1
|
Wei S, Zhong Y, Wen W, Yu C, Lu R, Luo S. Transcriptome Analysis Identifies Key Genes Involved in Response and Recovery to High Heat Stress Induced by Fire in Schima superba. Genes (Basel) 2024; 15:1108. [PMID: 39202467 PMCID: PMC11353729 DOI: 10.3390/genes15081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Fire-resistant tree species play a crucial role in forest fire prevention, utilizing several physiological and molecular mechanisms to respond to extreme heat stress. Many transcription factors (TFs) and genes are known to be involved in the regulatory network of heat stress response in plants. However, their roles in response to high temperatures induced by fire remain less understood. In this study, we investigated Schima superba, a fire-resistant tree, to elucidate these mechanisms. Leaves of S. superba seedlings were exposed to fire stimulation for 10 s, 30 s, and 1 min, followed by a 24-h recovery period. Fifteen transcriptomes were assembled to identify key molecular and biological pathways affected by high temperatures. Differentially expressed genes (DEGs) analysis revealed essential candidate genes and TFs involved in the heat stress response, including members of the ethylene-responsive factors, WRKY, MYB, bHLH, and Nin-like families. Genes related to heat shock proteins/factors, lipid metabolism, antioxidant enzymes, dehydration responses, and hormone signal transduction were differentially expressed after heat stress and recovery, underscoring their roles in cellular process and recovery after heat stress. This study advances our understanding of plant response and defense strategies against extreme abiotic stresses.
Collapse
Affiliation(s)
- Shujing Wei
- Guangdong Academy of Forestry, Guangzhou 510520, China; (S.W.)
| | - Yingxia Zhong
- Guangdong Academy of Forestry, Guangzhou 510520, China; (S.W.)
| | - Wen Wen
- Guangzhou Institute of Environmental Protection Science, Guangzhou 510520, China;
| | - Chong Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ruisen Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Sisheng Luo
- Guangdong Academy of Forestry, Guangzhou 510520, China; (S.W.)
| |
Collapse
|
2
|
Singh S, Viswanath A, Chakraborty A, Narayanan N, Malipatil R, Jacob J, Mittal S, Satyavathi TC, Thirunavukkarasu N. Identification of key genes and molecular pathways regulating heat stress tolerance in pearl millet to sustain productivity in challenging ecologies. FRONTIERS IN PLANT SCIENCE 2024; 15:1443681. [PMID: 39239194 PMCID: PMC11374647 DOI: 10.3389/fpls.2024.1443681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Pearl millet is a nutri-cereal that is mostly grown in harsh environments, making it an ideal crop to study heat tolerance mechanisms at the molecular level. Despite having a better-inbuilt tolerance to high temperatures than other crops, heat stress negatively affects the crop, posing a threat to productivity gain. Hence, to understand the heat-responsive genes, the leaf and root samples of two contrasting pearl millet inbreds, EGTB 1034 (heat tolerant) and EGTB 1091 (heat sensitive), were subjected to heat-treated conditions and generated genome-wide transcriptomes. We discovered 13,464 differentially expressed genes (DEGs), of which 6932 were down-regulated and 6532 up-regulated in leaf and root tissues. The pairwise analysis of the tissue-based transcriptome data of the two genotypes demonstrated distinctive genotype and tissue-specific expression of genes. The root exhibited a higher number of DEGs compared to the leaf, emphasizing different adaptive strategies of pearl millet. A large number of genes encoding ROS scavenging enzymes, WRKY, NAC, enzymes involved in nutrient uptake, protein kinases, photosynthetic enzymes, and heat shock proteins (HSPs) and several transcription factors (TFs) involved in cross-talking of temperature stress responsive mechanisms were activated in the stress conditions. Ribosomal proteins emerged as pivotal hub genes, highly interactive with key genes expressed and involved in heat stress response. The synthesis of secondary metabolites and metabolic pathways of pearl millet were significantly enriched under heat stress. Comparative synteny analysis of HSPs and TFs in the foxtail millet genome demonstrated greater collinearity with pearl millet compared to proso millet, rice, sorghum, and maize. In this study, 1906 unannotated DEGs were identified, providing insight into novel participants in the molecular response to heat stress. The identified genes hold promise for expediting varietal development for heat tolerance in pearl millet and similar crops, fostering resilience and enhancing grain yield in heat-prone environments.
Collapse
Affiliation(s)
- Swati Singh
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Aswini Viswanath
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Animikha Chakraborty
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Neha Narayanan
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Jinu Jacob
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Tara C Satyavathi
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| |
Collapse
|
3
|
Ayyappan V, Sripathi VR, Xie S, Saha MC, Hayford R, Serba DD, Subramani M, Thimmapuram J, Todd A, Kalavacharla VK. Genome-wide profiling of histone (H3) lysine 4 (K4) tri-methylation (me3) under drought, heat, and combined stresses in switchgrass. BMC Genomics 2024; 25:223. [PMID: 38424499 PMCID: PMC10903042 DOI: 10.1186/s12864-024-10068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is a warm-season perennial (C4) grass identified as an important biofuel crop in the United States. It is well adapted to the marginal environment where heat and moisture stresses predominantly affect crop growth. However, the underlying molecular mechanisms associated with heat and drought stress tolerance still need to be fully understood in switchgrass. The methylation of H3K4 is often associated with transcriptional activation of genes, including stress-responsive. Therefore, this study aimed to analyze genome-wide histone H3K4-tri-methylation in switchgrass under heat, drought, and combined stress. RESULTS In total, ~ 1.3 million H3K4me3 peaks were identified in this study using SICER. Among them, 7,342; 6,510; and 8,536 peaks responded under drought (DT), drought and heat (DTHT), and heat (HT) stresses, respectively. Most DT and DTHT peaks spanned 0 to + 2000 bases from the transcription start site [TSS]. By comparing differentially marked peaks with RNA-Seq data, we identified peaks associated with genes: 155 DT-responsive peaks with 118 DT-responsive genes, 121 DTHT-responsive peaks with 110 DTHT-responsive genes, and 175 HT-responsive peaks with 136 HT-responsive genes. We have identified various transcription factors involved in DT, DTHT, and HT stresses. Gene Ontology analysis using the AgriGO revealed that most genes belonged to biological processes. Most annotated peaks belonged to metabolite interconversion, RNA metabolism, transporter, protein modifying, defense/immunity, membrane traffic protein, transmembrane signal receptor, and transcriptional regulator protein families. Further, we identified significant peaks associated with TFs, hormones, signaling, fatty acid and carbohydrate metabolism, and secondary metabolites. qRT-PCR analysis revealed the relative expressions of six abiotic stress-responsive genes (transketolase, chromatin remodeling factor-CDH3, fatty-acid desaturase A, transmembrane protein 14C, beta-amylase 1, and integrase-type DNA binding protein genes) that were significantly (P < 0.05) marked during drought, heat, and combined stresses by comparing stress-induced against un-stressed and input controls. CONCLUSION Our study provides a comprehensive and reproducible epigenomic analysis of drought, heat, and combined stress responses in switchgrass. Significant enrichment of H3K4me3 peaks downstream of the TSS of protein-coding genes was observed. In addition, the cost-effective experimental design, modified ChIP-Seq approach, and analyses presented here can serve as a prototype for other non-model plant species for conducting stress studies.
Collapse
Affiliation(s)
- Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA.
| | | | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, 47907, USA
| | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Rita Hayford
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Desalegn D Serba
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA.
| | - Mayavan Subramani
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
| | | | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
| | - Venu Kal Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
- Center for Integrated Biological and Environmental Research (CIBER), Delaware State University, Dover, DE, 19901, USA
| |
Collapse
|
4
|
Goyal E, Singh AK, Mahajan MM, Kanika K. Comparative transcriptome profiling of contrasting finger millet (Eleusine coracana (L.) Gaertn) genotypes under heat stress. Mol Biol Rep 2024; 51:283. [PMID: 38324135 DOI: 10.1007/s11033-024-09233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Eleusine coracana (L.) Gaertn is a crucial C4 species renowned for its stress robustness and nutritional significance. Because of its adaptability traits, finger millet (ragi) is a storehouse of critical genomic resources for crop improvement. However, more knowledge about this crop's molecular responses to heat stress needs to be gained. METHODS AND RESULTS In the present study, a comparative RNA sequencing analysis was done in the leaf tissue of the finger millet, between the heat-sensitive (KJNS-46) and heat-tolerant (PES-110) cultivars of Ragi, in response to high temperatures. On average, each sample generated about 24 million reads. Interestingly, a comparison of transcriptomic profiling identified 684 transcripts which were significantly differentially expressed genes (DEGs) examined between the heat-stressed samples of both genotypes. The heat-induced change in the transcriptome was confirmed by qRT-PCR using a set of randomly selected genes. Pathway analysis and functional annotation analysis revealed the activation of various genes involved in response to stress specifically heat, oxidation-reduction process, water deprivation, and changes in heat shock protein (HSP) and transcription factors, calcium signaling, and kinase signaling. The basal regulatory genes, such as bZIP, were involved in response to heat stress, indicating that heat stress activates genes involved in housekeeping or related to basal regulatory processes. A substantial percentage of the DEGs belonged to proteins of unknown functions (PUFs), i.e., not yet characterized. CONCLUSION These findings highlight the importance of candidate genes, such as HSPs and pathways that can confer tolerance towards heat stress in ragi. These results will provide valuable information to improve the heat tolerance in heat-susceptible agronomically important varieties of ragi and other crops.
Collapse
Affiliation(s)
- Etika Goyal
- Biotechnology and Climate Change Laboratory, National Institute for Plant Biotechnology, New Delhi, India
| | - Amit Kumar Singh
- Biotechnology and Climate Change Laboratory, National Institute for Plant Biotechnology, New Delhi, India
| | - Mahesh Mohanrao Mahajan
- Biotechnology and Climate Change Laboratory, National Institute for Plant Biotechnology, New Delhi, India
| | - Kumar Kanika
- Biotechnology and Climate Change Laboratory, National Institute for Plant Biotechnology, New Delhi, India.
| |
Collapse
|
5
|
Transcriptome Analysis of Heat Shock Factor C2a Over-Expressing Wheat Roots Reveals Ferroptosis-like Cell Death in Heat Stress Recovery. Int J Mol Sci 2023; 24:ijms24043099. [PMID: 36834507 PMCID: PMC9967677 DOI: 10.3390/ijms24043099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Wheat (Triticum aestivum L.) growing areas in many regions of the world are subject to heat waves which are predicted to increase in frequency because of climate change. The engineering of crop plants can be a useful strategy to mitigate heat stress-caused yield losses. Previously, we have shown that heat shock factor subclass C (TaHsfC2a-B)-overexpression significantly increased the survival of heat-stressed wheat seedlings. Although previous studies have shown that the overexpression of Hsf genes enhanced the survival of plants under heat stress, the molecular mechanisms are largely unknown. To understand the underlying molecular mechanisms involved in this response, a comparative analysis of the root transcriptomes of untransformed control and TaHsfC2a-overexpressing wheat lines by RNA-sequencing have been performed. The results of RNA-sequencing indicated that the roots of TaHsfC2a-overexpressing wheat seedlings showed lower transcripts of hydrogen peroxide-producing peroxidases, which corresponds to the reduced accumulation of hydrogen peroxide along the roots. In addition, suites of genes from iron transport and nicotianamine-related gene ontology categories showed lower transcript abundance in the roots of TaHsfC2a-overexpressing wheat roots than in the untransformed control line following heat stress, which are in accordance with the reduction in iron accumulation in the roots of transgenic plants under heat stress. Overall, these results suggested the existence of ferroptosis-like cell death under heat stress in wheat roots, and that TaHsfC2a is a key player in this mechanism. To date, this is the first evidence to show that a Hsf gene plays a key role in ferroptosis under heat stress in plants. In future, the role of Hsf genes could be further studied on ferroptosis in plants to identify root-based marker genes to screen for heat-tolerant genotypes.
