to be underlying reasons for the development of HAD, the genomic basis, which ultimately defines the virus-host interaction and leads to neurologic manifestation of HIV disease is lacking. Therefore, identifying HIV fingerprints on the host gene machinery and its regulation by microRNA holds a great promise and potential for improving our understanding of HAD pathogenesis, its diagnosis and therapy. RESULTS A parallel profiling of mRNA and miRNA of the frontal cortex autopsies from HIV positive patients with and without dementia was performed using Illumina Human-6 BeadChip and Affymetrix version 1.0 miRNA array, respectively. The gene ontology and pathway analysis of the two data sets showed high concordance between miRNA and mRNAs, revealing significant interference with the host axon guidance and its downstream signalling pathways in HAD brains. Moreover, the differentially expressed (DE) miRNAs identified in this study, in particular miR-137, 153 and 218, based on which most correlations were built cumulatively targeted neurodegeneration related pathways, implying their future potential in diagnosis, prognosis and possible therapies for HIV-mediated and possibly other neurodegenerative diseases. Furthermore, this relationship between DE miRNAs and DE mRNAs was also reflected in correlation analysis using Bayesian networks by splitting-averaging strategy (SA-BNs), which revealed 195 statistically significant correlated miRNA-mRNA pairs according to Pearson's correlation test (P<0.05). CONCLUSIONS Our study provides the first evidence on unambiguous support for intrinsic functional relationship between mRNA and miRNA in the context of HIV-mediated neurodegeneration, which shows that neurologic manifestation in HIV patients possibly occurs through the interference with the host axon guidance and its downstream signalling pathways. These data provide an excellent avenue for the development of new generation of diagnostic/prognostic biomarkers and therapeutic intervention strategies for HIV-associated neurodegeneration.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia
| | - Gulietta M Pupo
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead, NSW, 2145, Australia
| | - Priyanka Gupta
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia
| | - Bing Liu
- School of Biomedical Sciences and Pharmacy, Faculty of Health and the Hunter Medical Research Institute, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Sieu L Tran
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead, NSW, 2145, Australia
| | - Raany Rahme
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia
| | - Bin Wang
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia
| | - Rejane Rua
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia
| | - Helen Rizos
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead, NSW, 2145, Australia
| | - Adam Carroll
- School of Biomedical Sciences and Pharmacy, Faculty of Health and the Hunter Medical Research Institute, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and the Hunter Medical Research Institute, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
- Schizophrenia Research Institute, Darlinghurst, Sydney NSW, Australia
| | - Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia
| |
Collapse
|
17
|
Kryger R, Fan L, Wilce PA, Jaquet V. MALAT-1, a non protein-coding RNA is upregulated in the cerebellum, hippocampus and brain stem of human alcoholics. Alcohol 2012; 46:629-34. [PMID: 22560368 DOI: 10.1016/j.alcohol.2012.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 12/29/2022]
Abstract
Chronic alcohol intake induces neurochemical adaptative changes in the brain characterised by altered gene expression. A role for non-coding RNAs in alcoholism is beginning to emerge. PCR-differential display using total RNA extracted from brain material of human alcoholics and control cases identified a cDNA fragment corresponding to a section of a known non protein-coding RNA (ncRNA), MALAT-1, (also known as NEAT2). Comparison of mRNA levels of MALAT-1 was performed by northern and dot blot experiments using different regions of brain from human alcoholics and rats chronically treated with ethanol vapours and following withdrawal. A massive increase of MALAT-1 transcripts was detected in cerebellum of human alcoholics and increases were also noted in hippocampus and brain stem, while no significant increase of MALAT-1 expression was noted in frontal or motor cortices. In the rat no significant difference of MALAT-1 ortholog mRNA could be detected in cerebellum. In addition, similarly to humans, no significant increase of MALAT-1 expression was detected in cortex of alcohol-treated rats, however, after 24 h alcohol withdrawal, a significant upregulation of MALAT-1 expression was observed in rat cortex. MALAT-1 is upregulated in specific regions of the human alcoholic brain and following alcohol withdrawal in the rat. As MALAT-1 regulates RNA processing, this suggests that alcohol-induced upregulation of MALAT-1 represents an important novel mechanism for alcohol actions in the CNS.
