1
|
Farkas D, Dobránszki J. Vegetal memory through the lens of transcriptomic changes - recent progress and future practical prospects for exploiting plant transcriptional memory. PLANT SIGNALING & BEHAVIOR 2024; 19:2383515. [PMID: 39077764 PMCID: PMC11290777 DOI: 10.1080/15592324.2024.2383515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant memory plays an important role in the efficient and rapid acclimation to a swiftly changing environment. In addition, since plant memory can be inherited, it is also of adaptive and evolutionary importance. The ability of a plant to store, retain, retrieve and delete information on acquired experience is based on cellular, biochemical and molecular networks in the plants. This review offers an up-to-date overview on the formation, types, checkpoints of plant memory based on our current knowledge and focusing on its transcriptional aspects, the transcriptional memory. Roles of long and small non-coding RNAs are summarized in the regulation, formation and the cooperation between the different layers of the plant memory, i.e. in the establishment of epigenetic changes associated with memory formation in plants. The RNA interference mechanisms at the RNA and DNA level and the interplays between them are also presented. Furthermore, this review gives an insight of how exploitation of plant transcriptional memory may provide new opportunities for elaborating promising cost-efficient, and effective strategies to cope with the ever-changing environmental perturbations, caused by climate change. The potentials of plant memory-based methods, such as crop priming, cross acclimatization, memory modification by miRNAs and associative use of plant memory, in the future's agriculture are also discussed.
Collapse
Affiliation(s)
- Dóra Farkas
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
2
|
Jha UC, Nayyar H, Roychowdhury R, Prasad PVV, Parida SK, Siddique KHM. Non-coding RNAs (ncRNAs) in plant: Master regulators for adapting to extreme temperature conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108164. [PMID: 38008006 DOI: 10.1016/j.plaphy.2023.108164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
Unusual daily temperature fluctuations caused by climate change and climate variability adversely impact agricultural crop production. Since plants are immobile and constantly receive external environmental signals, such as extreme high (heat) and low (cold) temperatures, they have developed complex molecular regulatory mechanisms to cope with stressful situations to sustain their natural growth and development. Among these mechanisms, non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), small-interfering RNAs (siRNAs), and long-non-coding RNAs (lncRNAs), play a significant role in enhancing heat and cold stress tolerance. This review explores the pivotal findings related to miRNAs, siRNAs, and lncRNAs, elucidating how they functionally regulate plant adaptation to extreme temperatures. In addition, this review addresses the challenges associated with uncovering these non-coding RNAs and understanding their roles in orchestrating heat and cold tolerance in plants.
Collapse
Affiliation(s)
- Uday Chand Jha
- Sustainable Intensification Innovation Lab, Kansas State University, Department of Agronomy, Manhattan, KS 66506, USA; ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208024, India.
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - The Volcani Institute, Rishon Lezion 7505101, Israel
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Department of Agronomy, Manhattan, KS 66506, USA
| | - Swarup K Parida
- National Institute of Plant Genomic Research, New Delhi, 110067, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
3
|
Feng S, Long X, Gao M, Zhao Y, Guan X. Global identification of natural antisense transcripts in Gossypium hirsutum and Gossypium barbadense under chilling stress. iScience 2023; 26:107362. [PMID: 37554457 PMCID: PMC10405317 DOI: 10.1016/j.isci.2023.107362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Natural antisense transcripts (NATs) in model plants have been recognized as important regulators of gene expression under abiotic stresses. However, the functional roles of NATs in crops under low temperature are still unclear. Here, we identified 815 and 689 NATs from leaves of Gossypium hirsutum and G. barbadense under chilling stress. Among those, 224 NATs were identified as interspecific homologs between the two species. The correlation coefficients for expression of NATs and their cognate sense genes (CSG) were 0.43 and 0.37 in G. hirsutum and G. barbadense, respectively. Furthermore, expression of interspecific NATs and CSGs alike was highly consistent under chilling stress with correlation coefficients of 0.90-0.91. Four cold-associated NATs were selected for functional validation using virus-induced gene silencing (VIGS). Our results suggest that CAN1 engage in the molecular regulation of chilling stress by regulating SnRK2.8 expression. This highly conserved NAT have valuable potential for applications in breeding cold-tolerant cotton.
Collapse
Affiliation(s)
- Shouli Feng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China
- Xianghu Laboratory, Hangzhou 311231, China
| | - Xuan Long
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China
| | - Mengtao Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| |
Collapse
|
4
|
Lohani N, Golicz AA, Allu AD, Bhalla PL, Singh MB. Genome-wide analysis reveals the crucial role of lncRNAs in regulating the expression of genes controlling pollen development. PLANT CELL REPORTS 2023; 42:337-354. [PMID: 36653661 DOI: 10.1007/s00299-022-02960-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The genomic location and stage-specific expression pattern of many long non-coding RNAs reveal their critical role in regulating protein-coding genes crucial in pollen developmental progression and male germ line specification. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 bp with no apparent protein-coding potential. Multiple investigations have revealed high expression of lncRNAs in plant reproductive organs in a cell and tissue-specific manner. However, their potential role as essential regulators of molecular processes involved in sexual reproduction remains largely unexplored. We have used developing field mustard (Brassica rapa) pollen as a model system for investigating the potential role of lncRNAs in reproductive development. Reference-based transcriptome assembly performed to update the existing genome annotation identified novel expressed protein-coding genes and long non-coding RNAs (lncRNAs), including 4347 long intergenic non-coding RNAs (lincRNAs, 1058 expressed) and 2,045 lncRNAs overlapping protein-coding genes on the opposite strand (lncNATs, 780 expressed). The analysis of expression profiles reveals that lncRNAs are significant and stage-specific contributors to the gene expression profile of developing pollen. Gene co-expression networks accompanied by genome location analysis identified 38 cis-acting lincRNA, 31 cis-acting lncNAT, 7 trans-acting lincRNA and 14 trans-acting lncNAT to be substantially co-expressed with target protein-coding genes involved in biological processes regulating pollen development and male lineage specification. These findings provide a foundation for future research aiming at developing strategies to employ lncRNAs as regulatory tools for gene expression control during reproductive development.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- School of Science, Western Sydney University, Richmond, Australia
| | - Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Gießen, Gießen, Germany
| | - Annapurna D Allu
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Antisense Transcription in Plants: A Systematic Review and an Update on cis-NATs of Sugarcane. Int J Mol Sci 2022; 23:ijms231911603. [PMID: 36232906 PMCID: PMC9569758 DOI: 10.3390/ijms231911603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Initially, natural antisense transcripts (NATs, natRNAs, or asRNAs) were considered repressors; however, their functions in gene regulation are diverse. Positive, negative, or neutral correlations to the cognate gene expression have been noted. Although the first studies were published about 50 years ago, there is still much to be investigated regarding antisense transcripts in plants. A systematic review of scientific publications available in the Web of Science databases was conducted to contextualize how the studying of antisense transcripts has been addressed. Studies were classified considering three categories: “Natural antisense” (208), artificial antisense used in “Genetic Engineering” (797), or “Natural antisense and Genetic Engineering”-related publications (96). A similar string was used for a systematic search in the NCBI Gene database. Of the 1132 antisense sequences found for plants, only 0.8% were cited in PubMed and had antisense information confirmed. This value was the lowest when compared to fungi (2.9%), bacteria (2.3%), and mice (54.1%). Finally, we present an update for the cis-NATs identified in Saccharum spp. Of the 1413 antisense transcripts found in different experiments, 25 showed concordant expressions, 22 were discordant, 1264 did not correlate with the cognate genes, and 102 presented variable results depending on the experiment.
