1
|
Skovbjerg CK, Sarup P, Wahlström E, Jensen JD, Orabi J, Olesen L, Jensen J, Jahoor A, Ramstein G. Multi-population GWAS detects robust marker associations in a newly established six-rowed winter barley breeding program. Heredity (Edinb) 2025; 134:33-48. [PMID: 39609544 PMCID: PMC11724117 DOI: 10.1038/s41437-024-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Genome-wide association study (GWAS) is a powerful tool for identifying marker-trait associations that can accelerate breeding progress. Yet, its power is typically constrained in newly established breeding programs where large phenotypic and genotypic datasets have not yet accumulated. Expanding the dataset by inclusion of data from well-established breeding programs with many years of phenotyping and genotyping can potentially address this problem. In this study we performed single- and multi-population GWAS on heading date and lodging in four barley breeding populations with varying combinations of row-type and growth habit. Focusing on a recently established 6-rowed winter (6RW) barley population, single-population GWAS hardly resulted in any significant associations. Nevertheless, the combination of the 6RW target population with other populations in multi-population GWAS detected four and five robust candidate quantitative trait loci for heading date and lodging, respectively. Of these, three remained undetected when analysing the combined populations individually. Further, multi-population GWAS detected markers capturing a larger proportion of genetic variance in 6RW. For multi-population GWAS, we compared the findings of a univariate model (MP1) with a multivariate model (MP2). While both models surpassed single-population GWAS in power, MP2 offered a significant advantage by having more realistic assumptions while pointing towards robust marker-trait associations across populations. Additionally, comparisons of GWAS findings for MP2 and single-population GWAS allowed identification of population-specific loci. In conclusion, our study presents a promising approach to kick-start genomics-based breeding in newly established breeding populations.
Collapse
Affiliation(s)
- Cathrine Kiel Skovbjerg
- Nordic Seed A/S, Odder, Denmark.
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | | | | - Just Jensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark
| | - Ahmed Jahoor
- Nordic Seed A/S, Odder, Denmark
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Guillaume Ramstein
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
2
|
Töpfer V, Melzer M, Snowdon RJ, Stahl A, Matros A, Wehner G. PEG treatment is unsuitable to study root related traits as it alters root anatomy in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2024; 24:856. [PMID: 39266950 PMCID: PMC11396634 DOI: 10.1186/s12870-024-05529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The frequency and severity of abiotic stress events, especially drought, are increasing due to climate change. The plant root is the most important organ for water uptake and the first to be affected by water limitation. It is therefore becoming increasingly important to include root traits in studies on drought stress tolerance. However, phenotyping under field conditions remains a challenging task. In this study, plants were grown in a hydroponic system with polyethylene glycol as an osmotic stressor and in sand pots to examine the root system of eleven spring barley genotypes. The root anatomy of two genotypes with different response to drought was investigated microscopically. RESULTS Root diameter increased significantly (p < 0.05) under polyethylene glycol treatment by 54% but decreased significantly (p < 0.05) by 12% under drought stress in sand pots. Polyethylene glycol treatment increased root tip diameter (51%) and reduced diameter of the elongation zone (14%) compared to the control. Under drought stress, shoot mass of plants grown in sand pots showed a higher correlation (r = 0.30) with the shoot mass under field condition than polyethylene glycol treated plants (r = -0.22). CONCLUSION These results indicate that barley roots take up polyethylene glycol by the root tip and polyethylene glycol prevents further water uptake. Polyethylene glycol-triggered osmotic stress is therefore unsuitable for investigating root morphology traits in barley. Root architecture of roots grown in sand pots is more comparable to roots grown under field conditions.
Collapse
Affiliation(s)
- Veronic Töpfer
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Michael Melzer
- Department of Structural Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Andrea Matros
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany.
| | - Gwendolin Wehner
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| |
Collapse
|
3
|
Singh KP, Kumari P, Rai PK. GWAS for the identification of introgressed candidate genes of Sinapis alba with increased branching numbers in backcross lines of the allohexaploid Brassica. FRONTIERS IN PLANT SCIENCE 2024; 15:1381387. [PMID: 38978520 PMCID: PMC11228338 DOI: 10.3389/fpls.2024.1381387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
Plant architecture is a crucial determinant of crop yield. The number of primary (PB) and secondary branches (SB) is particularly significant in shaping the architecture of Indian mustard. In this study, we analyzed a panel of 86 backcross introgression lines (BCILs) derived from the first stable allohexaploid Brassicas with 170 Sinapis alba genome-specific SSR markers to identify associated markers with higher PB and SB through association mapping. The structure analysis revealed three subpopulations, i.e., P1, P2, and P3, in the association panel containing a total of 11, 33, and 42 BCILs, respectively. We identified five novel SSR markers linked to higher PB and SB. Subsequently, we explored the 20 kb up- and downstream regions of these SSR markers to predict candidate genes for improved branching and annotated them through BLASTN. As a result, we predicted 47 complete genes within the 40 kb regions of all trait-linked markers, among which 35 were identified as candidate genes for higher PB and SB numbers in BCILs. These candidate genes were orthologous to ANT, RAMOSUS, RAX, MAX, MP, SEU, REV, etc., branching genes. The remaining 12 genes were annotated for additional roles using BLASTP with protein databases. This study identified five novel S. alba genome-specific SSR markers associated with increased PB and SB, as well as 35 candidate genes contributing to plant architecture through improved branching numbers. To the best of our knowledge, this is the first report of introgressive genes for higher branching numbers in B. juncea from S. alba.
Collapse
Affiliation(s)
- Kaushal Pratap Singh
- Plant Protection Unit, Indian Council of Agricultural Research (ICAR)-Directorate of Rapeseed Mustard Research, Sewar, Bharatpur, India
| | - Preetesh Kumari
- Genetics Division, ICAR-Indian Agricultural Research Institute, New Delhi, India
- School of Agriculture, Sanskriti University, Mathura - Delhi Highway, Chhata, Mathura, India
| | - Pramod Kumar Rai
- Plant Protection Unit, Indian Council of Agricultural Research (ICAR)-Directorate of Rapeseed Mustard Research, Sewar, Bharatpur, India
| |
Collapse
|
4
|
Dai W, Li Q, Liu T, Long P, He Y, Sang M, Zou C, Chen Z, Yuan G, Ma L, Pan G, Shen Y. Combining genome-wide association study and linkage mapping in the genetic dissection of amylose content in maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:159. [PMID: 38872054 DOI: 10.1007/s00122-024-04666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
KEY MESSAGE Integrated linkage and association analysis revealed genetic basis across multiple environments. The genes Zm00001d003102 and Zm00001d015905 were further verified to influence amylose content using gene-based association study. Maize kernel amylose is an important source of human food and industrial raw material. However, the genetic basis underlying maize amylose content is still obscure. Herein, we used an intermated B73 × Mo17 (IBM) Syn10 doubled haploid population composed of 222 lines and a germplasm set including 305 inbred lines to uncover the genetic control for amylose content under four environments. Linkage mapping detected 16 unique QTL, among which four were individually repeatedly identified across multiple environments. Genome-wide association study revealed 17 significant (P = 2.24E-06) single-nucleotide polymorphisms, of which two (SYN19568 and PZE-105090500) were located in the intervals of the mapped QTL (qAC2 and qAC5-3), respectively. According to the two population co-localized loci, 20 genes were confirmed as the candidate genes for amylose content. Gene-based association analysis indicated that the variants in Zm00001d003102 (Beta-16-galactosyltransferase GALT29A) and Zm00001d015905 (Sugar transporter 4a) affected amylose content across multi-environment. Tissue expression analysis showed that the two genes were specifically highly expressed in the ear and stem, respectively, suggesting that they might participate in sugar transport from source to sink organs. Our study provides valuable genetic information for breeding maize varieties with high amylose.
Collapse
Affiliation(s)
- Wei Dai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinglin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yao He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxiang Sang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Cosenza F, Shrestha A, Van Inghelandt D, Casale FA, Wu PY, Weisweiler M, Li J, Wespel F, Stich B. Genetic mapping reveals new loci and alleles for flowering time and plant height using the double round-robin population of barley. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2385-2402. [PMID: 38330219 PMCID: PMC11016846 DOI: 10.1093/jxb/erae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Flowering time and plant height are two critical determinants of yield potential in barley (Hordeum vulgare). Despite their role in plant physiological regulation, a complete overview of the genetic complexity of flowering time and plant height regulation in barley is still lacking. Using a double round-robin population originated from the crossings of 23 diverse parental inbred lines, we aimed to determine the variance components in the regulation of flowering time and plant height in barley as well as to identify new genetic variants by single and multi-population QTL analyses and allele mining. Despite similar genotypic variance, we observed higher environmental variance components for plant height than flowering time. Furthermore, we detected new QTLs for flowering time and plant height. Finally, we identified a new functional allelic variant of the main regulatory gene Ppd-H1. Our results show that the genetic architecture of flowering time and plant height might be more complex than reported earlier and that a number of undetected, small effect, or low-frequency genetic variants underlie the control of these two traits.
Collapse
Affiliation(s)
- Francesco Cosenza
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Asis Shrestha
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Delphine Van Inghelandt
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Federico A Casale
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Po-Ya Wu
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marius Weisweiler
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jinquan Li
- Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
| | - Franziska Wespel
- Saatzucht Josef Breun GmbH Co. KG, Amselweg 1, 91074 Herzogenaurach, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Karki M, Chu C, Anderson K, Nandety RS, Fiedler JD, Schachterle J, Bruggeman RS, Liu Z, Yang S. Genome-Wide Association Study of Host Resistance to Hessian Fly in Barley. PHYTOPATHOLOGY 2024; 114:752-759. [PMID: 37913750 DOI: 10.1094/phyto-06-23-0192-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The Hessian fly (HF), Mayetiola destructor (Diptera: Cecidomyiidae), is one of the most devastating insect pests of cereals including wheat, barley, and rye. Although wheat is the preferred host for HF, this continuously evolving pest has been emerging as a threat to barley production. However, characterization and identification of genetic resistance to HF has not been conducted in barley. In the present study, we used a genome-wide association study (GWAS) to identify barley resistance loci to HF using a geographically diverse set of 234 barley accessions. The results showed that around 90% of barley lines were highly susceptible, indicating a significant vulnerability to HF in barley, and a total of 29 accessions were resistant, serving as potential resistance resources. GWAS with a mixed linear model revealed two marker-trait associations, both on chromosome 4H. The resistance loci and associated markers will facilitate barley improvement and development for breeders. In addition, our results are fundamental for genetic studies to understand the HF resistance mechanism in barley.
Collapse
Affiliation(s)
- Manila Karki
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Chenggen Chu
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
| | - Kirk Anderson
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Raja Sekhar Nandety
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Jason D Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Jeffrey Schachterle
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Robert S Bruggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| |
Collapse
|
7
|
Hong Y, Zhang M, Zhu J, Zhang Y, Lv C, Guo B, Wang F, Xu R. Genome-wide association studies reveal novel loci for grain size in two-rowed barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:58. [PMID: 38407646 DOI: 10.1007/s00122-024-04562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
KEY MESSAGE SNP-based and InDel-based GWAS on multi-environment data identified genomic regions associated with barley grain size. Barley yield and quality are greatly influenced by grain size. Improving barley grain size in breeding programs requires knowledge of genetic loci and alleles in germplasm resources. In this study, a collection of 334 worldwide two-rowed barley accessions with extensive genetic diversity was evaluated for grain size including grain length (GL), grain width (GW), and thousand-grain weight (TGW) across six independent field trials. Significant differences were observed in genotype and environments for all measured traits. SNP- and InDel-based GWAS were applied to dissect the genetic architecture of grain size with an SLAF-seq strategy. Two approaches using the FarmCPU model revealed 38 significant marker-trait associations (MTAs) with PVE ranging from 0.01% to 20.68%. Among these MTAs, five were on genomic regions where no previously reported QTL for grain size. Superior alleles of TGW-associated SNP233060 and GL-associated InDel11006 exhibited significantly higher levels of phenotype. The significant MTAs could be used in marker-assisted selection breeding.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuhang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Desta KT, Choi YM, Yoon H, Lee S, Yi J, Jeon YA, Wang X, Park JC, Kim KM, Shin MJ. Comprehensive Characterization of Global Barley ( Hordeum vulgare L.) Collection Using Agronomic Traits, β-Glucan Level, Phenolic Content, and Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:169. [PMID: 38256723 PMCID: PMC10818635 DOI: 10.3390/plants13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
This study characterized the diversity of 367 barley collections from 27 different countries, including 5 control cultivars, using several phenotypic traits. Morphological traits, including spike type, grain morphology, cold damage, and lodging rate, exhibited wide variations. Eighteen accessions matured early, while four accessions had longer culm and spike lengths than the controls. The ranges of total phenolic content (TPC), β-glucan content, ABTS•+ scavenging activity, DPPH• scavenging activity, and reducing power (RP) were 1.79-6.79 mg GAE/g, 0.14-8.41 g/100 g, 3.07-13.54 mg AAE/100 g, 1.56-6.24 mg AAE/g, and 1.31-7.86 mg AAE/g, respectively. Betaone, one of the controls, had the highest β-glucan content. Two accessions had β-glucan levels close to Betaone. Furthermore, 20 accessions exhibited increased TPC compared to the controls, while 5 accessions displayed elevated ABTS•+ scavenging activity. Among these, one accession also exhibited higher DPPH• scavenging activity and RP simultaneously. Based on the statistical analysis of variance, all the quantitative traits were significantly affected by the difference in origin (p < 0.05). On the other hand, grain morphology significantly affected biochemical traits. Multivariate analysis classified barley accessions into eight groups, demonstrating variations in quantitative traits. There were noteworthy correlations between biochemical and agronomical traits. Overall, this study characterized several barley varieties of different origins, anticipating future genomic research. The barley accessions with superior performances could be valuable alternatives in breeding.