Collapse
Affiliation(s)
- Rosemarie Kryger
- Department of Biochemistry, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Australia.
| | | | | | | |
Collapse
|
18
|
Seemann SE, Sunkin SM, Hawrylycz MJ, Ruzzo WL, Gorodkin J. Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain. BMC Genomics 2012; 13:214. [PMID: 22651826 PMCID: PMC3464589 DOI: 10.1186/1471-2164-13-214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 05/31/2012] [Indexed: 01/24/2023] Open
Abstract
Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function.
Collapse
Affiliation(s)
- Stefan E Seemann
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
19
|
Serafini G, Pompili M, Innamorati M, Giordano G, Montebovi F, Sher L, Dwivedi Y, Girardi P. The role of microRNAs in synaptic plasticity, major affective disorders and suicidal behavior. Neurosci Res 2012; 73:179-90. [PMID: 22521503 DOI: 10.1016/j.neures.2012.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/19/2022]
Abstract
Major affective disorders are common widespread conditions associated with multiple psychosocial impairments and suicidal risk in the general population. At least 3-4% of all depressive individuals die by suicide. At a molecular level, affective disorders and suicidal behavior are recently associated with disturbances in structural and synaptic plasticity. A recent hypothesis suggested that small non-coding RNAs (ncRNAs), in particular microRNAs (miRNAs), play a critical role in the translational regulation at the synapse. We performed a selective overview of the current literature on miRNAs putative subcellular localization and sites of action in mature neurons analyzing their role in neurogenesis, synaptic plasticity, pathological stress changes, major affective disorders and suicidal behavior. miRNAs have played a fundamental role in the evolution of brain functions. The perturbation of some intracellular mechanisms as well as impaired assembly, localization, and translational regulation of specific RNA binding proteins may affect learning and memory, presumably contributing to the pathogenesis of major affective disorders and perhaps suicidal behavior. Also, miRNA dys-regulation has also been linked to several neuropsychiatric diseases. However, further evidence are needed in order to directly clarify the role of miRNAs in major affective disorders and suicidal behavior.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Suicide Prevention Center, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Identification and analysis of intermediate size noncoding RNAs in the human fetal brain. PLoS One 2011; 6:e21652. [PMID: 21789175 PMCID: PMC3138756 DOI: 10.1371/journal.pone.0021652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 06/07/2011] [Indexed: 12/18/2022] Open
Abstract
The involvement of noncoding RNAs (ncRNAs) in the development of the human brain remains largely unknown. Applying a cloning strategy for detection of intermediate size (50–500 nt) ncRNAs (is-ncRNAs) we have identified 82 novel transcripts in human fetal brain tissue. Most of the novel is-ncRNAs are not well conserved in vertebrates, and several transcripts were only found in primates. Northern blot and microarray analysis indicated considerable variation in expression across human fetal brain development stages and fetal tissues for both novel and known is-ncRNAs. Expression of several of the novel is-ncRNAs was conspicuously absent in one or two brain cancer cell lines, and transient overexpression of some transcripts in cancer cells significantly inhibited cell proliferation. Overall, our results suggest that is-ncRNAs play important roles in the development and tumorigenesis of human brain.
Collapse
|
21
|
Juhila J, Sipilä T, Icay K, Nicorici D, Ellonen P, Kallio A, Korpelainen E, Greco D, Hovatta I. MicroRNA expression profiling reveals miRNA families regulating specific biological pathways in mouse frontal cortex and hippocampus. PLoS One 2011; 6:e21495. [PMID: 21731767 PMCID: PMC3120887 DOI: 10.1371/journal.pone.0021495] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/29/2011] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory molecules that cause post-transcriptional gene silencing. Although some miRNAs are known to have region-specific expression patterns in the adult brain, the functional consequences of the region-specificity to the gene regulatory networks of the brain nuclei are not clear. Therefore, we studied miRNA expression patterns by miRNA-Seq and microarrays in two brain regions, frontal cortex (FCx) and hippocampus (HP), which have separate biological functions. We identified 354 miRNAs from FCx and 408 from HP using miRNA-Seq, and 245 from FCx and 238 from HP with microarrays. Several miRNA families and clusters were differentially expressed between FCx and HP, including the miR-8 family, miR-182|miR-96|miR-183 cluster, and miR-212|miR-312 cluster overexpressed in FCx and miR-34 family overexpressed in HP. To visualize the clusters, we developed support for viewing genomic alignments of miRNA-Seq reads in the Chipster genome browser. We carried out pathway analysis of the predicted target genes of differentially expressed miRNA families and clusters to assess their putative biological functions. Interestingly, several miRNAs from the same family/cluster were predicted to regulate specific biological pathways. We have developed a miRNA-Seq approach with a bioinformatic analysis workflow that is suitable for studying miRNA expression patterns from specific brain nuclei. FCx and HP were shown to have distinct miRNA expression patterns which were reflected in the predicted gene regulatory pathways. This methodology can be applied for the identification of brain region-specific and phenotype-specific miRNA-mRNA-regulatory networks from the adult and developing rodent brain.