Collapse
|
6
|
Jin J, Ohama N, He X, Wu HW, Chua NH. Tissue-specific transcriptomic analysis uncovers potential roles of natural antisense transcripts in Arabidopsis heat stress response. FRONTIERS IN PLANT SCIENCE 2022; 13:997967. [PMID: 36160979 PMCID: PMC9498583 DOI: 10.3389/fpls.2022.997967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 05/26/2023]
Abstract
Natural antisense transcripts (NATs) are an important class of non-coding ribonucleic acids (RNAs) that have been shown to regulate gene expression. Using strand-specific RNA sequencing, 36,317 NAT pairs were identified, and 5,536 were specifically expressed under heat stress. We found distinct expression patterns between vegetative and reproductive tissues for both coding genes and genes encoding NATs. Genes for heat-responsive NATs are associated with relatively high levels of H3K4me3 and low levels of H3K27me2/3. On the other hand, small RNAs are significantly enriched in sequence overlapping regions of NAT pairs, and a large number of heat-responsive NATs pairs serve as potential precursors of nat-siRNAs. Collectively, our results suggest epigenetic modifications and small RNAs play important roles in the regulation of NAT expression, and highlight the potential significance of heat-inducible NATs.
Collapse
Affiliation(s)
- Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Naohiko Ohama
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Xiujing He
- West China Hospital, Sichuan University, Chengdu, China
| | - Hui-Wen Wu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Gou X, Zhong C, Zhang P, Mi L, Li Y, Lu W, Zheng J, Xu J, Meng Y, Shan W. miR398b and AtC2GnT form a negative feedback loop to regulate Arabidopsis thaliana resistance against Phytophthora parasitica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:360-373. [PMID: 35506331 DOI: 10.1111/tpj.15792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Oomycetes are diploid eukaryotic microorganisms that seriously threaten sustainable crop production. MicroRNAs (miRNAs) and corresponding natural antisense transcripts (NATs) are important regulators of multiple biological processes. However, little is known about their roles in plant immunity against oomycete pathogens. In this study, we report the identification and functional characterization of miR398b and its cis-NAT, the core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase gene (AtC2GnT), in plant immunity. Gain- and loss-of-function assays revealed that miR398b mediates Arabidopsis thaliana susceptibility to Phytophthora parasitica by targeting Cu/Zn-Superoxidase Dismutase1 (CSD1) and CSD2, leading to suppressed expression of CSD1 and CSD2 and decreased plant disease resistance. We further showed that AtC2GnT transcripts could inhibit the miR398b-CSDs module via inhibition of pri-miR398b expression, leading to elevated plant resistance to P. parasitica. Furthermore, quantitative reverse transcription PCR, RNA ligase-mediated 5'-amplification of cDNA ends (RLM-5' RACE), and transient expression assays indicated that miR398b suppresses the expression of AtC2GnT. We generated AtC2GnT-silenced A. thaliana plants by CRISPR/Cas9 or RNA interference methods, and the Nicotiana benthamiana NbC2GnT-silenced plants by virus-induced gene silencing. Pathogenicity assays showed that the C2GnT-silenced plants were more susceptible, while AtC2GnT-overexpressing plants exhibited elevated resistance to P. parasitica. AtC2GnT encodes a Golgi-localized protein, and transient expression of AtC2GnT enhanced N. benthamiana resistance to Phytophthora pathogens. Taken together, our results revealed a positive role of AtC2GnT and a negative regulatory loop formed by miR398b and AtC2GnT in regulating plant resistance to P. parasitica.
Collapse
Affiliation(s)
- Xiuhong Gou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chengcheng Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peiling Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liru Mi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yilin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junjie Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
8
|
Sánchez-Bermúdez M, del Pozo JC, Pernas M. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:918537. [PMID: 35845642 PMCID: PMC9284278 DOI: 10.3389/fpls.2022.918537] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Climate change is a major threat to crop productivity that negatively affects food security worldwide. Increase in global temperatures are usually accompanied by drought, flooding and changes in soil nutrients composition that dramatically reduced crop yields. Against the backdrop of climate change, human population increase and subsequent rise in food demand, finding new solutions for crop adaptation to environmental stresses is essential. The effects of single abiotic stress on crops have been widely studied, but in the field abiotic stresses tend to occur in combination rather than individually. Physiological, metabolic and molecular responses of crops to combined abiotic stresses seem to be significantly different to individual stresses. Although in recent years an increasing number of studies have addressed the effects of abiotic stress combinations, the information related to the root system response is still scarce. Roots are the underground organs that directly contact with the soil and sense many of these abiotic stresses. Understanding the effects of abiotic stress combinations in the root system would help to find new breeding tools to develop more resilient crops. This review will summarize the current knowledge regarding the effects of combined abiotic stress in the root system in crops. First, we will provide a general overview of root responses to particular abiotic stresses. Then, we will describe how these root responses are integrated when crops are challenged to the combination of different abiotic stress. We will focus on the main changes on root system architecture (RSA) and physiology influencing crop productivity and yield and convey the latest information on the key molecular, hormonal and genetic regulatory pathways underlying root responses to these combinatorial stresses. Finally, we will discuss possible directions for future research and the main challenges needed to be tackled to translate this knowledge into useful tools to enhance crop tolerance.
Collapse
|
9
|
The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn. Int J Mol Sci 2022; 23:ijms23094901. [PMID: 35563291 PMCID: PMC9102460 DOI: 10.3390/ijms23094901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The sacred lotus (Nelumbo nucifera Gaertn.) can maintain a stable floral chamber temperature when blooming, despite ambient temperature fluctuations; however, the long non-coding RNAs (lncRNAs) involved in floral thermogenesis remain unclear. In the present study, we obtain comprehensive lncRNAs expression profiles from receptacles at five developmental stages by strand-specific RNA sequencing to reveal the lncRNAs regulatory mechanism of the floral thermogenesis of N. nucifera. A total of 22,693 transcripts were identified as lncRNAs, of which approximately 44.78% had stage-specific expression patterns. Subsequently, we identified 2579 differential expressed lncRNAs (DELs) regulating 2367 protein-coding genes mainly involved in receptacle development and reproductive process. Then, lncRNAs with floral thermogenesis identified by weighted gene co-expression network analysis (WGCNA) were mainly related to sulfur metabolism and mitochondrial electron transport chains. Meanwhile, 70 lncRNAs were predicted to act as endogenous target mimics (eTMs) for 29 miRNAs and participate in the regulation of 16 floral thermogenesis-related genes. Our dual luciferase reporter assays indicated that lncRNA LTCONS_00068702 acted as eTMs for miR164a_4 to regulate the expression of TrxL2 gene. These results deepen our understanding of the regulation mechanism of floral thermogenesis by lncRNAs and accumulate data for further research.
Collapse
|
10
|
Baloch AA, Raza AM, Rana SSA, Ullah S, Khan S, Zaib-un-Nisa, Zahid H, Malghani GK, Kakar KU. BrCNGC gene family in field mustard: genome-wide identification, characterization, comparative synteny, evolution and expression profiling. Sci Rep 2021; 11:24203. [PMID: 34921218 PMCID: PMC8683401 DOI: 10.1038/s41598-021-03712-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
CNGCs are ligand-gated calcium signaling channels, which participate in important biological processes in eukaryotes. However, the CNGC gene family is not well-investigated in Brassica rapa L. (i.e., field mustard) that is economically important and evolutionary model crop. In this study, we systematically identified 29 member genes in BrCNGC gene family, and studied their physico-chemical properties. The BrCNGC family was classified into four major and two sub phylogenetic groups. These genes were randomly localized on nine chromosomes, and dispersed into three sub-genomes of B. rapa L. Both whole-genome triplication and gene duplication (i.e., segmental/tandem) events participated in the expansion of the BrCNGC family. Using in-silico bioinformatics approaches, we determined the gene structures, conserved motif compositions, protein interaction networks, and revealed that most BrCNGCs can be regulated by phosphorylation and microRNAs of diverse functionality. The differential expression patterns of BrCNGC genes in different plant tissues, and in response to different biotic, abiotic and hormonal stress types, suggest their strong role in plant growth, development and stress tolerance. Notably, BrCNGC-9, 27, 18 and 11 exhibited highest responses in terms of fold-changes against club-root pathogen Plasmodiophora brassicae, Pseudomonas syringae pv. maculicola, methyl-jasmonate, and trace elements. These results provide foundation for the selection of candidate BrCNGC genes for future breeding of field mustard.