Collapse
Affiliation(s)
- Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sukyeung Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju 54875, Republic of Korea
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Xiaohan Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jin-Cheon Park
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Kyeong-Min Kim
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
9
|
Ritzinger M, Sallam AH, Smith KP, Case AJ, Wodarek J, Curland RD, Dill-Macky R, Steffenson BJ. Genome-Wide Association Mapping of Bacterial Leaf Streak Resistance in Two Elite Barley Breeding Panels. PHYTOPATHOLOGY 2023; 113:2119-2126. [PMID: 37069124 DOI: 10.1094/phyto-10-22-0402-sa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Bacterial leaf streak (BLS), caused chiefly by the pathogen Xanthomonas translucens pv. translucens, is becoming an increasingly important foliar disease of barley in the Upper Midwest. The deployment of resistant cultivars is the most economical and practical method of control. To identify sources of BLS resistance, we evaluated two panels of breeding lines from the University of Minnesota (UMN) and Anheuser-Busch InBev (ABI) barley improvement programs for reaction to strain CIX95 in the field at St. Paul and Crookston, MN, in 2020 and 2021. The percentage of resistant lines in the UMN and ABI panels with mid-season maturity was 1.8% (6 of 333 lines) and 5.2% (13 of 251 lines), respectively. Both panels were genotyped with the barley 50K iSelect SNP array, and then a genome-wide association study was performed. A single, highly significant association was identified for BLS resistance on chromosome 6H in the UMN panel. This association was also identified in the ABI panel. Seven other significant associations were detected in the ABI panel: two each on chromosomes 1H, 2H, and 3H and one on chromosome 5H. Of the eight associations identified in the panels, five were novel. The discovery of resistance in elite breeding lines will hasten the time needed to develop and release a BLS-resistant cultivar.
Collapse
Affiliation(s)
- Mitch Ritzinger
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Ahmad H Sallam
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | | | - Joseph Wodarek
- University of Minnesota, Northwest Research and Outreach Center, Crookston, MN 56716
| | - Rebecca D Curland
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
10
|
Maanju S, Jasrotia P, Yadav SS, Kashyap PL, Kumar S, Jat MK, Lal C, Sharma P, Singh G, Singh GP. Deciphering the genetic diversity and population structure of wild barley germplasm against corn leaf aphid, Rhopalosiphum maidis (Fitch). Sci Rep 2023; 13:17313. [PMID: 37828115 PMCID: PMC10570286 DOI: 10.1038/s41598-023-42717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Corn-leaf aphid (CLA-Rhopalosiphum maidis) is a major insect pest of barley (Hordeum vulgare) causing yield loss upto 30% under severe infestation. Keeping in view of the availability of very few sources of CLA resistance in barley, the present investigation was framed to assess the genetic diversity and population structure of 43 wild barley (H. vulgare subsp. spontaneum) genotypes using eight microsatellite markers against R. maidis. Three statistical methods viz. multivariate-hierarchical clustering, Bayesian clustering and PCoA, unanimously grouped genotypes into three subpopulations (K = 3) with 25.58% (SubPop1-Red), 39.53% (SubPop2-Green) and 34.88% (SubPop3-Blue) genotypes including admixtures. Based on Q ≥ 66.66%, 37.20% genotypes formed a superficial "Mixed/Admixture" subpopulation. All polymorphic SSR markers generated 36 alleles, averaging to 4.5 alleles/locus (2-7 range). The PIC and H were highest in MS31 and lowest in MS28, with averages of 0.66 and 0.71. MAF and mean genetic diversity were 0.16 and 89.28%, respectively. All these parameters indicated the presence of predominant genetic diversity and population structure amongst the studied genotypes. Based on AII, only 6 genotypes were found to be R. maidis resistant. SubPop3 had 91.66% (11) of the resistant or moderately resistant genotypes. SubPop3 also had the most pure genotypes (11), the least aphid infestation (8.78), and the highest GS (0.88), indicating its suitability for future R. maidis resistance breeding initiatives.
Collapse
Affiliation(s)
- Sunny Maanju
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
- CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India.
| | | | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Manoj Kumar Jat
- CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Chuni Lal
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Preeti Sharma
- CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| |
Collapse
|
11
|
Farooqi MQU, Moody D, Bai G, Bernardo A, St. Amand P, Diggle AJ, Rengel Z. Genetic characterization of root architectural traits in barley ( Hordeum vulgare L.) using SNP markers. FRONTIERS IN PLANT SCIENCE 2023; 14:1265925. [PMID: 37860255 PMCID: PMC10582755 DOI: 10.3389/fpls.2023.1265925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023]
Abstract
Increasing attention is paid to providing new tools to breeders for targeted breeding for specific root traits that are beneficial in low-fertility, drying soils; however, such information is not available for barley (Hordeum vulgare L.). A panel of 191 barley accessions (originating from Australia, Europe, and Africa) was phenotyped for 26 root and shoot traits using the semi-hydroponic system and genotyped using 21 062 high-quality single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing (GBS). The population structure analysis of the barley panel identified six distinct groups. We detected 1199 significant (P<0.001) marker-trait associations (MTAs) with r2 values up to 0.41. The strongest MTAs were found for root diameter in the top 20 cm and the longest root length. Based on the physical locations of these MTAs in the barley reference genome, we identified 37 putative QTLs for the root traits, and three QTLs for shoot traits, with nine QTLs located in the same physical regions. The genomic region 640-653 Mb on chromosome 7H was significant for five root length-related traits, where 440 annotated genes were located. The putative QTLs for various root traits identified in this study may be useful for genetic improvement regarding the adaptation of new barley cultivars to suboptimal environments and abiotic stresses.
Collapse
Affiliation(s)
- M. Q. U. Farooqi
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | | | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Amy Bernardo
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Paul St. Amand
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Art J. Diggle
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
12
|
Elakhdar A, Slaski JJ, Kubo T, Hamwieh A, Hernandez Ramirez G, Beattie AD, Capo-chichi LJ. Genome-wide association analysis provides insights into the genetic basis of photosynthetic responses to low-temperature stress in spring barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1159016. [PMID: 37346141 PMCID: PMC10279893 DOI: 10.3389/fpls.2023.1159016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Low-temperature stress (LTS) is among the major abiotic stresses affecting the geographical distribution and productivity of the most important crops. Understanding the genetic basis of photosynthetic variation under cold stress is necessary for developing more climate-resilient barley cultivars. To that end, we investigated the ability of chlorophyll fluorescence parameters (FVFM, and FVF0) to respond to changes in the maximum quantum yield of Photosystem II photochemistry as an indicator of photosynthetic energy. A panel of 96 barley spring cultivars from different breeding zones of Canada was evaluated for chlorophyll fluorescence-related traits under cold acclimation and freeze shock stresses at different times. Genome-wide association studies (GWAS) were performed using a mixed linear model (MLM). We identified three major and putative genomic regions harboring 52 significant quantitative trait nucleotides (QTNs) on chromosomes 1H, 3H, and 6H for low-temperature tolerance. Functional annotation indicated several QTNs were either within the known or close to genes that play important roles in the photosynthetic metabolites such as abscisic acid (ABA) signaling, hydrolase activity, protein kinase, and transduction of environmental signal transduction at the posttranslational modification levels. These outcomes revealed that barley plants modified their gene expression profile in response to decreasing temperatures resulting in physiological and biochemical modifications. Cold tolerance could influence a long-term adaption of barley in many parts of the world. Since the degree and frequency of LTS vary considerably among production sites. Hence, these results could shed light on potential approaches for improving barley productivity under low-temperature stress.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Jan J. Slaski
- Bio Industrial Services Division, InnoTech Alberta Inc., Vegreville, AB, Canada
| | - Takahiko Kubo
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Aladdin Hamwieh
- International Center for Agriculture Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Guillermo Hernandez Ramirez
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Aaron D. Beattie
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ludovic J.A. Capo-chichi
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Radchuk V, Belew ZM, Gündel A, Mayer S, Hilo A, Hensel G, Sharma R, Neumann K, Ortleb S, Wagner S, Muszynska A, Crocoll C, Xu D, Hoffie I, Kumlehn J, Fuchs J, Peleke FF, Szymanski JJ, Rolletschek H, Nour-Eldin HH, Borisjuk L. SWEET11b transports both sugar and cytokinin in developing barley grains. THE PLANT CELL 2023; 35:2186-2207. [PMID: 36857316 DOI: 10.1093/plcell/koad055] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 05/30/2023]
Abstract
Even though Sugars Will Eventually be Exported Transporters (SWEETs) have been found in every sequenced plant genome, a comprehensive understanding of their functionality is lacking. In this study, we focused on the SWEET family of barley (Hordeum vulgare). A radiotracer assay revealed that expressing HvSWEET11b in African clawed frog (Xenopus laevis) oocytes facilitated the bidirectional transfer of not only just sucrose and glucose, but also cytokinin. Barley plants harboring a loss-of-function mutation of HvSWEET11b could not set viable grains, while the distribution of sucrose and cytokinin was altered in developing grains of plants in which the gene was knocked down. Sucrose allocation within transgenic grains was disrupted, which is consistent with the changes to the cytokinin gradient across grains, as visualized by magnetic resonance imaging and Fourier transform infrared spectroscopy microimaging. Decreasing HvSWEET11b expression in developing grains reduced overall grain size, sink strength, the number of endopolyploid endosperm cells, and the contents of starch and protein. The control exerted by HvSWEET11b over sugars and cytokinins likely predetermines their synergy, resulting in adjustments to the grain's biochemistry and transcriptome.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Zeinu M Belew
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Simon Mayer
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Goetz Hensel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Rajiv Sharma
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JGUK
| | - Kerstin Neumann
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Aleksandra Muszynska
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Christoph Crocoll
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Deyang Xu
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Iris Hoffie
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Joerg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Fritz F Peleke
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jedrzej J Szymanski
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Hussam H Nour-Eldin
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| |
Collapse
|
14
|
Revolinski SR, Maughan PJ, Coleman CE, Burke IC. Preadapted to adapt: underpinnings of adaptive plasticity revealed by the downy brome genome. Commun Biol 2023; 6:326. [PMID: 36973344 PMCID: PMC10042881 DOI: 10.1038/s42003-023-04620-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Bromus tectorum L. is arguably the most successful invasive weed in the world. It has fundamentally altered arid ecosystems of the western United States, where it now found on an excess of 20 million hectares. Invasion success is related to avoidance of abiotic stress and human management. Early flowering is a heritable trait utilized by B. tectorum, enabling the species to temporally monopolize limited resources and outcompete the native plant community. Thus, understanding the genetic underpinning of flowering time is critical for the design of integrated management strategies. To study flowering time traits in B. tectorum, we assembled a chromosome scale reference genome for B. tectorum. To assess the utility of the assembled genome, 121 diverse B. tectorum accessions are phenotyped and subjected to a genome wide association study (GWAS). Candidate genes, representing homologs of genes that have been previously associated with plant height or flowering phenology traits in related species are located near QTLs we identified. This study uses a high-resolution GWAS to identify reproductive phenology genes in a weedy species and represents a considerable step forward in understanding the mechanisms underlying genetic plasticity in one of the most successful invasive weed species.
