1
|
Liu C, Fu S, Yi C, Liu Y, Huang Y, Guo X, Zhang K, Liu Q, Birchler JA, Han F. Unveiling the distinctive traits of functional rye centromeres: minisatellites, retrotransposons, and R-loop formation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1989-2002. [PMID: 38805064 DOI: 10.1007/s11427-023-2524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 05/29/2024]
Abstract
Centromeres play a vital role in cellular division by facilitating kinetochore assembly and spindle attachments. Despite their conserved functionality, centromeric DNA sequences exhibit rapid evolution, presenting diverse sizes and compositions across species. The functional significance of rye centromeric DNA sequences, particularly in centromere identity, remains unclear. In this study, we comprehensively characterized the sequence composition and organization of rye centromeres. Our findings revealed that these centromeres are primarily composed of long terminal repeat retrotransposons (LTR-RTs) and interspersed minisatellites. We systematically classified LTR-RTs into five categories, highlighting the prevalence of younger CRS1, CRS2, and CRS3 of CRSs (centromeric retrotransposons of Secale cereale) were primarily located in the core centromeres and exhibited a higher association with CENH3 nucleosomes. The minisatellites, mainly derived from retrotransposons, along with CRSs, played a pivotal role in establishing functional centromeres in rye. Additionally, we observed the formation of R-loops at specific regions of CRS1, CRS2, and CRS3, with both rye pericentromeres and centromeres exhibiting enrichment in R-loops. Notably, these R-loops selectively formed at binding regions of the CENH3 nucleosome in rye centromeres, suggesting a potential role in mediating the precise loading of CENH3 to centromeres and contributing to centromere specification. Our work provides insights into the DNA sequence composition, distribution, and potential function of R-loops in rye centromeres. This knowledge contributes valuable information to understanding the genetics and epigenetics of rye centromeres, offering implications for the development of synthetic centromeres in future plant modifications and beyond.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Fu
- Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaibiao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James A Birchler
- Division of Biological Science, University of Missouri, Columbia, 65211-7400, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Hackauf B, Siekmann D, Fromme FJ. Improving Yield and Yield Stability in Winter Rye by Hybrid Breeding. PLANTS (BASEL, SWITZERLAND) 2022; 11:2666. [PMID: 36235531 PMCID: PMC9571156 DOI: 10.3390/plants11192666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Rye is the only cross-pollinating small-grain cereal. The unique reproduction biology results in an exceptional complexity concerning genetic improvement of rye by breeding. Rye is a close relative of wheat and has a strong adaptation potential that refers to its mating system, making this overlooked cereal readily adjustable to a changing environment. Rye breeding addresses the emerging challenges of food security associated with climate change. The systematic identification, management, and use of its valuable natural diversity became a feasible option in outbreeding rye only following the establishment of hybrid breeding late in the 20th century. In this article, we review the most recent technological advances to improve yield and yield stability in winter rye. Based on recently released reference genome sequences, SMART breeding approaches are described to counterbalance undesired linkage drag effects of major restorer genes on grain yield. We present the development of gibberellin-sensitive semidwarf hybrids as a novel plant breeding innovation based on an approach that is different from current methods of increasing productivity in rye and wheat. Breeding of new rye cultivars with improved performance and resilience is indispensable for a renaissance of this healthy minor cereal as a homogeneous commodity with cultural relevance in Europe that allows for comparatively smooth but substantial complementation of wheat with rye-based diets, supporting the necessary restoration of the balance between human action and nature.
Collapse
Affiliation(s)
- Bernd Hackauf
- Julius Kühn Institute, Institute for Breeding Research on Agricultural Crops, Rudolf-Schick-Platz 3a, 18190 Sanitz, Germany
| | - Dörthe Siekmann
- Hybro Saatzucht GmbH & Co. KG, Langlinger Straße 3, 29565 Wriedel, Germany
| | | |
Collapse
|
3
|
Association mapping of autumn-seeded rye (Secale cereale L.) reveals genetic linkages between genes controlling winter hardiness and plant development. Sci Rep 2022; 12:5793. [PMID: 35388069 PMCID: PMC8986816 DOI: 10.1038/s41598-022-09582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
Winter field survival (WFS) in autumn-seeded winter cereals is a complex trait associated with low temperature tolerance (LTT), prostrate growth habit (PGH), and final leaf number (FLN). WFS and the three sub-traits were analyzed by a genome-wide association study of 96 rye (Secale cereal L.) genotypes of different origins and winter-hardiness levels. A total of 10,244 single nucleotide polymorphism (SNP) markers were identified by genotyping by sequencing and 259 marker-trait-associations (MTAs; p < 0.01) were revealed by association mapping. The ten most significant SNPs (p < 1.49e−04) associated with WFS corresponded to nine strong candidate genes: Inducer of CBF Expression 1 (ICE1), Cold-regulated 413-Plasma Membrane Protein 1 (COR413-PM1), Ice Recrystallization Inhibition Protein 1 (IRIP1), Jasmonate-resistant 1 (JAR1), BIPP2C1-like protein phosphatase, Chloroplast Unusual Positioning Protein-1 (CHUP1), FRIGIDA-like 4 (FRL4-like) protein, Chalcone Synthase 2 (CHS2), and Phenylalanine Ammonia-lyase 8 (PAL8). Seven of the candidate genes were also significant for one or several of the sub-traits supporting the hypothesis that WFS, LTT, FLN, and PGH are genetically interlinked. The winter-hardy rye genotypes generally carried additional allele variants for the strong candidate genes, which suggested allele diversity was a major contributor to cold acclimation efficiency and consistent high WFS under varying field conditions.
Collapse
|
4
|
Moradi Z. Meta-transcriptomic analysis reveals an isolate of aphid lethal paralysis virus from Wisteria sinensis in Iran. Virus Res 2022; 315:198770. [DOI: 10.1016/j.virusres.2022.198770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/21/2022]
|
5
|
Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis. Int J Mol Sci 2022; 23:ijms23073821. [PMID: 35409181 PMCID: PMC8999039 DOI: 10.3390/ijms23073821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high β-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain β-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with β-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain β-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods.
Collapse
|
6
|
Li Y, Ruperao P, Batley J, Edwards D, Martin W, Hobson K, Sutton T. Genomic prediction of preliminary yield trials in chickpea: Effect of functional annotation of SNPs and environment. THE PLANT GENOME 2022; 15:e20166. [PMID: 34786880 DOI: 10.1002/tpg2.20166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Achieving yield potential in chickpea (Cicer arietinum L.) is limited by many constraints that include biotic and abiotic stresses. Combining next-generation sequencing technology with advanced statistical modeling has the potential to increase genetic gain efficiently. Whole genome resequencing data was obtained from 315 advanced chickpea breeding lines from the Australian chickpea breeding program resulting in more than 298,000 single nucleotide polymorphisms (SNPs) discovered. Analysis of population structure revealed a distinct group of breeding lines with many alleles that are absent from recently released Australian cultivars. Genome-wide association studies (GWAS) using these Australian breeding lines identified 20 SNPs significantly associated with grain yield in multiple field environments. A reduced level of nucleotide diversity and extended linkage disequilibrium suggested that some regions in these chickpea genomes may have been through selective breeding for yield or other traits. A large introgression segment that introduced from C. echinospermum for phytophthora root rot resistance was identified on chromosome 6, yet it also has unintended consequences of reducing yield due to linkage drag. We further investigated the effect of genotype by environment interaction on genomic prediction of yield. We found that the training set had better prediction accuracy when phenotyped under conditions relevant to the targeted environments. We also investigated the effect of SNP functional annotation on prediction accuracy using different subsets of SNPs based on their genomic locations: regulatory regions, exome, and alternative splice sites. Compared with the whole SNP dataset, a subset of SNPs did not significantly decrease prediction accuracy for grain yield despite consisting of a smaller number of SNPs.
Collapse
Affiliation(s)
- Yongle Li
- School of Agriculture, Food and Wine, The Univ. of Adelaide, Adelaide, SA, 5064, Australia
| | - Pradeep Ruperao
- Statistics, Bioinformatics and Data Management, ICRISAT, Hyderabad, 502324, India
| | - Jacqueline Batley
- School of Biological Sciences, The Univ. of Western Australia, Perth, WA, 6001, Australia
| | - David Edwards
- School of Biological Sciences, The Univ. of Western Australia, Perth, WA, 6001, Australia
| | - William Martin
- Dep. of Agriculture and Fisheries, Warwick, Qld, 4370, Australia
| | - Kristy Hobson
- NSW Dep. of Primary Industries, Tamworth, NSW, 2340, Australia
| | - Tim Sutton
- School of Agriculture, Food and Wine, The Univ. of Adelaide, Adelaide, SA, 5064, Australia
- South Australian Research and Development Institute, Adelaide, SA, 5064, Australia
| |
Collapse
|
7
|
Discovery of a novel powdery mildew (Blumeria graminis) resistance locus in rye (Secale cereale L.). Sci Rep 2021; 11:23057. [PMID: 34845285 PMCID: PMC8630102 DOI: 10.1038/s41598-021-02488-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022] Open
Abstract
Powdery mildew is one of the most destructive diseases in the world, causing substantial grain yield losses and quality reduction in cereal crops. At present 23 powdery mildew resistance genes have been identified in rye, of which the majority are in wheat-rye translocation lines developed for wheat improvement. Here, we investigated the genetics underlying powdery mildew resistance in the Gülzow-type elite hybrid rye (Secale cereale L.) breeding germplasm. In total, 180 inbred breeding lines were genotyped using the state-of-the-art 600 K SNP array and phenotyped for infection type against three distinct field populations of B. graminis f. sp. secalis from Northern Germany (2013 and 2018) and Denmark (2020). We observed a moderate level of powdery mildew resistance in the non-restorer germplasm population, and by performing a genome-wide association study using 261,406 informative SNP markers, we identified a powdery mildew resistance locus, provisionally denoted PmNOS1, on the distal tip of chromosome arm 7RL. Using recent advances in rye genomic resources, we investigated whether nucleotide-binding leucine-rich repeat genes residing in the identified 17 Mbp block associated with PmNOS1 on recent reference genomes resembled known Pm genes.