Collapse
Affiliation(s)
- Akram Ali Baloch
- grid.440526.10000 0004 0609 3164Department of Biotechnology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| | - Agha Muhammad Raza
- grid.440526.10000 0004 0609 3164Department of Microbiology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| | - Shahjahan Shabbir Ahmed Rana
- grid.440526.10000 0004 0609 3164Department of Biotechnology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| | - Saad Ullah
- grid.440526.10000 0004 0609 3164Department of Microbiology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| | - Samiullah Khan
- grid.440526.10000 0004 0609 3164Department of Biotechnology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| | - Zaib-un-Nisa
- grid.411555.10000 0001 2233 7083Department of Botany, GC University Lahore, Lahore, Pakistan
| | - Humera Zahid
- grid.413062.2Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Gohram Khan Malghani
- grid.440526.10000 0004 0609 3164Department of Environmental Sciences, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| | - Kaleem U. Kakar
- grid.440526.10000 0004 0609 3164Department of Microbiology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| |
Collapse
|
11
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
12
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
13
|
Genome-wide analysis of long noncoding RNAs, 24-nt siRNAs, DNA methylation and H3K27me3 marks in Brassica rapa. PLoS One 2021; 16:e0242530. [PMID: 33788851 PMCID: PMC8011741 DOI: 10.1371/journal.pone.0242530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA fragments that generally do not code for a protein but are involved in epigenetic gene regulation. In this study, lncRNAs of Brassica rapa were classified into long intergenic noncoding RNAs, natural antisense RNAs, and intronic noncoding RNAs and their expression analyzed in relation to genome-wide 24-nt small interfering RNAs (siRNAs), DNA methylation, and histone H3 lysine 27 trimethylation marks (H3K27me3). More than 65% of the lncRNAs analyzed consisted of one exon, and more than 55% overlapped with inverted repeat regions (IRRs). Overlap of lncRNAs with IRRs or genomic regions encoding for 24-nt siRNAs resulted in increased DNA methylation levels when both were present. LncRNA did not overlap greatly with H3K27me3 marks, but the expression level of intronic noncoding RNAs that did coincide with H3K27me3 marks was higher than without H3K27me3 marks. The Brassica genus comprises important vegetables and oil seed crops grown across the world. B. rapa is a diploid (AA genome) thought to be one of the ancestral species of both B. juncea (AABB genome) and B. napus (AACC) through genome merging (allotetrapolyploidization). Complex genome restructuring and epigenetic alterations are thought to be involved in these allotetrapolyploidization events. Comparison of lncRNAs between B. rapa and B. nigra, B. oleracea, B. juncea, and B. napus showed the highest conservation with B. oleracea. This study presents a comprehensive analysis of the epigenome structure of B. rapa at multi-epigenetic levels (siRNAs, DNA methylation, H3K27me3, and lncRNAs) and identified a suite of candidate lncRNAs that may be epigenetically regulated in the Brassica genus.
Collapse
|
14
|
Song X, Hu J, Wu T, Yang Q, Feng X, Lin H, Feng S, Cui C, Yu Y, Zhou R, Gong K, Yu T, Pei Q, Li N. Comparative analysis of long noncoding RNAs in angiosperms and characterization of long noncoding RNAs in response to heat stress in Chinese cabbage. HORTICULTURE RESEARCH 2021; 8:48. [PMID: 33642591 PMCID: PMC7917108 DOI: 10.1038/s41438-021-00484-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/30/2020] [Accepted: 12/13/2020] [Indexed: 05/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) are widely present in different species and play critical roles in response to abiotic stresses. However, the functions of lncRNAs in Chinese cabbage under heat stress remain unknown. Here, we first conducted a global comparative analysis of 247,242 lncRNAs among 37 species. The results indicated that lncRNAs were poorly conserved among different species, and only 960 lncRNAs were homologous to 524 miRNA precursors. We then carried out lncRNA sequencing for a genome-wide analysis of lncRNAs and their target genes in Chinese cabbage at different stages of heat treatment. In total, 18,253 lncRNAs were identified, of which 1229 differentially expressed (DE) lncRNAs were characterized as being heat-responsive. The ceRNA network revealed that 38 lncRNAs, 16 miRNAs, and 167 mRNAs were involved in the heat response in Chinese cabbage. Combined analysis of the cis- and trans-regulated genes indicated that the targets of DE lncRNAs were significantly enriched in the "protein processing in endoplasmic reticulum" and "plant hormone signal transduction" pathways. Furthermore, the majority of HSP and PYL genes involved in these two pathways exhibited similar expression patterns and responded to heat stress rapidly. Based on the networks of DE lncRNA-mRNAs, 29 and 22 lncRNAs were found to interact with HSP and PYL genes, respectively. Finally, the expression of several critical lncRNAs and their targets was verified by qRT-PCR. Overall, we conducted a comparative analysis of lncRNAs among 37 species and performed a comprehensive analysis of lncRNAs in Chinese cabbage. Our findings expand the knowledge of lncRNAs involved in the heat stress response in Chinese cabbage, and the identified lncRNAs provide an abundance of resources for future comparative and functional studies.
Collapse
Affiliation(s)
- Xiaoming Song
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China.
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, USA.
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jingjing Hu
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Tong Wu
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qihang Yang
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xuehuan Feng
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hao Lin
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuyan Feng
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chunlin Cui
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ying Yu
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Ke Gong
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Tong Yu
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qiaoying Pei
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Nan Li
- College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
15
|
Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int J Mol Sci 2020; 22:ijms22010117. [PMID: 33374376 PMCID: PMC7795586 DOI: 10.3390/ijms22010117] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 01/05/2023] Open
Abstract
Global warming has increased the frequency of extreme high temperature events. High temperature is a major abiotic stress that limits the growth and production of plants. Therefore, the plant response to heat stress (HS) has been a focus of research. However, the plant response to HS involves complex physiological traits and molecular or gene networks that are not fully understood. Here, we review recent progress in the physiological (photosynthesis, cell membrane thermostability, oxidative damage, and others), transcriptional, and post-transcriptional (noncoding RNAs) regulation of the plant response to HS. We also summarize advances in understanding of the epigenetic regulation (DNA methylation, histone modification, and chromatin remodeling) and epigenetic memory underlying plant–heat interactions. Finally, we discuss the challenges and opportunities of future research in the plant response to HS.
Collapse
|
16
|
Waititu JK, Zhang C, Liu J, Wang H. Plant Non-Coding RNAs: Origin, Biogenesis, Mode of Action and Their Roles in Abiotic Stress. Int J Mol Sci 2020; 21:E8401. [PMID: 33182372 PMCID: PMC7664903 DOI: 10.3390/ijms21218401] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 01/21/2023] Open
Abstract
As sessile species, plants have to deal with the rapidly changing environment. In response to these environmental conditions, plants employ a plethora of response mechanisms that provide broad phenotypic plasticity to allow the fine-tuning of the external cues related reactions. Molecular biology has been transformed by the major breakthroughs in high-throughput transcriptome sequencing and expression analysis using next-generation sequencing (NGS) technologies. These innovations have provided substantial progress in the identification of genomic regions as well as underlying basis influencing transcriptional and post-transcriptional regulation of abiotic stress response. Non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), short interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), have emerged as essential regulators of plants abiotic stress response. However, shared traits in the biogenesis of ncRNAs and the coordinated cross-talk among ncRNAs mechanisms contribute to the complexity of these molecules and might play an essential part in regulating stress responses. Herein, we highlight the current knowledge of plant microRNAs, siRNAs, and lncRNAs, focusing on their origin, biogenesis, modes of action, and fundamental roles in plant response to abiotic stresses.