Collapse
Affiliation(s)
- Samuel R Revolinski
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Peter J Maughan
- Department of Plant & Wildlife Science, Brigham Young University, Provo, UT, USA
| | - Craig E Coleman
- Department of Plant & Wildlife Science, Brigham Young University, Provo, UT, USA
| | - Ian C Burke
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
15
|
Hong Y, Zhang M, Xu R. Genetic Localization and Homologous Genes Mining for Barley Grain Size. Int J Mol Sci 2023; 24:ijms24054932. [PMID: 36902360 PMCID: PMC10003025 DOI: 10.3390/ijms24054932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Grain size is an important agronomic trait determining barley yield and quality. An increasing number of QTLs (quantitative trait loci) for grain size have been reported due to the improvement in genome sequencing and mapping. Elucidating the molecular mechanisms underpinning barley grain size is vital for producing elite cultivars and accelerating breeding processes. In this review, we summarize the achievements in the molecular mapping of barley grain size over the past two decades, highlighting the results of QTL linkage analysis and genome-wide association studies. We discuss the QTL hotspots and predict candidate genes in detail. Moreover, reported homologs that determine the seed size clustered into several signaling pathways in model plants are also listed, providing the theoretical basis for mining genetic resources and regulatory networks of barley grain size.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
16
|
Matros A, Schikora A, Ordon F, Wehner G. QTL for induced resistance against leaf rust in barley. FRONTIERS IN PLANT SCIENCE 2023; 13:1069087. [PMID: 36714737 PMCID: PMC9877528 DOI: 10.3389/fpls.2022.1069087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Leaf rust caused by Puccinia hordei is one of the major diseases of barley (Hordeum vulgare L.) leading to yield losses up to 60%. Even though, resistance genes Rph1 to Rph28 are known, most of these are already overcome. In this context, priming may promote enhanced resistance to P. hordei. Several bacterial communities such as the soil bacterium Ensifer (syn. Sinorhizobium) meliloti are reported to induce resistance by priming. During quorum sensing in populations of gram negative bacteria, they produce N-acyl homoserine-lactones (AHL), which induce resistance in plants in a species- and genotype-specific manner. Therefore, the present study aims to detect genotypic differences in the response of barley to AHL, followed by the identification of genomic regions involved in priming efficiency of barley. A diverse set of 198 spring barley accessions was treated with a repaired E. meliloti natural mutant strain expR+ch producing a substantial amount of AHL and a transformed E. meliloti strain carrying the lactonase gene attM from Agrobacterium tumefaciens. For P. hordei resistance the diseased leaf area and the infection type were scored 12 dpi (days post-inoculation), and the corresponding relative infection and priming efficiency were calculated. Results revealed significant effects (p<0.001) of the bacterial treatment indicating a positive effect of priming on resistance to P. hordei. In a genome-wide association study (GWAS), based on the observed phenotypic differences and 493,846 filtered SNPs derived from the Illumina 9k iSelect chip, genotyping by sequencing (GBS), and exome capture data, 11 quantitative trait loci (QTL) were identified with a hot spot on the short arm of the barley chromosome 6H, associated to improved resistance to P. hordei after priming with E. meliloti expR+ch. Genes in these QTL regions represent promising candidates for future research on the mechanisms of plant-microbe interactions.
Collapse
Affiliation(s)
- Andrea Matros
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Gwendolin Wehner
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
17
|
Capo-chichi LJA, Elakhdar A, Kubo T, Nyachiro J, Juskiw P, Capettini F, Slaski JJ, Ramirez GH, Beattie AD. Genetic diversity and population structure assessment of Western Canadian barley cooperative trials. FRONTIERS IN PLANT SCIENCE 2023; 13:1006719. [PMID: 36699829 PMCID: PMC9868428 DOI: 10.3389/fpls.2022.1006719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Studying the population structure and genetic diversity of historical datasets is a proposed use for association analysis. This is particularly important when the dataset contains traits that are time-consuming or costly to measure. A set of 96 elite barley genotypes, developed from eight breeding programs of the Western Canadian Cooperative Trials were used in the current study. Genetic diversity, allelic variation, and linkage disequilibrium (LD) were investigated using 5063 high-quality SNP markers via the Illumina 9K Barley Infinium iSelect SNP assay. The distribution of SNPs markers across the barley genome ranged from 449 markers on chromosome 1H to 1111 markers on chromosome 5H. The average polymorphism information content (PIC) per locus was 0.275 and ranged from 0.094 to 0.375. Bayesian clustering in STRUCTURE and principal coordinate analysis revealed that the populations are differentiated primarily due to the different breeding program origins and ear-row type into five subpopulations. Analysis of molecular variance based on PhiPT values suggested that high values of genetic diversity were observed within populations and accounted for 90% of the total variance. Subpopulation 5 exhibited the most diversity with the highest values of the diversity indices, which represent the breeding program gene pool of AFC, AAFRD, AU, and BARI. With increasing genetic distance, the LD values, expressed as r2, declined to below the critical r2 = 0.18 after 3.91 cM, and the same pattern was observed on each chromosome. Our results identified an important pattern of genetic diversity among the Canadian barley panel that was proposed to be representative of target breeding programs and may have important implications for association mapping in the future. This highlight, that efforts to identify novel variability underlying this diversity may present practical breeding opportunities to develop new barley genotypes.
Collapse
Affiliation(s)
- Ludovic J. A. Capo-chichi
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ammar Elakhdar
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Takahiko Kubo
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Joseph Nyachiro
- Field Crop Development Centre, Alberta Agriculture and Forestry, Lacombe, AB, Canada
| | - Patricia Juskiw
- Field Crop Development Centre, Alberta Agriculture and Forestry, Lacombe, AB, Canada
| | - Flavio Capettini
- Field Crop Development Centre, Alberta Agriculture and Forestry, Lacombe, AB, Canada
| | - Jan J. Slaski
- Ecosystems and Plant Sciences, InnoTech Alberta Inc., Vegreville, AB, Canada
| | - Guillermo Hernandez Ramirez
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Aaron D. Beattie
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Sa KJ, Park H, Jang SJ, Lee JK. Association Mapping of Amylose Content in Maize RIL Population Using SSR and SNP Markers. PLANTS (BASEL, SWITZERLAND) 2023; 12:239. [PMID: 36678952 PMCID: PMC9865990 DOI: 10.3390/plants12020239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The ratio of amylose to amylopectin in maize kernel starch is important for the appearance, structure, and quality of food products and processing. This study aimed to identify quantitative trait loci (QTLs) controlling amylose content in maize through association mapping with simple sequence repeat (SSR) and single-nucleotide polymorphism (SNP) markers. The average value of amylose content for an 80-recombinant-inbred-line (RIL) population was 8.8 ± 0.7%, ranging from 2.1 to 15.9%. We used two different analyses-Q + K and PCA + K mixed linear models (MLMs)-and found 38 (35 SNP and 3 SSR) and 32 (29 SNP and 3 SSR) marker-trait associations (MTAs) associated with amylose content. A total of 34 (31 SNP and 3 SSR) and 28 (25 SNP and 3 SSR) MTAs were confirmed in the Q + K and PCA + K MLMs, respectively. This study detected some candidate genes for amylose content, such as GRMZM2G118690-encoding BBR/BPC transcription factor, which is used for the control of seed development and is associated with the amylose content of rice. GRMZM5G830776-encoding SNARE-interacting protein (KEULE) and the uncharacterized marker PUT-163a-18172151-1376 were significant with higher R2 value in two difference methods. GRMZM2G092296 were also significantly associated with amylose content in this study. This study focused on amylose content using a RIL population derived from dent and waxy inbred lines using molecular markers. Future studies would be of benefit for investigating the physical linkage between starch synthesis genes using SNP and SSR markers, which would help to build a more detailed genetic map and provide new insights into gene regulation of agriculturally important traits.
Collapse
Affiliation(s)
- Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyeon Park
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So Jung Jang
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
19
|
Shrestha A, Cosenza F, van Inghelandt D, Wu PY, Li J, Casale FA, Weisweiler M, Stich B. The double round-robin population unravels the genetic architecture of grain size in barley. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7344-7361. [PMID: 36094852 PMCID: PMC9730814 DOI: 10.1093/jxb/erac369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Grain number, size and weight primarily determine the yield of barley. Although the genes regulating grain number are well studied in barley, the genetic loci and the causal gene for sink capacity are poorly understood. Therefore, the primary objective of our work was to dissect the genetic architecture of grain size and weight in barley. We used a multi-parent population developed from a genetic cross between 23 diverse barley inbreds in a double round-robin design. Seed size-related parameters such as grain length, grain width, grain area and thousand-grain weight were evaluated in the HvDRR population comprising 45 recombinant inbred line sub-populations. We found significant genotypic variation for all seed size characteristics, and observed 84% or higher heritability across four environments. The quantitative trait locus (QTL) detection results indicate that the genetic architecture of grain size is more complex than previously reported. In addition, both cultivars and landraces contributed positive alleles at grain size QTLs. Candidate genes identified using genome-wide variant calling data for all parental inbred lines indicated overlapping and potential novel regulators of grain size in cereals. Furthermore, our results indicated that sink capacity was the primary determinant of grain weight in barley.
Collapse
Affiliation(s)
- Asis Shrestha
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Francesco Cosenza
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Delphine van Inghelandt
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Po-Ya Wu
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Jinquan Li
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Federico A Casale
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Marius Weisweiler
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | | |
Collapse
|
20
|
Zhang A, Zhao T, Hu X, Zhou Y, An Y, Pei H, Sun D, Sun G, Li C, Ren X. Identification of QTL underlying the main stem related traits in a doubled haploid barley population. FRONTIERS IN PLANT SCIENCE 2022; 13:1063988. [PMID: 36531346 PMCID: PMC9751491 DOI: 10.3389/fpls.2022.1063988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Lodging reduces grain yield in cereal crops. The height, diameter and strength of stem are crucial for lodging resistance, grain yield, and photosynthate transport in barley. Understanding the genetic basis of stem benefits barley breeding. Here, we evaluated 13 stem related traits after 28 days of heading in a barley DH population in two consecutive years. Significant phenotypic correlations between lodging index (LI) and other stem traits were observed. Three mapping methods using the experimental data and the BLUP data, detected 27 stable and major QTLs, and 22 QTL clustered regions. Many QTLs were consistent with previously reported traits for grain filling rate, internodes, panicle and lodging resistance. Further, candidate genes were predicted for stable and major QTLs and were associated with plant development and adverse stress in the transition from vegetative stage to reproductive stage. This study provided potential genetic basis and new information for exploring barley stem morphology, and laid a foundation for map-based cloning and further fine mapping of these QTLs.
Collapse
Affiliation(s)
- Anyong Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ting Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xue Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yue An
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haiyi Pei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Genlou Sun
- Department of Biology, Saint Mary’s University, Halifax, NS, Canada
| | - Chengdao Li
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
21
|
Bouhlal O, Visioni A, Verma RPS, Kandil M, Gyawali S, Capettini F, Sanchez-Garcia M. CGIAR Barley Breeding Toolbox: A diversity panel to facilitate breeding and genomic research in the developing world. FRONTIERS IN PLANT SCIENCE 2022; 13:1034322. [PMID: 36452106 PMCID: PMC9702823 DOI: 10.3389/fpls.2022.1034322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Breeding programs in developing countries still cannot afford the new genotyping technologies, hindering their research. We aimed to assemble an Association Mapping panel to serve as CGIAR Barley Breeding Toolbox (CBBT), especially for the Developing World. The germplasm had to be representative of the one grown in the Developing World; with high genetic variability and be of public domain. For it, we genotyped with the Infinium iSelect 50K chip, a Global Barley Panel (GBP) of 530 genotypes representing a wide range of row-types, end-uses, growth habits, geographical origins and environments. 40,342 markers were polymorphic with an average polymorphism information content of 0.35 and 66% of them exceeding 0.25. The analysis of the population structure identified 8 subpopulations mostly linked to geographical origin, four of them with significant ICARDA origin. The 16 allele combinations at 4 major flowering genes (HvVRN-H3, HvPPD-H1, HvVRN-H1 and HvCEN) explained 11.07% genetic variation and were linked to the geographic origins of the lines. ICARDA material showed the widest diversity as revealed by the highest number of polymorphic loci (99.76% of all polymorphic SNPs in GBP), number of private alleles and the fact that ICARDA lines were present in all 8 subpopulations and carried all 16 allelic combinations. Due to their genetic diversity and their representativity of the germplasm adapted to the Developing World, ICARDA-derived lines and cultivated landraces were pre-selected to form the CBBT. Using the Mean of Transformed Kinships method, we assembled a panel capturing most of the allelic diversity in the GBP. The CBBT (N=250) preserves good balance between row-types and good representation of both phenology allelic combinations and subpopulations of the GBP. The CBBT and its genotypic data is available to researchers worldwide as a collaborative tool to underpin the genetic mechanisms of traits of interest for barley cultivation.