Collapse
|
8
|
Siekmann D, Jansen G, Zaar A, Kilian A, Fromme FJ, Hackauf B. A Genome-Wide Association Study Pinpoints Quantitative Trait Genes for Plant Height, Heading Date, Grain Quality, and Yield in Rye ( Secale cereale L.). FRONTIERS IN PLANT SCIENCE 2021; 12:718081. [PMID: 34777409 PMCID: PMC8586073 DOI: 10.3389/fpls.2021.718081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/22/2021] [Indexed: 06/03/2023]
Abstract
Rye is the only cross-pollinating Triticeae crop species. Knowledge of rye genes controlling complex-inherited traits is scarce, which, currently, largely disables the genomics assisted introgression of untapped genetic variation from self-incompatible germplasm collections in elite inbred lines for hybrid breeding. We report on the first genome-wide association study (GWAS) in rye based on the phenotypic evaluation of 526 experimental hybrids for plant height, heading date, grain quality, and yield in 2 years and up to 19 environments. We established a cross-validated NIRS calibration model as a fast, effective, and robust analytical method to determine grain quality parameters. We observed phenotypic plasticity in plant height and tiller number as a resource use strategy of rye under drought and identified increased grain arabinoxylan content as a striking phenotype in osmotically stressed rye. We used DArTseq™ as a genotyping-by-sequencing technology to reduce the complexity of the rye genome. We established a novel high-density genetic linkage map that describes the position of almost 19k markers and that allowed us to estimate a low genome-wide LD based on the assessed genetic diversity in elite germplasm. We analyzed the relationship between plant height, heading date, agronomic, as well as grain quality traits, and genotype based on 20k novel single-nucleotide polymorphism markers. In addition, we integrated the DArTseq™ markers in the recently established 'Lo7' reference genome assembly. We identified cross-validated SNPs in 'Lo7' protein-coding genes associated with all traits studied. These include associations of the WUSCHEL-related homeobox transcription factor DWT1 and grain yield, the DELLA protein gene SLR1 and heading date, the Ethylene overproducer 1-like protein gene ETOL1 and thousand-grain weight, protein and starch content, as well as the Lectin receptor kinase SIT2 and plant height. A Leucine-rich repeat receptor protein kinase and a Xyloglucan alpha-1,6-xylosyltransferase count among the cross-validated genes associated with water-extractable arabinoxylan content. This study demonstrates the power of GWAS, hybrid breeding, and the reference genome sequence in rye genetics research to dissect and identify the function of genes shaping genetic diversity in agronomic and grain quality traits of rye. The described links between genetic causes and phenotypic variation will accelerate genomics-enabled rye improvement.
Collapse
Affiliation(s)
- Dörthe Siekmann
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Sanitz, Germany
- HYBRO Saatzucht GmbH & Co. KG, Schenkenberg, Germany
| | - Gisela Jansen
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Sanitz, Germany
| | - Anne Zaar
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Sanitz, Germany
| | | | | | - Bernd Hackauf
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Sanitz, Germany
| |
Collapse
|
9
|
Lyra DH, Griffiths CA, Watson A, Joynson R, Molero G, Igna AA, Hassani-Pak K, Reynolds MP, Hall A, Paul MJ. Gene-based mapping of trehalose biosynthetic pathway genes reveals association with source- and sink-related yield traits in a spring wheat panel. Food Energy Secur 2021; 10:e292. [PMID: 34594548 PMCID: PMC8459250 DOI: 10.1002/fes3.292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Trehalose 6‐phosphate (T6P) signalling regulates carbon use and allocation and is a target to improve crop yields. However, the specific contributions of trehalose phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP) genes to source‐ and sink‐related traits remain largely unknown. We used enrichment capture sequencing on TPS and TPP genes to estimate and partition the genetic variation of yield‐related traits in a spring wheat (Triticum aestivum) breeding panel specifically built to capture the diversity across the 75,000 CIMMYT wheat cultivar collection. Twelve phenotypes were correlated to variation in TPS and TPP genes including plant height and biomass (source), spikelets per spike, spike growth and grain filling traits (sink) which showed indications of both positive and negative gene selection. Individual genes explained proportions of heritability for biomass and grain‐related traits. Three TPS1 homologues were particularly significant for trait variation. Epistatic interactions were found within and between the TPS and TPP gene families for both plant height and grain‐related traits. Gene‐based prediction improved predictive ability for grain weight when gene effects were combined with the whole‐genome markers. Our study has generated a wealth of information on natural variation of TPS and TPP genes related to yield potential which confirms the role for T6P in resource allocation and in affecting traits such as grain number and size confirming other studies which now opens up the possibility of harnessing natural genetic variation more widely to better understand the contribution of native genes to yield traits for incorporation into breeding programmes.
Collapse
Affiliation(s)
- Danilo H Lyra
- Computational & Analytical Sciences Rothamsted Research Harpenden UK
| | | | - Amy Watson
- Plant Sciences Rothamsted Research Harpenden UK
| | | | - Gemma Molero
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT) Texcoco Mexico
| | | | | | - Matthew P Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT) Texcoco Mexico
| | | | | |
Collapse
|
10
|
Wąsek I, Dyda M, Gołębiowska G, Tyrka M, Rapacz M, Szechyńska-Hebda M, Wędzony M. Quantitative trait loci and candidate genes associated with freezing tolerance of winter triticale (× Triticosecale Wittmack). J Appl Genet 2021; 63:15-33. [PMID: 34491554 PMCID: PMC8755666 DOI: 10.1007/s13353-021-00660-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Freezing tolerance of triticale is a major trait contributing to its winter hardiness. The identification of genomic regions — quantitative trait loci (QTL) and molecular markers associated with freezing tolerance in winter hexaploid triticale — was the aim of this study. For that purpose, a new genetic linkage map was developed for the population of 92 doubled haploid lines derived from ‘Hewo’ × ‘Magnat’ F1 hybrid. Those lines, together with parents were subjected to freezing tolerance test three times during two winter seasons. Plants were grown and cold-hardened under natural fall/winter conditions and then subjected to freezing in controlled conditions. Freezing tolerance was assessed as the plants recovery (REC), the electrolyte leakage (EL) from leaves and chlorophyll fluorescence parameters (JIP) after freezing. Three consistent QTL for several fluorescence parameters, electrolyte leakage, and the percentage of the survived plants were identified with composite interval mapping (CIM) and single marker analysis (SMA). The first locus Qfr.hm-7A.1 explained 9% of variation of both electrolyte leakage and plants recovery after freezing. Two QTL explaining up to 12% of variation in plants recovery and shared by selected chlorophyll fluorescence parameters were found on 4R and 5R chromosomes. Finally, main locus Qchl.hm-5A.1 was detected for chlorophyll fluorescence parameters that explained up to 19.6% of phenotypic variation. The co-located QTL on chromosomes 7A.1, 4R and 5R, clearly indicated physiological and genetic relationship of the plant survival after freezing with the ability to maintain optimal photochemical activity of the photosystem II and preservation of the cell membranes integrity. The genes located in silico within the identified QTL include those encoding BTR1-like protein, transmembrane helix proteins like potassium channel, and phosphoric ester hydrolase involved in response to osmotic stress as well as proteins involved in the regulation of the gene expression, chloroplast RNA processing, and pyrimidine salvage pathway. Additionally, our results confirm that the JIP test is a valuable tool to evaluate freezing tolerance of triticale under unstable winter environments.
Collapse
Affiliation(s)
- I Wąsek
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - M Dyda
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - G Gołębiowska
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland.
| | - M Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszow, Poland
| | - M Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239, Krakow, Poland
| | - M Szechyńska-Hebda
- Plant Breeding and Acclimatization Institute, National Research Institute, 05-870, Radzików, Błonie, Poland.,The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - M Wędzony
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| |
Collapse
|
11
|
Canales FJ, Montilla-Bascón G, Bekele WA, Howarth CJ, Langdon T, Rispail N, Tinker NA, Prats E. Population genomics of Mediterranean oat (A. sativa) reveals high genetic diversity and three loci for heading date. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2063-2077. [PMID: 33770189 DOI: 10.5061/dryad.0gb5mkm0g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/24/2021] [Indexed: 05/19/2023]
Abstract
Genomic analysis of Mediterranean oats reveals high genetic diversity and three loci for adaptation to this environment. This information together with phenotyping and passport data, gathered in an interactive map, will be a vital resource for oat genetic improvement. During the twentieth century, oat landraces have increasingly been replaced by modern cultivars, resulting in loss of genetic diversity. However, landraces have considerable potential to improve disease and abiotic stress tolerance and may outperform cultivars under low input systems. In this work, we assembled a panel of 669 oat landraces from Mediterranean rim and 40 cultivated oat varieties and performed the first large-scale population genetic analysis of both red and white oat types of Mediterranean origin. We created a public database associated with an interactive map to visualize information for each accession. The oat collection was genotyped with 17,288 single-nucleotide polymorphism (SNP) loci to evaluate population structure and linkage disequilibrium (LD); to perform a genome-wide association study (GWAs) for heading date, a key character closely correlated with performance in this drought-prone area. Population genetic analysis using both structure and PCA distinguished two main groups composed of the red and white oats, respectively. The white oat group was further divided into two subgroups. LD decay was slower within white lines in linkage groups Mrg01, 02, 04, 12, 13, 15, 23, 33, whereas it was slower within red lines in Mrg03, 05, 06, 11, 21, 24, and 28. Association analysis showed several significant markers associated with heading date on linkage group Mrg13 in white oats and on Mrg01 and Mrg08 in red oats.