Collapse
Affiliation(s)
- Juuso Juhila
- Institute of Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Tessa Sipilä
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Katherine Icay
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Daniel Nicorici
- Institute of Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute of Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | | | - Dario Greco
- Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Iiris Hovatta
- Institute of Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
- * E-mail:
| |
Collapse
|
22
|
Dwivedi Y. Evidence demonstrating role of microRNAs in the etiopathology of major depression. J Chem Neuroanat 2011; 42:142-56. [PMID: 21515361 DOI: 10.1016/j.jchemneu.2011.04.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 01/17/2023]
Abstract
Major depression is a debilitating disease. Despite a tremendous amount of research, the molecular mechanisms associated with the etiopathology of major depression are not clearly understood. Several lines of evidence indicate that depression is associated with altered neuronal and structural plasticity and neurogenesis. MicroRNAs are a newly discovered prominent class of gene expression regulators that have critical roles in neural development, are needed for survival and optimal health of postmitotic neurons, and regulate synaptic functions, particularly by regulating protein synthesis in dendritic spines. In addition, microRNAs (miRNAs) regulate both embryonic and adult neurogenesis. Given that miRNAs are involved in neural plasticity and neurogenesis, the concept that miRNAs may play an important role in psychiatric illnesses, including major depression, is rapidly advancing. Emerging evidence demonstrates that the expression of miRNAs is altered during stress, in the brain of behaviorally depressed animals, and in human postmortem brain of depressed subjects. In this review article, the possibility that dysregulation of miRNAs and/or altered miRNA response may contribute to the etiology and pathophysiology of depressive disorder is discussed.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
23
|
Wibrand K, Panja D, Tiron A, Ofte ML, Skaftnesmo KO, Lee CS, Pena JTG, Tuschl T, Bramham CR. Differential regulation of mature and precursor microRNA expression by NMDA and metabotropic glutamate receptor activation during LTP in the adult dentate gyrus in vivo. Eur J Neurosci 2010; 31:636-45. [PMID: 20384810 PMCID: PMC3791877 DOI: 10.1111/j.1460-9568.2010.07112.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulation of microRNA (miRNA) expression and function in the context of activity-dependent synaptic plasticity in the adult brain is little understood. Here, we examined miRNA expression during long-term potentiation (LTP) in the dentate gyrus of adult anesthetized rats. Microarray expression profiling identified a subpopulation of regulated mature miRNAs 2 h after the induction of LTP by high-frequency stimulation (HFS) of the medial perforant pathway. Real-time polymerase chain reaction analysis confirmed modest upregulation of miR-132 and miR-212, and downregulation of miR-219, while no changes occurred at 10 min post-HFS. Surprisingly, pharmacological blockade of N-methyl-d-aspartate receptor (NMDAR)-dependent LTP enhanced expression of these mature miRNAs. This HFS-evoked expression was abolished by local infusion of the group 1 metabotropic glutamate receptor (mGluR) antagonist, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA). AIDA had no effect on LTP induction or maintenance, but blocked activity-dependent depotentiation of LTP. Turning to the analysis of miRNA precursors, we show that HFS elicits 50-fold elevations of primary (pri) and precursor (pre) miR-132/212 that is transcription dependent and mGluR dependent, but insensitive to NMDAR blockade. Primary miR-219 expression was unchanged during LTP. In situ hybridization showed upregulation of the pri-miR-132/212 cluster restricted to dentate granule cell somata. Thus, HFS induces transcription miR-132/212 that is mGluR dependent and functionally correlated with depotentiation rather than LTP. In contrast, NMDAR activation selectively downregulates mature miR-132, -212 and -219 levels, indicating accelerated decay of these mature miRNAs. This study demonstrates differential regulation of primary and mature miRNA expression by mGluR and NMDAR signaling following LTP induction, the function of which remains to be defined.