Collapse
Affiliation(s)
- Outmane Bouhlal
- Biodiversity and Crop Improvement Program (BCIP), International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaib Doukkali University, El-Jadida, Morocco
| | - Andrea Visioni
- Biodiversity and Crop Improvement Program (BCIP), International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | | | - Mostafa Kandil
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaib Doukkali University, El-Jadida, Morocco
| | | | | | - Miguel Sanchez-Garcia
- Biodiversity and Crop Improvement Program (BCIP), International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| |
Collapse
|
22
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
23
|
Rajendran NR, Qureshi N, Pourkheirandish M. Genotyping by Sequencing Advancements in Barley. FRONTIERS IN PLANT SCIENCE 2022; 13:931423. [PMID: 36003814 PMCID: PMC9394214 DOI: 10.3389/fpls.2022.931423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Barley is considered an ideal crop to study cereal genetics due to its close relationship with wheat and diploid ancestral genome. It plays a crucial role in reducing risks to global food security posed by climate change. Genetic variations in the traits of interest in crops are vital for their improvement. DNA markers have been widely used to estimate these variations in populations. With the advancements in next-generation sequencing, breeders could access different types of genetic variations within different lines, with single-nucleotide polymorphisms (SNPs) being the most common type. However, genotyping barley with whole genome sequencing (WGS) is challenged by the higher cost and computational demand caused by the large genome size (5.5GB) and a high proportion of repetitive sequences (80%). Genotyping-by-sequencing (GBS) protocols based on restriction enzymes and target enrichment allow a cost-effective SNP discovery by reducing the genome complexity. In general, GBS has opened up new horizons for plant breeding and genetics. Though considered a reliable alternative to WGS, GBS also presents various computational difficulties, but GBS-specific pipelines are designed to overcome these challenges. Moreover, a robust design for GBS can facilitate the imputation to the WGS level of crops with high linkage disequilibrium. The complete exploitation of GBS advancements will pave the way to a better understanding of crop genetics and offer opportunities for the successful improvement of barley and its close relatives.
Collapse
Affiliation(s)
- Nirmal Raj Rajendran
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Naeela Qureshi
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de Mexico, Mexico
| | - Mohammad Pourkheirandish
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Peng Y, Yan H, Guo L, Deng C, Wang C, Wang Y, Kang L, Zhou P, Yu K, Dong X, Liu X, Sun Z, Peng Y, Zhao J, Deng D, Xu Y, Li Y, Jiang Q, Li Y, Wei L, Wang J, Ma J, Hao M, Li W, Kang H, Peng Z, Liu D, Jia J, Zheng Y, Ma T, Wei Y, Lu F, Ren C. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat Genet 2022; 54:1248-1258. [PMID: 35851189 PMCID: PMC9355876 DOI: 10.1038/s41588-022-01127-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022]
Abstract
Common oat (Avena sativa) is an important cereal crop serving as a valuable source of forage and human food. Although reference genomes of many important crops have been generated, such work in oat has lagged behind, primarily owing to its large, repeat-rich polyploid genome. Here, using Oxford Nanopore ultralong sequencing and Hi-C technologies, we have generated a reference-quality genome assembly of hulless common oat, comprising 21 pseudomolecules with a total length of 10.76 Gb and contig N50 of 75.27 Mb. We also produced genome assemblies for diploid and tetraploid Avena ancestors, which enabled the identification of oat subgenomes and provided insights into oat chromosomal evolution. The origin of hexaploid oat is inferred from whole-genome sequencing, chloroplast genomes and transcriptome assemblies of different Avena species. These findings and the high-quality reference genomes presented here will facilitate the full use of crop genetic resources to accelerate oat improvement.
Collapse
Affiliation(s)
- Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Honghai Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Laichun Guo
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China
- China Oat and Buckwheat Research Center, Baicheng, China
| | - Cao Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu, China
| | - Chunlong Wang
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China
- China Oat and Buckwheat Research Center, Baicheng, China
| | - Yubo Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Lipeng Kang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kaiquan Yu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaolong Dong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaomeng Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | | | - Yun Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Di Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yinghong Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Liming Wei
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China
- China Oat and Buckwheat Research Center, Baicheng, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengsong Peng
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Changzhong Ren
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China.
- China Oat and Buckwheat Research Center, Baicheng, China.
| |
Collapse
|
25
|
Dziurdziak J, Podyma W, Bujak H, Boczkowska M. Tracking Changes in the Spring Barley Gene Pool in Poland during 120 Years of Breeding. Int J Mol Sci 2022; 23:4553. [PMID: 35562944 PMCID: PMC9099733 DOI: 10.3390/ijms23094553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
This study was undertaken to investigate the diversity and population structure of 83 spring barley (Hordeum vulgare L.) cultivars, which corresponded to 120 years of this crop's breeding in Poland. The analysis was based on 11,655 DArTseq-derived SNPs evenly distributed across seven barley chromosomes. Five groups were assigned in the studied cultivars according to the period of their breeding. A decrease in observed heterozygosity within the groups was noted along with the progress in breeding, with a simultaneous increase in the inbreeding coefficient value. As a result of breeding, some of the unique allelic variation present in old cultivars was lost, but crosses with foreign materials also provided new alleles to the barley gene pool. It is important to mention that the above changes affected different chromosomes to varying degrees. The internal variability of the cultivars ranged from 0.011 to 0.236. Internal uniformity was lowest among the oldest cultivars, although some highly homogeneous ones were found among them. This is probably an effect of genetic drift or selection during their multiplications and regenerations in the period from breeding to the time of analysis. The population genetic structure of the studied group of cultivars appears to be quite complex. It was shown that their genetic makeup consists of as many as eleven distinct gene pools. The analysis also showed traces of directed selection on chromosomes 3H and 5H. Detailed data analysis confirmed the presence of duplicates for 11 cultivars. The performed research will allow both improvement of the management of barley genetic resources in the gene bank and the reuse of this rich and forgotten variability in breeding programs and research.
Collapse
Affiliation(s)
- Joanna Dziurdziak
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland; (J.D.); (W.P.)
| | - Wiesław Podyma
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland; (J.D.); (W.P.)
| | - Henryk Bujak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363 Wrocław, Poland;
- Research Center for Cultivar Testing (COBORU), 63-022 Słupia Wielka, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland; (J.D.); (W.P.)
| |
Collapse
|
26
|
Zhao H, Savin KW, Li Y, Breen EJ, Maharjan P, Tibbits JF, Kant S, Hayden MJ, Daetwyler HD. Genome-wide association studies dissect the G × E interaction for agronomic traits in a worldwide collection of safflowers ( Carthamus tinctorius L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:24. [PMID: 37309464 PMCID: PMC10248593 DOI: 10.1007/s11032-022-01295-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies were conducted using a globally diverse safflower (Carthamus tinctorius L.) Genebank collection for grain yield (YP), days to flowering (DF), plant height (PH), 500 seed weight (SW), seed oil content (OL), and crude protein content (PR) in four environments (sites) that differed in water availability. Phenotypic variation was observed for all traits. YP exhibited low overall genetic correlations (rGoverall) across sites, while SW and OL had high rGoverall and high pairwise genetic correlations (rGij) across all pairwise sites. In total, 92 marker-trait associations (MTAs) were identified using three methods, single locus genome-wide association studies (GWAS) using a mixed linear model (MLM), the Bayesian multi-locus method (BayesR), and meta-GWAS. MTAs with large effects across all sites were detected for OL, SW, and PR, and MTAs specific for the different water stress sites were identified for all traits. Five MTAs were associated with multiple traits; 4 of 5 MTAs were variously associated with the three traits of SW, OL, and PR. This study provided insights into the phenotypic variability and genetic architecture of important safflower agronomic traits under different environments. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01295-8.
Collapse
Affiliation(s)
- Huanhuan Zhao
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Keith W. Savin
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Yongjun Li
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Edmond J. Breen
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Pankaj Maharjan
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC 3400 Australia
| | - Josquin F. Tibbits
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Surya Kant
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC 3400 Australia
| | - Matthew J. Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Hans D. Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| |
Collapse
|
27
|
Kong Z, Cheng R, Yan H, Yuan H, Zhang Y, Li G, Jia H, Xue S, Zhai W, Yuan Y, Ma Z. Fine mapping KT1 on wheat chromosome 5A that conditions kernel dimensions and grain weight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1101-1111. [PMID: 35083509 DOI: 10.1007/s00122-021-04020-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
KT1 was validated as a novel thickness QTL with major effects on wheat kernel dimensions and weight and fine mapped to a 0.04 cM interval near the chromosome-5A centromere. Kernel size, the principal grain weight determining factor of wheat and a target trait for both domestication and artificial breeding, is mainly defined by kernel length (KL), kernel width (KW) and kernel thickness (KT), of which KW and KT have been shown to be positively related to grain weight (GW). Qkt.nau-5A, a major QTL for KT, was validated using the QTL near-isogenic lines (NILs) in three genetic backgrounds. Genetic analysis using two F2 populations derived from the NILs showed that Qkt.nau-5A was dominant for thicker kernel and inherited like a single gene and therefore was designated as Kernel Thickness 1 (KT1). With 77 recombinant lines identified from a total of 19,160 F2 plants from the two NIL-derived F2 populations, KT1 was mapped to the 0.04 cM Xwgrb1356-Xwgrb1619 interval, which was near the centromere and displayed strong recombination suppression. The KT1 interval showed positive correlation with KW and GW and negative correlation with KL and therefore could be used in breeding for cultivars with round-shaped kernels that are beneficial to higher flour yield. KT1 candidate identification could be achieved through combination of sequence variation analysis with expression profiling of the annotated genes in the interval.
Collapse
Affiliation(s)
- Zhongxin Kong
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ruiru Cheng
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haisheng Yan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haiyun Yuan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yong Zhang
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Huaiyin Institute of Agriculture Sciences of Xuhuai Region in Jiangsu, Huaian, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shulin Xue
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenling Zhai
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yang Yuan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
28
|
Trubacheeva NV, Pershina LA. Problems and possibilities of studying malting quality in barley using molecular genetic approaches. Vavilovskii Zhurnal Genet Selektsii 2021; 25:171-177. [PMID: 34901715 PMCID: PMC8627870 DOI: 10.18699/vj21.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022] Open
Abstract
About one-third of the world’s barley crop is used for malt production to meet the needs of the brewing
industry. In this regard, the study of the genetic basis of malting quality traits and the breeding of malting barley
varieties that are adaptive to their growing conditions are relevant throughout the world, particularly in the Russian Federation, where the cultivation and use of foreign malting varieties of barley prevails. The main parameters
of malting quality (artificially germinated and dried barley grains) are malt extract, diastatic power, Kolbach index,
viscosity, grain protein, wort β-glucan, free amino nitrogen, and soluble protein content. Most of these components
are under the control of quantitative trait loci (QTLs) and are affected by environmental conditions, which complicates their study and precise localization. In addition, the phenotypic assessment of malting quality traits requires
elaborate, expensive phenotypic analyses. Currently, there are more than 200 QTLs associated with malting parameters, which were identified using biparental mapping populations. Molecular markers are widely used both for
mapping QTL loci responsible for malting quality traits and for performing marker-assisted selection (MAS), which,
in combination with conventional breeding, makes it possible to create effective strategies aimed at accelerating
the process of obtaining new promising genotypes. Nevertheless, the MAS of malting quality traits faces a series of
difficulties, such as the low accuracy of localization of QTLs, their ineffectiveness when transferred to another genetic background, and linkage with undesirable traits, which makes it necessary to validate QTLs and the molecular
markers linked to them. This review presents the results of studies that used MAS to improve the malting quality of
barley, and it also considers studies that searched for associations between genotype and phenotype, carried out
using GWAS (genome-wide association study) approaches based on the latest achievements of high-throughput
genotyping (diversity array technology (DArT) and single-nucleotide polymorphism markers (SNPs)).