Collapse
Affiliation(s)
- F J Canales
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain
| | - G Montilla-Bascón
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain
| | - W A Bekele
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - C J Howarth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth Univ, Aberystwyth, UK
| | - T Langdon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth Univ, Aberystwyth, UK
| | - N Rispail
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain
| | - N A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - E Prats
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain.
| |
Collapse
|
12
|
Canales FJ, Montilla-Bascón G, Bekele WA, Howarth CJ, Langdon T, Rispail N, Tinker NA, Prats E. Population genomics of Mediterranean oat (A. sativa) reveals high genetic diversity and three loci for heading date. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2063-2077. [PMID: 33770189 PMCID: PMC8263550 DOI: 10.1007/s00122-021-03805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/24/2021] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Genomic analysis of Mediterranean oats reveals high genetic diversity and three loci for adaptation to this environment. This information together with phenotyping and passport data, gathered in an interactive map, will be a vital resource for oat genetic improvement. During the twentieth century, oat landraces have increasingly been replaced by modern cultivars, resulting in loss of genetic diversity. However, landraces have considerable potential to improve disease and abiotic stress tolerance and may outperform cultivars under low input systems. In this work, we assembled a panel of 669 oat landraces from Mediterranean rim and 40 cultivated oat varieties and performed the first large-scale population genetic analysis of both red and white oat types of Mediterranean origin. We created a public database associated with an interactive map to visualize information for each accession. The oat collection was genotyped with 17,288 single-nucleotide polymorphism (SNP) loci to evaluate population structure and linkage disequilibrium (LD); to perform a genome-wide association study (GWAs) for heading date, a key character closely correlated with performance in this drought-prone area. Population genetic analysis using both structure and PCA distinguished two main groups composed of the red and white oats, respectively. The white oat group was further divided into two subgroups. LD decay was slower within white lines in linkage groups Mrg01, 02, 04, 12, 13, 15, 23, 33, whereas it was slower within red lines in Mrg03, 05, 06, 11, 21, 24, and 28. Association analysis showed several significant markers associated with heading date on linkage group Mrg13 in white oats and on Mrg01 and Mrg08 in red oats.
Collapse
Affiliation(s)
- F J Canales
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain
| | - G Montilla-Bascón
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain
| | - W A Bekele
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - C J Howarth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth Univ, Aberystwyth, UK
| | - T Langdon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth Univ, Aberystwyth, UK
| | - N Rispail
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain
| | - N A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - E Prats
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal, 14004, Córdoba, Spain.
| |
Collapse
|
13
|
Yang YH, Wang CJ, Li RF, Zhang ZY, Yang H, Chu CY, Li JT. Overexpression of RgPAL family genes involved in phenolic biosynthesis promotes the replanting disease development in Rehmannia glutinosa. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153339. [PMID: 33383401 DOI: 10.1016/j.jplph.2020.153339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Rehmannia glutinosa production is affected by the replanting disease, which involves autotoxic harm mediated by specific endogenous allelochemicals in root exudates. Many phenolics that act as allelochemical agents are mostly phenylpropanoid products of secondary metabolism in plants. Phenylalanine ammonia-lyase (PAL) is the first enzyme that catalyses the deamination of l-phenylalanine for entrance into the phenylpropanoid pathway. PAL family genes have been isolated and functionally characterized in many plant species. However, PAL family genes involved in phenolic biosynthesis remain largely uncharacterized in R. glutinosa. Here, we identified and characterized four PAL family genes (RgPAL2 to RgPAL5) in the species whose sequences exhibited highly conserved domains of PALs according to in silico analysis, implying their potential function in phenolic biosynthesis. Overexpression of RgPALs in R. glutinosa enhanced phenolic production, verifying that RgPAL family genes participate in phenolic biosynthesis pathways. Moreover, we found that the release of several allelopathic phenolics from the roots of RgPAL-overexpressing transgenic R. glutinosa increased, implying that the RgPALs positively promote their release. Importantly, under continuous monoculture stress, we found that the RgPAL transgenic plants exhibited more significant autotoxic harm than did non-transgenic (WT) plants by activating the phenolics/phenylpropanoid pathway, indicating that RgPAL family genes function as positive regulators of the replanting disease development in R. glutinosa. This study revealed that RgPAL family genes are involved in the biosynthesis and release of several phenolics and positively control the replanting disease development in R. glutinosa, laying a foundation for further clarification of the molecular mechanisms underlying the disease formation.
Collapse
Affiliation(s)
- Yan Hui Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Chao Jie Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Rui Fang Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Zhong Yi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou, 350002, China.
| | - Heng Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Chen Yang Chu
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Jia Tian Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| |
Collapse
|
14
|
Hawliczek A, Bolibok L, Tofil K, Borzęcka E, Jankowicz-Cieślak J, Gawroński P, Kral A, Till BJ, Bolibok-Brągoszewska H. Deep sampling and pooled amplicon sequencing reveals hidden genic variation in heterogeneous rye accessions. BMC Genomics 2020; 21:845. [PMID: 33256606 PMCID: PMC7706248 DOI: 10.1186/s12864-020-07240-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Loss of genetic variation negatively impacts breeding efforts and food security. Genebanks house over 7 million accessions representing vast allelic diversity that is a resource for sustainable breeding. Discovery of DNA variations is an important step in the efficient use of these resources. While technologies have improved and costs dropped, it remains impractical to consider resequencing millions of accessions. Candidate genes are known for most agronomic traits, providing a list of high priority targets. Heterogeneity in seed stocks means that multiple samples from an accession need to be evaluated to recover available alleles. To address this we developed a pooled amplicon sequencing approach and applied it to the out-crossing cereal rye (Secale cereale L.). RESULTS Using the amplicon sequencing approach 95 rye accessions of different improvement status and worldwide origin, each represented by a pooled sample comprising DNA of 96 individual plants, were evaluated for sequence variation in six candidate genes with significant functions on biotic and abiotic stress resistance, and seed quality. Seventy-four predicted deleterious variants were identified using multiple algorithms. Rare variants were recovered including those found only in a low percentage of seed. CONCLUSIONS We conclude that this approach provides a rapid and flexible method for evaluating stock heterogeneity, probing allele diversity, and recovering previously hidden variation. A large extent of within-population heterogeneity revealed in the study provides an important point for consideration during rye germplasm conservation and utilization efforts.
Collapse
Affiliation(s)
- Anna Hawliczek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Leszek Bolibok
- Department of Silviculture, Institute of Forest Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Katarzyna Tofil
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ewa Borzęcka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Joanna Jankowicz-Cieślak
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Adam Kral
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Bradley J Till
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria.
- Veterinary Genetics Laboratory, University of California, Davis, Davis, California, USA.
| | - Hanna Bolibok-Brągoszewska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.
| |
Collapse
|
15
|
Vendelbo NM, Sarup P, Orabi J, Kristensen PS, Jahoor A. Genetic structure of a germplasm for hybrid breeding in rye (Secale cereale L.). PLoS One 2020; 15:e0239541. [PMID: 33035208 PMCID: PMC7546470 DOI: 10.1371/journal.pone.0239541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/09/2020] [Indexed: 01/11/2023] Open
Abstract
Rye (Secale cereale L.) responds strongly to changes in heterozygosity with hybrids portraying strong heterosis effect on all developmental and yielding characteristics. In order to achieve the highest potential heterosis effect parental lines must originate from genetically distinct gene pools. Here we report the first comprehensive SNP-based population study of an elite germplasm using fertilization control system for hybrid breeding in rye that is genetically different to the predominating P-type. In total 376 inbred lines from Nordic Seed Germany GmbH were genotyped for 4419 polymorphic SNPs. The aim of this study was to confirm and quantify the genetic separation of parental populations, unveil their genetic characteristics and investigate underlying population structures. Through a palette of complimenting analysis, we confirmed a strong genetic differentiation (FST = 0.332) of parental populations validating the germplasms suitability for hybrid breeding. These were, furthermore, found to diverge considerably in several features with the maternal population portraying a strong population structure characterized by a narrow genetic profile, small effective population size and high genome-wise linkage disequilibrium. We propose that the employed male-sterility system putatively constitutes a population determining parameter by influencing the rate of introducing novel genetic variation to the parental populations. Functional analysis of linkage blocks led to identification of a conserved segment on the distal 4RL chromosomal region annotated to the Rfp3 male-fertility restoration 'Pampa' type gene. Findings of our study emphasized the immediate value of comprehensive population studies on elite breeding germplasms as a pre-requisite for application of genomic-based breeding techniques, introgression of novel material and to support breeder decision-making.
Collapse
Affiliation(s)
- Nikolaj M. Vendelbo
- Nordic Seed A/S, Odder, Denmark
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | | | | | - Ahmed Jahoor
- Nordic Seed A/S, Odder, Denmark
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
16
|
Gatzkaya SS, Evtushenko EV. Patterns of nucleotide diversity for different domains of centromeric histone H3 (CENH3) gene in Secale L. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rye (Secale) is among staple cereals along with other members of the Triticeae tribe: wheat and barley. The genus Secale includes perennial and annual, cross-pollinating and self-pollinating species, and they can be donors of valuable genes in wheat and rye breeding programs. Studies of the structure of the gene for centromeric histone H3 (CENH3), essential for centromere functions, are relevant to the breeding of agronomically important crops. We have investigated the nucleotide diversity of sequences of two variants of the rye CENH3 gene inside the N-terminal tail (NTT) and the conservative HFD (histone fold domain) domain in the genus Secale. The mean values of nucleotide diversity in the NTT and HFD of wild cross- and self-pollinating taxa are close in αCENH3: πtot = 0.0176–0.0090 and 0.0136–0. 0052, respectively. In the case of βCENH3, the mean values for NTT (πtot = 0.0168–0.0062) are lower than for HFD (πtot = 0.0259–0.084). The estimates of nucleotide and haplotype diversity per site for the CENH3 domains are considerably lower in taxa with narrow geographic ranges: S. cereale subsp. dighoricum and S. strictum subsp. kuprijanovii. Commercial breeding reduces the nucleotide sequence variability in αCENH3 and βCENH3. Cultivated rye varieties have π values within 0.0122–0.0014. The nucleotide and haplotype diversity values in αCENH3 and βCENH3 are close in S. sylvestre, which is believed to be the oldest rye species. The results of this study prove that the frequency of single nucleotide polymorphisms and nucleotide diversity of sequences in genes for CENH3 in Secale species are influenced by numerous factors, including reproduction habits, the geographic isolation of taxa, breeding, and the evolutionary age of species.