Collapse
Affiliation(s)
- Karin Wibrand
- Department of Biomedicine and Bergen Mental Health Research Center, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gieni RS, Hendzel MJ. Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancer. Biochem Cell Biol 2010; 87:711-46. [PMID: 19898523 DOI: 10.1139/o09-057] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic programming is an important facet of biology, controlling gene expression patterns and the choice between developmental pathways. The Polycomb group proteins (PcGs) silence gene expression, allowing cells to both acquire and maintain identity. PcG silencing is important for stemness, X chromosome inactivation (XCI), genomic imprinting, and the abnormally silenced genes in cancers. Stem and cancer cells commonly share gene expression patterns, regulatory mechanisms, and signalling pathways. Many microRNA species have oncogenic or tumor suppressor activity, and disruptions in these networks are common in cancer; however, long non-coding (nc)RNA species are also important. Many of these directly guide PcG deposition and gene silencing at the HOX locus, during XCI, and in examples of genomic imprinting. Since inappropriate HOX expression and loss of genomic imprinting are hallmarks of cancer, disruption of long ncRNA-mediated PcG silencing likely has a role in oncogenesis. Aberrant silencing of coding and non-coding loci is critical for both the genesis and progression of cancers. In addition, PcGs are commonly abnormally overexpressed years prior to cancer pathology, making early PcG targeted therapy an option to reverse tumor formation, someday replacing the blunt instrument of eradication in the cancer therapy arsenal.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G1Z2, Canada
| | | |
Collapse
|
25
|
Witzany G. Noncoding RNAs: persistent viral agents as modular tools for cellular needs. Ann N Y Acad Sci 2009; 1178:244-67. [PMID: 19845641 DOI: 10.1111/j.1749-6632.2009.04989.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It appears that all the detailed steps of evolution stored in DNA that are read, transcribed, and translated in every developmental and growth process of each individual cell depend on RNA-mediated processes, in most cases interconnected with other RNAs and their associated protein complexes and functions in a strict hierarchy of temporal and spatial steps. Life could not function without the key agents of DNA replication, namely mRNA, tRNA, and rRNA. Not only rRNA, but also tRNA and the processing of the primary transcript into the pre-mRNA and the mature mRNA are clearly descended from retro-"elements" with obvious retroviral ancestry. They seem to be remnants of viral infection events that did not kill their host but transferred phenotypic competences to their host and changed both the genetic identity of the host organism and the identity of the former infectious viral swarms. In this respect, noncoding RNAs may represent a great variety of modular tools for cellular needs that are derived from persistent nonlytic viral settlers.
Collapse
|
26
|
|
27
|
Kazantseva AV, Gaysina DA, Malykh SB, Khusnutdinova EK. Role of dopamine transporter gene (DAT1) polymorphisms in personality traits variation. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409080122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Siracusa LD, Buchberg AM. The noncoding RNAs: a genomic symphony of transcripts. Mamm Genome 2008; 19:449-53. [PMID: 19011942 DOI: 10.1007/s00335-008-9151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 11/25/2022]
Affiliation(s)
- Linda D Siracusa
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107-5541, USA.
| | | |
Collapse
|
29
|
Savvateeva-Popova E, Medvedeva A, Popov A, Evgen'ev M. Role of non-coding RNAs in neurodegeneration and stress response in Drosophila. Biotechnol J 2008; 3:1010-21. [PMID: 18702036 DOI: 10.1002/biot.200800120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inherent limitations of genetic analysis in humans and other mammals as well as striking conservation of most genes controlling nervous system functioning in flies and mammals made Drosophila an attractive model to investigate various aspects of brain diseases. Since RNA research has made great progress in recent years here we present an overview of studies demonstrating the role of various non-coding RNAs in neurodegeneration and stress response in Drosophila as a model organism. We put special emphasis on the role of non-coding micro RNAs, hsr-omega transcripts, and artificial small highly structured RNAs as triggers of neuropathology including aggregates formation, cognitive abnormalities and other symptoms. Cellular stress is a conspicuous feature of many neurodegenerative diseases and the production of specialized proteins protects the nerve cells against aggregates formation. Therefore, herein we describe some data implicating various classes of non-coding RNAs in stress response in Drosophila. All these findings highlight Drosophila as an important model system to investigate various brain diseases potentially mediated by some non-coding RNAs including polyglutamine diseases, Alzheimer's disease, Huntigton's disease, and many others.