Collapse
Affiliation(s)
- N V Trubacheeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Kurchatov Genomics Center of ICG SB RAS, Novosibirsk, Russia
| | - L A Pershina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Kurchatov Genomics Center of ICG SB RAS, Novosibirsk, Russia
| |
Collapse
|
29
|
Huang Y, Yin L, Sallam AH, Heinen S, Li L, Beaubien K, Dill-Macky R, Dong Y, Steffenson BJ, Smith KP, Muehlbauer GJ. Genetic dissection of a pericentromeric region of barley chromosome 6H associated with Fusarium head blight resistance, grain protein content and agronomic traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3963-3981. [PMID: 34455452 DOI: 10.1007/s00122-021-03941-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Fine mapping of barley 6H pericentromeric region identified FHB QTL with opposite effects, and high grain protein content was associated with increased FHB severity. Resistance to Fusarium head blight (FHB), kernel discoloration (KD), deoxynivalenol (DON) accumulation and grain protein content (GPC) are important traits for breeding malting barley varieties. Previous work mapped a Chevron-derived FHB QTL to the pericentromeric region of 6H, coinciding with QTL for KD resistance and GPC. The Chevron allele reduced FHB and KD, but unfavorably increased GPC. To determine whether the correlations are caused by linkage or pleiotropy, a fine mapping approach was used to dissect the QTL underlying these quality and disease traits. Two populations, referred to as Gen10 and Gen10/Lacey, derived from a recombinant near-isogenic line (rNIL) were developed. Recombinants were phenotyped for FHB, KD, DON, GPC and other agronomic traits. Three FHB, two DON and two KD QTLs were identified. One of the three FHB QTLs, one DON QTL and one KD QTL were coincident with the GPC QTL, which contains the Hv-NAM1 locus affecting grain protein accumulation. The Chevron allele at the GPC QTL increased GPC and FHB and decreased DON and KD. The other two FHB QTL and the other DON and KD QTL were identified in the regions flanking the Hv-NAM1 locus, and the Chevron alleles decreased FHB, DON and KD. Our results suggested that the QTL associated with FHB, KD, DON and GPC in the pericentromeric region of 6H was controlled by both pleiotropy and tightly linked loci. The rNILs identified in this study with low FHB severity and moderate GPC may be used for breeding malting barley cultivars.
Collapse
Affiliation(s)
- Yadong Huang
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lu Yin
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Ahmad H Sallam
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Shane Heinen
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lin Li
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Karen Beaubien
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Yanhong Dong
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
30
|
Siekmann D, Jansen G, Zaar A, Kilian A, Fromme FJ, Hackauf B. A Genome-Wide Association Study Pinpoints Quantitative Trait Genes for Plant Height, Heading Date, Grain Quality, and Yield in Rye ( Secale cereale L.). FRONTIERS IN PLANT SCIENCE 2021; 12:718081. [PMID: 34777409 PMCID: PMC8586073 DOI: 10.3389/fpls.2021.718081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/22/2021] [Indexed: 06/03/2023]
Abstract
Rye is the only cross-pollinating Triticeae crop species. Knowledge of rye genes controlling complex-inherited traits is scarce, which, currently, largely disables the genomics assisted introgression of untapped genetic variation from self-incompatible germplasm collections in elite inbred lines for hybrid breeding. We report on the first genome-wide association study (GWAS) in rye based on the phenotypic evaluation of 526 experimental hybrids for plant height, heading date, grain quality, and yield in 2 years and up to 19 environments. We established a cross-validated NIRS calibration model as a fast, effective, and robust analytical method to determine grain quality parameters. We observed phenotypic plasticity in plant height and tiller number as a resource use strategy of rye under drought and identified increased grain arabinoxylan content as a striking phenotype in osmotically stressed rye. We used DArTseq™ as a genotyping-by-sequencing technology to reduce the complexity of the rye genome. We established a novel high-density genetic linkage map that describes the position of almost 19k markers and that allowed us to estimate a low genome-wide LD based on the assessed genetic diversity in elite germplasm. We analyzed the relationship between plant height, heading date, agronomic, as well as grain quality traits, and genotype based on 20k novel single-nucleotide polymorphism markers. In addition, we integrated the DArTseq™ markers in the recently established 'Lo7' reference genome assembly. We identified cross-validated SNPs in 'Lo7' protein-coding genes associated with all traits studied. These include associations of the WUSCHEL-related homeobox transcription factor DWT1 and grain yield, the DELLA protein gene SLR1 and heading date, the Ethylene overproducer 1-like protein gene ETOL1 and thousand-grain weight, protein and starch content, as well as the Lectin receptor kinase SIT2 and plant height. A Leucine-rich repeat receptor protein kinase and a Xyloglucan alpha-1,6-xylosyltransferase count among the cross-validated genes associated with water-extractable arabinoxylan content. This study demonstrates the power of GWAS, hybrid breeding, and the reference genome sequence in rye genetics research to dissect and identify the function of genes shaping genetic diversity in agronomic and grain quality traits of rye. The described links between genetic causes and phenotypic variation will accelerate genomics-enabled rye improvement.
Collapse
Affiliation(s)
- Dörthe Siekmann
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Sanitz, Germany
- HYBRO Saatzucht GmbH & Co. KG, Schenkenberg, Germany
| | - Gisela Jansen
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Sanitz, Germany
| | - Anne Zaar
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Sanitz, Germany
| | | | | | - Bernd Hackauf
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Sanitz, Germany
| |
Collapse
|
31
|
Bziuk N, Maccario L, Straube B, Wehner G, Sørensen SJ, Schikora A, Smalla K. The treasure inside barley seeds: microbial diversity and plant beneficial bacteria. ENVIRONMENTAL MICROBIOME 2021; 16:20. [PMID: 34711269 PMCID: PMC8554914 DOI: 10.1186/s40793-021-00389-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Bacteria associated with plants can enhance the plants' growth and resistance against phytopathogens. Today, growers aim to reduce the use of mineral fertilizers and pesticides. Since phytopathogens cause severe yield losses in crop production systems, biological alternatives gain more attention. Plant and also seed endophytes have the potential to influence the plant, especially seed-borne bacteria may express their beneficiary impact at initial plant developmental stages. In the current study, we assessed the endophytic seed microbiome of seven genetically diverse barley accessions by 16S rRNA gene amplicon sequencing and verified the in vitro plant beneficial potential of isolated seed endophytes. Furthermore, we investigated the impact of the barley genotype and its seed microbiome on the rhizosphere microbiome at an early growth stage by 16S rRNA gene amplicon sequencing. RESULTS The plant genotype displayed a significant impact on the microbiota in both barley seed and rhizosphere. Consequently, the microbial alpha- and beta-diversity of the endophytic seed microbiome was highly influenced by the genotype. Interestingly, no correlation was observed between the endophytic seed microbiome and the single nucleotide polymorphisms of the seven genotypes. Unclassified members of Enterobacteriaceae were by far most dominant. Other abundant genera in the seed microbiome belonged to Curtobacterium, Paenibacillus, Pantoea, Sanguibacter and Saccharibacillus. Endophytes isolated from barley seeds were affiliated to dominant genera of the core seed microbiome, based on their 16S rRNA gene sequence. Most of these endophytic isolates produced in vitro plant beneficial secondary metabolites known to induce plant resistance. CONCLUSION Although barley accessions representing high genetic diversity displayed a genotype-dependent endophytic seed microbiome, a core seed microbiome with high relative abundances was identified. Endophytic isolates were affiliated to members of the core seed microbiome and many of them showed plant beneficial properties. We propose therefore that new breeding strategies should consider genotypes with high abundance of beneficial microbes.
Collapse
Affiliation(s)
- Nina Bziuk
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Lorrie Maccario
- Section of Microbiology, Copenhagen University, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Benjamin Straube
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Gwendolin Wehner
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Søren J. Sørensen
- Section of Microbiology, Copenhagen University, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
32
|
Eltaher S, Mourad AMI, Baenziger PS, Wegulo S, Belamkar V, Sallam A. Identification and Validation of High LD Hotspot Genomic Regions Harboring Stem Rust Resistant Genes on 1B, 2A ( Sr38), and 7B Chromosomes in Wheat. Front Genet 2021; 12:749675. [PMID: 34659366 PMCID: PMC8517078 DOI: 10.3389/fgene.2021.749675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Abstract
Stem rust caused by Puccinia graminis f. sp. tritici Eriks. is an important disease of common wheat globally. The production and cultivation of genetically resistant cultivars are one of the most successful and environmentally friendly ways to protect wheat against fungal pathogens. Seedling screening and genome-wide association study (GWAS) were used to determine the genetic diversity of wheat genotypes obtained on stem rust resistance loci. At the seedling stage, the reaction of the common stem rust race QFCSC in Nebraska was measured in a set of 212 genotypes from F3:6 lines. The results indicated that 184 genotypes (86.8%) had different degrees of resistance to this common race. While 28 genotypes (13.2%) were susceptible to stem rust. A set of 11,911 single-nucleotide polymorphism (SNP) markers was used to perform GWAS which detected 84 significant marker-trait associations (MTAs) with SNPs located on chromosomes 1B, 2A, 2B, 7B and an unknown chromosome. Promising high linkage disequilibrium (LD) genomic regions were found in all chromosomes except 2B which suggested they include candidate genes controlling stem rust resistance. Highly significant LD was found among these 59 significant SNPs on chromosome 2A and 12 significant SNPs with an unknown chromosomal position. The LD analysis between SNPs located on 2A and Sr38 gene reveal high significant LD genomic regions which was previously reported. To select the most promising stem rust resistant genotypes, a new approach was suggested based on four criteria including, phenotypic selection, number of resistant allele(s), the genetic distance among the selected parents, and number of the different resistant allele(s) in the candidate crosses. As a result, 23 genotypes were considered as the most suitable parents for crossing to produce highly resistant stem rust genotypes against the QFCSC.
Collapse
Affiliation(s)
- Shamseldeen Eltaher
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| | - Amira M I Mourad
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - P Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Stephen Wegulo
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Vikas Belamkar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt
| |
Collapse
|
33
|
Borrego-Benjumea A, Carter A, Zhu M, Tucker JR, Zhou M, Badea A. Genome-Wide Association Study of Waterlogging Tolerance in Barley ( Hordeum vulgare L.) Under Controlled Field Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:711654. [PMID: 34512694 PMCID: PMC8427447 DOI: 10.3389/fpls.2021.711654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 06/01/2023]
Abstract
Waterlogging is one of the main abiotic stresses severely reducing barley grain yield. Barley breeding programs focusing on waterlogging tolerance require an understanding of genetic loci and alleles in the current germplasm. In this study, 247 worldwide spring barley genotypes grown under controlled field conditions were genotyped with 35,926 SNPs with minor allele frequency (MAF) > 0.05. Significant phenotypic variation in each trait, including biomass, spikes per plant, grains per plant, kernel weight per plant, plant height and chlorophyll content, was observed. A genome-wide association study (GWAS) based on linkage disequilibrium (LD) for waterlogging tolerance was conducted. Population structure analysis divided the population into three subgroups. A mixed linkage model using both population structure and kinship matrix (Q+K) was performed. We identified 17 genomic regions containing 51 significant waterlogging-tolerance-associated markers for waterlogging tolerance response, accounting for 5.8-11.5% of the phenotypic variation, with a majority of them localized on chromosomes 1H, 2H, 4H, and 5H. Six novel QTL were identified and eight potential candidate genes mediating responses to abiotic stresses were located at QTL associated with waterlogging tolerance. To our awareness, this is the first GWAS for waterlogging tolerance in a worldwide barley collection under controlled field conditions. The marker-trait associations could be used in the marker-assisted selection of waterlogging tolerance and will facilitate barley breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Min Zhu
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| |
Collapse
|
34
|
Maung TZ, Yoo JM, Chu SH, Kim KW, Chung IM, Park YJ. Haplotype Variations and Evolutionary Analysis of the Granule-Bound Starch Synthase I Gene in the Korean World Rice Collection. FRONTIERS IN PLANT SCIENCE 2021; 12:707237. [PMID: 34504507 PMCID: PMC8421862 DOI: 10.3389/fpls.2021.707237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Granule-bound starch synthase I (GBSSI) is responsible for Waxy gene encoding the, which is involved in the amylose synthesis step of starch biosynthesis. We investigated the genotypic and haplotypic variations of GBSSI (Os06g0133000) gene, including its evolutionary relatedness in the nucleotide sequence level using single-nucleotide polymorphisms (SNPs), indels, and structural variations (SVs) from 475 Korean World Rice Collection (KRICE_CORE), which comprised 54 wild rice and 421 cultivated represented by 6 ecotypes (temperate japonica, indica, tropical japonica, aus, aromatic, and admixture) or in another way by 3 varietal types (landrace, weedy, and bred). The results revealed that 27 of 59 haplotypes indicated a total of 12 functional SNPs (fSNPs), identifying 9 novel fSNPs. According to the identified novel fSNPs, we classified the entire rice collection into three groups: cultivated, wild, and mixed (cultivated and wild) rice. Five novel fSNPs were localized in wild rice: four G/A fSNPs in exons 2, 9, and 12 and one T/C fSNP in exon 13. We also identified the three previously reported fSNPs, namely, a G/A fSNP (exon 4), an A/C fSNP (exon 6), and a C/T fSNP (exon 10), which were observed only in cultivated rice, whereas an A/G fSNP (exon 4) was observed exclusively in wild rice. All-against-all comparison of four varietal types or six ecotypes of cultivated rice with wild rice showed that the GBSSI diversity was higher only in wild rice (π = 0.0056). The diversity reduction in cultivated rice can be useful to encompass the origin of this gene GBSSI during its evolution. Significant deviations of positive (wild and indica under balancing selection) and negative (temperate and tropical japonica under purifying selection) Tajima's D values from a neutral model can be informative about the selective sweeps of GBSSI genome insights. Despite the estimation of the differences in population structure and principal component analysis (PCA) between wild and subdivided cultivated subgroups, an inbreeding effect was quantified by F ST statistic, signifying the genetic relatedness of GBSSI. Our findings of a novel wild fSNPS can be applicable for future breeding of waxy rice varieties. Furthermore, the signatures of selective sweep can also be of informative into further deeper insights during domestication.