Collapse
Affiliation(s)
- Joram Kiriga Waititu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| |
Collapse
|
17
|
Chaudhary S, Devi P, Bhardwaj A, Jha UC, Sharma KD, Prasad PVV, Siddique KHM, Bindumadhava H, Kumar S, Nayyar H. Identification and Characterization of Contrasting Genotypes/Cultivars for Developing Heat Tolerance in Agricultural Crops: Current Status and Prospects. FRONTIERS IN PLANT SCIENCE 2020; 11:587264. [PMID: 33193540 PMCID: PMC7642017 DOI: 10.3389/fpls.2020.587264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/14/2020] [Indexed: 05/19/2023]
Abstract
Rising global temperatures due to climate change are affecting crop performance in several regions of the world. High temperatures affect plants at various organizational levels, primarily accelerating phenology to limit biomass production and shortening reproductive phase to curtail flower and fruit numbers, thus resulting in severe yield losses. Besides, heat stress also disrupts normal growth, development, cellular metabolism, and gene expression, which alters shoot and root structures, branching patterns, leaf surface and orientation, and anatomical, structural, and functional aspects of leaves and flowers. The reproductive growth stage is crucial in plants' life cycle, and susceptible to high temperatures, as reproductive processes are negatively impacted thus reducing crop yield. Genetic variation exists among genotypes of various crops to resist impacts of heat stress. Several screening studies have successfully phenotyped large populations of various crops to distinguish heat-tolerant and heat-sensitive genotypes using various traits, related to shoots (including leaves), flowers, fruits (pods, spikes, spikelets), and seeds (or grains), which have led to direct release of heat-tolerant cultivars in some cases (such as chickpea). In the present review, we discuss examples of contrasting genotypes for heat tolerance in different crops, involving many traits related to thermotolerance in leaves (membrane thermostability, photosynthetic efficiency, chlorophyll content, chlorophyll fluorescence, stomatal activity), flowers (pollen viability, pollen germination, fertilization, ovule viability), roots (architecture), biomolecules (antioxidants, osmolytes, phytohormones, heat-shock proteins, other stress proteins), and "omics" (phenomics, transcriptomics, genomics) approaches. The traits linked to heat tolerance can be introgressed into high yielding but heat-sensitive genotypes of crops to enhance their thermotolerance. Involving these traits will be useful for screening contrasting genotypes and would pave the way for characterizing the underlying molecular mechanisms, which could be valuable for engineering plants with enhanced thermotolerance. Wherever possible, we discussed breeding and biotechnological approaches for using these traits to develop heat-tolerant genotypes of various food crops.
Collapse
Affiliation(s)
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | | | | | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh (CSK HP) Agricultural University, Palampur, India
| | | | | | - H. Bindumadhava
- World Vegetable Center, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
18
|
Li Y, Li X, Yang J, He Y. Natural antisense transcripts of MIR398 genes suppress microR398 processing and attenuate plant thermotolerance. Nat Commun 2020; 11:5351. [PMID: 33093449 PMCID: PMC7582911 DOI: 10.1038/s41467-020-19186-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) and natural antisense transcripts (NATs) control many biological processes and have been broadly applied for genetic manipulation of eukaryotic gene expression. Still unclear, however, are whether and how NATs regulate miRNA production. Here, we report that the cis-NATs of MIR398 genes repress the processing of their pri-miRNAs. Through genome-wide analysis of RNA sequencing data, we identify cis-NATs of MIRNA genes in Arabidopsis and Brassica. In Arabidopsis, MIR398b and MIR398c are coexpressed in vascular tissues with their antisense genes NAT398b and NAT398c, respectively. Knock down of NAT398b and NAT398c promotes miR398 processing, resulting in stronger plant thermotolerance owing to silencing of miR398-targeted genes; in contrast, their overexpression activates NAT398b and NAT398c, causing poorer thermotolerance due to the upregulation of miR398-targeted genes. Unexpectedly, overexpression of MIR398b and MIR398c activates NAT398b and NAT398c. Taken together, these results suggest that NAT398b/c repress miR398 biogenesis and attenuate plant thermotolerance via a regulatory loop. MiRNAs and natural antisense transcripts can both regulate gene expression and plant development. Here, the authors show that cis-NATs to MIR398 repress processing of pri-miR398 and that cis-NAT expression is downregulated at high temperatures, contributing to miR398 mediated thermotolerance responses.
Collapse
Affiliation(s)
- Yajie Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
19
|
Thody J, Folkes L, Moulton V. NATpare: a pipeline for high-throughput prediction and functional analysis of nat-siRNAs. Nucleic Acids Res 2020; 48:6481-6490. [PMID: 32463462 PMCID: PMC7337908 DOI: 10.1093/nar/gkaa448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Natural antisense transcript-derived small interfering RNAs (nat-siRNAs) are a class of functional small RNA (sRNA) that have been found in both plant and animals kingdoms. In plants, these sRNAs have been shown to suppress the translation of messenger RNAs (mRNAs) by directing the RNA-induced silencing complex (RISC) to their sequence-specific mRNA target(s). Current computational tools for classification of nat-siRNAs are limited in number and can be computationally infeasible to use. In addition, current methods do not provide any indication of the function of the predicted nat-siRNAs. Here, we present a new software pipeline, called NATpare, for prediction and functional analysis of nat-siRNAs using sRNA and degradome sequencing data. Based on our benchmarking in multiple plant species, NATpare substantially reduces the time required to perform prediction with minimal resource requirements allowing for comprehensive analysis of nat-siRNAs in larger and more complex organisms for the first time. We then exemplify the use of NATpare by identifying tissue and stress specific nat-siRNAs in multiple Arabidopsis thaliana datasets.
Collapse
Affiliation(s)
- Joshua Thody
- School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Leighton Folkes
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
20
|
Chen R, Li M, Zhang H, Duan L, Sun X, Jiang Q, Zhang H, Hu Z. Continuous salt stress-induced long non-coding RNAs and DNA methylation patterns in soybean roots. BMC Genomics 2019; 20:730. [PMID: 31606033 PMCID: PMC6790039 DOI: 10.1186/s12864-019-6101-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Environmental stimuli can activate a series of physiological and biochemical responses in plants accompanied by extensive transcriptional reprogramming. Long non-coding RNAs (lncRNAs), as versatile regulators, control gene expression in multiple ways and participate in the adaptation to biotic and abiotic stresses. RESULTS In this study, soybean seedlings were continuously cultured for 15 days with high salinity solutions started from seed germination. Strand-specific whole transcriptome sequencing and stringent bioinformatic analysis led to the identification of 3030 long intergenic non-coding RNAs (lincRNAs) and 275 natural antisense transcripts (lncNATs) in soybean roots. In contrast to mRNAs, newly identified lncRNAs exhibited less exons, similar AU content to UTRs, even distribution across the genome and low evolutionary conservation. Remarkably, more than 75% of discovered lncRNAs that were activated or up-regulated by continuous salt stress mainly targeted proteins with binding and catalytic activities. Furthermore, two DNA methylation maps with single-base resolution were generated by using reduced representation bisulfite sequencing, offering a genome-wide perspective and important clues for epigenetic regulation of stress-associated lncRNAs and protein-coding genes. CONCLUSIONS Taken together, our findings systematically demonstrated the characteristics of continuous salt stress-induced lncRNAs and extended the knowledge of corresponding methylation profiling, providing valuable evidence for a better understanding of how plants cope with long-term salt stress circumstances.
Collapse
Affiliation(s)
- Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Ming Li
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Huiyuan Zhang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lijin Duan
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xianjun Sun
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiyan Jiang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng Hu
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
21
|
Rai MI, Alam M, Lightfoot DA, Gurha P, Afzal AJ. Classification and experimental identification of plant long non-coding RNAs. Genomics 2019; 111:997-1005. [DOI: 10.1016/j.ygeno.2018.04.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023]
|
22
|
Wang J, Deng Y, Zhou Y, Liu D, Yu H, Zhou Y, Lv J, Ou L, Li X, Ma Y, Dai X, Liu F, Zou X, Ouyang B, Li F. Full-length mRNA sequencing and gene expression profiling reveal broad involvement of natural antisense transcript gene pairs in pepper development and response to stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:763-783. [PMID: 31009127 DOI: 10.1111/tpj.14351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Pepper is an important vegetable with great economic value and unique biological features. In the past few years, significant development has been made toward understanding the huge complex pepper genome; however, pepper functional genomics has not been well studied. To better understand the pepper gene structure and pepper gene regulation, we conducted full-length mRNA sequencing by PacBio sequencing and obtained 57 862 high-quality full-length mRNA sequences derived from 18 362 previously annotated and 5769 newly detected genes. New gene models were built that combined the full-length mRNA sequences and corrected approximately 500 fragmented gene models from previous annotations. Based on the full-length mRNA, we identified 4114 and 5880 pepper genes forming natural antisense transcript (NAT) genes in-cis and in-trans, respectively. Most of these genes accumulate small RNAs in their overlapping regions. By analyzing these NAT gene expression patterns in our transcriptome data, we identified many NAT pairs responsive to a variety of biological processes in pepper. Pepper formate dehydrogenase 1 (FDH1), which is required for R-gene-mediated disease resistance, may be regulated by nat-siRNAs and participate in a positive feedback loop in salicylic acid biosynthesis during resistance responses. Several cis-NAT pairs and subgroups of trans-NAT genes were responsive to pepper pericarp and placenta development, which may play roles in capsanthin and capsaicin biosynthesis. Using a comparative genomics approach, the evolutionary mechanisms of cis-NATs were investigated, and we found that an increase in intergenic sequences accounted for the loss of most cis-NATs, while transposon insertion contributed to the formation of most new cis-NATs. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at http://bigd.big.ac.cn/gsa Accession number, CRA001412.