Collapse
|
30
|
Li Y, Lin L, Jin P. The microRNA pathway and fragile X mental retardation protein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:702-5. [PMID: 18687414 DOI: 10.1016/j.bbagrm.2008.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/07/2008] [Accepted: 07/09/2008] [Indexed: 11/29/2022]
Abstract
Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by the functional loss of fragile X mental retardation protein (FMRP). MicroRNAs (miRNAs), a newly discovered class of small noncoding RNAs, have been implicated in multiple biological processes through posttranscriptional gene regulation. Recent evidence supports this view in terms of the biochemical and genetic interaction found between FMRP and the miRNA pathway, providing deeper insight into the molecular pathogenesis of mental retardation. This review briefly summarizes the progress towards an understanding of the role miRNAs play in neurological disorders, with a focus on the mechanism of interaction between FMRP and the miRNA pathway in the context of fragile X syndrome. In addition, we go on to discuss how the miRNA pathway may be involved in mental retardation.
Collapse
Affiliation(s)
- Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
31
|
Yazgan O, Krebs JE. Noncoding but nonexpendable: transcriptional regulation by large noncoding RNA in eukaryotes. Biochem Cell Biol 2008; 85:484-96. [PMID: 17713583 DOI: 10.1139/o07-061] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome sequencing and annotation has advanced our understanding of genome organization and gene structure but initially only allowed predictions of how many genes might be present. Mechanisms such as alternative splicing reveal that these predictions only scratch the surface of the true nature of the transcriptome. Several thousand expressed partial gene fragments have been cloned but were considered transcriptional noise or cloning artifacts. We now know that genomes are indeed expressed at much higher levels than was previously predicted, and much of the additional transcription maps to intergenic regions, intron sequences, and untranslated regions of mRNAs. These transcripts are expressed from either the sense or the antisense strand and can be confirmed by conventional techniques. In addition to the already established roles for small RNAs in gene regulation, large noncoding RNAs (ncRNAs) are also emerging as potent regulators of gene expression. In this review, we summarize several illustrative examples of gene regulatory mechanisms that involve large ncRNAs. We describe several distinct regulatory mechanisms that involve large ncRNAs, such as transcriptional interference and promoter inactivation, as well as indirect effects on transcription regulatory proteins and in genomic imprinting. These diverse functions for large ncRNAs are likely to be only the first of many novel regulatory mechanisms emerging from this growing field.
Collapse
Affiliation(s)
- Oya Yazgan
- Department of Biological Sciences, University of AK Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | | |
Collapse
|
32
|
Abstract
Plasticity in the brain is important for learning and memory, and allows us to respond to changes in the environment. Furthermore, long periods of stress can lead to structural and excitatory changes associated with anxiety and depression that can be reversed by pharmacological treatment. Drugs of abuse can also cause long-lasting changes in reward-related circuits, resulting in addiction. Each of these forms of long-term plasticity in the brain requires changes in gene expression. Upon stimulation, second messenger pathways are activated that lead to an enhancement in transcription factor activity at gene promoters. This stimulation results in the expression of new growth factors, ion channels, structural molecules, and other proteins necessary to alter the neuronal circuit. With repeated stimulation, more permanent modifications to transcription factors and chromatin structure are made that result in either sensitization or desensitization of a circuit. Studies are beginning to uncover the molecular mechanisms that lead to these types of long-term changes in the brain. This review summarizes some of the major transcriptional mechanisms that are thought to underlie neuronal and behavioral plasticity.
Collapse
Affiliation(s)
- Colleen A McClung
- Department of Psychiatry and Center for Basic Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9070, USA
| | | |
Collapse
|