Collapse
Affiliation(s)
- Thant Zin Maung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
| | - Ji-Min Yoo
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
| | - Sang-Ho Chu
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan-gun, South Korea
| | - Kyu-Won Kim
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan-gun, South Korea
| | - Ill-Min Chung
- Department of Applied Life Science, Konkuk University, Seoul, South Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan-gun, South Korea
| |
Collapse
|
35
|
Fernández-Calleja M, Casas AM, Igartua E. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1867-1897. [PMID: 33969431 PMCID: PMC8263424 DOI: 10.1007/s00122-021-03824-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/24/2021] [Indexed: 05/10/2023]
Abstract
This review summarizes the allelic series, effects, interactions between genes and with the environment, for the major flowering time genes that drive phenological adaptation of barley. The optimization of phenology is a major goal of plant breeding addressing the production of high-yielding varieties adapted to changing climatic conditions. Flowering time in cereals is regulated by genetic networks that respond predominately to day length and temperature. Allelic diversity at these genes is at the basis of barley wide adaptation. Detailed knowledge of their effects, and genetic and environmental interactions will facilitate plant breeders manipulating flowering time in cereal germplasm enhancement, by exploiting appropriate gene combinations. This review describes a catalogue of alleles found in QTL studies by barley geneticists, corresponding to the genetic diversity at major flowering time genes, the main drivers of barley phenological adaptation: VRN-H1 (HvBM5A), VRN-H2 (HvZCCTa-c), VRN-H3 (HvFT1), PPD-H1 (HvPRR37), PPD-H2 (HvFT3), and eam6/eps2 (HvCEN). For each gene, allelic series, size and direction of QTL effects, interactions between genes and with the environment are presented. Pleiotropic effects on agronomically important traits such as grain yield are also discussed. The review includes brief comments on additional genes with large effects on phenology that became relevant in modern barley breeding. The parallelisms between flowering time allelic variation between the two most cultivated Triticeae species (barley and wheat) are also outlined. This work is mostly based on previously published data, although we added some new data and hypothesis supported by a number of studies. This review shows the wide variety of allelic effects that provide enormous plasticity in barley flowering behavior, which opens new avenues to breeders for fine-tuning phenology of the barley crop.
Collapse
Affiliation(s)
- Miriam Fernández-Calleja
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
36
|
Akond Z, Ahsan MA, Alam M, Mollah MNH. Robustification of GWAS to explore effective SNPs addressing the challenges of hidden population stratification and polygenic effects. Sci Rep 2021; 11:13060. [PMID: 34158546 PMCID: PMC8219685 DOI: 10.1038/s41598-021-90774-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/12/2021] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies (GWAS) play a vital role in identifying important genes those is associated with the phenotypic variations of living organisms. There are several statistical methods for GWAS including the linear mixed model (LMM) which is popular for addressing the challenges of hidden population stratification and polygenic effects. However, most of these methods including LMM are sensitive to phenotypic outliers that may lead the misleading results. To overcome this problem, in this paper, we proposed a way to robustify the LMM approach for reducing the influence of outlying observations using the β-divergence method. The performance of the proposed method was investigated using both synthetic and real data analysis. Simulation results showed that the proposed method performs better than both linear regression model (LRM) and LMM approaches in terms of powers and false discovery rates in presence of phenotypic outliers. On the other hand, the proposed method performed almost similar to LMM approach but much better than LRM approach in absence of outliers. In the case of real data analysis, our proposed method identified 11 SNPs that are significantly associated with the rice flowering time. Among the identified candidate SNPs, some were involved in seed development and flowering time pathways, and some were connected with flower and other developmental processes. These identified candidate SNPs could assist rice breeding programs effectively. Thus, our findings highlighted the importance of robust GWAS in identifying candidate genes.
Collapse
Affiliation(s)
- Zobaer Akond
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Institute of Environmental Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Agricultural Statistics and ICT Division, Bangladesh Agricultural Research Institute (BARI), Gazipur, 1701, Bangladesh
| | - Md Asif Ahsan
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Munirul Alam
- Molecular Ecology and Metagenomic Laboratory, Infectious Diseases Division, International Centre for Diarrheal Disease Research (Icddr,b), Rajshahi, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
37
|
Lee ON, Koo H, Yu JW, Park HY. Genotyping-by-Sequencing-Based Genome-Wide Association Studies of Fusarium Wilt Resistance in Radishes ( Raphanus sativus L.). Genes (Basel) 2021; 12:genes12060858. [PMID: 34205206 PMCID: PMC8228987 DOI: 10.3390/genes12060858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Fusarium wilt (FW) is a fungal disease that causes severe yield losses in radish production. The most effective method to control the FW is the development and use of resistant varieties in cultivation. The identification of marker loci linked to FW resistance are expected to facilitate the breeding of disease-resistant radishes. In the present study, we applied an integrated framework of genome-wide association studies (GWAS) using genotyping-by-sequencing (GBS) to identify FW resistance loci among a panel of 225 radish accessions, including 58 elite breeding lines. Phenotyping was conducted by manual inoculation of seedlings with the FW pathogen, and scoring for the disease index was conducted three weeks after inoculation during two constitutive years. The GWAS analysis identified 44 single nucleotide polymorphisms (SNPs) and twenty putative candidate genes that were significantly associated with FW resistance. In addition, a total of four QTLs were identified from F2 population derived from a FW resistant line and a susceptible line, one of which was co-located with the SNPs on chromosome 7, detected in GWAS study. These markers will be valuable for molecular breeding programs and marker-assisted selection to develop FW resistant varieties of R. sativus.
Collapse
Affiliation(s)
- O New Lee
- College of Life Sciences, Sejong University, Seoul 05006, Korea;
| | - Hyunjin Koo
- Department of Agricultural Biotechnology and Research, Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | | | - Han Yong Park
- College of Life Sciences, Sejong University, Seoul 05006, Korea;
- Correspondence:
| |
Collapse
|
38
|
Saremirad A, Bihamta MR, Malihipour A, Mostafavi K, Alipour H. Genome-wide association study in diverse Iranian wheat germplasms detected several putative genomic regions associated with stem rust resistance. Food Sci Nutr 2021; 9:1357-1374. [PMID: 33747451 PMCID: PMC7958564 DOI: 10.1002/fsn3.2082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 12/11/2020] [Indexed: 11/07/2022] Open
Abstract
Stem rust is one of the most important diseases, threatening global wheat production. Identifying genomic regions associated with resistance to stem rust at the seedling stage may contribute wheat breeders to introduce durably resistant varieties. Genome-wide association study (GWAS) approach was applied to detect stem rust (Sr) resistance genes/QTLs in a set of 282 Iranian bread wheat varieties and landraces. Germplasms evaluated for infection type and latent period in four races of Puccinia graminis f. sp. tritici (Pgt). A total of 3 QTLs for infection type (R2 values from 9.54% to 10.76%) and 4 QTLs for the latent period (R2 values from 8.97% to 12.24%) of studied Pgt races were identified in the original dataset. However, using the imputed SNPs dataset, the number of QTLs for infection type increased to 10 QTLs (R2 values from 8.12% to 11.19%), and for the latent period increased to 44 QTLs (R2 values from 9.47% to 26.70%). According to the results, the Iranian wheat germplasms are a valuable source of resistance to stem rust which can be used in wheat breeding programs. Furthermore, new information for the selection of resistant genotypes against the disease through improving marker-assisted selection efficiency has been suggested.
Collapse
Affiliation(s)
- Ali Saremirad
- Plant breeding Ph. D. studentDepartment of Agronomy and Plant BreedingYoung Researchers and Elite ClubKaraj BranchIslamic Azad UniversityKarajIran
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant BreedingFaculty of AgricultureUniversity of TehranKarajIran
| | - Ali Malihipour
- Cereal Research Department, Seed and Plant Improvement Institute (SPII)AREEOKarajAlborzIran
| | - Khodadad Mostafavi
- Associate ProfessorDepartment of Agronomy and Plant BreedingKaraj BranchIslamic Azad UniversityKarajIran
| | - Hadi Alipour
- Department of Plant Breeding and BiotechnologyFaculty of AgricultureUrmia UniversityUrmiaIran
| |
Collapse
|
39
|
Jabbari M, Fakheri BA, Aghnoum R, Darvishzadeh R, Mahdi Nezhad N, Ataei R, Koochakpour Z, Razi M. Association analysis of physiological traits in spring barley ( Hordeum vulgare L.) under water-deficit conditions. Food Sci Nutr 2021; 9:1761-1779. [PMID: 33747487 PMCID: PMC7958556 DOI: 10.1002/fsn3.2161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/18/2023] Open
Abstract
In the present study, 148 commercial barley cultivars were assessed by 14 AFLP primer combinations and 32 SSRs primer pairs. Population structure, linkage disequilibrium, and genomic regions associated with physiological traits under drought stress were investigated. The phenotypic results showed a high level of diversity between studied cultivars. The studied barley cultivars were divided into two subgroups. Linkage disequilibrium analysis revealed that r 2 values among all possible marker pairs have an average value of 0.0178. The mixed linear model procedure showed that totally, 207 loci had a significant association with investigated traits. 120 QTLs out of 207 were detected for traits under normal conditions, and 90 QTLs were detected for traits under drought stress conditions. Identified QTLs after validation and transferring to SCAR markers in the case of AFLPs can be used to develop MAS strategies for barley breeding programs. Some common markers were identified for a particular trait or some traits across normal and drought stress conditions. These markers show low interaction with environmental conditions (stable markers); therefore, selection by them for a trait under normal conditions will improve the trait value under stress conditions, too.