Collapse
|
17
|
Du F, Wang T, Fan JM, Liu ZZ, Zong JX, Fan WX, Han YH, Grierson D. Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes. HORTICULTURE RESEARCH 2019; 6:110. [PMID: 31645964 PMCID: PMC6804824 DOI: 10.1038/s41438-019-0192-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/03/2019] [Accepted: 07/24/2019] [Indexed: 05/12/2023]
Abstract
Lily is a well-known ornamental plant with a diversity of fragrant types. Basic information on lily floral scent compounds has been obtained for only a few accessions, and little is known about Lilium aroma types, the terpene synthase genes that may play roles in the production of key volatiles, or the range of monoterpenes that these genes produce. In this study, 41 cultivars were analyzed for volatile emissions, and a total of 46 individual volatile compounds were identified, 16 for the first time in lilies. Lily accessions were classified into six groups according to the composition of major scent components: faint-scented, cool, fruity, musky, fruity-honey, and lily. Monoterpenes were one of the main groups of volatiles identified, and attention was focused on terpene synthase (TPS) genes, which encode enzymes that catalyze the last steps in monoterpene synthesis. Thirty-two candidate monoterpene synthase cDNAs were obtained from 66 lily cultivars, and 64 SNPs were identified. Two InDels were also shown to result from variable splicing, and sequence analysis suggested that different transcripts arose from the same gene. All identified nucleotide substitution sites were highly correlated with the amounts of myrcene emitted, and InDel site 230 was highly correlated with the emission of all major monoterpenoid components, especially (E)-β-ocimene. Heterologous expression of five cDNAs cloned from faint-scented and strong-scented lilies showed that their corresponding enzymes could convert geranyl diphosphate to (E)-β-ocimene, α-pinene, and limonene. The findings from this study provide a major resource for the assessment of lily scent volatiles and will be helpful in breeding of improved volatile components.
Collapse
Affiliation(s)
- Fang Du
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Ting Wang
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Jun-miao Fan
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
- College of Horticulture, Nanjing Agricultural University, 210095 Nangjing, Jiangsu China
| | - Zhi-zhi Liu
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Jia-xin Zong
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Wei-xin Fan
- Experimental Teaching Center, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Yuan-huai Han
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Donald Grierson
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
18
|
Babben S, Schliephake E, Janitza P, Berner T, Keilwagen J, Koch M, Arana-Ceballos FA, Templer SE, Chesnokov Y, Pshenichnikova T, Schondelmaier J, Börner A, Pillen K, Ordon F, Perovic D. Association genetics studies on frost tolerance in wheat (Triticum aestivum L.) reveal new highly conserved amino acid substitutions in CBF-A3, CBF-A15, VRN3 and PPD1 genes. BMC Genomics 2018; 19:409. [PMID: 29843596 PMCID: PMC5975666 DOI: 10.1186/s12864-018-4795-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Understanding the genetic basis of frost tolerance (FT) in wheat (Triticum aestivum L.) is essential for preventing yield losses caused by frost due to cellular damage, dehydration and reduced metabolism. FT is a complex trait regulated by a number of genes and several gene families. Availability of the wheat genomic sequence opens new opportunities for exploring candidate genes diversity for FT. Therefore, the objectives of this study were to identity SNPs and insertion-deletion (indels) in genes known to be involved in frost tolerance and to perform association genetics analysis of respective SNPs and indels on FT. RESULTS Here we report on the sequence analysis of 19 candidate genes for FT in wheat assembled using the Chinese Spring IWGSC RefSeq v1.0. Out of these, the tandem duplicated C-repeat binding factors (CBF), i.e. CBF-A3, CBF-A5, CBF-A10, CBF-A13, CBF-A14, CBF-A15, CBF-A18, the vernalisation response gene VRN-A1, VRN-B3, the photoperiod response genes PPD-B1 and PPD-D1 revealed association to FT in 235 wheat cultivars. Within six genes (CBF-A3, CBF-A15, VRN-A1, VRN-B3, PPD-B1 and PPD-D1) amino acid (AA) substitutions in important protein domains were identified. The amino acid substitution effect in VRN-A1 on FT was confirmed and new AA substitutions in CBF-A3, CBF-A15, VRN-B3, PPD-B1 and PPD-D1 located at highly conserved sites were detected. Since these results rely on phenotypic data obtained at five locations in 2 years, detection of significant associations of FT to AA changes in CBF-A3, CBF-A15, VRN-A1, VRN-B3, PPD-B1 and PPD-D1 may be exploited in marker assisted breeding for frost tolerance in winter wheat. CONCLUSIONS A set of 65 primer pairs for the genes mentioned above from a previous study was BLASTed against the IWGSC RefSeq resulting in the identification of 39 primer combinations covering the full length of 19 genes. This work demonstrates the usefulness of the IWGSC RefSeq in specific primer development for highly conserved gene families in hexaploid wheat and, that a candidate gene association genetics approach based on the sequence data is an efficient tool to identify new alleles of genes important for the response to abiotic stress in wheat.
Collapse
Affiliation(s)
- Steve Babben
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484 Quedlinburg, Saxony-Anhalt Germany
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 5, 06120 Halle (Saale), Saxony-Anhalt Germany
| | - Edgar Schliephake
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484 Quedlinburg, Saxony-Anhalt Germany
| | - Philipp Janitza
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 5, 06120 Halle (Saale), Saxony-Anhalt Germany
| | - Thomas Berner
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Str. 27, 06484 Quedlinburg, Saxony-Anhalt Germany
| | - Jens Keilwagen
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Str. 27, 06484 Quedlinburg, Saxony-Anhalt Germany
| | - Michael Koch
- Deutsche Saatveredelung AG (DSV), Weißenburger Str. 5, 59557 Lippstadt, Nordrhein-Westfalen Germany
| | - Fernando Alberto Arana-Ceballos
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Resources Genetics and Reproduction, Correnstraße 3, 06466 Seeland OT Gatersleben, Saxony-Anhalt Germany
| | - Sven Eduard Templer
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484 Quedlinburg, Saxony-Anhalt Germany
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9B, 50931 Cologne, Nordrhein-Westfalen Germany
| | - Yuriy Chesnokov
- Agrophysical Research Institute (AFI), Grazhdanskii prosp. 14, 195220 St. Petersburg, Russia
| | - Tatyana Pshenichnikova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Jörg Schondelmaier
- Saaten-Union Biotec GmbH, Hovedisser Str. 94, 33818 Leopoldshoehe, Nordrhein-Westfalen Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Resources Genetics and Reproduction, Correnstraße 3, 06466 Seeland OT Gatersleben, Saxony-Anhalt Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 3, 06120 Halle (Saale), Saxony-Anhalt Germany
| | - Frank Ordon
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484 Quedlinburg, Saxony-Anhalt Germany
| | - Dragan Perovic
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484 Quedlinburg, Saxony-Anhalt Germany
| |
Collapse
|
19
|
Li Y, Ruperao P, Batley J, Edwards D, Khan T, Colmer TD, Pang J, Siddique KHM, Sutton T. Investigating Drought Tolerance in Chickpea Using Genome-Wide Association Mapping and Genomic Selection Based on Whole-Genome Resequencing Data. FRONTIERS IN PLANT SCIENCE 2018; 9:190. [PMID: 29515606 PMCID: PMC5825913 DOI: 10.3389/fpls.2018.00190] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 05/06/2023]
Abstract
Drought tolerance is a complex trait that involves numerous genes. Identifying key causal genes or linked molecular markers can facilitate the fast development of drought tolerant varieties. Using a whole-genome resequencing approach, we sequenced 132 chickpea varieties and advanced breeding lines and found more than 144,000 single nucleotide polymorphisms (SNPs). We measured 13 yield and yield-related traits in three drought-prone environments of Western Australia. The genotypic effects were significant for all traits, and many traits showed highly significant correlations, ranging from 0.83 between grain yield and biomass to -0.67 between seed weight and seed emergence rate. To identify candidate genes, the SNP and trait data were incorporated into the SUPER genome-wide association study (GWAS) model, a modified version of the linear mixed model. We found that several SNPs from auxin-related genes, including auxin efflux carrier protein (PIN3), p-glycoprotein, and nodulin MtN21/EamA-like transporter, were significantly associated with yield and yield-related traits under drought-prone environments. We identified four genetic regions containing SNPs significantly associated with several different traits, which was an indication of pleiotropic effects. We also investigated the possibility of incorporating the GWAS results into a genomic selection (GS) model, which is another approach to deal with complex traits. Compared to using all SNPs, application of the GS model using subsets of SNPs significantly associated with the traits under investigation increased the prediction accuracies of three yield and yield-related traits by more than twofold. This has important implication for implementing GS in plant breeding programs.
Collapse
Affiliation(s)
- Yongle Li
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Pradeep Ruperao
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Tanveer Khan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Timothy D. Colmer
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Tim Sutton
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
- South Australian Research and Development Institute, Adelaide, SA, Australia
| |
Collapse
|
20
|
Erath W, Bauer E, Fowler DB, Gordillo A, Korzun V, Ponomareva M, Schmidt M, Schmiedchen B, Wilde P, Schön CC. Exploring new alleles for frost tolerance in winter rye. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2151-2164. [PMID: 28730463 DOI: 10.1007/s00122-017-2948-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/10/2017] [Indexed: 05/13/2023]
Abstract
Rye genetic resources provide a valuable source of new alleles for the improvement of frost tolerance in rye breeding programs. Frost tolerance is a must-have trait for winter cereal production in northern and continental cropping areas. Genetic resources should harbor promising alleles for the improvement of frost tolerance of winter rye elite lines. For frost tolerance breeding, the identification of quantitative trait loci (QTL) and the choice of optimum genome-based selection methods are essential. We identified genomic regions involved in frost tolerance of winter rye by QTL mapping in a biparental population derived from a highly frost tolerant selection from the Canadian cultivar Puma and the European elite line Lo157. Lines per se and their testcrosses were phenotyped in a controlled freeze test and in multi-location field trials in Russia and Canada. Three QTL on chromosomes 4R, 5R, and 7R were consistently detected across environments. The QTL on 5R is congruent with the genomic region harboring the Frost resistance locus 2 (Fr-2) in Triticeae. The Puma allele at the Fr-R2 locus was found to significantly increase frost tolerance. A comparison of predictive ability obtained from the QTL-based model with different whole-genome prediction models revealed that besides a few large, also small QTL effects contribute to the genomic variance of frost tolerance in rye. Genomic prediction models assigning a high weight to the Fr-R2 locus allow increasing the selection intensity for frost tolerance by genome-based pre-selection of promising candidates.