Collapse
Affiliation(s)
- Jubin Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Yingtian Deng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Yingjia Zhou
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Dan Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Yuhong Zhou
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Junheng Lv
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Lijun Ou
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Xuefeng Li
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Yanqing Ma
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Xiongze Dai
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Feng Liu
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Xuexiao Zou
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| |
Collapse
|
23
|
Bai Y, Dai X, Li Y, Wang L, Li W, Liu Y, Cheng Y, Qin Y. Identification and characterization of pineapple leaf lncRNAs in crassulacean acid metabolism (CAM) photosynthesis pathway. Sci Rep 2019; 9:6658. [PMID: 31040312 PMCID: PMC6491598 DOI: 10.1038/s41598-019-43088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been identified in many mammals and plants and are known to play crucial roles in multiple biological processes. Pineapple is an important tropical fruit and a good model for studying the plant evolutionary adaptation to the dry environment and the crassulacean acid metabolism (CAM) photosynthesis strategy; however, the lncRNAs involved in CAM pathway remain poorly characterized. Here, we analyzed the available RNA-seq data sets derived from 26 pineapple leaf samples at 13 time points and identified 2,888 leaf lncRNAs, including 2,046 long intergenic noncoding RNAs (lincRNAs) and 842 long noncoding natural antisense transcripts (lncNATs). Pineapple leaf lncRNAs are expressed in a highly tissue-specific manner. Co-expression analysis of leaf lncRNA and mRNA revealed that leaf lncRNAs are preferentially associated with photosynthesis genes. We further identified leaf lncRNAs that potentially function as competing endogenous RNAs (ceRNAs) of two CAM photosynthesis pathway genes, PPCK and PEPC, and revealed their diurnal expression pattern in leaves. Moreover, we found that 48% of lncRNAs exhibit diurnal expression patterns in leaves, suggesting their important roles in CAM. This study conducted a comprehensive genome-wide analysis of leaf lncRNAs and identified their role in gene expression regulation of the CAM photosynthesis pathway in pineapple.
Collapse
Affiliation(s)
- Youhuang Bai
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaozhuan Dai
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lulu Wang
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weimin Li
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanhui Liu
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Cheng
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
24
|
Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp.chinensis). Sci Rep 2019; 9:5002. [PMID: 30899041 PMCID: PMC6428831 DOI: 10.1038/s41598-019-41428-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/05/2019] [Indexed: 01/12/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) mediate important epigenetic regulation in various biological processes related to the stress response in plants. However, the systematic analysis of the lncRNAs expressed in Brassica rapa under heat stress has been elusive. In this study, we performed a genome-wide analysis of the lncRNA expression profiles in non-heading Chinese cabbage leaves using strand-specific RNA-sequencing. A total of 4594 putative lncRNAs were identified with a comprehensive landscape of dynamic lncRNA expression networks under heat stress. Co-expression networks of the interactions among the differentially expressed lncRNAs, mRNAs and microRNAs revealed that several phytohormones were associated with heat tolerance, including salicylic acid (SA) and brassinosteroid (BR) pathways. Of particular importance is the discovery of 25 lncRNAs that were highly co-expressed with 10 heat responsive genes. Thirty-nine lncRNAs were predicted as endogenous target mimics (eTMs) for 35 miRNAs, and five of them were validated to be involved in the heat tolerance of Chinese cabbage. Heat responsive lncRNA (TCONS_00048391) is an eTM for bra-miR164a, that could be a sponge for miRNA binding and may be a competing endogenous RNA (ceRNA) for the target gene NAC1 (Bra030820), affecting the expression of bra-miR164a in Chinese cabbage. Thus, these findings provide new insights into the functions of lncRNAs in heat tolerance and highlight a set of candidate lncRNAs for further studies in non-heading Chinese cabbage.
Collapse
|
25
|
An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res 2019; 29:379-390. [PMID: 30778176 PMCID: PMC6796840 DOI: 10.1038/s41422-019-0145-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/22/2019] [Indexed: 01/18/2023] Open
Abstract
Global warming has profound effects on plant growth and fitness. Plants have evolved sophisticated epigenetic machinery to respond quickly to heat, and exhibit transgenerational memory of the heat-induced release of post-transcriptional gene silencing (PTGS). However, how thermomemory is transmitted to progeny and the physiological relevance are elusive. Here we show that heat-induced HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2) directly activates the H3K27me3 demethylase RELATIVE OF EARLY FLOWERING 6 (REF6), which in turn derepresses HSFA2. REF6 and HSFA2 establish a heritable feedback loop, and activate an E3 ubiquitin ligase, SUPPRESSOR OF GENE SILENCING 3 (SGS3)-INTERACTING PROTEIN 1 (SGIP1). SGIP1-mediated SGS3 degradation leads to inhibited biosynthesis of trans-acting siRNA (tasiRNA). The REF6-HSFA2 loop and reduced tasiRNA converge to release HEAT-INDUCED TAS1 TARGET 5 (HTT5), which drives early flowering but attenuates immunity. Thus, heat induces transmitted phenotypes via a coordinated epigenetic network involving histone demethylases, transcription factors, and tasiRNAs, ensuring reproductive success and transgenerational stress adaptation.
Collapse
|
26
|
Abstract
Long non-coding RNAs (lncRNAs) exert a multitude of functions in regulating numerous biological processes. Recent studies have uncovered a growing number of lncRNAs within the plant genome. These molecules show striking tissue-specific expression patterns, suggesting that they exert regulatory functions in the growth and development processes of plants. Plant reproductive development is tightly regulated by both environmental and endogenous factors. As plant reproductive development is a crucial aspect of crop breeding, lncRNAs that modulate reproductive development are now particularly worth regarding. Here, we summarize findings that implicate lncRNAs in the control of plant reproductive development, especially in flowering control. Additionally, we elaborate on the regulation mechanisms of lncRNAs, tools for research on their function and mechanism, and potential directions of future research.
Collapse
|
27
|
LncRNA expression profile and ceRNA analysis in tomato during flowering. PLoS One 2019; 14:e0210650. [PMID: 30653557 PMCID: PMC6336255 DOI: 10.1371/journal.pone.0210650] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/29/2018] [Indexed: 11/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play essential regulatory roles in various developmental processes and stress responses. However, the functions of lncRNAs during the flowering period of tomato are largely unknown. To explore the lncRNA profiles and functions during flowering in tomato, we performed strand-specific paired-end RNA sequencing of tomato leaves, flowers and roots, with three biological replicates. We identified 10919 lncRNAs including 248 novel lncRNAs, of which 65 novel lncRNAs were significantly differentially expressed (DE) in the flowers, leaves, and roots. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out to identify the cis target gene of DE lncRNAs. The results showed that the lncRNAs might play an important role in the growth, development, and apoptosis of flowering tomato plant by regulating the formation of intima in flower tissues, binding to various molecules, influencing metabolic pathways, and inducing apoptosis. Moreover, we identified the interaction between 32, 78, and 397 kinds of miRNAs, lncRNAs, and mRNAs. The results suggest that the lncRNAs can regulate the expression of mRNA during flowering period in tomato by forming competitive endogenous RNA, and further regulate various biological metabolism pathways in tomato.