Collapse
Affiliation(s)
- Mitra Jabbari
- Faculty of AgricultureHigher Education Complex of SaravanSaravanSistan and BaluchestanIran
| | - Barat Ali Fakheri
- Department of Plant Breeding and BiotechnologyFaculty of AgricultureUniversity of ZabolZabolSistan and BaluchestanIran
| | - Reza Aghnoum
- Seed and Plant Improvement Research DepartmentKhorasan Razavi Agricultural and Natural Resources Research and Education CenterAREEOMashhadKhorasan RazaviIran
| | - Reza Darvishzadeh
- Department of Plant Production and GeneticsFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Nafiseh Mahdi Nezhad
- Department of Plant Breeding and BiotechnologyFaculty of AgricultureUniversity of ZabolZabolSistan and BaluchestanIran
| | - Reza Ataei
- Seed and Plant Improvement InstituteAgricultural Research, Education and Extension Organization (AREEO)KarajIran
| | - Zahra Koochakpour
- Department of Plant Breeding and BiotechnologyFaculty of AgricultureUniversity of ZabolZabolSistan and BaluchestanIran
| | - Mitra Razi
- Department of Plant Production and GeneticsFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| |
Collapse
|
40
|
Li M, Geng L, Xie S, Wu D, Ye L, Zhang G. Genome-Wide Association Study on Total Starch, Amylose and Amylopectin in Barley Grain Reveals Novel Putative Alleles. Int J Mol Sci 2021; 22:ijms22020553. [PMID: 33430526 PMCID: PMC7828029 DOI: 10.3390/ijms22020553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 11/18/2022] Open
Abstract
The content and composition of starch in cereal grains are closely related to yield. Few studies have been done on the identification of the genes or loci associated with these traits in barley. This study was conducted to identify the genes or loci controlling starch traits in barley grains, including total starch (TS), amylose (AC) and amylopectin (AP) contents. A large genotypic variation was found in all examined starch traits. GWAS analysis detected 13, 2, 10 QTLs for TS, AC and AP, respectively, and 5 of them were commonly shared by AP and TS content. qTS-3.1, qAC-6.2 and qAP-5.1 may explain the largest variation of TS, AC and AP, respectively. Four putative candidate genes, i.e., HORVU6Hr1G087920, HORVU5Hr1G011230, HORVU5Hr1G011270 and HORVU5Hr1G011280, showed the high expression in the developing barley grains when starch accumulates rapidly. The examined 100 barley accessions could be divided into two groups based on the polymorphism of the marker S5H_29297679, with 93 accessions having allele GG and seven accessions having AA. Moreover, significantly positive correlation was found between the number of favorable alleles of the identified QTLs and TS, AC, AP content. In conclusion, the identified loci or genes in this study could be useful for genetic improvement of grains starch in barley.
Collapse
Affiliation(s)
- Mengdi Li
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
| | - La Geng
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
| | - Shanggeng Xie
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
| | - Dezhi Wu
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
| | - Lingzhen Ye
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence:
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
41
|
Yan H, Zhou P, Peng Y, Bekele WA, Ren C, Tinker NA, Peng Y. Genetic diversity and genome-wide association analysis in Chinese hulless oat germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3365-3380. [PMID: 32888041 DOI: 10.1007/s00122-020-03674-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/21/2020] [Indexed: 05/12/2023]
Abstract
Genotyping-by-sequencing (GBS)-derived molecular markers reveal the distinct genetic population structure and relatively narrow genetic diversity of Chinese hulless oat landraces. Four markers linked to the naked grain gene (N1) are identified by genome-wide association study (GWAS). Interest in hulless oat (Avena sativa ssp. nuda), a variant of common oat (A. sativa) domesticated in Western Asia, has increased in recent years due to its free-threshing attribute and its domestication history. However, the genetic diversity and population structure of hulless oat, as well as the genetic mechanism of hullessness, are poorly understood. In this study, the genetic diversity and population structure of a worldwide sample of 805 oat lines including 186 hulless oats were investigated using genotyping-by-sequencing. Population structure analyses showed a strong genetic differentiation between hulless landraces vs other oat lines, including the modern hulless cultivars. The distinct subpopulation stratification of hulless landraces and their low genetic diversity suggests that a domestication bottleneck existed in hulless landraces. Additionally, low genetic diversity within European oats and strong differentiation between the spring oats and southern origin oat lines revealed by previous studies were also observed in this study. Genomic regions contributing to these genetic differentiations suggest that genetic loci related to growth habit and stress resistance may have been under intense selection, rather than the hulless-related genomic regions. Genome-wide association analysis detected four markers that were highly associated with hullessness. Three of these were mapped on linkage group Mrg21 at a genetic position between 195.7 and 212.1 cM, providing robust evidence that the dominant N1 locus located on Mrg21 is the single major factor controlling this trait.
Collapse
Affiliation(s)
- Honghai Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingping Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yun Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wubishet A Bekele
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave, Ottawa, ON, K1A0C6, Canada
| | - Changzhong Ren
- Baicheng Academy of Agricultural Sciences, Baicheng, 137000, China
| | - Nicholas A Tinker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave, Ottawa, ON, K1A0C6, Canada.
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
42
|
Harnessing High-throughput Phenotyping and Genotyping for Enhanced Drought Tolerance in Crop Plants. J Biotechnol 2020; 324:248-260. [PMID: 33186658 DOI: 10.1016/j.jbiotec.2020.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/28/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Development of drought-tolerant cultivars is one of the challenging tasks for the plant breeders due to its complex inheritance and polygenic regulation. Evaluating genetic material for drought tolerance is a complex process due to its spatiotemporal interactions with environmental factors. The conventional breeding approaches are costly, lengthy, and inefficient to achieve the expected gain in drought tolerance. In this regard, genomics-assisted breeding (GAB) offers promise to develop cultivars with improved drought tolerance in a more efficient, quicker, and cost-effective manner. The success of GAB depends upon the precision in marker-trait association and estimation of genomic estimated breeding values (GEBVs), which mostly depends on coverage and precision of genotyping and phenotyping. A wide gap between the discovery and practical use of quantitative trait loci (QTL) for crop improvement has been observed for many important agronomical traits. Such a limitation could be due to the low accuracy in QTL detection, mainly resulting from low marker density and manually collected phenotypes of complex agronomic traits. Increasing marker density using the high-throughput genotyping (HTG), and accurate and precise phenotyping using high-throughput digital phenotyping (HTP) platforms can improve the precision and power of QTL detection. Therefore, both HTG and HTP can enhance the practical utility of GAB along with a faster characterization of germplasm and breeding material. In the present review, we discussed how the recent innovations in HTG and HTP would assist in the breeding of improved drought-tolerant varieties. We have also discussed strategies, tools, and analytical advances made on the HTG and HTP along with their pros and cons.
Collapse
|
43
|
Mahalingam R, Sallam AH, Steffenson BJ, Fiedler JD, Walling JG. Genome-wide association analysis of natural variation in seed tocochromanols of barley. THE PLANT GENOME 2020; 13:e20039. [PMID: 33217201 DOI: 10.1002/tpg2.20039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Tocochromanols (tocols for short), commonly called Vitamin E, are lipid-soluble plant antioxidants vital for regulating lipid peroxidation in chloroplasts and seeds. Barley (Hordeum vulgare L.) seeds contain all eight different isoforms of tocols; however, the extent of natural variation in their composition and their underlying genetic basis is not known. Tocol levels in barley seeds were quantified in diverse H. vulgare panels comprising 297 wild lines from a diversity panel and 160 cultivated spring-type accessions from the mini-core panel representing the genetic diversity of the USDA barley germplasm collection. Significant differences were observed in the concentration of tocols between the two panels. To identify the genes associated with tocols, genome-wide association analysis was conducted with single nucleotide polymorphisms (SNPs) from Illumina arrays for the mini-core panel and genotyping-by-sequencing for the wild barley panel. Forty unique SNPs in the wild barley and 27 SNPs in the mini-core panel were significantly associated with various tocols. Marker-trait associations (MTAs) were identified on chromosomes 1, 6, and 7 for key genes in the tocol biosynthesis pathway, which have also been reported in other studies. Several novel MTAs were identified on chromosomes 2, 3, 4 and 5 and were found to be in proximity to genes involved in the generation of precursor metabolites required for tocol biosynthesis. This study provides a valuable resource for barley breeding programs targeting specific isoforms of seed tocols and for investigating the physiological roles of these metabolites in seed longevity, dormancy, and germination.
Collapse
Affiliation(s)
| | - Ahmad H Sallam
- Department of Plant Pathology, Univ. of Minnesota, St. Paul, MN, 55108, USA
| | - Brian J Steffenson
- Department of Plant Pathology, Univ. of Minnesota, St. Paul, MN, 55108, USA
| | - Jason D Fiedler
- USDA-ARS, Cereal Crops Research Unit, 1616 Albrecht Blvd, Fargo, ND, 58102, USA
| | - Jason G Walling
- USDA-ARS, Cereal Crops Research Unit, 502 Walnut Street, Madison, WI, 53726, USA
| |
Collapse
|
44
|
Nguyen DT, Gomez LD, Harper A, Halpin C, Waugh R, Simister R, Whitehead C, Oakey H, Nguyen HT, Nguyen TV, Duong TX, McQueen-Mason SJ. Association mapping identifies quantitative trait loci (QTL) for digestibility in rice straw. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:165. [PMID: 33062051 PMCID: PMC7545568 DOI: 10.1186/s13068-020-01807-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The conversion of lignocellulosic biomass from agricultural waste into biofuels and chemicals is considered a promising way to provide sustainable low carbon products without compromising food security. However, the use of lignocellulosic biomass for biofuel and chemical production is limited by the cost-effectiveness of the production process due to its recalcitrance to enzymatic hydrolysis and fermentable sugar release (i.e., saccharification). Rice straw is a particularly attractive feedstock because millions of tons are currently burned in the field each year for disposal. The aim of this study was to explore the underlying natural genetic variation that impacts the recalcitrance of rice (Oryza sativa) straw to enzymatic saccharification. Ultimately, we wanted to investigate whether we could identify genetic markers that could be used in rice breeding to improve commercial cultivars for this trait. Here, we describe the development and characterization of a Vietnamese rice genome-wide association panel, high-throughput analysis of rice straw saccharification and lignin content, and the results from preliminary genome-wide association studies (GWAS) of the combined data sets. We identify both QTL and plausible candidate genes that may have an impact on the saccharification of rice straw. RESULTS We assembled a diversity panel comprising 151 rice genotypes (Indica and Japonica types) from commercial, historical elite cultivars, and traditional landraces grown in Vietnam. The diversity panel was genotyped using genotype by sequencing (GBS) methods yielding a total of 328,915 single nucleotide polymorphisms (SNPs). We collected phenotypic data from stems of these 151 genotypes for biomass saccharification and lignin content. Using GWAS on the indica genotypes over 2 years we identified ten significant QTL for saccharification (digestibility) and seven significant QTL for lignin. One QTL on chromosome 11 occurred in both GWAS for digestibility and for lignin. Seven QTL for digestibility, on CH2, CH6, CH7, CH8, and CH11, were observed in both years of the study. The QTL regions for saccharification include three potential candidate genes that have been previously reported to influence digestibility: OsAT10; OsIRX9; and OsMYB58/63-L. CONCLUSIONS Despite the difficulties associated with multi-phasic analysis of complex traits in novel germplasm, a moderate resolution GWAS successfully identified genetic associations encompassing both known and/or novel genes involved in determining the saccharification potential and lignin content of rice straw. Plausible candidates within QTL regions, in particular those with roles in cell wall biosynthesis, were identified but will require validation to confirm their value for application in rice breeding.
Collapse
Affiliation(s)
- Duong T. Nguyen
- Plant Biotechnology Division,, Field Crops Research Institute (FCRI), Hai Duong, Vietnam
- School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA Australia
| | - Leonardo D. Gomez
- Centre for Novel Agricultural Products (CNAP), University of York (UoY), Wentworth Way, York, UK
| | - Andrea Harper
- Centre for Novel Agricultural Products (CNAP), University of York (UoY), Wentworth Way, York, UK
| | - Claire Halpin
- Division of Plant Sciences, School of Life Sciences, University of Dundee (UoD), Dundee, UK
| | - Robbie Waugh
- Division of Plant Sciences, School of Life Sciences, University of Dundee (UoD), Dundee, UK
- Cell, and Molecular Genetics, The James Hutton Institute (JHI), Invergowrie Dundee, UK
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Adelaide, SA Australia
| | - Rachael Simister
- Centre for Novel Agricultural Products (CNAP), University of York (UoY), Wentworth Way, York, UK
| | - Caragh Whitehead
- Centre for Novel Agricultural Products (CNAP), University of York (UoY), Wentworth Way, York, UK
| | - Helena Oakey
- Division of Plant Sciences, School of Life Sciences, University of Dundee (UoD), Dundee, UK
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Adelaide, SA Australia
| | - Huong T. Nguyen
- Plant Biotechnology Division,, Field Crops Research Institute (FCRI), Hai Duong, Vietnam
| | - Tuat V. Nguyen
- Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Tu X. Duong
- Plant Biotechnology Division,, Field Crops Research Institute (FCRI), Hai Duong, Vietnam
| | - Simon J. McQueen-Mason
- Centre for Novel Agricultural Products (CNAP), University of York (UoY), Wentworth Way, York, UK
| |
Collapse
|
45
|
Karunarathne SD, Han Y, Zhang XQ, Zhou G, Hill CB, Chen K, Angessa T, Li C. Genome-Wide Association Study and Identification of Candidate Genes for Nitrogen Use Efficiency in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2020; 11:571912. [PMID: 33013994 PMCID: PMC7500209 DOI: 10.3389/fpls.2020.571912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/18/2020] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) fertilizer is largely responsible for barley grain yield potential and quality, yet excessive application leads to environmental pollution and high production costs. Therefore, efficient use of N is fundamental for sustainable agriculture. In the present study, we investigated the performance of 282 barley accessions through hydroponic screening using optimal and low NH4NO3 treatments. Low-N treatment led to an average shoot dry weight reduction of 50%, but there were significant genotypic differences among the accessions. Approximately 20% of the genotypes showed high (>75%) relative shoot dry weight under low-N treatment and were classified as low-N tolerant, whereas 20% were low-N sensitive (≤55%). Low-N tolerant accessions exhibited well-developed root systems with an average increase of 60% in relative root dry weight to facilitate more N absorption. A genome-wide association study (GWAS) identified 66 significant marker trait associations (MTAs) conferring high nitrogen use efficiency, four of which were stable across experiments. These four MTAs were located on chromosomes 1H(1), 3H(1), and 7H(2) and were associated with relative shoot length, relative shoot and root dry weight. Genes corresponding to the significant MTAs were retrieved as candidate genes, including members of the asparagine synthetase gene family, several transcription factor families, protein kinases, and nitrate transporters. Most importantly, the high-affinity nitrate transporter 2.7 (HvNRT2.7) was identified as a promising candidate on 7H for root and shoot dry weight. The identified candidate genes provide new insights into our understanding of the molecular mechanisms driving nitrogen use efficiency in barley and represent potential targets for genetic improvement.