Collapse
|
6
|
Ikram M, Chen J, Xia Y, Li R, Siddique KHM, Guo P. Comprehensive transcriptome analysis reveals heat-responsive genes in flowering Chinese cabbage ( Brassica campestris L. ssp. chinensis) using RNA sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:1077920. [PMID: 36531374 PMCID: PMC9755508 DOI: 10.3389/fpls.2022.1077920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee, 2n=20, AA) is a vegetable species in southern parts of China that faces high temperatures in the summer and winter seasons. While heat stress adversely impacts plant productivity and survival, the underlying molecular and biochemical causes are poorly understood. This study investigated the gene expression profiles of heat-sensitive (HS) '3T-6' and heat-tolerant (HT) 'Youlu-501' varieties of flowering Chinese cabbage in response to heat stress using RNA sequencing. Among the 37,958 genes expressed in leaves, 20,680 were differentially expressed genes (DEGs) at 1, 6, and 12 h, with 1,078 simultaneously expressed at all time points in both varieties. Hierarchical clustering analysis identified three clusters comprising 1,958, 556, and 591 down-regulated, up-regulated, and up- and/or down-regulated DEGs (3205 DEGs; 8.44%), which were significantly enriched in MAPK signaling, plant-pathogen interactions, plant hormone signal transduction, and brassinosteroid biosynthesis pathways and involved in stimulus, stress, growth, reproductive, and defense responses. Transcription factors, including MYB (12), NAC (13), WRKY (11), ERF (31), HSF (17), bHLH (16), and regulatory proteins such as PAL, CYP450, and photosystem II, played an essential role as effectors of homeostasis, kinases/phosphatases, and photosynthesis. Among 3205 DEGs, many previously reported genes underlying heat stress were also identified, e.g., BraWRKY25, BraHSP70, BraHSPB27, BraCYP71A23, BraPYL9, and BraA05g032350.3C. The genome-wide comparison of HS and HT provides a solid foundation for understanding the molecular mechanisms of heat tolerance in flowering Chinese cabbage.
Collapse
Affiliation(s)
- Muhammad Ikram
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jingfang Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanshi Xia
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ronghua Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, UWA School of Agriculture & Environment, The University of Western Australia, Perth, WA, Australia
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
7
|
Lamba K, Kumar M, Singh V, Chaudhary L, Sharma R, Yadav S, Yashveer S, Dalal MS, Gupta V, Nagpal S, Saini M, Rai NK, Pati R, Malhotra K. Transcriptome Profiling in Leaves of Wheat Genotype under Heat Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3100. [PMID: 36432828 PMCID: PMC9692328 DOI: 10.3390/plants11223100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Hexaploid wheat is the main cereal food crop for most people but it is highly influenced by climatic variations. The influence of these climatic variations was studies in wheat genotype WH -1184 in field conditions under two different environments (normal and late sown) and it was found that the genotype is less yielding under late sown conditions. To study the effects of heat stress at transcript level, it was grown under two different conditions (WH-1184 control and heat treated) in pots and transcriptome analysis based on Illumina Novoseq 6000 was carried out for the identification of the differentially expressed genes (DEGs) and metabolic processes or gene regulations influenced by heat stress which lead to a reduction in both quality and quantity of wheat production. These DEGs were utilized to set up a subsequent unigene assembly and GO analysis was performed using unigenes to analyze functions of DEGs which were classified into three main domains, i.e., biological process, cellular component, and molecular function. KEGG (Kyoto Encyclopedia of Genes and Genomes) ontology was used to visualize the physiological processes or to identify KEGG pathways that provide plants their ability to shield in adverse conditions of heat stress. From KEGG ontology, it was reported that genes which encoded protein detoxification and ABC1 domain-containing protein were upregulated while genes thatencoded glutathione transferase (GST), peroxidase, and chitinase enzymes were downregulated. Downregulation of these enzymes during heat stress causes oxidative damages in plants while upregulated proteins play a main role in detoxification to protect plants from heat stress. It was hypothesized that the yield of WH-1184 decreased 44% under heat stress due to the downregulation of genes that encoded GST, peroxidase, and chitinase enzymes which can protect plants from oxidative damage. Hence, upregulation of these genes might be helpful for the adaptation of this genotype under heat stress condition.
Collapse
Affiliation(s)
- Kavita Lamba
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Mukesh Kumar
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Vikram Singh
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Lakshmi Chaudhary
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Rajat Sharma
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Samita Yadav
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Shikha Yashveer
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Mohinder Singh Dalal
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Vijeta Gupta
- Indian Institute of Wheat and Barley Research, Karnal 132 001, India
| | - Shreya Nagpal
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Manuj Saini
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Navreet Kaur Rai
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Rutuparna Pati
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| | - Karuna Malhotra
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India
| |
Collapse
|
8
|
Ravikiran KT, Gopala Krishnan S, Abhijith KP, Bollinedi H, Nagarajan M, Vinod KK, Bhowmick PK, Pal M, Ellur RK, Singh AK. Genome-Wide Association Mapping Reveals Novel Putative Gene Candidates Governing Reproductive Stage Heat Stress Tolerance in Rice. Front Genet 2022; 13:876522. [PMID: 35734422 PMCID: PMC9208292 DOI: 10.3389/fgene.2022.876522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 11/14/2022] Open
Abstract
Temperature rise predicted for the future will severely affect rice productivity because the crop is highly sensitive to heat stress at the reproductive stage. Breeding tolerant varieties is an economically viable option to combat heat stress, for which the knowledge of target genomic regions associated with the reproductive stage heat stress tolerance (RSHT) is essential. A set of 192 rice genotypes of diverse origins were evaluated under natural field conditions through staggered sowings for RSHT using two surrogate traits, spikelet fertility and grain yield, which showed significant reduction under heat stress. These genotypes were genotyped using a 50 k SNP array, and the association analysis identified 10 quantitative trait nucleotides (QTNs) for grain yield, of which one QTN (qHTGY8.1) was consistent across the different models used. Only two out of 10 MTAs coincided with the previously reported QTLs, making the remaing eight novel. A total of 22 QTNs were observed for spikelet fertility, among which qHTSF5.1 was consistently found across three models. Of the QTNs identified, seven coincided with previous reports, while the remaining QTNs were new. The genes near the QTNs were found associated with the protein–protein interaction, protein ubiquitination, stress signal transduction, and so forth, qualifying them to be putative for RSHT. An in silico expression analysis revealed the predominant expression of genes identified for spikelet fertility in reproductive organs. Further validation of the biological relevance of QTNs in conferring heat stress tolerance will enable their utilization in improving the reproductive stage heat stress tolerance in rice.
Collapse
Affiliation(s)
- K T Ravikiran
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - S Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K P Abhijith
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - H Bollinedi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - M Nagarajan
- Rice Breeding and Genetics Research Centre, ICAR-IARI, Aduthurai, India
| | - K K Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - P K Bhowmick
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - R K Ellur
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - A K Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Hayford RK, Serba DD, Xie S, Ayyappan V, Thimmapuram J, Saha MC, Wu CH, Kalavacharla VK. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses. BMC PLANT BIOLOGY 2022; 22:107. [PMID: 35260072 PMCID: PMC8903725 DOI: 10.1186/s12870-022-03477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sustainable production of high-quality feedstock has been of great interest in bioenergy research. Despite the economic importance, high temperatures and water deficit are limiting factors for the successful cultivation of switchgrass in semi-arid areas. There are limited reports on the molecular basis of combined abiotic stress tolerance in switchgrass, particularly the combination of drought and heat stress. We used transcriptomic approaches to elucidate the changes in the response of switchgrass to drought and high temperature simultaneously. RESULTS We conducted solely drought treatment in switchgrass plant Alamo AP13 by withholding water after 45 days of growing. For the combination of drought and heat effect, heat treatment (35 °C/25 °C day/night) was imposed after 72 h of the initiation of drought. Samples were collected at 0 h, 72 h, 96 h, 120 h, 144 h, and 168 h after treatment imposition, total RNA was extracted, and RNA-Seq conducted. Out of a total of 32,190 genes, we identified 3912, as drought (DT) responsive genes, 2339 and 4635 as, heat (HT) and drought and heat (DTHT) responsive genes, respectively. There were 209, 106, and 220 transcription factors (TFs) differentially expressed under DT, HT and DTHT respectively. Gene ontology annotation identified the metabolic process as the significant term enriched in DTHT genes. Other biological processes identified in DTHT responsive genes included: response to water, photosynthesis, oxidation-reduction processes, and response to stress. KEGG pathway enrichment analysis on DT and DTHT responsive genes revealed that TFs and genes controlling phenylpropanoid pathways were important for individual as well as combined stress response. For example, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) from the phenylpropanoid pathway was induced by single DT and combinations of DTHT stress. CONCLUSION Through RNA-Seq analysis, we have identified unique and overlapping genes in response to DT and combined DTHT stress in switchgrass. The combination of DT and HT stress may affect the photosynthetic machinery and phenylpropanoid pathway of switchgrass which negatively impacts lignin synthesis and biomass production of switchgrass. The biological function of genes identified particularly in response to DTHT stress could further be confirmed by techniques such as single point mutation or RNAi.
Collapse
Affiliation(s)
- Rita K Hayford
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
| | - Desalegn D Serba
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | - Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
| | | | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, OK, USA.
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
| | - Venu Kal Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA.
- Center for Integrated Biological and Environmental Research, Delaware State University, Dover, DE, USA.
| |
Collapse
|
10
|
Li Y, Li X, Zhang J, Li D, Yan L, You M, Zhang J, Lei X, Chang D, Ji X, An J, Li M, Bai S, Yan J. Physiological and Proteomic Responses of Contrasting Alfalfa ( Medicago sativa L.) Varieties to High Temperature Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:753011. [PMID: 34956258 PMCID: PMC8695758 DOI: 10.3389/fpls.2021.753011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
High temperature (HT) is an important factor for limiting global plant distribution and agricultural production. As the global temperature continues to rise, it is essential to clarify the physiological and molecular mechanisms of alfalfa responding the high temperature, which will contribute to the improvement of heat resistance in leguminous crops. In this study, the physiological and proteomic responses of two alfalfa (Medicago sativa L.) varieties contrasting in heat tolerance, MS30 (heat-tolerant) and MS37 (heat-sensitive), were comparatively analyzed under the treatments of continuously rising temperatures for 42 days. The results showed that under the HT stress, the chlorophyll content and the chlorophyll fluorescence parameter (Fv/Fm) of alfalfa were significant reduced and some key photosynthesis-related proteins showed a down-regulated trend. Moreover, the content of Malondialdehyde (MDA) and the electrolyte leakage (EL) of alfalfa showed an upward trend, which indicates both alfalfa varieties were damaged under HT stress. However, because the antioxidation-reduction and osmotic adjustment ability of MS30 were significantly stronger than MS37, the damage degree of the photosynthetic system and membrane system of MS30 is significantly lower than that of MS37. On this basis, the global proteomics analysis was undertaken by tandem mass tags (TMT) technique, a total of 6,704 proteins were identified and quantified. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that a series of key pathways including photosynthesis, metabolism, adjustment and repair were affected by HT stress. Through analyzing Venn diagrams of two alfalfa varieties, 160 and 213 differentially expressed proteins (DEPs) that had dynamic changes under HT stress were identified from MS30 and MS37, respectively. Among these DEPs, we screened out some key DEPs, such as ATP-dependent zinc metalloprotease FTSH protein, vitamin K epoxide reductase family protein, ClpB3, etc., which plays important functions in response to HT stress. In conclusion, the stronger heat-tolerance of MS30 was attributed to its higher adjustment and repair ability, which could cause the metabolic process of MS30 is more conducive to maintaining its survival and growth than MS37, especially at the later period of HT stress. This study provides a useful catalog of the Medicago sativa L. proteomes with the insight into its future genetic improvement of heat-resistance.