Collapse
|
28
|
Shen E, Zhu X, Hua S, Chen H, Ye C, Zhou L, Liu Q, Zhu QH, Fan L, Chen X. Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid Brassica napus. BMC Genomics 2018; 19:745. [PMID: 30314449 PMCID: PMC6186049 DOI: 10.1186/s12864-018-5117-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are transcripts longer than 200 bp that do not encode proteins but nonetheless have been shown to play important roles in various biological processes in plants. Brassica napus is an important seed oil crop worldwide and the target of many genetic improvement activities. To understand better the function of lncRNAs in regulating plant metabolic activities, we carried out a genome-wide lncRNA identification of lncRNAs in Brassica napus with a focus on lncRNAs involved in lipid metabolism. Twenty ribosomal RNA depleted strand specific RNA-seq (ssRNA-seq) datasets were generatred using RNAs isolated from B. napus seeds at four developmental stages. For comparison we also included 30 publically available RNA-seq datasets generated from poly(A) enriched mRNAs isolated from from various Brassica napus tissues in our analysis. Results A total of 8905 lncRNA loci were identified, including 7100 long intergenic noncoding RNA (lincRNA) loci and 1805 loci generating long noncoding natural antisense transcript (lncNAT). Many lncRNAs were identified only in the ssRNA-seq and poly(A) RNA-seq dataset, suggesting that B. napus has a large lncRNA repertoire and it is necessary to use libraries prepared from different tissues and developmental stages as well as different library preparation approaches to capture the whole spectrum of lncRNAs. Analysis of coexpression networks revealed that among the regulatory modules are networks containing lncRNAs and protein-coding genes related to oil biosynthesis indicating a possible role of lncRNAs in the control of lipid metabolism. One such example is that several lncRNAs are potential regulators of BnaC08g11970D that encodes oleosin1, a protein found in oil bodies and involved in seed lipid accumulation. We also observed that the expression levels of B. napus lncRNAs is positively correlated with their conservation levels. Conclusions We demonstrated that the B. napus genome has a large number of lncRNA and that these lncRNAs are expressed broadly across many developmental times and in different tissue types. We also provide evidence indicating that specific lncRNAs appear to be important regulators of lipid biosynthesis forming regulatory networks with transcripts involved in lipid biosynthesis. We also provide evidence that these lncRNAs are conserved in other species of the Brassicaceae family. Electronic supplementary material The online version of this article (10.1186/s12864-018-5117-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Shuijin Hua
- Institute of Crop and Utilization of Nuclear Technology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hongyu Chen
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chuyu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Longhua Zhou
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qing Liu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xi Chen
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Albihlal WS, Obomighie I, Blein T, Persad R, Chernukhin I, Crespi M, Bechtold U, Mullineaux PM. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2847-2862. [PMID: 29697803 PMCID: PMC5961379 DOI: 10.1093/jxb/ery142] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/05/2018] [Indexed: 05/22/2023]
Abstract
In Arabidopsis thaliana, HEAT SHOCK TRANSCRIPTION FACTORA1b (HSFA1b) controls resistance to environmental stress and is a determinant of reproductive fitness by influencing seed yield. To understand how HSFA1b achieves this, we surveyed its genome-wide targets (ChIP-seq) and its impact on the transcriptome (RNA-seq) under non-stress (NS), heat stress (HS) in the wild type, and in HSFA1b-overexpressing plants under NS. A total of 952 differentially expressed HSFA1b-targeted genes were identified, of which at least 85 are development associated and were bound predominantly under NS. A further 1780 genes were differentially expressed but not bound by HSFA1b, of which 281 were classified as having development-associated functions. These genes are indirectly regulated through a hierarchical network of 27 transcription factors (TFs). Furthermore, we identified 480 natural antisense non-coding RNA (cisNAT) genes bound by HSFA1b, defining a further mode of indirect regulation. Finally, HSFA1b-targeted genomic features not only harboured heat shock elements, but also MADS box, LEAFY, and G-Box promoter motifs. This revealed that HSFA1b is one of eight TFs that target a common group of stress defence and developmental genes. We propose that HSFA1b transduces environmental cues to many stress tolerance and developmental genes to allow plants to adjust their growth and development continually in a varying environment.
Collapse
Affiliation(s)
- Waleed S Albihlal
- Department of Microbial & Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Irabonosi Obomighie
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Thomas Blein
- Institute of Plant Sciences-Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Ramona Persad
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Martin Crespi
- Institute of Plant Sciences-Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Ulrike Bechtold
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Philip M Mullineaux
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
- Correspondence:
| |
Collapse
|
30
|
Yuan J, Li J, Yang Y, Tan C, Zhu Y, Hu L, Qi Y, Lu ZJ. Stress-responsive regulation of long non-coding RNA polyadenylation in Oryza sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:814-827. [PMID: 29265542 DOI: 10.1111/tpj.13804] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/18/2017] [Accepted: 11/28/2017] [Indexed: 05/22/2023]
Abstract
Recently, long non-coding RNAs (lncRNAs) have been demonstrated to be involved in many biological processes of plants; however, a systematic study on transcriptional and, in particular, post-transcriptional regulation of stress-responsive lncRNAs in Oryza sativa (rice) is lacking. We sequenced three types of RNA libraries (poly(A)+, poly(A)- and nuclear RNAs) under four abiotic stresses (cold, heat, drought and salt). Based on an integrative bioinformatics approach and ~200 high-throughput data sets, ~170 of which have been published, we revealed over 7000 lncRNAs, nearly half of which were identified for the first time. Notably, we found that the majority of the ~500 poly(A) lncRNAs that were differentially expressed under stress were significantly downregulated, but approximately 25% were found to have upregulated non-poly(A) forms. Moreover, hundreds of lncRNAs with downregulated polyadenylation (DPA) tend to be highly conserved, show significant nuclear retention and are co-expressed with protein-coding genes that function under stress. Remarkably, these DPA lncRNAs are significantly enriched in quantitative trait loci (QTLs) for stress tolerance or development, suggesting their potential important roles in rice growth under various stresses. In particular, we observed substantially accumulated DPA lncRNAs in plants exposed to drought and salt, which is consistent with the severe reduction of RNA 3'-end processing factors under these conditions. Taken together, the results of this study reveal that polyadenylation and subcellular localization of many rice lncRNAs are likely to be regulated at the post-transcriptional level. Our findings strongly suggest that many upregulated/downregulated lncRNAs previously identified by traditional RNA-seq analyses need to be carefully reviewed to assess the influence of post-transcriptional modification.