Collapse
Affiliation(s)
- Sakura D Karunarathne
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, Australia
| | - Camilla B Hill
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Kefei Chen
- SAGI West, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Tefera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, Australia
| |
Collapse
|
46
|
Current Progress in Understanding and Recovering the Wheat Genes Lost in Evolution and Domestication. Int J Mol Sci 2020; 21:ijms21165836. [PMID: 32823887 PMCID: PMC7461589 DOI: 10.3390/ijms21165836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 01/19/2023] Open
Abstract
The modern cultivated wheat has passed a long evolution involving origin of wild emmer (WEM), development of cultivated emmer, formation of spelt wheat and finally establishment of modern bread wheat and durum wheat. During this evolutionary process, rapid alterations and sporadic changes in wheat genome took place, due to hybridization, polyploidization, domestication, and mutation. This has resulted in some modifications and a high level of gene loss. As a result, the modern cultivated wheat does not contain all genes of their progenitors. These lost genes are novel for modern wheat improvement. Exploring wild progenitor for genetic variation of important traits is directly beneficial for wheat breeding. WEM wheat (Triticum dicoccoides) is a great genetic resource with huge diversity for traits. Few genes and quantitative trait loci (QTL) for agronomic, quantitative, biotic and abiotic stress-related traits have already been mapped from WEM. This resource can be utilized for modern wheat improvement by integrating identified genes or QTLs through breeding.
Collapse
|
47
|
Li Z, Lhundrup N, Guo G, Dol K, Chen P, Gao L, Chemi W, Zhang J, Wang J, Nyema T, Dawa D, Li H. Characterization of Genetic Diversity and Genome-Wide Association Mapping of Three Agronomic Traits in Qingke Barley ( Hordeum Vulgare L.) in the Qinghai-Tibet Plateau. Front Genet 2020; 11:638. [PMID: 32719715 PMCID: PMC7351530 DOI: 10.3389/fgene.2020.00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Barley (Hordeum vulgare L.) is one of the most important cereal crops worldwide. In the Qinghai-Tibet Plateau, six-rowed hulless (or naked) barley, called “qingke” in Chinese or “nas” in Tibetan, is produced mainly in Tibet. The complexity of the environment in the Qinghai-Tibet Plateau has provided unique opportunities for research on the breeding and adaptability of qingke barley. However, the genetic architecture of many important agronomic traits for qingke barley remains elusive. Heading date (HD), plant height (PH), and spike length (SL) are three prominent agronomic traits in barley. Here, we used genome-wide association (GWAS) mapping and GWAS with eigenvector decomposition (EigenGWAS) to detect quantitative trait loci (QTL) and selective signatures for HD, PH, and SL in a collection of 308 qingke barley accessions. The accessions were genotyped using a newly-developed, proprietary genotyping-by-sequencing (tGBS) technology, that yielded 14,970 high quality single nucleotide polymorphisms (SNPs). We found that the number of SNPs was higher in the varieties than in the landraces, which suggested that Tibetan varieties and varieties in the Tibetan area may have originated from different landraces in different areas. We have identified 62 QTLs associated with three important traits, and the observed phenotypic variation is well-explained by the identified QTLs. We mapped 114 known genes that include, but are not limited to, vernalization, and photoperiod genes. We found that 83.87% of the identified QTLs are located in the non-coding regulatory regions of annotated barley genes. Forty-eight of the QTLs are first reported here, 28 QTLs have pleotropic effects, and three QTL are located in the regions of the well-characterized genes HvVRN1, HvVRN3, and PpD-H2. EigenGWAS analysis revealed that multiple heading-date-related loci bear signatures of selection. Our results confirm that the barley panel used in this study is highly diverse, and showed a great promise for identifying the genetic basis of adaptive traits. This study should increase our understanding of complex traits in qingke barley, and should facilitate genome-assisted breeding for qingke barley improvement.
Collapse
Affiliation(s)
- Zhiyong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Namgyal Lhundrup
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kar Dol
- Tibet Agricultural and Animal Husbandry College, Nyingchi, China
| | - Panpan Chen
- Tibet Agricultural and Animal Husbandry College, Nyingchi, China
| | - Liyun Gao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Wangmo Chemi
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Jing Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiankang Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tashi Nyema
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Dondrup Dawa
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
48
|
Weckwerth W, Ghatak A, Bellaire A, Chaturvedi P, Varshney RK. PANOMICS meets germplasm. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1507-1525. [PMID: 32163658 PMCID: PMC7292548 DOI: 10.1111/pbi.13372] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 05/14/2023]
Abstract
Genotyping-by-sequencing has enabled approaches for genomic selection to improve yield, stress resistance and nutritional value. More and more resource studies are emerging providing 1000 and more genotypes and millions of SNPs for one species covering a hitherto inaccessible intraspecific genetic variation. The larger the databases are growing, the better statistical approaches for genomic selection will be available. However, there are clear limitations on the statistical but also on the biological part. Intraspecific genetic variation is able to explain a high proportion of the phenotypes, but a large part of phenotypic plasticity also stems from environmentally driven transcriptional, post-transcriptional, translational, post-translational, epigenetic and metabolic regulation. Moreover, regulation of the same gene can have different phenotypic outputs in different environments. Consequently, to explain and understand environment-dependent phenotypic plasticity based on the available genotype variation we have to integrate the analysis of further molecular levels reflecting the complete information flow from the gene to metabolism to phenotype. Interestingly, metabolomics platforms are already more cost-effective than NGS platforms and are decisive for the prediction of nutritional value or stress resistance. Here, we propose three fundamental pillars for future breeding strategies in the framework of Green Systems Biology: (i) combining genome selection with environment-dependent PANOMICS analysis and deep learning to improve prediction accuracy for marker-dependent trait performance; (ii) PANOMICS resolution at subtissue, cellular and subcellular level provides information about fundamental functions of selected markers; (iii) combining PANOMICS with genome editing and speed breeding tools to accelerate and enhance large-scale functional validation of trait-specific precision breeding.
Collapse
Affiliation(s)
- Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Anke Bellaire
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadTelanganaIndia
| |
Collapse
|
49
|
Weckwerth W, Ghatak A, Bellaire A, Chaturvedi P, Varshney RK. PANOMICS meets germplasm. PLANT BIOTECHNOLOGY JOURNAL 2020; 18. [PMID: 32163658 PMCID: PMC7292548 DOI: 10.1111/pbi.13372,10.13140/rg.2.1.1233.5760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Genotyping-by-sequencing has enabled approaches for genomic selection to improve yield, stress resistance and nutritional value. More and more resource studies are emerging providing 1000 and more genotypes and millions of SNPs for one species covering a hitherto inaccessible intraspecific genetic variation. The larger the databases are growing, the better statistical approaches for genomic selection will be available. However, there are clear limitations on the statistical but also on the biological part. Intraspecific genetic variation is able to explain a high proportion of the phenotypes, but a large part of phenotypic plasticity also stems from environmentally driven transcriptional, post-transcriptional, translational, post-translational, epigenetic and metabolic regulation. Moreover, regulation of the same gene can have different phenotypic outputs in different environments. Consequently, to explain and understand environment-dependent phenotypic plasticity based on the available genotype variation we have to integrate the analysis of further molecular levels reflecting the complete information flow from the gene to metabolism to phenotype. Interestingly, metabolomics platforms are already more cost-effective than NGS platforms and are decisive for the prediction of nutritional value or stress resistance. Here, we propose three fundamental pillars for future breeding strategies in the framework of Green Systems Biology: (i) combining genome selection with environment-dependent PANOMICS analysis and deep learning to improve prediction accuracy for marker-dependent trait performance; (ii) PANOMICS resolution at subtissue, cellular and subcellular level provides information about fundamental functions of selected markers; (iii) combining PANOMICS with genome editing and speed breeding tools to accelerate and enhance large-scale functional validation of trait-specific precision breeding.
Collapse
Affiliation(s)
- Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Anke Bellaire
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadTelanganaIndia
| |
Collapse
|
50
|
Kumar D, Kumar A, Chhokar V, Gangwar OP, Bhardwaj SC, Sivasamy M, Prasad SVS, Prakasha TL, Khan H, Singh R, Sharma P, Sheoran S, Iquebal MA, Jaiswal S, Angadi UB, Singh G, Rai A, Singh GP, Kumar D, Tiwari R. Genome-Wide Association Studies in Diverse Spring Wheat Panel for Stripe, Stem, and Leaf Rust Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:748. [PMID: 32582265 PMCID: PMC7286347 DOI: 10.3389/fpls.2020.00748] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/12/2020] [Indexed: 05/20/2023]
Abstract
Among several important wheat foliar diseases, Stripe rust (YR), Leaf rust (LR), and Stem rust (SR) have always been an issue of concern to the farmers and wheat breeders. Evolution of virulent pathotypes of these rusts has posed frequent threats to an epidemic. Pyramiding rust-resistant genes are the most economical and environment-friendly approach in postponing this inevitable threat. To achieve durable long term resistance against the three rusts, an attempt in this study was made searching for novel sources of resistant alleles in a panel of 483 spring wheat genotypes. This is a unique and comprehensive study where evaluation of a diverse panel comprising wheat germplasm from various categories and adapted to different wheat agro-climatic zones was challenged with 18 pathotypes of the three rusts with simultaneous screening in field conditions. The panel was genotyped using 35K SNP array and evaluated for each rust at two locations for two consecutive crop seasons. High heritability estimates of disease response were observed between environments for each rust type. A significant effect of population structure in the panel was visible in the disease response. Using a compressed mixed linear model approach, 25 genomic regions were found associated with resistance for at least two rusts. Out of these, seven were associated with all the three rusts on chromosome groups 1 and 6 along with 2B. For resistance against YR, LR, and SR, there were 16, 18, and 27 QTL (quantitative trait loci) identified respectively, associated at least in two out of four environments. Several of these regions got annotated with resistance associated genes viz. NB-LRR, E3-ubiquitin protein ligase, ABC transporter protein, etc. Alien introgressed (on 1B and 3D) and pleiotropic (on 7D) resistance genes were captured in seedling and adult plant disease responses, respectively. The present study demonstrates the use of genome-wide association for identification of a large number of favorable alleles for leaf, stripe, and stem rust resistance for broadening the genetic base. Quick conversion of these QTL into user-friendly markers will accelerate the deployment of these resistance loci in wheat breeding programs.
Collapse
Affiliation(s)
- Deepender Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Animesh Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Vinod Chhokar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Om Prakash Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | | | - M. Sivasamy
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, India
| | - S. V. Sai Prasad
- ICAR-Indian Agricultural Research Institute, Regional Station, Indore, India
| | - T. L. Prakasha
- ICAR-Indian Agricultural Research Institute, Regional Station, Indore, India
| | - Hanif Khan
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sonia Sheoran
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Mir Asif Iquebal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa B. Angadi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dinesh Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|