Collapse
Affiliation(s)
- Yingzhu Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Xinrui Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jin Zhang
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Daxu Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Lijun Yan
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Minghong You
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Jianbo Zhang
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiong Lei
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dan Chang
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiaofei Ji
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Jinchan An
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Mingfeng Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Shiqie Bai
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Jiajun Yan
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| |
Collapse
|
11
|
Wang X, Li G, Sun Y, Qin Z, Feng P. Genome-wide analysis and characterization of GRAS family in switchgrass. Bioengineered 2021; 12:6096-6114. [PMID: 34477486 PMCID: PMC8806906 DOI: 10.1080/21655979.2021.1972606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Panicum virgatum, a model plant of cellulosic ethanol conversion, not only has high large biomass and strong adaptability to soil, but also grows well in marginal soil and has the advantage of improving saline-alkali soil. GRAS transcription factor gene family play important roles in individual environment adaption, and these vital functions has been proved in several plants, however, the research of GRAS in the development of switchgrass (Panicum virgatum) were limited. A comprehensive study was investigated to explore the relationship between GRAS gene family and resistance. According to the phylogenetic analysis, a total of 144 GRAS genes were identified and renamed which were classified into eight subfamilies. Chromosome distribution, tandem and segmental repeats analysis indicated that gene duplication events contributed a lot to the expansion of GRAS genes in the switchgrass genome. Sixty-six GRAS genes in switchgrass were identified as having orthologous genes with rice through gene duplication analysis. Most of these GRAS genes contained zero or one intron, and closely related genes in evolution shared similar motif composition. Interaction networks were analyzed including DELLA and ten interaction proteins that were primarily involved in gibberellin acid mediated signaling. Notably, online analysis indicated that the promoter regions of the identified PvGRAS genes contained many cis-elements including light responsive elements, suggesting that PvGRAS might involve in light signal cross-talking. This work provides key insights into resistance and bioavailability in switchgrass and would be helpful to further study the function of GRAS and GRAS-mediated signal transduction pathways.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Anesthesiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Guixia Li
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| | - Yajing Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Zhongyu Qin
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| | - Pengcheng Feng
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
12
|
Chaturvedi P, Wiese AJ, Ghatak A, Záveská Drábková L, Weckwerth W, Honys D. Heat stress response mechanisms in pollen development. THE NEW PHYTOLOGIST 2021; 231:571-585. [PMID: 33818773 PMCID: PMC9292940 DOI: 10.1111/nph.17380] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 05/03/2023]
Abstract
Being rooted in place, plants are faced with the challenge of responding to unfavourable local conditions. One such condition, heat stress, contributes massively to crop losses globally. Heatwaves are predicted to increase, and it is of vital importance to generate crops that are tolerant to not only heat stress but also to several other abiotic stresses (e.g. drought stress, salinity stress) to ensure that global food security is protected. A better understanding of the molecular mechanisms that underlie the temperature stress response in pollen will be a significant step towards developing effective breeding strategies for high and stable production in crop plants. While most studies have focused on the vegetative phase of plant growth to understand heat stress tolerance, it is the reproductive phase that requires more attention as it is more sensitive to elevated temperatures. Every phase of reproductive development is affected by environmental challenges, including pollen and ovule development, pollen tube growth, male-female cross-talk, fertilization, and embryo development. In this review we summarize how pollen is affected by heat stress and the molecular mechanisms employed during the stress period, as revealed by classical and -omics experiments.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Anna J. Wiese
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Lenka Záveská Drábková
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14Vienna1090Austria
| | - David Honys
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| |
Collapse
|
13
|
Ramakrishna G, Kaur P, Singh A, Yadav SS, Sharma S, Singh NK, Gaikwad K. Comparative transcriptome analyses revealed different heat stress responses in pigeonpea (Cajanus cajan) and its crop wild relatives. PLANT CELL REPORTS 2021; 40:881-898. [PMID: 33837822 DOI: 10.1007/s00299-021-02686-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Comparative transcriptome analyses accompanied by biochemical assays revealed high variability in heat stress response in Cajanus species. Among the studied species, C. scarabaeoides was the most thermotolerant followed by C. cajanifolius, C. cajan, and C. acutifolius. Pigeonpea is one of the climate-resilient grain legumes. Though the optimum temperature for cultivated pigeonpea is ~ 25-35 °C, its wild relatives grow in temperatures ranging between 18 and 45 °C. To gain insight into molecular mechanisms responsible for the heat stress tolerance in pigeonpea, we conducted time-series transcriptome analysis of one pigeonpea cultivar (Cajanus cajan) and two wild relatives, Cajanus acutifolius, and Cajanus scarabaeoides subjected to heat stress at 42 ± 2 ºC for 30 min and 3 h. A total of 9521, 12,447, and 5282 identified transcripts were differentially expressed in C. cajan, C. acutifolius, and C. scarabaeoides, respectively. In this study, we observed that a significant number of genes undergo alternative splicing in a species-specific pattern during heat stress. Gene expression profiling analysis, histochemical assay, chlorophyll content, and electrolyte leakage assay showed that C. scarabaeoides has adaptive features for heat stress tolerance. The gene set enrichment analyses of differentially expressed genes in these Cajanus species during heat stress revealed that oxidoreductase activity, transcription factor activity, oxygen-evolving complex, photosystem-II, thylakoid, phenylpropanoid biosynthetic process, secondary metabolic process, and flavonoid biosynthetic process were highly affected. The histochemical assay showed more lipid peroxidation in C. acutifolius compared to other Cajanus species inferring the presence of higher quantities of polyunsaturated fatty acids in the plasma membrane which might have led to severe damage of membrane-bound organelles like chloroplast, and high electrolyte leakage during heat stress. This study paves the way for the identification of candidate genes, which can be useful for the development of thermo-tolerant pigeonpea cultivars.
Collapse
Affiliation(s)
- G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Parampreet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- School of Organic Farming, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anupam Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sunishtha S Yadav
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
14
|
Yang Y, Saand MA, Huang L, Abdelaal WB, Zhang J, Wu Y, Li J, Sirohi MH, Wang F. Applications of Multi-Omics Technologies for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:563953. [PMID: 34539683 PMCID: PMC8446515 DOI: 10.3389/fpls.2021.563953] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/06/2021] [Indexed: 05/19/2023]
Abstract
Multiple "omics" approaches have emerged as successful technologies for plant systems over the last few decades. Advances in next-generation sequencing (NGS) have paved a way for a new generation of different omics, such as genomics, transcriptomics, and proteomics. However, metabolomics, ionomics, and phenomics have also been well-documented in crop science. Multi-omics approaches with high throughput techniques have played an important role in elucidating growth, senescence, yield, and the responses to biotic and abiotic stress in numerous crops. These omics approaches have been implemented in some important crops including wheat (Triticum aestivum L.), soybean (Glycine max), tomato (Solanum lycopersicum), barley (Hordeum vulgare L.), maize (Zea mays L.), millet (Setaria italica L.), cotton (Gossypium hirsutum L.), Medicago truncatula, and rice (Oryza sativa L.). The integration of functional genomics with other omics highlights the relationships between crop genomes and phenotypes under specific physiological and environmental conditions. The purpose of this review is to dissect the role and integration of multi-omics technologies for crop breeding science. We highlight the applications of various omics approaches, such as genomics, transcriptomics, proteomics, metabolomics, phenomics, and ionomics, and the implementation of robust methods to improve crop genetics and breeding science. Potential challenges that confront the integration of multi-omics with regard to the functional analysis of genes and their networks as well as the development of potential traits for crop improvement are discussed. The panomics platform allows for the integration of complex omics to construct models that can be used to predict complex traits. Systems biology integration with multi-omics datasets can enhance our understanding of molecular regulator networks for crop improvement. In this context, we suggest the integration of entire omics by employing the "phenotype to genotype" and "genotype to phenotype" concept. Hence, top-down (phenotype to genotype) and bottom-up (genotype to phenotype) model through integration of multi-omics with systems biology may be beneficial for crop breeding improvement under conditions of environmental stresses.
Collapse
Affiliation(s)
- Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- *Correspondence: Yaodong Yang
| | - Mumtaz Ali Saand
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Department of Botany, Shah Abdul Latif University, Khairpur, Pakistan
| | - Liyun Huang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Walid Badawy Abdelaal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jun Zhang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | | | - Fuyou Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
15
|
Assessment of Switchgrass-Based Bioenergy Supply Using GIS-Based Fuzzy Logic and Network Optimization in Missouri (U.S.A.). ENERGIES 2020. [DOI: 10.3390/en13174516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bioenergy has been globally recognized as one of the sustainable alternatives to fossil fuels. An assured supply of biomass feedstocks is a crucial bottleneck for the bioenergy industry emanating from uncertainties in land-use changes and future prices. Analytical approaches deriving from geographical information systems (GIS)-based analysis, mathematical modeling, optimization analyses, and empirical techniques have been widely used to evaluate the potential for bioenergy feedstock. In this study, we propose a three-phase methodology integrating fuzzy logic, network optimization, and ecosystem services assessment to estimate potential bioenergy supply. The fuzzy logic analysis uses multiple spatial criteria to identify suitable biomass cultivating regions. We extract spatial information based on favorable conditions and potential constraints, such as developed urban areas and croplands. Further, the network analysis uses the road network and existing biorefineries to evaluate feedstock production locations. Our analysis extends previous studies by incorporating biodiversity and ecologically sensitive areas into the analysis, as well as incorporating ecosystem service benefits as an additional driver for adoption, ensuring that biomass cultivation will minimize the negative consequences of large-scale land-use change. We apply the concept of assessing the potential for switchgrass-based bioenergy in Missouri to the proposed methodology.
Collapse
|
16
|
Guo R, Wang X, Han X, Chen X, Wang-Pruski G. Physiological and transcriptomic responses of water spinach (Ipomoea aquatica) to prolonged heat stress. BMC Genomics 2020; 21:533. [PMID: 32746779 PMCID: PMC7430824 DOI: 10.1186/s12864-020-06953-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 07/27/2020] [Indexed: 02/02/2023] Open
Abstract
Background Water spinach (Ipomoea aquatica) is an important heat-resistant leafy vegetable that can survive under long-time heat stress condition. However, the physiological characteristics and molecular changes in its response to heat stress are poorly understood. Results In this study the selected water spinach cultivars with different thermo resistance and their physiological response to heat stress were examined. Under prolonged heat stress, plant growth was inhibited in all tested cultivars. This inhibition was accompanied by the reduction of photosynthetic performance. The reactive oxygen species system in terms of superoxide and hydrogen peroxide contents, as well as antioxidant polyphenols, were evaluated. The results showed that prolonged heat stress caused reduced antioxidant capacity, but the role of antioxidant capacity in a prolonged thermotolerance was not predominant. Transcriptomic analysis of the water spinach subjected to heat stress revealed that 4145 transcripts were specifically expressed with 2420 up-regulated and 1725 down-regulated in heat-sensitive and heat-tolerant cultivars treated with 42 °C for 15 days. Enrichment analysis of these differentially expressed genes showed that the main metabolic differences between heat-sensitive and heat-tolerant cultivars were the carbohydrate metabolism and phenylpropanoid biosynthesis. The results of carbohydrate profiles and RT-qPCR also suggested that heat stress altered carbohydrate metabolism and associated changes in transcriptional level of genes involved in sugar transport and metabolic transition. Conclusions The prolonged heat stress resulted in a reduced antioxidant capacity while the role of antioxidant capacity in a prolonged thermotolerance of water spinach was not predominant. Transcriptome analysis and the measurement of carbohydrates as well as the gene expression evaluation indicated that the response of the metabolic pathway such as carbohydrate and phenylpropanoid biosynthesis to heat stress may be a key player in thermo resistance.
Collapse
Affiliation(s)
- Rongfang Guo
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingru Wang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyun Han
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaodong Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gefu Wang-Pruski
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
17
|
de Oliveira RR, Ribeiro THC, Cardon CH, Fedenia L, Maia VA, Barbosa BCF, Caldeira CF, Klein PE, Chalfun-Junior A. Elevated Temperatures Impose Transcriptional Constraints and Elicit Intraspecific Differences Between Coffee Genotypes. FRONTIERS IN PLANT SCIENCE 2020; 11:1113. [PMID: 32849685 PMCID: PMC7396624 DOI: 10.3389/fpls.2020.01113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/06/2020] [Indexed: 05/19/2023]
Abstract
The projected impact of global warming on coffee production may require the heat-adapted genotypes in the next decades. To identify cellular strategies in response to warmer temperatures, we compared the effect of elevated temperature on two commercial Coffea arabica L. genotypes exploring leaf physiology, transcriptome, and carbohydrate/protein composition. Growth temperatures were 23/19°C (day/night), as optimal condition (OpT), and 30/26°C (day/night) as a possible warmer scenario (WaT). The cv. Acauã showed lower levels of leaf temperature (Tleaf) under both conditions compared to cv. Catuaí, whereas slightly or no differences for other leaf physiological parameters. Therefore, to explore temperature responsive pathways the leaf transcriptome was examined using RNAseq. Genotypes showed a marked number of differentially-expressed genes (DEGs) under OpT, however DEGs strongly decrease in both at WaT condition indicating a transcriptional constraint. DEGs responsive to WaT revealed shared and genotype-specific genes mostly related to carbohydrate metabolism. Under OpT, leaf starch content was greater in cv. Acauã and, as WaT temperature was imposed, the leaf soluble sugar did not change in contrast to cv. Catuaí, although the levels of leaf starch, sucrose, and leaf protein decreased in both genotypes. These findings revealed intraspecific differences in the underlying transcriptional and metabolic interconnected pathways responsive to warmer temperatures, which is potentially linked to thermotolerance, and thus may be useful as biomarkers in breeding for a changing climate.