Collapse
Affiliation(s)
- Jiapei Yuan
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingrui Li
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yang Yang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chang Tan
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yumin Zhu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Long Hu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yijun Qi
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Liu Q, Yan S, Yang T, Zhang S, Chen YQ, Liu B. Small RNAs in regulating temperature stress response in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:774-791. [PMID: 28731217 DOI: 10.1111/jipb.12571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 05/21/2023]
Abstract
Due to global climate change, temperature stress has become one of the primary causes of crop losses worldwide. Much progress has been made in unraveling the complex stress response mechanisms in plants, particularly in the identification of temperature stress responsive protein-coding genes. Recently discovered microRNAs (miRNAs) and endogenous small-interfering RNAs (siRN As) have also been demonstrated as important players in plant temperature stress response. Using high-throughput sequencing, many small RNAs, especially miRNAs, have been identified to be triggered by cold or heat. Subsequently, several studies have shown an important functional role for these small RNAs in cold or heat tolerance. These findings greatly broaden our understanding of endogenous small RNAs in plant stress response control. Here, we highlight new findings regarding the roles of miRNAs and siRNAs in plant temperature stress response and acclimation. We also review the current understanding of the regulatory mechanisms of small RNAs in temperature stress response, and explore the outlook for the use of these small RNAs in molecular breeding for improvement of temperature stress tolerance in plants.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tifeng Yang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shaohong Zhang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yue-Qin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
32
|
Oono Y, Yazawa T, Kanamori H, Sasaki H, Mori S, Matsumoto T. Genome-wide analysis of rice cis-natural antisense transcription under cadmium exposure using strand-specific RNA-Seq. BMC Genomics 2017; 18:761. [PMID: 28985711 PMCID: PMC6389181 DOI: 10.1186/s12864-017-4108-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The elucidation of novel transcripts and their expression in response to various stress conditions is necessary to understand the transcriptional network of plants as an adaptation to biotic and abiotic stresses. We performed strand-specific RNA-Seq (ssRNA-Seq) on rice exposed to cadmium (Cd) for 24 h and investigated the expression of cis-natural antisense transcripts (cis-NATs), a class of endogenous coding or non-protein-coding RNAs with sequence complementarity to the opposite strands of RAP transcripts. RESULTS Many RAP transcripts possessed cis-NATs and these cis-NATs were responsive to some extent. Cis-NATs were upregulated from 26, 266 and 409 RAP gene loci, while 2054, 2501 and 2825 RAP transcripts were upregulated from 38,123 RAP loci under high Cd exposure in roots at 1, 12 and 24 h, respectively. In addition, most of the upregulated cis-NATs showed little upregulation under ABA or cold treatment. A number of cis-NATs were upregulated from less than 35 RAP gene loci in different tissue and time-point combinations under low Cd exposure, suggesting that cis-NATs respond to environmental stress. Furthermore, 409 RAP transcripts with upregulated cis-NATs were classified into three groups based on the expression of the RAP transcripts from the opposite DNA strand, including 138 upregulated, 128 invariable, and 143 downregulated transcripts, although the responses of cis-NATs and RAP transcripts were not always correlated. CONCLUSIONS We have shown that the cis-NATs identified by ssRNA-Seq analysis are novel genes and that some of them are stress-specific and show different responses depending on the degree of stress and tissue. These results improve our understanding of the complete molecular mechanism of plant adaptation to Cd exposure.
Collapse
Affiliation(s)
- Youko Oono
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Takayuki Yazawa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroyuki Kanamori
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Harumi Sasaki
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Satomi Mori
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Takashi Matsumoto
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan.,Present address: Laboratory of Plant Molecular Breeding, Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8602, Japan
| |
Collapse
|
33
|
Banerjee S, Sirohi A, Ansari AA, Gill SS. Role of small RNAs in abiotic stress responses in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Xu J, Wang Q, Freeling M, Zhang X, Xu Y, Mao Y, Tang X, Wu F, Lan H, Cao M, Rong T, Lisch D, Lu Y. Natural antisense transcripts are significantly involved in regulation of drought stress in maize. Nucleic Acids Res 2017; 45:5126-5141. [PMID: 28175341 PMCID: PMC5435991 DOI: 10.1093/nar/gkx085] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/30/2017] [Indexed: 01/02/2023] Open
Abstract
Natural antisense transcripts (NATs) are a prominent and complex class of regulatory RNAs. Using strand-specific RNA sequencing, we identified 1769 sense and antisense transcript pairs (NAT pairs) in two maize inbreds with different sensitivity to drought, as well as in two derivative recombination inbred lines (RILs). A significantly higher proportion of NATs relative to non-NATs are specifically expressed under water stress (WS). Surprisingly, expression of sense and antisense transcripts produced by NAT pairs is significantly correlated, particularly under WS. We found an unexpected large proportion of NATs with protein coding potential, as estimated by ribosome release scores. Small RNAs significantly accumulate within NAT pairs, with 21 nt smRNA particularly enriched in overlapping regions of these pairs of genes. The abundance of these smRNAs is significantly altered in the leafbladeless1 mutant, suggesting that these genes may be regulated by the tasiRNA pathway. Further, NATs are significantly hypomethylated and include fewer transposable element sequences relative to non-NAT genes. NAT gene regions also exhibit higher levels of H3K36me3, H3K9ac, and H3K4me3, but lower levels of H3K27me3, indicating that NAT gene pairs generally exhibit an open chromatin configuration. Finally, NAT pairs in 368 diverse maize inbreds and 19 segregating populations were specifically enriched for polymorphisms associated with drought tolerance. Taken together, the data highlight the potential impact of that small RNAs and histone modifications have in regulation of NAT expression, and the significance of NATs in response to WS.
Collapse
Affiliation(s)
- Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Qi Wang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Micheal Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56130, Texcoco, Mexico
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56130, Texcoco, Mexico.,Institute of Crop Science, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100081, China
| | - Yan Mao
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Xin Tang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| |
Collapse
|
35
|
Present Scenario of Long Non-Coding RNAs in Plants. Noncoding RNA 2017; 3:ncrna3020016. [PMID: 29657289 PMCID: PMC5831932 DOI: 10.3390/ncrna3020016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/03/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
Small non-coding RNAs have been extensively studied in plants over the last decade. In contrast, genome-wide identification of plant long non-coding RNAs (lncRNAs) has recently gained momentum. LncRNAs are now being recognized as important players in gene regulation, and their potent regulatory roles are being studied comprehensively in eukaryotes. LncRNAs were first reported in humans in 1992. Since then, research in animals, particularly in humans, has rapidly progressed, and a vast amount of data has been generated, collected, and organized using computational approaches. Additionally, numerous studies have been conducted to understand the roles of these long RNA species in several diseases. However, the status of lncRNA investigation in plants lags behind that in animals (especially humans). Efforts are being made in this direction using computational tools and high-throughput sequencing technologies, such as the lncRNA microarray technique, RNA-sequencing (RNA-seq), RNA capture sequencing, (RNA CaptureSeq), etc. Given the current scenario, significant amounts of data have been produced regarding plant lncRNAs, and this amount is likely to increase in the subsequent years. In this review we have documented brief information about lncRNAs and their status of research in plants, along with the plant-specific resources/databases for information retrieval on lncRNAs.
Collapse
|
36
|
Wang A, Hu J, Huang X, Li X, Zhou G, Yan Z. Comparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa ssp. chinensis). FRONTIERS IN PLANT SCIENCE 2016; 7:939. [PMID: 27443222 PMCID: PMC4923122 DOI: 10.3389/fpls.2016.00939] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/13/2016] [Indexed: 05/20/2023]
Abstract
Chinese cabbage (Brassica rapa ssp. chinensis) is an economically and agriculturally significant vegetable crop and is extensively cultivated throughout the world. Heat stress disturbs cellular homeostasis and causes visible growth inhibition of shoots and roots, severe retardation in growth and development, and even death. However, there are few studies on the transcriptome profiling of heat stress in non-heading Chinese cabbage. In this study, we investigated the transcript profiles of non-heading Chinese cabbage from heat-sensitive and heat-tolerant varieties "GHA" and "XK," respectively, in response to high temperature using RNA sequencing (RNA seq). Approximately 625 genes were differentially expressed between the two varieties. The responsive genes can be divided into three phases along with the time of heat treatment: response to stimulus, programmed cell death and ribosome biogenesis. Differentially expressed genes (DEGs) were identified in the two varieties, including transcription factors (TFs), kinases/phosphatases, genes related to photosynthesis and effectors of homeostasis. Many TFs were involved in the heat stress response of Chinese cabbage, including NAC069 TF which was up-regulated at all the heat treatment stages. And their expression levels were also validated by quantitative real-time-PCR (qRT-PCR). These candidate genes will provide genetic resources for further improving the heat-tolerant characteristics in non-heading Chinese cabbage.
Collapse
Affiliation(s)
- Aihua Wang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Science and TechnologyWuhan, China
| | - Jihong Hu
- State Key Laboratory of Hybrid Rice, College of life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Xingxue Huang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Science and TechnologyWuhan, China
| | - Xia Li
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Science and TechnologyWuhan, China
| | - Guolin Zhou
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Science and TechnologyWuhan, China
- *Correspondence: Guolin Zhou
| | | |
Collapse
|
37
|
Zhao J, He Q, Chen G, Wang L, Jin B. Regulation of Non-coding RNAs in Heat Stress Responses of Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1213. [PMID: 27588021 PMCID: PMC4988968 DOI: 10.3389/fpls.2016.01213] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/29/2016] [Indexed: 05/18/2023]
Abstract
Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants.