Collapse
Affiliation(s)
- Wiltrud Erath
- TUM School of Life Sciences, Plant Breeding, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354, Freising, Germany
| | - Eva Bauer
- TUM School of Life Sciences, Plant Breeding, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354, Freising, Germany.
| | - D Brian Fowler
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Andres Gordillo
- KWS Lochow GmbH, Ferdinand-von-Lochow-Str. 5, 29303, Bergen, Germany
| | - Viktor Korzun
- KWS Lochow GmbH, Ferdinand-von-Lochow-Str. 5, 29303, Bergen, Germany
| | - Mira Ponomareva
- Department of Genetics, Kazan (Volga Region) Federal University, Kremlevskaja Str. 18, Kazan, 420008, Russia
| | - Malthe Schmidt
- KWS Lochow GmbH, Ferdinand-von-Lochow-Str. 5, 29303, Bergen, Germany
| | | | - Peer Wilde
- KWS Lochow GmbH, Ferdinand-von-Lochow-Str. 5, 29303, Bergen, Germany
| | - Chris-Carolin Schön
- TUM School of Life Sciences, Plant Breeding, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354, Freising, Germany.
| |
Collapse
|
21
|
Bauer E, Schmutzer T, Barilar I, Mascher M, Gundlach H, Martis MM, Twardziok SO, Hackauf B, Gordillo A, Wilde P, Schmidt M, Korzun V, Mayer KFX, Schmid K, Schön CC, Scholz U. Towards a whole-genome sequence for rye (Secale cereale L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:853-869. [PMID: 27888547 DOI: 10.1111/tpj.13436] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 05/18/2023]
Abstract
We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole-genome shotgun sequencing of the 7.9-Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference sequence represents nearly the entire low-copy portion of the rye genome. This genome assembly was used to predict 27 784 rye gene models based on homology to sequenced grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild relative S. vavilovii, we discovered more than 90 million single nucleotide variants and short insertions/deletions in the rye genome. From these variants, we developed the high-density Rye600k genotyping array with 600 843 markers, which enabled anchoring the sequence contigs along a high-density genetic map and establishing a synteny-based virtual gene order. Genotyping data were used to characterize the diversity of rye breeding pools and genetic resources, and to obtain a genome-wide map of selection signals differentiating the divergent gene pools. This rye whole-genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome-based breeding in rye.
Collapse
Affiliation(s)
- Eva Bauer
- Technical University of Munich, Plant Breeding, Liesel-Beckmann-Str. 2, 85354, Freising, Germany
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Stadt Seeland, Germany
| | - Ivan Barilar
- Universität Hohenheim, Crop Biodiversity and Breeding Informatics, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Stadt Seeland, Germany
| | - Heidrun Gundlach
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Mihaela M Martis
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Sven O Twardziok
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Bernd Hackauf
- Julius Kühn-Institute, Institute for Breeding Research on Agricultural Crops, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Andres Gordillo
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303, Bergen, Germany
| | - Peer Wilde
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303, Bergen, Germany
| | - Malthe Schmidt
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303, Bergen, Germany
| | - Viktor Korzun
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303, Bergen, Germany
| | - Klaus F X Mayer
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Karl Schmid
- Universität Hohenheim, Crop Biodiversity and Breeding Informatics, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Chris-Carolin Schön
- Technical University of Munich, Plant Breeding, Liesel-Beckmann-Str. 2, 85354, Freising, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Stadt Seeland, Germany
| |
Collapse
|
22
|
Association Mapping in Turkish Olive Cultivars Revealed Significant Markers Related to Some Important Agronomic Traits. Biochem Genet 2016; 54:506-533. [PMID: 27209034 DOI: 10.1007/s10528-016-9738-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
Olive (Olea europaea L.) is one of the most important fruit trees especially in the Mediterranean countries due to high consumption of table olive and olive oil. In olive breeding, the phenotypic traits associated to fruit are the key factors that determine productivity. Association mapping has been used in some tree species and a lot of crop plant species, and here, we perform an initial effort to detect marker-trait associations in olive tree. In the current study, a total of 96 olive genotypes, including both oil and table olive genotypes from Turkish Olive GenBank Resources, were used to examine marker-trait associations. For olive genotyping, SNP, AFLP, and SSR marker data were selected from previously published study and association analysis was performed between these markers and 5 yield-related traits. Three different approaches were used to check for false-positive results in association tests, and association results obtained from these models were compared. Using the model utilizing both population structure and relative kinship, eleven associations were significant with FDR ≤ 0.05. The largest number of significant associations was detected for fruit weight and stone weight. Our results suggested that association mapping could be an effective approach for identifying marker-trait associations in olive genotypes, without the development of mapping populations. This study shows for the first time the use of association mapping for identifying molecular markers linked to important traits in olive tree.
Collapse
|
23
|
Hagenblad J, Oliveira HR, Forsberg NEG, Leino MW. Geographical distribution of genetic diversity in Secale landrace and wild accessions. BMC PLANT BIOLOGY 2016; 16:23. [PMID: 26786820 PMCID: PMC4719562 DOI: 10.1186/s12870-016-0710-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/11/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND Rye, Secale cereale L., has historically been a crop of major importance and is still a key cereal in many parts of Europe. Single populations of cultivated rye have been shown to capture a large proportion of the genetic diversity present in the species, but the distribution of genetic diversity in subspecies and across geographical areas is largely unknown. Here we explore the structure of genetic diversity in landrace rye and relate it to that of wild and feral relatives. RESULTS A total of 567 SNPs were analysed in 434 individuals from 76 accessions of wild, feral and cultivated rye. Genetic diversity was highest in cultivated rye, slightly lower in feral rye taxa and significantly lower in the wild S. strictum Presl. and S. africanum Stapf. Evaluation of effects from ascertainment bias suggests underestimation of diversity primarily in S. strictum and S. africanum. Levels of ascertainment bias, STRUCTURE and principal component analyses all supported the proposed classification of S. africanum and S. strictum as a separate species from S. cereale. S. afghanicum (Vav.) Roshev, S. ancestrale Zhuk., S. dighoricum (Vav.) Roshev, S. segetale (Zhuk.) Roshev and S. vavilovii Grossh. seemed, in contrast, to share the same gene pool as S. cereale and their genetic clustering was more dependent on geographical origin than taxonomic classification. S. vavilovii was found to be the most likely wild ancestor of cultivated rye. Among cultivated rye landraces from Europe, Asia and North Africa five geographically discrete genetic clusters were identified. These had only limited overlap with major agro-climatic zones. Slash-and-burn rye from the Finnmark area in Scandinavia formed a distinct cluster with little similarity to other landrace ryes. Regional studies of Northern and South-West Europe demonstrate different genetic distribution patterns as a result of varying cultivation intensity. CONCLUSIONS With the exception of S. strictum and S. africanum different rye taxa share the majority of the genetic variation. Due to the vast sharing of genetic diversity within the S. cereale clade, ascertainment bias seems to be a lesser problem in rye than in predominantly selfing species. By exploiting within accession diversity geographic structure can be shown on a much finer scale than previously reported.
Collapse
Affiliation(s)
- Jenny Hagenblad
- IFM Biology, Linköping University, SE-581 83, Linköping, Sweden.
| | - Hugo R Oliveira
- IFM Biology, Linköping University, SE-581 83, Linköping, Sweden.
- CIBIO-Research Centre in Biodiversity and Genetic Resources, Campus Agrário de Vairão. R. Padre Armando Quintas, 4485-661, Vairão, Portugal.
- Nordiska Museet, Swedish Museum of Cultural History, SE-643 98, Julita, Sweden.
- Present Address: Faculty of Life Sciences, The University of Manchester. Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UK.
| | | | - Matti W Leino
- IFM Biology, Linköping University, SE-581 83, Linköping, Sweden.
- Nordiska Museet, Swedish Museum of Cultural History, SE-643 98, Julita, Sweden.
| |
Collapse
|
24
|
Prentice HC, Li Y, Lönn M, Tunlid A, Ghatnekar L. A horizontally transferred nuclear gene is associated with microhabitat variation in a natural plant population. Proc Biol Sci 2015; 282:20152453. [PMID: 26674953 PMCID: PMC4707765 DOI: 10.1098/rspb.2015.2453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/11/2015] [Indexed: 11/12/2022] Open
Abstract
Horizontal gene transfer involves the non-sexual interspecific transmission of genetic material. Even if they are initially functional, horizontally transferred genes are expected to deteriorate into non-expressed pseudogenes, unless they become adaptively relevant in the recipient organism. However, little is known about the distributions of natural transgenes within wild species or the adaptive significance of natural transgenes within wild populations. Here, we examine the distribution of a natural plant-to-plant nuclear transgene in relation to environmental variation within a wild population. Festuca ovina is polymorphic for an extra (second) expressed copy of the nuclear gene (PgiC) encoding cytosolic phosphoglucose isomerase, with the extra PgiC locus having been acquired horizontally from the distantly related grass genus Poa. We investigated variation at PgiC in samples of F. ovina from a fine-scale, repeating patchwork of grassland microhabitats, replicated within spatially separated sites. Even after accounting for spatial effects, the distributions of F. ovina individuals carrying the additional PgiC locus, and one of the enzyme products encoded by the locus, are significantly associated with fine-scale habitat variation. Our results suggest that the PgiC transgene contributes, together with the unlinked 'native' PgiC locus, to local adaptation to a fine-scale mosaic of edaphic and biotic grassland microhabitats.