Collapse
Affiliation(s)
| | | | - Carlos Henrique Cardon
- Plant Physiology Sector, Biology Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Lauren Fedenia
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | | | - Cecílio Frois Caldeira
- Plant Physiology Sector, Biology Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, United States
| | - Antonio Chalfun-Junior
- Plant Physiology Sector, Biology Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| |
Collapse
|
18
|
Identification of Heat-Responsive Genes in Guar [ Cyamopsis tetragonoloba (L.) Taub]. Int J Genomics 2020; 2020:3126592. [PMID: 32656260 PMCID: PMC7322617 DOI: 10.1155/2020/3126592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023] Open
Abstract
The threat of heat stress on crop production increased dramatically due to global warming leading to the rise on the demand of heat-tolerant crops and understanding their tolerance. The leguminous forage crop Guar [Cyamopsis tetragonoloba (L.) Taub] is a high-temperature tolerant plant with numerous works on its tolerance at morph-physiological levels but lack on molecular thermotolerance level. In the current study, the differential gene expression and the underlying metabolic pathways induced by heat treatment were investigated. An RNA-Seq study on Guar leaves was carried out to estimate gene abundance and identify genes involved in heat tolerance to better understand the response mechanisms to heat stress. The results uncovered 1551 up- and 1466 downregulated genes, from which 200 and 72 genes with unknown function could be considered as new genes specific to guar. The upregulated unigenes were associated with 158 enzymes and 102 KEGG pathways. Blast2GO, InterProScan, and Kyoto Encyclopaedia of Genes and Genomes packages were utilized to search the functional annotation, protein analysis, enzymes, and metabolic pathways and revealed hormone signal transduction were enriched during heat stress tolerance. A total of 301 protein families, 551 domains, 15 repeats, and 3 sites were upregulated and matched to those unigenes. A batch of heat-regulated transcription factor transcripts were identified using the PlantTFDB database, which may play roles in heat response in Guar. Interestingly, several heat shock protein families were expressed in response to exposure to stressful conditions for instance small HSP20, heat shock transcription factor family, heat shock protein Hsp90 family, and heat shock protein 70 family. Our results revealed the expressional changes associated with heat tolerance and identified potential key genes in the regulation of this process. These results will provide a good start to dissect the molecular behaviour of plants induced by heat stress and could identify the key genes in stress response for marker-assisted selection in Guar and reveal their roles in stress adaptation in plants.
Collapse
|
19
|
Tang R, Gupta SK, Niu S, Li XQ, Yang Q, Chen G, Zhu W, Haroon M. Transcriptome analysis of heat stress response genes in potato leaves. Mol Biol Rep 2020; 47:4311-4321. [PMID: 32488578 DOI: 10.1007/s11033-020-05485-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
Heat stress has a severe impact on potato growth and tuberization process, always resulting in the decrease of tuber yield and quality. Therefore, it is of great significance for potato breeding to illuminate the mechanism of heat stress on potato and explore heat resistant genes. In this study, two cDNA libraries from normal potato leaves (20 °C day/18 °C night) and potato leaves with 3 days of heat treatment (35 °C day/28 °C night) were constructed respectively. Totally, 1420 differentially expressed genes (DEGs) were identified. The expression patterns of 12 randomly selected genes detected using droplet digital PCR agreed with the sequencing data. Gene ontology analysis showed that these DEGs were clustered into 49 different GO types, reflecting the functional diversity of the heat stress response genes. The results of KEGG pathway enrichment showed the potential biological pathways in which the DEGs were involved, indicating that these pathways may be involved in heat tolerance regulation. Most potato heat transcription factors (StHsfs) and heat shock proteins (StHsps) were not expressed efficiently based on expression profile of these DEGs. StHsp26-CP and StHsp70 were markedly increased after 3 days of heat treatment. These data will be useful for further understanding the molecular mechanisms of potato plant tolerance to heat stress and provide a basis for breeding heat-tolerance varieties.
Collapse
Affiliation(s)
- Ruimin Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.,Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada
| | - Sanjay K Gupta
- Department of Soil, Water and Climate, University of Minnesota, 1991 Upper Bufford Circle, St. Paul, MN, 55108, USA
| | - Suyan Niu
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada.,Institute of Bioengineering, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada.
| | - Qing Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Guanshui Chen
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenjiao Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muhammad Haroon
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada
| |
Collapse
|
20
|
Pandian BA, Sathishraj R, Djanaguiraman M, Prasad PV, Jugulam M. Role of Cytochrome P450 Enzymes in Plant Stress Response. Antioxidants (Basel) 2020; 9:antiox9050454. [PMID: 32466087 PMCID: PMC7278705 DOI: 10.3390/antiox9050454] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Cytochrome P450s (CYPs) are the largest enzyme family involved in NADPH- and/or O2-dependent hydroxylation reactions across all the domains of life. In plants and animals, CYPs play a central role in the detoxification of xenobiotics. In addition to this function, CYPs act as versatile catalysts and play a crucial role in the biosynthesis of secondary metabolites, antioxidants, and phytohormones in higher plants. The molecular and biochemical processes catalyzed by CYPs have been well characterized, however, the relationship between the biochemical process catalyzed by CYPs and its effect on several plant functions was not well established. The advent of next-generation sequencing opened new avenues to unravel the involvement of CYPs in several plant functions such as plant stress response. The expression of several CYP genes are regulated in response to environmental stresses, and they also play a prominent role in the crosstalk between abiotic and biotic stress responses. CYPs have an enormous potential to be used as a candidate for engineering crop species resilient to biotic and abiotic stresses. The objective of this review is to summarize the latest research on the role of CYPs in plant stress response.
Collapse
Affiliation(s)
- Balaji Aravindhan Pandian
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
| | - Rajendran Sathishraj
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
| | - Maduraimuthu Djanaguiraman
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
- Correspondence: ; Tel.: +1-785-532-2755
| |
Collapse
|
21
|
Gurung PD, Upadhyay AK, Bhardwaj PK, Sowdhamini R, Ramakrishnan U. Transcriptome analysis reveals plasticity in gene regulation due to environmental cues in Primula sikkimensis, a high altitude plant species. BMC Genomics 2019; 20:989. [PMID: 31847812 PMCID: PMC6916092 DOI: 10.1186/s12864-019-6354-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Studying plasticity in gene expression in natural systems is crucial, for predicting and managing the effects of climate change on plant species. To understand the contribution of gene expression level variations to abiotic stress compensation in a Himalaya plant (Primula sikkimensis), we carried out a transplant experiment within (Ambient), and beyond (Below Ambient and Above Ambient) the altitudinal range limit of species. We sequenced nine transcriptomes (three each from each altitudinal range condition) using Illumina sequencing technology. We compared the fitness variation of transplants among three transplant conditions. RESULTS A large number of significantly differentially expressed genes (DEGs) between below ambient versus ambient (109) and above ambient versus ambient (85) were identified. Transcripts involved in plant growth and development were mostly up-regulated in below ambient conditions. Transcripts involved in signalling, defence, and membrane transport were mostly up-regulated in above ambient condition. Pathway analysis revealed that most of the genes involved in metabolic processes, secondary metabolism, and flavonoid biosynthesis were differentially expressed in below ambient conditions, whereas most of the genes involved in photosynthesis and plant hormone signalling were differentially expressed in above ambient conditions. In addition, we observed higher reproductive fitness in transplant individuals at below ambient condition compared to above ambient conditions; contrary to what we expect from the cold adaptive P. sikkimensis plants. CONCLUSIONS We reveal P. sikkimensis's capacity for rapid adaptation to climate change through transcriptome variation, which may facilitate the phenotypic plasticity observed in morphological and life history traits. The genes and pathways identified provide a genetic resource for understanding the temperature stress (both the hot and cold stress) tolerance mechanism of P. sikkimensis in their natural environment.
Collapse
Affiliation(s)
- Priya Darshini Gurung
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
- Manipal University, Manipal, India
| | - Atul Kumar Upadhyay
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
- Present Address: Thapar Institute of Engineering & Technology, Department of Biotechnology, Patiala, Punjab 147004 India
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresource & Sustainable Development, A National Institute under Department of Biotechnology, Ministry of Science & Technology, Government of India, Gangtok, Sikkim 737102 India
- Present address: Institute of Bioresources and Sustainable Development, Meghalaya, 6th Mile, Upper Shillong, Meghalaya 793009 India
| | - Ramanathan Sowdhamini
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
| | - Uma Ramakrishnan
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065 India
| |
Collapse
|
22
|
Klaas M, Haiminen N, Grant J, Cormican P, Finnan J, Arojju SK, Utro F, Vellani T, Parida L, Barth S. Transcriptome characterization and differentially expressed genes under flooding and drought stress in the biomass grasses Phalaris arundinacea and Dactylis glomerata. ANNALS OF BOTANY 2019; 124:717-730. [PMID: 31241131 PMCID: PMC6821378 DOI: 10.1093/aob/mcz074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/09/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Perennial grasses are a global resource as forage, and for alternative uses in bioenergy and as raw materials for the processing industry. Marginal lands can be valuable for perennial biomass grass production, if perennial biomass grasses can cope with adverse abiotic environmental stresses such as drought and waterlogging. METHODS In this study, two perennial grass species, reed canary grass (Phalaris arundinacea) and cocksfoot (Dactylis glomerata) were subjected to drought and waterlogging stress to study their responses for insights to improving environmental stress tolerance. Physiological responses were recorded, reference transcriptomes established and differential gene expression investigated between control and stress conditions. We applied a robust non-parametric method, RoDEO, based on rank ordering of transcripts to investigate differential gene expression. Furthermore, we extended and validated vRoDEO for comparing samples with varying sequencing depths. KEY RESULTS This allowed us to identify expressed genes under drought and waterlogging whilst using only a limited number of RNA sequencing experiments. Validating the methodology, several differentially expressed candidate genes involved in the stage 3 step-wise scheme in detoxification and degradation of xenobiotics were recovered, while several novel stress-related genes classified as of unknown function were discovered. CONCLUSIONS Reed canary grass is a species coping particularly well with flooding conditions, but this study adds novel information on how its transcriptome reacts under drought stress. We built extensive transcriptomes for the two investigated C3 species cocksfoot and reed canary grass under both extremes of water stress to provide a clear comparison amongst the two species to broaden our horizon for comparative studies, but further confirmation of the data would be ideal to obtain a more detailed picture.