Collapse
Affiliation(s)
| | - Yuan Li
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Mikael Lönn
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, 141 89 Huddinge, Sweden
| | - Anders Tunlid
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Lena Ghatnekar
- Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
25
|
Babben S, Perovic D, Koch M, Ordon F. An Efficient Approach for the Development of Locus Specific Primers in Bread Wheat (Triticum aestivum L.) and Its Application to Re-Sequencing of Genes Involved in Frost Tolerance. PLoS One 2015; 10:e0142746. [PMID: 26565976 PMCID: PMC4643983 DOI: 10.1371/journal.pone.0142746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/25/2015] [Indexed: 11/18/2022] Open
Abstract
Recent declines in costs accelerated sequencing of many species with large genomes, including hexaploid wheat (Triticum aestivum L.). Although the draft sequence of bread wheat is known, it is still one of the major challenges to developlocus specific primers suitable to be used in marker assisted selection procedures, due to the high homology of the three genomes. In this study we describe an efficient approach for the development of locus specific primers comprising four steps, i.e. (i) identification of genomic and coding sequences (CDS) of candidate genes, (ii) intron- and exon-structure reconstruction, (iii) identification of wheat A, B and D sub-genome sequences and primer development based on sequence differences between the three sub-genomes, and (iv); testing of primers for functionality, correct size and localisation. This approach was applied to single, low and high copy genes involved in frost tolerance in wheat. In summary for 27 of these genes for which sequences were derived from Triticum aestivum, Triticum monococcum and Hordeum vulgare, a set of 119 primer pairs was developed and after testing on Nulli-tetrasomic (NT) lines, a set of 65 primer pairs (54.6%), corresponding to 19 candidate genes, turned out to be specific. Out of these a set of 35 fragments was selected for validation via Sanger's amplicon re-sequencing. All fragments, with the exception of one, could be assigned to the original reference sequence. The approach presented here showed a much higher specificity in primer development in comparison to techniques used so far in bread wheat and can be applied to other polyploid species with a known draft sequence.
Collapse
Affiliation(s)
- Steve Babben
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Sachsen-Anhalt, Germany
| | - Dragan Perovic
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Sachsen-Anhalt, Germany
| | - Michael Koch
- Deutsche Saatveredelung AG (DSV), Lippstadt, Nordrhein-Westfalen, Germany
| | - Frank Ordon
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Sachsen-Anhalt, Germany
| |
Collapse
|
26
|
Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. FRONTIERS IN PLANT SCIENCE 2015; 6:162. [PMID: 25873920 PMCID: PMC4379880 DOI: 10.3389/fpls.2015.00162] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/01/2015] [Indexed: 05/19/2023]
Abstract
The genome-wide discovery and high-throughput genotyping of SNPs in chickpea natural germplasm lines is indispensable to extrapolate their natural allelic diversity, domestication, and linkage disequilibrium (LD) patterns leading to the genetic enhancement of this vital legume crop. We discovered 44,844 high-quality SNPs by sequencing of 93 diverse cultivated desi, kabuli, and wild chickpea accessions using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays that were physically mapped across eight chromosomes of desi and kabuli. Of these, 22,542 SNPs were structurally annotated in different coding and non-coding sequence components of genes. Genes with 3296 non-synonymous and 269 regulatory SNPs could functionally differentiate accessions based on their contrasting agronomic traits. A high experimental validation success rate (92%) and reproducibility (100%) along with strong sensitivity (93-96%) and specificity (99%) of GBS-based SNPs was observed. This infers the robustness of GBS as a high-throughput assay for rapid large-scale mining and genotyping of genome-wide SNPs in chickpea with sub-optimal use of resources. With 23,798 genome-wide SNPs, a relatively high intra-specific polymorphic potential (49.5%) and broader molecular diversity (13-89%)/functional allelic diversity (18-77%) was apparent among 93 chickpea accessions, suggesting their tremendous applicability in rapid selection of desirable diverse accessions/inter-specific hybrids in chickpea crossbred varietal improvement program. The genome-wide SNPs revealed complex admixed domestication pattern, extensive LD estimates (0.54-0.68) and extended LD decay (400-500 kb) in a structured population inclusive of 93 accessions. These findings reflect the utility of our identified SNPs for subsequent genome-wide association study (GWAS) and selective sweep-based domestication trait dissection analysis to identify potential genomic loci (gene-associated targets) specifically regulating important complex quantitative agronomic traits in chickpea. The numerous informative genome-wide SNPs, natural allelic diversity-led domestication pattern, and LD-based information generated in our study have got multidimensional applicability with respect to chickpea genomics-assisted breeding.
Collapse
Affiliation(s)
- Alice Kujur
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Telangana, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Tanima Shree
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | | | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB)New Delhi, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI)New Delhi, India
| | - C. L. L. Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Telangana, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Telangana, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Telangana, India
| | | | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| |
Collapse
|
27
|
Dasgupta MG, Dharanishanthi V, Agarwal I, Krutovsky KV. Development of genetic markers in Eucalyptus species by target enrichment and exome sequencing. PLoS One 2015; 10:e0116528. [PMID: 25602379 PMCID: PMC4300219 DOI: 10.1371/journal.pone.0116528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/08/2014] [Indexed: 02/02/2023] Open
Abstract
The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, R.S. Puram, Coimbatore–641002, India
- * E-mail:
| | - Veeramuthu Dharanishanthi
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, R.S. Puram, Coimbatore–641002, India
| | - Ishangi Agarwal
- Genotypic Technology Private Limited, #2/13, Balaji Complex, Poojari Layout, 80, Feet Road, R. M. V. 2nd Stage, Bangalore-560094, India
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Büsgen Institute, Georg August University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
- Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU, College Station, TX 77843-2138, United States of America
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia
- Genome Research and Education Center, Siberian Federal University, 50a/2 Akademgorodok, Krasnoyarsk 660036, Russia
| |
Collapse
|
28
|
Lombardi M, Materne M, Cogan NOI, Rodda M, Daetwyler HD, Slater AT, Forster JW, Kaur S. Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik.) cultivars and landraces using SNP markers. BMC Genet 2014; 15:150. [PMID: 25540077 PMCID: PMC4300608 DOI: 10.1186/s12863-014-0150-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 12/11/2014] [Indexed: 12/30/2022] Open
Abstract
Background Lentil is a self-pollinated annual diploid (2n = 2× = 14) crop with a restricted history of genetic improvement through breeding, particularly when compared to cereal crops. This limited breeding has probably contributed to the narrow genetic base of local cultivars, and a corresponding potential to continue yield increases and stability. Therefore, knowledge of genetic variation and relationships between populations is important for understanding of available genetic variability and its potential for use in breeding programs. Single nucleotide polymorphism (SNP) markers provide a method for rapid automated genotyping and subsequent data analysis over large numbers of samples, allowing assessment of genetic relationships between genotypes. Results In order to investigate levels of genetic diversity within lentil germplasm, 505 cultivars and landraces were genotyped with 384 genome-wide distributed SNP markers, of which 266 (69.2%) obtained successful amplification and detected polymorphisms. Gene diversity and PIC values varied between 0.108-0.5 and 0.102-0.375, with averages of 0.419 and 0.328, respectively. On the basis of clarity and interest to lentil breeders, the genetic structure of the germplasm collection was analysed separately for cultivars and landraces. A neighbour-joining (NJ) dendrogram was constructed for commercial cultivars, in which lentil cultivars were sorted into three major groups (G-I, G-II and G-III). These results were further supported by principal coordinate analysis (PCoA) and STRUCTURE, from which three clear clusters were defined based on differences in geographical location. In the case of landraces, a weak correlation between geographical origin and genetic relationships was observed. The landraces from the Mediterranean region, predominantly Greece and Turkey, revealed very high levels of genetic diversity. Conclusions Lentil cultivars revealed clear clustering based on geographical origin, but much more limited correlation between geographic origin and genetic diversity was observed for landraces. These results suggest that selection of divergent parental genotypes for breeding should be made actively on the basis of systematic assessment of genetic distance between genotypes, rather than passively based on geographical distance. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0150-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Lombardi
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| | - Michael Materne
- Department of Environment and Primary Industries, Biosciences Research Division, Grains Innovation Park, Horsham, 3401, Victoria, Australia.
| | - Noel O I Cogan
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| | - Matthew Rodda
- Department of Environment and Primary Industries, Biosciences Research Division, Grains Innovation Park, Horsham, 3401, Victoria, Australia.
| | - Hans D Daetwyler
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| | - Anthony T Slater
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| | - John W Forster
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia. .,La Trobe University, Bundoora, Melbourne, 3086, Victoria, Australia.
| | - Sukhjiwan Kaur
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| |
Collapse
|
29
|
Bolibok-Brągoszewska H, Targońska M, Bolibok L, Kilian A, Rakoczy-Trojanowska M. Genome-wide characterization of genetic diversity and population structure in Secale. BMC PLANT BIOLOGY 2014; 14:184. [PMID: 25085433 PMCID: PMC4236688 DOI: 10.1186/1471-2229-14-184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/27/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Numerous rye accessions are stored in ex situ genebanks worldwide. Little is known about the extent of genetic diversity contained in any of them and its relation to contemporary varieties, since to date rye genetic diversity studies had a very limited scope, analyzing few loci and/ or few accessions. Development of high throughput genotyping methods for rye opened the possibility for genome wide characterizations of large accessions sets. In this study we used 1054 Diversity Array Technology (DArT) markers with defined chromosomal location to characterize genetic diversity and population structure in a collection of 379 rye accessions including wild species, landraces, cultivated materials, historical and contemporary rye varieties. RESULTS Average genetic similarity (GS) coefficients and average polymorphic information content (PIC) values varied among chromosomes. Comparison of chromosome specific average GS within and between germplasm sub-groups indicated regions of chromosomes 1R and 4R as being targeted by selection in current breeding programs. Bayesian clustering, principal coordinate analysis and Neighbor Joining clustering demonstrated that source and improvement status contributed significantly to the structure observed in the analyzed set of Secale germplasm. We revealed a relatively limited diversity in improved rye accessions, both historical and contemporary, as well as lack of correlation between clustering of improved accessions and geographic origin, suggesting common genetic background of rye accessions from diverse geographic regions and extensive germplasm exchange. Moreover, contemporary varieties were distinct from the remaining accessions. CONCLUSIONS Our results point to an influence of reproduction methods on the observed diversity patterns and indicate potential of ex situ collections for broadening the genetic diversity in rye breeding programs. Obtained data show that DArT markers provide a realistic picture of the genetic diversity and population structure present in the collection of 379 rye accessions and are an effective platform for rye germplasm characterization and association mapping studies.