Collapse
Affiliation(s)
- Manfred Klaas
- Teagasc Crops Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
| | - Niina Haiminen
- Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
| | - Jim Grant
- Teagasc Statistics and Applied Physics Research Operations Group, Ashtown, Dublin, Ireland
| | - Paul Cormican
- Teagasc Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - John Finnan
- Teagasc Crops Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
| | - Sai Krishna Arojju
- Teagasc Crops Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
| | - Filippo Utro
- Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
| | - Tia Vellani
- Teagasc Crops Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
| | - Laxmi Parida
- Computational Biology Center, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
| | - Susanne Barth
- Teagasc Crops Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
| |
Collapse
|
23
|
Singh D, Singh CK, Taunk J, Jadon V, Pal M, Gaikwad K. Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Sci Rep 2019; 9:12976. [PMID: 31506558 PMCID: PMC6736890 DOI: 10.1038/s41598-019-49496-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/23/2019] [Indexed: 01/29/2023] Open
Abstract
The present study reports the role of morphological, physiological and reproductive attributes viz. membrane stability index (MSI), osmolytes accumulations, antioxidants activities and pollen germination for heat stress tolerance in contrasting genotypes. Heat stress increased proline and glycine betaine (GPX) contents, induced superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione peroxidase (GPX) activities and resulted in higher MSI in PDL-2 (tolerant) compared to JL-3 (sensitive). In vitro pollen germination of tolerant genotype was higher than sensitive one under heat stress. In vivo stressed pollens of tolerant genotype germinated well on stressed stigma of sensitive genotype, while stressed pollens of sensitive genotype did not germinate on stressed stigma of tolerant genotype. De novo transcriptome analysis of both the genotypes showed that number of contigs ranged from 90,267 to 104,424 for all the samples with N50 ranging from 1,755 to 1,844 bp under heat stress and control conditions. Based on assembled unigenes, 194,178 high-quality Single Nucleotide Polymorphisms (SNPs), 141,050 microsatellites and 7,388 Insertion-deletions (Indels) were detected. Expression of 10 genes was evaluated using quantitative Real Time Polymerase Chain Reaction (RT-qPCR). Comparison of differentially expressed genes (DEGs) under different combinations of heat stress has led to the identification of candidate DEGs and pathways. Changes in expression of physiological and pollen phenotyping related genes were also reaffirmed through transcriptome data. Cell wall and secondary metabolite pathways are found to be majorly affected under heat stress. The findings need further analysis to determine genetic mechanism involved in heat tolerance of lentil.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyoti Taunk
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vasudha Jadon
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| |
Collapse
|
24
|
Ayyappan V, Sripathi VR, Kalavacharla V(K, Saha MC, Thimmapuram J, Bhide KP, Fiedler E. Genome-wide identification of histone methylation (H3K9 me2) and acetylation (H4K12 ac) marks in two ecotypes of switchgrass (Panicum virgatum L.). BMC Genomics 2019; 20:667. [PMID: 31438854 PMCID: PMC6704705 DOI: 10.1186/s12864-019-6038-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/16/2019] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Histone modifications play a significant role in the regulation of transcription and various biological processes, such as development and regeneration. Though a few genomic (including DNA methylation patterns) and transcriptomic studies are currently available in switchgrass, the genome-wide distribution of histone modifications has not yet been studied to help elucidate gene regulation and its application to switchgrass improvement. RESULTS This study provides a comprehensive epigenomic analyses of two contrasting switchgrass ecotypes, lowland (AP13) and upland (VS16), by employing chromatin immunoprecipitation sequencing (ChIP-Seq) with two histone marks (suppressive- H3K9me2 and active- H4K12ac). In this study, most of the histone binding was in non-genic regions, and the highest enrichment was seen between 0 and 2 kb regions from the transcriptional start site (TSS). Considering the economic importance and potential of switchgrass as a bioenergy crop, we focused on genes, transcription factors (TFs), and pathways that were associated with C4-photosynthesis, biomass, biofuel production, biotic stresses, and abiotic stresses. Using quantitative real-time PCR (qPCR) the relative expression of five genes selected from the phenylpropanoid-monolignol pathway showed preferential binding of acetylation marks in AP13 rather than in VS16. CONCLUSIONS The genome-wide histone modifications reported here can be utilized in understanding the regulation of genes important in the phenylpropanoid-monolignol biosynthesis pathway, which in turn, may help understand the recalcitrance associated with conversion of biomass to biofuel, a major roadblock in utilizing lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE USA
| | - Venkateswara R. Sripathi
- Molecular Biology and Bioinformatics Laboratory, College of Agricultural, Life and Natural Sciences, Alabama A&M University, Normal, AL USA
| | - Venu ( Kal) Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE USA
- Center for Integrated Biological and Environmental Research, Delaware State University, Dover, DE USA
| | | | | | - Ketaki P. Bhide
- Bioinformatics Core, Purdue University, West Lafayette, IN USA
| | - Elizabeth Fiedler
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE USA
| |
Collapse
|
25
|
Weng X, Lovell JT, Schwartz SL, Cheng C, Haque T, Zhang L, Razzaque S, Juenger TE. Complex interactions between day length and diurnal patterns of gene expression drive photoperiodic responses in a perennial C 4 grass. PLANT, CELL & ENVIRONMENT 2019; 42:2165-2182. [PMID: 30847928 DOI: 10.1111/pce.13546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Photoperiod is a key environmental cue affecting flowering and biomass traits in plants. Key components of the photoperiodic flowering pathway have been identified in many species, but surprisingly few studies have globally examined the diurnal rhythm of gene expression with changes in day length. Using a cost-effective 3'-Tag RNA sequencing strategy, we characterize 9,010 photoperiod responsive genes with strict statistical testing across a diurnal time series in the C4 perennial grass, Panicum hallii. We show that the vast majority of photoperiod responses are driven by complex interactions between day length and sampling periods. A fine-scale contrast analysis at each sampling time revealed a detailed picture of the temporal reprogramming of cis-regulatory elements and biological processes under short- and long-day conditions. Phase shift analysis reveals quantitative variation among genes with photoperiod-dependent diurnal patterns. In addition, we identify three photoperiod enriched transcription factor families with key genes involved in photoperiod flowering regulatory networks. Finally, coexpression networks analysis of GIGANTEA homolog predicted 1,668 potential coincidence partners, including five well-known GI-interacting proteins. Our results not only provide a resource for understanding the mechanisms of photoperiod regulation in perennial grasses but also lay a foundation to increase biomass yield in biofuel crops.
Collapse
Affiliation(s)
- Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| | - John T Lovell
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806
| | - Scott L Schwartz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| | - Changde Cheng
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| | - Taslima Haque
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| | - Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
26
|
Wang M, Zhang X, Li Q, Chen X, Li X. Comparative transcriptome analysis to elucidate the enhanced thermotolerance of tea plants (Camellia sinensis) treated with exogenous calcium. PLANTA 2019; 249:775-786. [PMID: 30392143 DOI: 10.1007/s00425-018-3039-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
The molecular mechanisms regulating calcium-mediated thermotolerance in Camellia sinensis were revealed by RNA-Sequencing. Heat stress is one of the most remarkable abiotic factors limiting the growth and productivity of Camellia sinensis plants. Calcium helps regulate plant responses to various adverse environmental conditions, including heat stress. In this study, the effects of exogenous calcium on the physiological characteristics of heat-stressed C. sinensis were investigated. A calcium pretreatment increased the proline, soluble sugar, Ca2+, and chlorophyll contents, but decreased the malondialdehyde content and relative electrical conductivity in C. sinensis leaves under heat stress. Further analysis of the ultra-structure of chloroplasts indicated that heat stress induced accumulation of starch granules and destruction of the stroma lamella in C. sinensis. However, calcium pretreatment counteracted the adverse effects of heat stress on the structure of the photosynthetic apparatus. These results imply that the calcium pretreatment increased C. sinensis thermotolerance. Moreover, RNA-sequencing was applied to characterize the calcium-mediated transcript-level responses to heat stress. A total of 923 differentially expressed genes (DEGs) including 299 up-regulated and 624 down-regulated genes were identified. Functional annotations indicated that these DEGs were primarily related to signal transduction, transcriptional regulation, and post-translational modification. In addition, a C. sinensis gene [CsCML45 (GenBank: KY652927)] encoding a calmodulin-like protein was isolated. The heterologous expression of CsCML45 enhanced the thermotolerance of transgenic Arabidopsis thaliana plants. These results may be useful for characterizing the calcium-mediated molecular mechanism responsible for C. sinensis thermotolerance.
Collapse
Affiliation(s)
- Mingle Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xuyang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qinghui Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xuan Chen
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, People's Republic of China
| | - Xinghui Li
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
27
|
Rastogi S, Shah S, Kumar R, Vashisth D, Akhtar MQ, Kumar A, Dwivedi UN, Shasany AK. Ocimum metabolomics in response to abiotic stresses: Cold, flood, drought and salinity. PLoS One 2019; 14:e0210903. [PMID: 30726239 PMCID: PMC6364901 DOI: 10.1371/journal.pone.0210903] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/03/2019] [Indexed: 11/19/2022] Open
Abstract
Ocimum tenuiflorum is a widely used medicinal plant since ancient times and still continues to be irreplaceable due to its properties. The plant has been explored chemically and pharmacologically, however, the molecular studies have been started lately. In an attempt to get a comprehensive overview of the abiotic stress response in O. tenuiflorum, de novo transcriptome sequencing of plant leaves under the cold, drought, flood and salinity stresses was carried out. A comparative differential gene expression (DGE) study was carried out between the common transcripts in each stress with respect to the control. KEGG pathway analysis and gene ontology (GO) enrichment studies exhibited several modifications in metabolic pathways as the result of four abiotic stresses. Besides this, a comparative metabolite profiling of stress and control samples was performed. Among the cold, drought, flood and salinity stresses, the plant was most susceptible to the cold stress. Severe treatments of all these abiotic stresses also decreased eugenol which is the main secondary metabolite present in the O. tenuiflorum plant. This investigation presents a comprehensive analysis of the abiotic stress effects in O. tenuiflorum. Current study provides an insight to the status of pathway genes’ expression that help synthesizing economically valuable phenylpropanoids and terpenoids related to the adaptation of the plant. This study identified several putative abiotic stress tolerant genes which can be utilized to either breed stress tolerant O. tenuiflorum through pyramiding or generating transgenic plants.
Collapse
Affiliation(s)
- Shubhra Rastogi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Saumya Shah
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Ritesh Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Divya Vashisth
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Md Qussen Akhtar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Upendra Nath Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
28
|
Filiz E, Ozyigit II, Saracoglu IA, Uras ME, Sen U, Yalcin B. Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evaluation. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1556120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Cilimli, Duzce, Turkey
| | - Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Ibrahim Adnan Saracoglu
- Department of Chemistry, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| | - Mehmet Emin Uras
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| | - Ugur Sen
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| | - Bahattin Yalcin
- Department of Chemistry, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| |
Collapse
|
29
|
Transcriptional profiling and genes involved in acquired thermotolerance in Banana: a non-model crop. Sci Rep 2018; 8:10683. [PMID: 30013168 PMCID: PMC6048128 DOI: 10.1038/s41598-018-27820-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
Banana is a non- model crop plant, and one of the most important crops in the tropics and sub tropics. Heat stress is the major abiotic stress affecting banana crop production because of its long growth period and is likely to become a threat due to global warming. To understand an acquired thermotolerance phenomenon at the molecular level, the RNA-seq approach was employed by adapting TIR method. A total of 136.38 million high quality reads were assembled. Differentially expressed genes under induction (I) was 3936, I + L was 2268 and lethal stress was 907 compared to control. Gene ontology and DGE analysis showed that genes related to heat shock factors, heat shock proteins, stress associated proteins, ROS scavenging, fatty acid metabolism, protein modification were significantly up regulated during induction, thus preparing the organism or tissue at molecular and cellular level for acquired thermotolerance. KEGG pathway analysis revealed the significant enrichment of pathways involved in protein processing, MAPK signaling and HSPs which indicates that these processes are conserved and involved in thermo tolerance. Thus, this study provides insights into the acquired thermotolerance phenomena in plants especially banana.
Collapse
|
30
|
Keller M, Hu Y, Mesihovic A, Fragkostefanakis S, Schleiff E, Simm S. Alternative splicing in tomato pollen in response to heat stress. DNA Res 2018; 24:205-217. [PMID: 28025318 PMCID: PMC5397606 DOI: 10.1093/dnares/dsw051] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing (AS) is a key control mechanism influencing signal response cascades in different developmental stages and under stress conditions. In this study, we examined heat stress (HS)-induced AS in the heat sensitive pollen tissue of two tomato cultivars. To obtain the entire spectrum of HS-related AS, samples taken directly after HS and after recovery were combined and analysed by RNA-seq. For nearly 9,200 genes per cultivar, we observed at least one AS event under HS. In comparison to control, for one cultivar we observed 76% more genes with intron retention (IR) or exon skipping (ES) under HS. Furthermore, 2,343 genes had at least one transcript with IR or ES accumulated under HS in both cultivars. These genes are involved in biological processes like protein folding, gene expression and heat response. Transcriptome assembly of these genes revealed that most of the alternative spliced transcripts possess truncated coding sequences resulting in partial or total loss of functional domains. Moreover, 141 HS specific and 22 HS repressed transcripts were identified. Further on, we propose AS as layer of stress response regulating constitutively expressed genes under HS by isoform abundance.
Collapse
Affiliation(s)
- Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants
| | - Yangjie Hu
- Department of Biosciences, Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants.,Cluster of Excellence Frankfurt.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, D-60438 Frankfurt am Main, Germany
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants.,Cluster of Excellence Frankfurt
| |
Collapse
|
31
|
Xu Y, Huang B. Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass. BMC Genomics 2018; 19:70. [PMID: 29357827 PMCID: PMC5778672 DOI: 10.1186/s12864-018-4437-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/04/2018] [Indexed: 11/11/2022] Open
Abstract
Background Heat stress is the primary abiotic stress limiting growth of cool-season grass species. The objective of this study was to determine molecular factors and metabolic pathways associated with superior heat tolerance in thermal bentgrass (Agrostis scabra) by comparative analysis of transcriptomic profiles with its co-generic heat-sensitive species creeping bentgrass (A. stolonifera). Results Transcriptomic profiling by RNA-seq in both heat-sensitive A. stolonifera (cv. ‘Penncross’) and heat-tolerant A. scabra exposed to heat stress found 1393 (675 up- and 718 down-regulated) and 1508 (777 up- and 731 down-regulated) differentially-expressed genes, respectively. The superior heat tolerance in A. scabra was associated with more up-regulation of genes in oxidative protection, proline biosynthesis, lipid hydrolysis, hemicellulose and lignin biosynthesis, compared to heat-sensitive A. stolonifera. Several transcriptional factors (TFs), such as high mobility group B protein 7 (HMGB7), dehydration-responsive element-binding factor 1a (DREB1a), multiprotein-bridging factor 1c (MBF1c), CCCH-domain containing protein 47 (CCCH47), were also found to be up-regulated in A. scabra under heat stress. Conclusions The unique TFs and genes identified in thermal A. scabra could be potential candidate genes for genetic modification of cultivated grass species for improving heat tolerance, and the associated pathways could contribute to the transcriptional regulation for superior heat tolerance in bentgrass species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4437-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
32
|
Mahajan MM, Goyal E, Singh AK, Gaikwad K, Kanika K. Transcriptome dynamics provide insights into long-term salinity stress tolerance in Triticum aestivum cv. Kharchia Local. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:128-139. [PMID: 29102901 DOI: 10.1016/j.plaphy.2017.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 05/13/2023]
Abstract
Kharchia Local, a wheat (Triticum aestivum) cultivar, is native to the saline-sodic soils of Pali district, Rajasthan, India and well known for its salinity stress tolerance. In the present study, we performed transcriptome sequencing to compare genome wide differential expression pattern between flag leaves of salinity stressed (15 EC) and control plants at anthesis stage. The 63.9 million paired end raw reads were assembled into 74,106 unigenes, of which, 3197 unigenes were found to be differentially expressed. Functional annotation analysis revealed the upregulation of genes associated with various biological processes including signal transduction, phytohormones signaling, osmoregulation, flavonoid biosynthesis, ion transport and ROS homeostasis. Expression pattern of fourteen differentially expressed genes was validated using qRT-PCR and was found to be consistent with the results of the transcriptome sequencing. Present study is the primary report on transcriptome profiling of Kharchia Local flag leaf under long-term salinity stress at anthesis stage. In conclusion, the data generated in this study can improve our knowledge in understanding the molecular mechanism of salinity stress tolerance. It will also serve as a valuable genomic resource in wheat breeding programs.