Collapse
Affiliation(s)
- Hanna Bolibok-Brągoszewska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Targońska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Leszek Bolibok
- Department of Silviculture, Faculty of Forestry, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrzej Kilian
- Diversity Arrays Technology Pty. Ltd, Yarralumla ACT, Australia
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
30
|
Kumar B, Abdel-Ghani AH, Pace J, Reyes-Matamoros J, Hochholdinger F, Lübberstedt T. Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:9-19. [PMID: 24908501 DOI: 10.1016/j.plantsci.2014.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 05/26/2023]
Abstract
Several genes involved in maize root development have been isolated. Identification of SNPs associated with root traits would enable the selection of maize lines with better root architecture that might help to improve N uptake, and consequently plant growth particularly under N deficient conditions. In the present study, an association study (AS) panel consisting of 74 maize inbred lines was screened for seedling root traits in 6, 10, and 14-day-old seedlings. Allele re-sequencing of candidate root genes Rtcl, Rth3, Rum1, and Rul1 was also carried out in the same AS panel lines. All four candidate genes displayed different levels of nucleotide diversity, haplotype diversity and linkage disequilibrium. Gene based association analyses were carried out between individual polymorphisms in candidate genes, and root traits measured in 6, 10, and 14-day-old maize seedlings. Association analyses revealed several polymorphisms within the Rtcl, Rth3, Rum1, and Rul1 genes associated with seedling root traits. Several nucleotide polymorphisms in Rtcl, Rth3, Rum1, and Rul1 were significantly (P<0.05) associated with seedling root traits in maize suggesting that all four tested genes are involved in the maize root development. Thus considerable allelic variation present in these root genes can be exploited for improving maize root characteristics.
Collapse
Affiliation(s)
- Bharath Kumar
- Department of Agronomy, Agronomy Hall, Iowa State University, Ames, IA 50011, USA.
| | - Adel H Abdel-Ghani
- Department of Plant Production, Faculty of Agriculture, Mu'tah University, P.O. Box 7, Karak, Jordan.
| | - Jordon Pace
- Department of Agronomy, Agronomy Hall, Iowa State University, Ames, IA 50011, USA.
| | | | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Chair for Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany.
| | - Thomas Lübberstedt
- Department of Agronomy, Agronomy Hall, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
31
|
Expression and molecular evolution of two DREB1 genes in black poplar (Populus nigra). PLoS One 2014; 9:e98334. [PMID: 24887081 PMCID: PMC4041773 DOI: 10.1371/journal.pone.0098334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
Environmental stresses such as low temperature, drought, and high salinity significantly affect plant growth and yield. As selective forces, these adverse factors play essential roles in shaping phenotypic variation in plant populations. Black poplar (Populus nigra) is an economically and ecologically important forest tree species with widely distributed populations and is thus suitable for experiments detecting evolutionary footprints left by stress. Here, we performed expression and evolutionary analysis of two duplicated DREB A1-subgroup (DREB1) genes, PnDREB68 and PnDREB69, encoding transcription factors that are involved in stress responses. The two genes showed partially overlapping but distinct expression patterns in response to stresses. These genes were strongly and rapidly induced by cold stress in leaves, stems, and roots. In leaf tissue, dehydration stress induced the expression of PnDREB68 but not PnDREB69. PnDREB69 displayed more rapid responses and longer expression durations than PnDREB68 under salt and ABA stress, respectively. Based on single nucleotide polymorphism (SNP) analysis, we found significant population genetic differentiation, with a greater FST value (0.09189) for PnDREB69 than for PnDREB68 (0.07743). Nucleotide diversity analysis revealed a two-fold higher πT for PnDREB68 than for PnDREB69 (0.00563 vs. 0.00243), reflecting strong purifying selection acting on the former. The results suggest that positive selection acted on PnDREB69, as evidenced by neutral testing using Tajima’s D statistic. The distinct selective forces to which each of the genes was subjected may be associated with expression divergence. Linkage disequilibrium (LD) was low for the sequenced region, with a higher level for PnDREB68 than for PnDREB69. Additionally, analysis of the relationship among carbon isotope ratios, SNP classes and gene expression, together with motif and domain analysis, suggested that 14 polymorphisms within the two genes may be candidates for an association study of important traits such as water use efficiency/drought tolerance in black poplar.
Collapse
|
32
|
Garcia-Lor A, Curk F, Snoussi-Trifa H, Morillon R, Ancillo G, Luro F, Navarro L, Ollitrault P. A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the 'true citrus fruit trees' group (Citrinae, Rutaceae) and the origin of cultivated species. ANNALS OF BOTANY 2013; 111:1-19. [PMID: 23104641 PMCID: PMC3523644 DOI: 10.1093/aob/mcs227] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/12/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Despite differences in morphology, the genera representing 'true citrus fruit trees' are sexually compatible, and their phylogenetic relationships remain unclear. Most of the important commercial 'species' of Citrus are believed to be of interspecific origin. By studying polymorphisms of 27 nuclear genes, the average molecular differentiation between species was estimated and some phylogenetic relationships between 'true citrus fruit trees' were clarified. METHODS Sanger sequencing of PCR-amplified fragments from 18 genes involved in metabolite biosynthesis pathways and nine putative genes for salt tolerance was performed for 45 genotypes of Citrus and relatives of Citrus to mine single nucleotide polymorphisms (SNPs) and indel polymorphisms. Fifty nuclear simple sequence repeats (SSRs) were also analysed. KEY RESULTS A total of 16 238 kb of DNA was sequenced for each genotype, and 1097 single nucleotide polymorphisms (SNPs) and 50 indels were identified. These polymorphisms were more valuable than SSRs for inter-taxon differentiation. Nuclear phylogenetic analysis revealed that Citrus reticulata and Fortunella form a cluster that is differentiated from the clade that includes three other basic taxa of cultivated citrus (C. maxima, C. medica and C. micrantha). These results confirm the taxonomic subdivision between the subgenera Metacitrus and Archicitrus. A few genes displayed positive selection patterns within or between species, but most of them displayed neutral patterns. The phylogenetic inheritance patterns of the analysed genes were inferred for commercial Citrus spp. CONCLUSIONS Numerous molecular polymorphisms (SNPs and indels), which are potentially useful for the analysis of interspecific genetic structures, have been identified. The nuclear phylogenetic network for Citrus and its sexually compatible relatives was consistent with the geographical origins of these genera. The positive selection observed for a few genes will help further works to analyse the molecular basis of the variability of the associated traits. This study presents new insights into the origin of C. sinensis.
Collapse
Affiliation(s)
- Andres Garcia-Lor
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - Franck Curk
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
- INRA, UR1103 Génétique et Ecophysiologie de la Qualité des Agrumes, F-20230 San Giuliano, France
| | - Hager Snoussi-Trifa
- Horticultural Laboratory, Tunisian National Agronomic Research Institute (INRAT), Rue Hedi Karray, 2049 Ariana, Tunisia
| | - Raphael Morillon
- UMR AGAP, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), TA A-108/02, 34398 Montpellier, Cedex 5, France
| | - Gema Ancillo
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - François Luro
- INRA, UR1103 Génétique et Ecophysiologie de la Qualité des Agrumes, F-20230 San Giuliano, France
| | - Luis Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
- For correspondence. E-mail or
| | - Patrick Ollitrault
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
- UMR AGAP, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), TA A-108/02, 34398 Montpellier, Cedex 5, France
- For correspondence. E-mail or
| |
Collapse
|
33
|
Luo N, Yu X, Liu J, Jiang Y. Nucleotide diversity and linkage disequilibrium in antioxidant genes of Brachypodium distachyon. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 197:122-129. [PMID: 23116679 DOI: 10.1016/j.plantsci.2012.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 06/01/2023]
Abstract
Brachypodium distachyon (Brachypodium) is a powerful model system for studying cereal, bioenergy, forage, and turf grasses. Nucleotide diversity (π) and linkage disequilibrium (LD) in candidate genes involved in the antioxidative pathways in this species are not known. The average π for CAT encoding catalase, GPX encoding glutathione peroxidase, DHAR encoding dehydroascorbate reductase, MDHAR encoding monodehydroascorbate reductase, and APX ecoding ascorbate peroxidase was 0.0027 among 19 accessions contrasting for drought tolerance. The highest value of π was found in APX (0.0046) and the lowest π was in MDHAR (0.0006). The average single nucleotide polymorphism (SNP) frequency across these five genes was one SNP per 131 bp between two randomly sampled sequences for the five genes in the sequence length ranging from 1,447 bp to 1,701 bp. The LD decay was slow and extended to a distance of more than 1.2kb for all genes. The neighbor-joining tree analyses of DHAR, MDHAR, and CAT generally separated accessions differing in drought tolerance. The results indicate a putative role of these candidate genes in increasing general fitness of Brachypodium.