Collapse
Affiliation(s)
- Mahesh M Mahajan
- ICAR-Indian Agricultural Research Institute, New Delhi, India; Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, 110012, India
| | - Etika Goyal
- Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, 110012, India
| | - Amit K Singh
- Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, 110012, India
| | - Kishor Gaikwad
- Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, 110012, India
| | - Kumar Kanika
- Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
33
|
Kim JM, Lim KS, Byun M, Lee KT, Yang YR, Park M, Lim D, Chai HH, Bang HT, Hwangbo J, Choi YH, Cho YM, Park JE. Identification of the acclimation genes in transcriptomic responses to heat stress of White Pekin duck. Cell Stress Chaperones 2017; 22:787-797. [PMID: 28634817 PMCID: PMC5655367 DOI: 10.1007/s12192-017-0809-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022] Open
Abstract
White Pekin duck is an important meat resource in the livestock industries. However, the temperature increase due to global warming has become a serious environmental factor in duck production, because of hyperthermia. Therefore, identifying the gene regulations and understanding the molecular mechanism for adaptation to the warmer environment will provide insightful information on the acclimation system of ducks. This study examined transcriptomic responses to heat stress treatments (3 and 6 h at 35 °C) and control (C, 25 °C) using RNA-sequencing analysis of genes from the breast muscle tissue. Based on three distinct differentially expressed gene (DEG) sets (3H/C, 6H/C, and 6H/3H), the expression patterns of significant DEGs (absolute log2 > 1.0 and false discovery rate < 0.05) were clustered into three responsive gene groups divided into upregulated and downregulated genes. Next, we analyzed the clusters that showed relatively higher expression levels in 3H/C and lower levels in 6H/C with much lower or opposite levels in 6H/3H; we referred to these clusters as the adaptable responsive gene group. These genes were significantly enriched in the ErbB signaling pathway, neuroactive ligand-receptor interaction and type II diabetes mellitus in the KEGG pathways (P < 0.01). From the functional enrichment analysis and significantly regulated genes observed in the enriched pathways, we think that the adaptable responsive genes are responsible for the acclimation mechanism of ducks and suggest that the regulation of phosphoinositide 3-kinase genes including PIK3R6, PIK3R5, and PIK3C2B has an important relationship with the mechanisms of adaptation to heat stress in ducks.
Collapse
Affiliation(s)
- Jun-Mo Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Kyu-Sang Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Mijeong Byun
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Young-Rok Yang
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Mina Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Han-Ha Chai
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Han-Tae Bang
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, Republic of Korea
| | - Jong Hwangbo
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, Republic of Korea
| | - Yang-Ho Choi
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yong-Min Cho
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea.
| |
Collapse
|
34
|
Gao L, Ma Y, Wang P, Wang S, Yang R, Wang Q, Li L, Li Y. Transcriptome Profiling of Clematis apiifolia: Insights into Heat-Stress Responses. DNA Cell Biol 2017; 36:938-946. [PMID: 28945464 DOI: 10.1089/dna.2017.3850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clematis apiifolia, belonging to the Clematis L., is a woody vine native to China. It is characterized as heat resistant and fast growing. To better understand potential mechanisms involved in heat-stress responses in Clematis, we characterized the digital gene expression signatures of C. apiifolia under heat-stress conditions. Using RNA sequencing technology, we sequenced six libraries, three biological replicates of control samples and three of heat-stressed samples. In total, 61,708 unigenes were obtained, 36,447 (59.06%) of which were annotated. There were 1941 differentially expressed genes (DEGs) under heat stress, including 867 upregulated and 1074 downregulated genes. Gene ontology enrichment of DEGs revealed that "metabolic process," "cellular process," and "single organism" were the top three functional terms under heat stress. A Kyoto Encyclopedia of Genes and Genomes analysis led to the identification of "protein processing in metabolic pathways," "phenylpropanoid biosynthesis," and "biosynthesis of secondary metabolites" as significantly enriched pathways. Among the upregulated genes, heat-shock factors and heat-shock proteins, especially small heat-shock proteins, were particularly abundant under heat stress. The data will aid in elucidating the molecular events underlying heat-stress responses in Clematis L.
Collapse
Affiliation(s)
- Lulu Gao
- Institute of Botany , Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yuzhu Ma
- Institute of Botany , Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Peng Wang
- Institute of Botany , Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Shu'an Wang
- Institute of Botany , Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Rutong Yang
- Institute of Botany , Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Qing Wang
- Institute of Botany , Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Linfang Li
- Institute of Botany , Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Ya Li
- Institute of Botany , Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
35
|
Genome-wide survey of switchgrass NACs family provides new insights into motif and structure arrangements and reveals stress-related and tissue-specific NACs. Sci Rep 2017; 7:3056. [PMID: 28596552 PMCID: PMC5465074 DOI: 10.1038/s41598-017-03435-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/17/2017] [Indexed: 11/16/2022] Open
Abstract
NAC proteins comprise of a plant-specific transcription factor (TF) family and play important roles in plant development and stress responses. Switchgrass (Panicum virgatum) is the prime candidate and model bioenergy grass across the world. Excavating agronomically valuable genes is important for switchgrass molecular breeding. In this study, a total of 251 switchgrass NAC (PvNACs) family genes clustered into 19 subgroups were analyzed, and those potentially involved in stress response or tissue-specific expression patterns were pinpointed. Specifically, 27 PvNACs were considered as abiotic stress-related including four membrane-associated ones. Among 40 tissue-specific PvNACs expression patterns eight factors were identified that might be relevant for lignin biosynthesis and/or secondary cell wall formation. Conserved functional domains and motifs were also identified among the PvNACs and potential association between these motifs and their predicted functions were proposed, that might encourage experimental studies to use PvNACs as possible targets to improve biomass production and abiotic stress tolerance.
Collapse
|
36
|
Tian Y, Feng F, Zhang B, Li M, Wang F, Gu L, Chen A, Li Z, Shan W, Wang X, Chen X, Zhang Z. Transcriptome analysis reveals metabolic alteration due to consecutive monoculture and abiotic stress stimuli in Rehamannia glutinosa Libosch. PLANT CELL REPORTS 2017; 36:859-875. [PMID: 28275853 DOI: 10.1007/s00299-017-2115-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
We deeply investigated the mechanism underlying metabolic regulation in response to consecutive monoculture (replanting disease) and different abiotic stresses that unfolded the response mechanism to consecutive monoculture problem through RNA-seq analysis. The consecutive monoculture problem (CMP) resulted of complex environmental stresses mediated by multiple factors. Previous studies have noted that multiple stress factors in consecutive monoculture soils or plants severely limited the interpretation of the critical molecular mechanism, and made a predict that the specifically responding factor was autotoxic allelochemicals. To identify the specifically responding genes, we compared transcriptome changes in roots of Rehamannia glutinosa Libosch using consecutive monoculture, salt, drought, and ferulic acid as stress factors. Comparing with normal growth, 2502, 2672, 2485, and 1956 genes were differentially expressed in R. glutinosa under consecutive monoculture practice, salt, drought, and ferulic acid stress, respectively. In addition, 510 genes were specifically expressed under consecutive monoculture, which were not present under the other stress conditions. Integrating the biological and enrichment analyses of the differentially expressed genes, the result demonstrated that the plants could alter enzyme genes expression to reconstruct the complicated metabolic pathways, which used to tolerate the CMP and abiotic stresses. Furthermore, most of the affected pathway genes were closely related to secondary metabolic processes, and the influence of consecutive monoculture practice on the transcriptome genes expression profile was very similar to the profile under salt stress and then to the profile under drought stress. The outlined schematic diagram unfolded the putative signal regulation mechanism in response to the CMP. Genes that differentially up- or down-regulated under consecutive monoculture practice may play important roles in the CMP or replanting disease in R. glutinosa.
Collapse
Affiliation(s)
- Yunhe Tian
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fajie Feng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bao Zhang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingjie Li
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fengqing Wang
- Henan Agricultural University, Zhengzhou, 450002, China
| | - Li Gu
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aiguo Chen
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhanjie Li
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenbo Shan
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoran Wang
- Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinjian Chen
- Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhongyi Zhang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China.
| |
Collapse
|
37
|
Valluru R, Reynolds MP, Davies WJ, Sukumaran S. Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. THE NEW PHYTOLOGIST 2017; 214:271-283. [PMID: 27918628 DOI: 10.1111/nph.14367] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/26/2016] [Indexed: 05/19/2023]
Abstract
The gaseous phytohormone ethylene plays an important role in spike development in wheat (Triticum aestivum). However, the genotypic variation and the genomic regions governing spike ethylene (SET) production in wheat under long-term heat stress remain unexplored. We investigated genotypic variation in the production of SET and its relationship with spike dry weight (SDW) in 130 diverse wheat elite lines and landraces under heat-stressed field conditions. We employed an Illumina iSelect 90K single nucleotide polymorphism (SNP) genotyping array to identify the genetic loci for SET and SDW through a genome-wide association study (GWAS) in a subset of the Wheat Association Mapping Initiative (WAMI) panel. The SET and SDW exhibited appreciable genotypic variation among wheat genotypes at the anthesis stage. There was a strong negative correlation between SET and SDW. The GWAS uncovered five and 32 significant SNPs for SET, and 22 and 142 significant SNPs for SDW, in glasshouse and field conditions, respectively. Some of these SNPs closely localized to the SNPs for plant height, suggesting close associations between plant height and spike-related traits. The phenotypic and genetic elucidation of SET and its relationship with SDW supports future efforts toward gene discovery and breeding wheat cultivars with reduced ethylene effects on yield under heat stress.
Collapse
Affiliation(s)
- Ravi Valluru
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batan, CP 56237, Mexico
- Plant Biology Department, Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Matthew P Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batan, CP 56237, Mexico
| | - William J Davies
- Plant Biology Department, Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Sivakumar Sukumaran
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batan, CP 56237, Mexico
| |
Collapse
|
38
|
Yan H, Zhang A, Chen J, He X, Xu B, Xie G, Miao Z, Zhang X, Huang L. Genome-Wide Analysis of the PvHsp20 Family in Switchgrass: Motif, Genomic Organization, and Identification of Stress or Developmental-Related Hsp20s. FRONTIERS IN PLANT SCIENCE 2017; 8:1024. [PMID: 28649264 PMCID: PMC5465300 DOI: 10.3389/fpls.2017.01024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hsp20 proteins exist in all plant species and represent the most abundant small heat shock proteins (sHSPs) in plants. Hsp20s were known as chaperones maintaining cellular homeostasis during heat or other kinds of abiotic stresses. The objective of this study was to understand the phylogenetic relationship, genomic organization, diversification of motif modules, genome localization, expression profiles, and interaction networks of switchgrass (Panicum virgatum L.) Hsp20s (PvHsp20s). A total of 63 PvHsp20s were identified with their consensus as well as unique ACD motifs and gene structures analyzed. Most PvHsp20s (87%) were responsive to heat and other kinds of abiotic stresses. When under optimum growth condition, 38 of them displayed relative higher expression levels in inflorescence and seeds, suggesting their protective roles in the stress-sensitive reproductive organs. An in silico analysis of interaction network of PvHsp20 proteins further revealed potential interactive proteins, including stress-inducible ones in the network. Furthermore, PvHsp20 genes unevenly distributed in two sets of homeologous chromosomes, and only segmental duplication was found among the paralogous gene pairs, reflecting that the allotetraploidization of switchgrass allowed the accumulation of PvHsp20s that in turn facilitated its successful adaptation in hot and dry plateaus of North America. The present results provided an insight into PvHsp20s with an emphasis on the uniqueness of this gene family in switchgrass. Such information shall also be useful in functional studies of PvHsp20 genes and molecular breeding of switchgrass.
Collapse
Affiliation(s)
- Haidong Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Ailing Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Jing Chen
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Xiaoyan He
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Bin Xu
- College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Bin Xu
| | - Guanqi Xie
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Zhiming Miao
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Xinquan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Linkai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
- Linkai Huang
| |
Collapse
|
39
|
Ayyappan V, Saha MC, Thimmapuram J, Sripathi VR, Bhide KP, Fiedler E, Hayford RK, Kalavacharla VK. Comparative transcriptome profiling of upland (VS16) and lowland (AP13) ecotypes of switchgrass. PLANT CELL REPORTS 2017; 36:129-150. [PMID: 27812750 PMCID: PMC5206262 DOI: 10.1007/s00299-016-2065-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/18/2016] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Transcriptomes of two switchgrass genotypes representing the upland and lowland ecotypes will be key tools in switchgrass genome annotation and biotic and abiotic stress functional genomics. Switchgrass (Panicum virgatum L.) is an important bioenergy feedstock for cellulosic ethanol production. We report genome-wide transcriptome profiling of two contrasting tetraploid switchgrass genotypes, VS16 and AP13, representing the upland and lowland ecotypes, respectively. A total of 268 million Illumina short reads (50 nt) were generated, of which, 133 million were obtained in AP13 and the rest 135 million in VS16. More than 90% of these reads were mapped to the switchgrass reference genome (V1.1). We identified 6619 and 5369 differentially expressed genes in VS16 and AP13, respectively. Gene ontology and KEGG pathway analysis identified key genes that regulate important pathways including C4 photosynthesis, photorespiration and phenylpropanoid metabolism. A series of genes (33) involved in photosynthetic pathway were up-regulated in AP13 but only two genes showed higher expression in VS16. We identified three dicarboxylate transporter homologs that were highly expressed in AP13. Additionally, genes that mediate drought, heat, and salinity tolerance were also identified. Vesicular transport proteins, syntaxin and signal recognition particles were seen to be up-regulated in VS16. Analyses of selected genes involved in biosynthesis of secondary metabolites, plant-pathogen interaction, membrane transporters, heat, drought and salinity stress responses confirmed significant variation in the relative expression reflected in RNA-Seq data between VS16 and AP13 genotypes. The phenylpropanoid pathway genes identified here are potential targets for biofuel conversion.
Collapse
Affiliation(s)
- Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE, USA
| | - Malay C Saha
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | | | - Venkateswara R Sripathi
- Plant Molecular Biology and Bioinformatics Laboratory, College of Agricultural, Life and Natural Sciences, Alabama A&M University, Normal, AL, USA
| | - Ketaki P Bhide
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | - Elizabeth Fiedler
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE, USA
| | - Rita K Hayford
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE, USA
| | - Venu Kal Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE, USA.
- Center for Integrated Biological and Environmental Research, Delaware State University, Dover, DE, USA.
| |
Collapse
|
40
|
Shmakov NA, Vasiliev GV, Shatskaya NV, Doroshkov AV, Gordeeva EI, Afonnikov DA, Khlestkina EK. Identification of nuclear genes controlling chlorophyll synthesis in barley by RNA-seq. BMC PLANT BIOLOGY 2016; 16:245. [PMID: 28105957 PMCID: PMC5123340 DOI: 10.1186/s12870-016-0926-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Albinism in plants is characterized by lack of chlorophyll and results in photosynthesis impairment, abnormal plant development and premature death. These abnormalities are frequently encountered in interspecific crosses and tissue culture experiments. Analysis of albino mutant phenotypes with full or partial chlorophyll deficiency can shed light on genetic determinants and molecular mechanisms of albinism. Here we report analysis of RNA-seq transcription profiling of barley (Hordeum vulgare L.) near-isogenic lines, one of which is a carrier of mutant allele of the Alm gene for albino lemma and pericarp phenotype (line i:BwAlm). RESULTS 1221 genome fragments have statistically significant changes in expression levels between lines i:BwAlm and Bowman, with 148 fragments having increased expression levels in line i:BwAlm, and 1073 genome fragments, including 42 plastid operons, having decreased levels of expression in line i:BwAlm. We detected functional dissimilarity between genes with higher and lower levels of expression in i:BwAlm line. Genes with lower level of expression in the i:BwAlm line are mostly associated with photosynthesis and chlorophyll synthesis, while genes with higher expression level are functionally associated with vesicle transport. Differentially expressed genes are shown to be involved in several metabolic pathways; the largest fraction of such genes was observed for the Calvin-Benson-Bassham cycle. Finally, de novo assembly of transcriptome contains several transcripts, not annotated in current H. vulgare genome version. CONCLUSIONS Our results provide the new information about genes which could be involved in formation of albino lemma and pericarp phenotype. They demonstrate the interplay between nuclear and chloroplast genomes in this physiological process.
Collapse
Affiliation(s)
- Nickolay A. Shmakov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | | | - Dmitry A. Afonnikov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
41
|
Obaid AY, Sabir JSM, Atef A, Liu X, Edris S, El-Domyati FM, Mutwakil MZ, Gadalla NO, Hajrah NH, Al-Kordy MA, Hall N, Bahieldin A, Jansen RK. Analysis of transcriptional response to heat stress in Rhazya stricta. BMC PLANT BIOLOGY 2016; 16:252. [PMID: 27842501 PMCID: PMC5109689 DOI: 10.1186/s12870-016-0938-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/28/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Climate change is predicted to be a serious threat to agriculture due to the need for crops to be able to tolerate increased heat stress. Desert plants have already adapted to high levels of heat stress so they make excellent systems for identifying genes involved in thermotolerance. Rhazya stricta is an evergreen shrub that is native to extremely hot regions across Western and South Asia, making it an excellent system for examining plant responses to heat stress. Transcriptomes of apical and mature leaves of R. stricta were analyzed at different temperatures during several time points of the day to detect heat response mechanisms that might confer thermotolerance and protection of the plant photosynthetic apparatus. RESULTS Biological pathways that were crosstalking during the day involved the biosynthesis of several heat stress-related compounds, including soluble sugars, polyols, secondary metabolites, phenolics and methionine. Highly downregulated leaf transcripts at the hottest time of the day (40-42.4 °C) included genes encoding cyclin, cytochrome p450/secologanin synthase and U-box containing proteins, while upregulated, abundant transcripts included genes encoding heat shock proteins (HSPs), chaperones, UDP-glycosyltransferase, aquaporins and protein transparent testa 12. The upregulation of transcripts encoding HSPs, chaperones and UDP-glucosyltransferase and downregulation of transcripts encoding U-box containing proteins likely contributed to thermotolerance in R. stricta leaf by correcting protein folding and preventing protein degradation. Transcription factors that may regulate expression of genes encoding HSPs and chaperones under heat stress included HSFA2 to 4, AP2-EREBP and WRKY27. CONCLUSION This study contributed new insights into the regulatory mechanisms of thermotolerance in the wild plant species R. stricta, an arid land, perennial evergreen shrub common in the Arabian Peninsula and Indian subcontinent. Enzymes from several pathways are interacting in the biosynthesis of soluble sugars, polyols, secondary metabolites, phenolics and methionine and are the primary contributors to thermotolerance in this species.
Collapse
Affiliation(s)
- Abdullah Y. Obaid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Xuan Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Fotouh M. El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed Z. Mutwakil
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Nour O. Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Nahid H. Hajrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Magdy A. Al-Kordy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Neil Hall
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Robert K. Jansen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
42
|
Utsumi Y, Tanaka M, Kurotani A, Yoshida T, Mochida K, Matsui A, Ishitani M, Sraphet S, Whankaew S, Asvarak T, Narangajavana J, Triwitayakorn K, Sakurai T, Seki M. Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray. JOURNAL OF PLANT RESEARCH 2016; 129:711-726. [PMID: 27138000 DOI: 10.1007/s10265-016-0828-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 02/14/2016] [Indexed: 05/04/2023]
Abstract
Cassava anthracnose disease (CAD), caused by the fungus Colletotrichum gloeosporioides f. sp. Manihotis, is a serious disease of cassava (Manihot esculenta) worldwide. In this study, we established a cassava oligonucleotide-DNA microarray representing 59,079 probes corresponding to approximately 30,000 genes based on original expressed sequence tags and RNA-seq information from cassava, and applied it to investigate the molecular mechanisms of resistance to fungal infection using two cassava cultivars, Huay Bong 60 (HB60, resistant to CAD) and Hanatee (HN, sensitive to CAD). Based on quantitative real-time reverse transcription PCR and expression profiling by the microarray, we showed that the expressions of various plant defense-related genes, such as pathogenesis-related (PR) genes, cell wall-related genes, detoxification enzyme, genes related to the response to bacterium, mitogen-activated protein kinase (MAPK), genes related to salicylic acid, jasmonic acid and ethylene pathways were higher in HB60 compared with HN. Our results indicated that the induction of PR genes in HB60 by fungal infection and the higher expressions of defense response-related genes in HB60 compared with HN are likely responsible for the fungal resistance in HB60. We also showed that the use of our cassava oligo microarray could improve our understanding of cassava molecular mechanisms related to environmental responses and development, and advance the molecular breeding of useful cassava plants.
Collapse
Affiliation(s)
- Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Atsushi Kurotani
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takuhiro Yoshida
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiichi Mochida
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Biomass Research Platform Team, RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Manabu Ishitani
- Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Apartado Aéreo 6713, Cali, Colombia
| | - Supajit Sraphet
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sukhuman Whankaew
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Thipa Asvarak
- Department of Biotechnology, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand
| | - Jarunya Narangajavana
- Department of Biotechnology, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand
| | - Kanokporn Triwitayakorn
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Tetsuya Sakurai
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
43
|
Yang J, Worley E, Ma Q, Li J, Torres‐Jerez I, Li G, Zhao PX, Xu Y, Tang Y, Udvardi M. Nitrogen remobilization and conservation, and underlying senescence-associated gene expression in the perennial switchgrass Panicum virgatum. THE NEW PHYTOLOGIST 2016; 211:75-89. [PMID: 26935010 PMCID: PMC6680227 DOI: 10.1111/nph.13898] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/14/2016] [Indexed: 05/19/2023]
Abstract
Improving nitrogen (N) remobilization from aboveground to underground organs during yearly shoot senescence is an important goal for sustainable production of switchgrass (Panicum virgatum) as a biofuel crop. Little is known about the genetic control of senescence and N use efficiency in perennial grasses such as switchgrass, which limits our ability to improve the process. Switchgrass aboveground organs (leaves, stems and inflorescences) and underground organs (crowns and roots) were harvested every month over a 3-yr period. Transcriptome analysis was performed to identify genes differentially expressed in various organs during development. Total N content in aboveground organs increased from spring until the end of summer, then decreased concomitant with senescence, while N content in underground organs exhibited an increase roughly matching the decrease in shoot N during fall. Hundreds of senescence-associated genes were identified in leaves and stems. Functional grouping indicated that regulation of transcription and protein degradation play important roles in shoot senescence. Coexpression networks predict important roles for five switchgrass NAC (NAM, ATAF1,2, CUC2) transcription factors (TFs) and other TF family members in orchestrating metabolism of carbohydrates, N and lipids, protein modification/degradation, and transport processes during senescence. This study establishes a molecular basis for understanding and enhancing N remobilization and conservation in switchgrass.