Collapse
Affiliation(s)
- Na Luo
- Institute of Botany, Jiangsu Province & Chinese Academy of Science, Nanjing 210014, China
| | | | | | | |
Collapse
|
34
|
Hendre PS, Kamalakannan R, Varghese M. High-throughput and parallel SNP discovery in selected candidate genes in Eucalyptus camaldulensis using Illumina NGS platform. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:646-56. [PMID: 22607345 DOI: 10.1111/j.1467-7652.2012.00699.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Next generation sequencing (NGS) technologies have revolutionized the pace and scale of genomics- and transcriptomics-based SNP discovery across different plant and animal species. Herein, 72-base paired-end Illumina sequencing was employed for high-throughput, parallel and large-scale SNP discovery in 41 growth-related candidate genes in Eucalyptus camaldulensis. Approximately 100 kb of genome from 96 individuals was amplified and sequenced using a hierarchical DNA/PCR pooling strategy and assembled over corresponding E. grandis reference. A total of 1191 SNPs (minimum 5% other allele frequency) were identified with an average frequency of 1 SNP/83.9 bp, whereas in exons and introns, it was 1 SNP/108.4 bp and 1 SNP/65.6 bp, respectively. A total of 75 insertions and 89 deletions were detected of which approximately 15% were exonic. Transitions (Tr) were in excess than transversions (Tv) (Tr/Tv: 1.89), but exceeded in exons (Tr/Tv: 2.73). In exons, synonymous SNPs (Ka) prevailed over the non-synonymous SNPs (Ks; average Ka/Ks ratio: 0.72, range: 0-3.00 across genes). Many of the exonic SNPs/indels had potential to change amino acid sequence of respective genes. Transcription factors appeared more conserved, whereas enzyme coding genes appeared under relaxed control. Further, 541 SNPs were classified into 196 'equal frequency' (EF) blocks with almost similar minor allele frequencies to facilitate selection of one tag-SNP/EF-block. There were 241 (approximately 20%) 'zero-SNP' blocks with absence of SNPs in surrounding ±60 bp windows. The data thus indicated enormous extant and unexplored diversity in E. camaldulensis in the studied genes with potential applications for marker-trait associations.
Collapse
Affiliation(s)
- Prasad S Hendre
- ITC R&D Centre, Peenya Industrial Area, Bangalore, Karnataka, India.
| | | | | |
Collapse
|
35
|
Alheit KV, Maurer HP, Reif JC, Tucker MR, Hahn V, Weissmann EA, Würschum T. Genome-wide evaluation of genetic diversity and linkage disequilibrium in winter and spring triticale (x Triticosecale Wittmack). BMC Genomics 2012; 13:235. [PMID: 22691168 PMCID: PMC3464613 DOI: 10.1186/1471-2164-13-235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background Recent advances in genotyping with high-density markers nowadays enable genome-wide genomic analyses in crops. A detailed characterisation of the population structure and linkage disequilibrium (LD) is essential for the application of genomic approaches and consequently for knowledge-based breeding. In this study we used the triticale-specific DArT array to analyze population structure, genetic diversity, and LD in a worldwide set of 161 winter and spring triticale lines. Results The principal coordinate analysis revealed that the first principal coordinate divides the triticale population into two clusters according to their growth habit. The density distributions of the first ten principal coordinates revealed that several show a distribution indicative of population structure. In addition, we observed relatedness within growth habits which was higher among the spring types than among the winter types. The genome-wide analysis of polymorphic information content (PIC) showed that the PIC is variable among and along chromosomes and that especially the R genome of spring types possesses a reduced genetic diversity. We also found that several chromosomes showed regions of high genetic distance between the two growth habits, indicative of divergent selection. Regarding linkage disequilibrium, the A and B genomes showed a similar LD of 0.24 for closely linked markers and a decay within approximately 12 cM. LD in the R genome was lower with 0.19 and decayed within a shorter map distance of approximately 5 cM. The extent of LD was generally higher for the spring types compared to the winter types. In addition, we observed strong variability of LD along the chromosomes. Conclusions Our results confirm winter and spring growth habit are the major contributors to population structure in triticale, and a family structure exists in both growth types. The specific patterns of genetic diversity observed within these types, such as the low diversity on some rye chromosomes of spring habits, provide a basis for targeted broadening of the available breeding germplasm. In addition, the genome-wide analysis of the extent and the pattern of LD will assist scientists and breeders alike in the implementation and the interpretation of association mapping in triticale.
Collapse
Affiliation(s)
- Katharina V Alheit
- State Plant Breeding Institute, University of Hohenheim, Stuttgart 70593, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Arumugasundaram S, Ghosh M, Veerasamy S, Ramasamy Y. Species discrimination, population structure and linkage disequilibrium in Eucalyptus camaldulensis and Eucalyptus tereticornis using SSR markers. PLoS One 2011; 6:e28252. [PMID: 22163287 PMCID: PMC3233572 DOI: 10.1371/journal.pone.0028252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/04/2011] [Indexed: 12/19/2022] Open
Abstract
Eucalyptus camaldulensis and E. tereticornis are closely related species commonly cultivated for pulp wood in many tropical countries including India. Understanding the genetic structure and linkage disequilibrium (LD) existing in these species is essential for the improvement of industrially important traits. Our goal was to evaluate the use of simple sequence repeat (SSR) loci for species discrimination, population structure and LD analysis in these species. Investigations were carried out with the most common alleles in 93 accessions belonging to these two species using 62 SSR markers through cross amplification. The polymorphic information content (PIC) ranged from 0.44 to 0.93 and 0.36 to 0.93 in E. camaldulensis and E. tereticornis respectively. A clear delineation between the two species was evident based on the analysis of population structure and species-specific alleles. Significant genotypic LD was found in E. camaldulensis, wherein out of 135 significant pairs, 17 pairs showed r2≥0.1. Similarly, in E. tereticornis, out of 136 significant pairs, 18 pairs showed r2≥0.1. The extent of LD decayed rapidly showing the significance of association analyses in eucalypts with higher resolution markers. The availability of whole genome sequence for E. grandis and the synteny and co-linearity in the genome of eucalypts, will allow genome-wide genotyping using microsatellites or single nucleotide polymorphims.
Collapse
Affiliation(s)
| | - Modhumita Ghosh
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamilnadu, India
| | - Sivakumar Veerasamy
- Division of Genetics and Tree Breeding, Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamilnadu, India
| | - Yasodha Ramasamy
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamilnadu, India
- * E-mail:
| |
Collapse
|
37
|
A high density consensus map of rye (Secale cereale L.) based on DArT markers. PLoS One 2011; 6:e28495. [PMID: 22163026 PMCID: PMC3232230 DOI: 10.1371/journal.pone.0028495] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/09/2011] [Indexed: 12/02/2022] Open
Abstract
Background Rye (Secale cereale L.) is an economically important crop, exhibiting unique features such as outstanding resistance to biotic and abiotic stresses and high nutrient use efficiency. This species presents a challenge to geneticists and breeders due to its large genome containing a high proportion of repetitive sequences, self incompatibility, severe inbreeding depression and tissue culture recalcitrance. The genomic resources currently available for rye are underdeveloped in comparison with other crops of similar economic importance. The aim of this study was to create a highly saturated, multilocus linkage map of rye via consensus mapping, based on Diversity Arrays Technology (DArT) markers. Methodology/Principal Findings Recombinant inbred lines (RILs) from 5 populations (564 in total) were genotyped using DArT markers and subjected to linkage analysis using Join Map 4.0 and Multipoint Consensus 2.2 software. A consensus map was constructed using a total of 9703 segregating markers. The average chromosome map length ranged from 199.9 cM (2R) to 251.4 cM (4R) and the average map density was 1.1 cM. The integrated map comprised 4048 loci with the number of markers per chromosome ranging from 454 for 7R to 805 for 4R. In comparison with previously published studies on rye, this represents an eight-fold increase in the number of loci placed on a consensus map and a more than two-fold increase in the number of genetically mapped DArT markers. Conclusions/Significance Through the careful choice of marker type, mapping populations and the use of software packages implementing powerful algorithms for map order optimization, we produced a valuable resource for rye and triticale genomics and breeding, which provides an excellent starting point for more in-depth studies on rye genome organization.
Collapse
|
38
|
Li Y, Böck A, Haseneyer G, Korzun V, Wilde P, Schön CC, Ankerst DP, Bauer E. Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms. BMC PLANT BIOLOGY 2011; 11:146. [PMID: 22032693 PMCID: PMC3228716 DOI: 10.1186/1471-2229-11-146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/27/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Frost is an important abiotic stress that limits cereal production in the temperate zone. As the most frost tolerant small grain cereal, rye (Secale cereale L.) is an ideal cereal model for investigating the genetic basis of frost tolerance (FT), a complex trait with polygenic inheritance. Using 201 genotypes from five Eastern and Middle European winter rye populations, this study reports a multi-platform candidate gene-based association analysis in rye using 161 single nucleotide polymorphisms (SNPs) and nine insertion-deletion (Indel) polymorphisms previously identified from twelve candidate genes with a putative role in the frost responsive network. RESULTS Phenotypic data analyses of FT in three different phenotyping platforms, controlled, semi-controlled and field, revealed significant genetic variations in the plant material under study. Statistically significant (P < 0.05) associations between FT and SNPs/haplotypes of candidate genes were identified. Two SNPs in ScCbf15 and one in ScCbf12, all leading to amino acid exchanges, were significantly associated with FT over all three phenotyping platforms. Distribution of SNP effect sizes expressed as percentage of the genetic variance explained by individual SNPs was highly skewed towards zero with a few SNPs obtaining large effects. Two-way epistasis was found between 14 pairs of candidate genes. Relatively low to medium empirical correlations of SNP-FT associations were observed across the three platforms underlining the need for multi-level experimentation for dissecting complex associations between genotypes and FT in rye. CONCLUSIONS Candidate gene based-association studies are a powerful tool for investigating the genetic basis of FT in rye. Results of this study support the findings of bi-parental linkage mapping and expression studies that the Cbf gene family plays an essential role in FT.
Collapse
Affiliation(s)
- Yongle Li
- Plant Breeding, Technische Universität München, Freising, Germany
| | - Andreas Böck
- Biostatistics Unit, Technische Universität München, Freising, Germany
| | - Grit Haseneyer
- Plant Breeding, Technische Universität München, Freising, Germany
| | | | | | | | - Donna P Ankerst
- Department of Mathematics, Technische Universität München, Garching, Germany
| | - Eva Bauer
- Plant Breeding, Technische Universität München, Freising, Germany
| |
Collapse
|