Collapse
Affiliation(s)
- Jiading Yang
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
- BioEnergy Sciences Center (BESC)Oak Ridge National LaboratoryOak RidgeTN37831USA
| | - Eric Worley
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
- BioEnergy Sciences Center (BESC)Oak Ridge National LaboratoryOak RidgeTN37831USA
| | - Qin Ma
- Department of Plant ScienceSouth Dakota State UniversityBrookingsSD57007USA
| | - Jun Li
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
| | - Ivone Torres‐Jerez
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
| | - Gaoyang Li
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGA30602USA
| | - Patrick X. Zhao
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
| | - Ying Xu
- BioEnergy Sciences Center (BESC)Oak Ridge National LaboratoryOak RidgeTN37831USA
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGA30602USA
| | - Yuhong Tang
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
- BioEnergy Sciences Center (BESC)Oak Ridge National LaboratoryOak RidgeTN37831USA
| | - Michael Udvardi
- Plant Biology Divisionthe Samuel Roberts Noble FoundationArdmoreOK73401USA
- BioEnergy Sciences Center (BESC)Oak Ridge National LaboratoryOak RidgeTN37831USA
| |
Collapse
|
44
|
Song X, Liu G, Huang Z, Duan W, Tan H, Li Y, Hou X. Temperature expression patterns of genes and their coexpression with LncRNAs revealed by RNA-Seq in non-heading Chinese cabbage. BMC Genomics 2016; 17:297. [PMID: 27103267 PMCID: PMC4840866 DOI: 10.1186/s12864-016-2625-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/16/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Non-heading Chinese cabbage (NHCC, Brassica rapa ssp. chinensis) is an important leaf vegetable grown worldwide. However, little is known about the molecular mechanisms underlying tolerance for extreme temperature in NHCC. The limited availability of NHCC genomic information has greatly hindered functional analysis and molecular breeding. RESULTS Here, we conduct comprehensive analyses of cold and heat treatments in NHCC using RNA-seq. Approximately 790 million paired-end reads representing 136,189 unigenes with N50 length of 1705 bp were obtained. Totally, 14,329 differentially expressed genes (DEGs) were detected. Among which, 10 DEGs were detected in all treatments, including 7 up-regulated and 3 down-regulated. The enrichment analyses showed 25 and 33 genes were enriched under cold and heat treatments, respectively. Additionally, 10,001 LncRNAs were identified, and 9,687 belonged to novel LncRNAs. The expression of miRNAs were more than that of pri-miRNAs and LncRNAs. Furthermore, we constructed a coexpression network for LncRNAs and miRNAs. It showed 67 and 192 genes were regulated by LncRNAs under cold and heat treatments, respectively. We constructed the flowchart for identifying LncRNAs of NHCC using transcriptome. Except conducting the de novo transcriptome analyses, we also compared these unigenes with the Chinese cabbage proteins. We identified several most important genes, and discussed their regulatory networks and crosstalk in cold and heat stresses. CONCLUSIONS We presented the first comprehensive characterization for NHCC crops and constructed the flowchart for identifying LncRNAs using transcriptome. Therefore, this study represents a fully characterized NHCC transcriptome, and provides a valuable resource for genetic and genomic studies under abiotic stress.
Collapse
Affiliation(s)
- Xiaoming Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Center of Genomics and Computational Biology, College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, 063000, China
| | - Gaofeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhinan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huawei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
45
|
Gene Expression Profile in the Long-Living Lotus: Insights into the Heat Stress Response Mechanism. PLoS One 2016; 11:e0152540. [PMID: 27018792 PMCID: PMC4809550 DOI: 10.1371/journal.pone.0152540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/15/2016] [Indexed: 11/27/2022] Open
Abstract
Lotus (Nelumbo Adans) is an aquatic perennial plant that flourished during the middle Albian stage. In this study, we characterized the digital gene expression signatures for China Antique lotus under conditions of heat shock stress. Using RNA-seq technology, we sequenced four libraries, specifically, two biological replicates for control plant samples and two for heat stress samples. As a result, 6,528,866 to 8,771,183 clean reads were mapped to the reference genome, accounting for 92–96% total clean reads. A total of 396 significantly altered genes were detected across the genome, among which 315 were upregulated and 81 were downregulated by heat shock stress. Gene ontology (GO) enrichment of differentially expressed genes revealed protein folding, cell morphogenesis and cellular component morphogenesis as the top three functional terms under heat shock stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis led to the identification of protein processing in endoplasmic reticulum, plant-pathogen interactions, spliceosome, endocytosis, and protein export as significantly enriched pathways. Among the upregulated genes, small heat shock proteins (sHsps) and genes related to cell morphogenesis were particularly abundant under heat stress. Data from the current study provide valuable clues that may help elucidate the molecular events underlying heat stress response in China Antique lotus.
Collapse
|
46
|
He X, Ma H, Zhao X, Nie S, Li Y, Zhang Z, Shen Y, Chen Q, Lu Y, Lan H, Zhou S, Gao S, Pan G, Lin H. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress. PLoS One 2016; 11:e0151697. [PMID: 26990640 PMCID: PMC4798287 DOI: 10.1371/journal.pone.0151697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/02/2016] [Indexed: 11/18/2022] Open
Abstract
Nitrogen (N) is an essential nutrient for plants, and it directly affects grain yield and protein content in cereal crops. Plant root systems are not only critical for anchorage in the soil, but also for N acquisition. Therefore, genes controlling root development might also affect N uptake by plants. In this study, the responses of nitrogen on root architecture of mutant rtcs and wild-type of maize were investigated by morphological and physiological analysis. Subsequently, we performed a comparative RNA-Seq analysis to compare gene expression profiles between mutant rtcs roots and wild-type roots under different N conditions. We identified 786 co-modulated differentially expressed genes (DEGs) related to root development. These genes participated in various metabolic processes. A co-expression cluster analysis and a cis-regulatory motifs analysis revealed the importance of the AP2-EREBP transcription factor family in the rtcs-dependent regulatory network. Some genotype-specific DEGs contained at least one LBD motif in their promoter region. Further analyses of the differences in gene transcript levels between rtcs and wild-type under different N conditions revealed 403 co-modulated DEGs with distinct functions. A comparative analysis revealed that the regulatory network controlling root development also controlled gene expression in response to N-deficiency. Several AP2-EREBP family members involved in multiple hormone signaling pathways were among the DEGs. These transcription factors might play important roles in the rtcs-dependent regulatory network related to root development and the N-deficiency response. Genes encoding the nitrate transporters NRT2-1, NAR2.1, NAR2.2, and NAR2.3 showed much higher transcript levels in rtcs than in wild-type under normal-N conditions. This result indicated that the LBD gene family mainly functions as transcriptional repressors, as noted in other studies. In summary, using a comparative RNA-Seq-based approach, we identified DEGs related to root development that also participated in the N-deficiency response in maize. These findings will increase our understanding of the molecular regulatory networks controlling root development and N-stress responses.
Collapse
Affiliation(s)
- Xiujing He
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Haixia Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Xiongwei Zhao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Shujun Nie
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yuhua Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Zhiming Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Qi Chen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yanli Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Hai Lan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Shufeng Zhou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Haijian Lin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
- * E-mail:
| |
Collapse
|
47
|
Parvathi MS, Nataraja KN. Emerging tools, concepts and ideas to track the modulator genes underlying plant drought adaptive traits: An overview. PLANT SIGNALING & BEHAVIOR 2016; 11:e1074370. [PMID: 26618613 PMCID: PMC4871659 DOI: 10.1080/15592324.2015.1074370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
Crop vulnerability to multiple abiotic stresses is increasing at an alarming rate in the current global climate change scenario, especially drought. Crop improvement for adaptive adjustments to accomplish stress tolerance requires a comprehensive understanding of the key contributory processes. This requires the identification and careful analysis of the critical morpho-physiological plant attributes and their genetic control. In this review we try to discuss the crucial traits underlying drought tolerance and the various modes followed to understand their molecular level regulation. Plant stress biology is progressing into new dimensions and a conscious attempt has been made to traverse through the various approaches and checkpoints that would be relevant to tackle drought stress limitations for sustainable crop production.
Collapse
Affiliation(s)
- M S Parvathi
- Department of Crop Physiology; University of Agricultural Sciences; GKVK; Bangalore, India
| | - Karaba N Nataraja
- Department of Crop Physiology; University of Agricultural Sciences; GKVK; Bangalore, India
| |
Collapse
|
48
|
Pacak A, Barciszewska-Pacak M, Swida-Barteczka A, Kruszka K, Sega P, Milanowska K, Jakobsen I, Jarmolowski A, Szweykowska-Kulinska Z. Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley. FRONTIERS IN PLANT SCIENCE 2016; 7:926. [PMID: 27446155 PMCID: PMC4919326 DOI: 10.3389/fpls.2016.00926] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/10/2016] [Indexed: 05/07/2023]
Abstract
Phosphorus (P) in plants is taken from soil as an inorganic phosphate (Pi) and is one of the most important macroelements in growth and development. Plants actively react to Pi starvation by the induced expression of Pi transporters, MIR399, MIR827, and miR399 molecular sponge - IPS1 genes and by the decreased expression of the ubiquitin-conjugating enzyme E2 (PHOSPHATE2 - PHO2) and Pi sensing and transport SPX-MFS genes. The PHO2 protein is involved in the degradation of Pi transporters PHT1;1 (from soil to roots) and PHO1 (from roots to shoots). The decreased expression of PHO2 leads to Pi accumulation in shoots. In contrast, the pho1 mutant shows a decreased level of Pi concentration in shoots. Finally, Pi starvation leads to decreased Pi concentration in all plant tissues. Little is known about plant Pi homeostasis in other abiotic stress conditions. We found that, during the first hour of heat stress, Pi accumulated in barley shoots but not in the roots, and transcriptomic data analysis as well as RT-qPCR led us to propose an explanation for this phenomenon. Pi transport inhibition from soil to roots is balanced by lower Pi efflux from roots to shoots directed by the PHO1 transporter. In shoots, the PHO2 mRNA level is decreased, leading to an increased Pi level. We concluded that Pi homeostasis in barley during heat stress is maintained by dynamic changes in Pi-related genes expression.
Collapse
Affiliation(s)
- Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
- *Correspondence: Andrzej Pacak,
| | - Maria Barciszewska-Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | - Aleksandra Swida-Barteczka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | - Pawel Sega
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | - Kaja Milanowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | - Iver Jakobsen
- Department of Plant and Environmental Sciences, Faculty of Science, University of CopenhagenCopenhagen, Denmark
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| |
Collapse
|
49
|
Hivrale V, Zheng Y, Puli COR, Jagadeeswaran G, Gowdu K, Kakani VG, Barakat A, Sunkar R. Characterization of drought- and heat-responsive microRNAs in switchgrass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:214-223. [PMID: 26566839 DOI: 10.1016/j.plantsci.2015.07.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/17/2015] [Accepted: 07/25/2015] [Indexed: 05/21/2023]
Abstract
Recent investigations revealed that microRNAs (miRNAs) play crucial roles in plant acclimation to stress conditions. Switchgrass, one of the important biofuel crop species can withstand hot and dry climates but the molecular basis of stress tolerance is relatively unknown. To identify miRNAs that are important for tolerating drought or heat, small RNAs were profiled in leaves of adult plants exposed to drought or heat. Sequence analysis enabled the identification of 29 conserved and 62 novel miRNA families. Notably, the abundances of several conserved and novel miRNAs were dramatically altered following drought or heat. Using at least one fold (log2) change as cut off, we observed that 13 conserved miRNA families were differentially regulated by both stresses, and, five and four families were specifically regulated by drought and heat, respectively. Similarly, using a more stringent cut off of two fold (log2) regulation, we found 5 and 16 novel miRNA families were upregulated but 6 and 7 families were downregulated under drought and heat, respectively. The stress-altered expression of a subset of miRNAs and their targets was confirmed using quantitative PCR. Overall, the switchgrass plants exposed to drought or heat revealed similarities as well as differences with respect to miRNA regulation, which could be important for enduring different stress conditions.
Collapse
Affiliation(s)
- Vandana Hivrale
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Chandra Obul Reddy Puli
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kanchana Gowdu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Vijaya Gopal Kakani
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Abdelali Barakat
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
50
|
Chen S, Li H. Heat Stress Regulates the Expression of Genes at Transcriptional and Post-Transcriptional Levels, Revealed by RNA-seq in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2016; 7:2067. [PMID: 28119730 PMCID: PMC5222869 DOI: 10.3389/fpls.2016.02067] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/26/2016] [Indexed: 05/04/2023]
Abstract
Heat stress greatly affects plant growth/development and influences the output of crops. With the increased occurrence of extreme high temperature, the negative influence on cereal products from heat stress becomes severer and severer. It is urgent to reveal the molecular mechanism in response to heat stress in plants. In this research, we used RNA-seq technology to identify differentially expressed genes (DEGs) in leaves of seedlings, leaves and inflorescences at heading stage of Brachypodium distachyon, one model plant of grasses. Results showed many genes in responding to heat stress. Of them, the expression level of 656 DEGs were altered in three groups of samples treated with high temperature. Gene ontology (GO) analysis showed that the highly enriched DEGs were responsible for heat stress and protein folding. According to KEGG pathway analysis, the DEGs were related mainly to photosynthesis-antenna proteins, the endoplasmic reticulum, and the spliceosome. Additionally, the expression level of 454 transcription factors belonging to 49 gene families was altered, as well as 1,973 splicing events occurred after treatment with high temperature. This research lays a foundation for characterizing the molecular mechanism of heat stress response and identifying key genes for those responses in plants. These findings also clearly show that heat stress regulates the expression of genes not only at transcriptional level, but also at post-transcriptional level.
Collapse
Affiliation(s)
- Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- Xinjiang Agricultural Vocational Technical CollegeChangji, China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- Xinjiang Agricultural Vocational Technical CollegeChangji, China
- *Correspondence: Haifeng Li,
| |
Collapse
|