Collapse
Affiliation(s)
- Jianguo Zhao
- College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Qingsong He
- College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Gang Chen
- College of Bio-Science and Bio-Technology, Yangzhou UniversityYangzhou, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou, China
- *Correspondence: Biao Jin
| |
Collapse
|
38
|
Bythwood TN, Xu W, Li W, Rao W, Li Q, Xue X, Richards J, Ma L, Song Q. The mirror RNA expression pattern in human tissues. PRECISION MEDICINE 2015; 1:e1036. [PMID: 28280784 PMCID: PMC5340261 DOI: 10.14800/pm.1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been realized in recent years that non-coding RNAs are playing important roles in genome functions and human diseases. Here we developed a new technology and observed a new pattern of gene expression. We observed that over 72% of RNAs in human genome are expressed in forward-reverse pairs, just like mirror images of each other between forward expression and reverse expression; the overview showed that it cannot be simply described as transcript overlapping, so we designated it as mirror expression. Furthermore, we found that the mirror expression is gene-specific and tissue-specific, and less common in the proximal promoter regions. The size of the shadows varies between different genes, different tissues and different classes. The shadow expression is most significant in the Alu element, it was also observed among L1, Simple Repeats and LTR elements, but rare in other repeats such as low-complexity, LINE/L2, DNA and MIRs. Although there is no evidence yet about the relationship of this mirror pattern and double-strand RNA (dsRNA), this new striking pattern provides a new clue and a new direction to unveil the role of RNAs in the genome functions and diseases.
Collapse
Affiliation(s)
- Tameka N. Bythwood
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | - Wei Xu
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
- Center for Big Data Science, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Wenzhi Li
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
- Center for Big Data Science, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Weinian Rao
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
- 4DGenome Inc, Atlanta, Georgia 30033, USA
| | - Qiling Li
- Center for Big Data Science, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Xue Xue
- Center for Big Data Science, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jendai Richards
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | - Li Ma
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
- 4DGenome Inc, Atlanta, Georgia 30033, USA
- Center for Big Data Science, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Qing Song
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
- 4DGenome Inc, Atlanta, Georgia 30033, USA
- Center for Big Data Science, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
39
|
Gago-Zachert S. Viroids, infectious long non-coding RNAs with autonomous replication. Virus Res 2015; 212:12-24. [PMID: 26319312 DOI: 10.1016/j.virusres.2015.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
Transcriptome deep-sequencing studies performed during the last years confirmed that the vast majority of the RNAs transcribed in higher organisms correspond to several types of non-coding RNAs including long non-coding RNAs (lncRNAs). The study of lncRNAs and the identification of their functions, is still an emerging field in plants but the characterization of some of them indicate that they play an important role in crucial regulatory processes like flowering regulation, and responses to abiotic stress and plant hormones. A second group of lncRNAs present in plants is formed by viroids, exogenous infectious subviral plant pathogens well known since many years. Viroids are composed of circular RNA genomes without protein-coding capacity and subvert enzymatic activities of their hosts to complete its own biological cycle. Different aspects of viroid biology and viroid-host interactions have been elucidated in the last years and some of them are the main topic of this review together with the analysis of the state-of-the-art about the growing field of endogenous lncRNAs in plants.
Collapse
Affiliation(s)
- Selma Gago-Zachert
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| |
Collapse
|
40
|
Aneja B, Yadav NR, Kumar N, Yadav RC. Hsp transcript induction is correlated with physiological changes under drought stress in Indian mustard. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:305-16. [PMID: 26261395 PMCID: PMC4524871 DOI: 10.1007/s12298-015-0305-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 05/28/2023]
Abstract
Brassica juncea is an important oilseed crop and drought stress is major abiotic stress that limits its growth and productivity. RH0116 (drought tolerant) and RH8812 (drought sensitive) genotypes were undertaken to study some of the physiological parameters and hsp gene expression related to stress tolerance under drought stress conditions. Differential response in terms of seed germination, electrolyte leakage, RWC, osmotic potential was observed in the selected genotypes. In vitro seed germination studies using PEG stress treatments indicated reduced seed germination with increasing levels of stress treatment. Electrolyte leakage increased, whereas, relative water content and osmotic potential decreased in stressed seedlings. Expression of hsp gene was found to be upregulated during drought stress as the transcripts were present only in the stressed plants and disappeared upon rehydration. The drought tolerant variety showed higher transcript accumulation as compared to the sensitive variety. The study showed that drought induced changes in gene expression in two contrasting genotypes were consistent with the physiological response.
Collapse
Affiliation(s)
- Bharti Aneja
- />Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125 004 India
| | - Neelam R. Yadav
- />Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125 004 India
| | - Neeraj Kumar
- />Department of Botany and Plant Physiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125 004 India
| | - Ram C. Yadav
- />Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125 004 India
| |
Collapse
|
41
|
Functions of plants long non-coding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:155-62. [PMID: 26112461 DOI: 10.1016/j.bbagrm.2015.06.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been emerged as important players for various biological pathways, including dosage compensation, genomic imprinting, chromatin regulation, alternative splicing and nuclear organization. A large number of lncRNAs had already been identified by different approaches in plants, while the functions of only a few of them have been investigated. This review will summarize our current understanding of a wide range of plant lncRNAs functions, and highlight their roles in the regulation of diverse pathways in plants. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
|
42
|
Hu H, Rashotte AM, Singh NK, Weaver DB, Goertzen LR, Singh SR, Locy RD. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs. PLoS One 2015; 10:e0127468. [PMID: 26070200 PMCID: PMC4466472 DOI: 10.1371/journal.pone.0127468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 04/15/2015] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs) are two distinct subfamilies of small RNAs (sRNAs) that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs) are processed from longer RNA precursors by DICER-LIKE proteins (DCLs). Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs) and 108 novel lineage-specific miRNAs (ls-miRNAs). Along with miRNAs, 2,033 miRNA variants (isomiRNAs) were identified as well. Those isomiRNAs with variation at the 3'-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs) were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers of a second round of both cis- and trans-cleavage of additional siRNAs, leading to the formation of complex sRNA regulatory networks mediating posttranscriptional gene silencing. Results from this study extended our knowledge on G. arboreum sRNAs and their biological importance, which would facilitate future studies on regulatory mechanism of tissue development in cotton and other plant species.
Collapse
Affiliation(s)
- Hongtao Hu
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America; Center for Nano Biotechnology Research, Alabama State University, Montgomery, AL 33104, United States of America
| | - Aaron M Rashotte
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Narendra K Singh
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - David B Weaver
- Department of Crop, Soil & Environmental Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Leslie R Goertzen
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Shree R Singh
- Center for Nano Biotechnology Research, Alabama State University, Montgomery, AL 33104, United States of America
| | - Robert D Locy
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America
| |
Collapse
|
43
|
The distribution and evolution of Arabidopsis thaliana cis natural antisense transcripts. BMC Genomics 2015; 16:444. [PMID: 26054753 PMCID: PMC4467840 DOI: 10.1186/s12864-015-1587-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/27/2015] [Indexed: 12/13/2022] Open
Abstract
Background Natural antisense transcripts (NATs) are regulatory RNAs that contain sequence complementary to other RNAs, these other RNAs usually being messenger RNAs. In eukaryotic genomes, cis-NATs overlap the gene they complement. Results Here, our goal is to analyze the distribution and evolutionary conservation of cis-NATs for a variety of available data sets for Arabidopsis thaliana, to gain insights into cis-NAT functional mechanisms and their significance. Cis-NATs derived from traditional sequencing are largely validated by other data sets, although different cis-NAT data sets have different prevalent cis-NAT topologies with respect to overlapping protein-coding genes. A. thaliana cis-NATs have substantial conservation (28-35% in the three substantive data sets analyzed) of expression in A. lyrata. We examined evolutionary sequence conservation at cis-NAT loci in Arabidopsis thaliana across nine sequenced Brassicaceae species (picked for optimal discernment of purifying selection), focussing on the parts of their sequences not overlapping protein-coding transcripts (dubbed ‘NOLPs’). We found significant NOLP sequence conservation for 28-34% NATs across different cis-NAT sets. This NAT NOLP sequence conservation versus A. lyrata is generally significantly correlated with conservation of expression. We discover a significant enrichment of transcription factor binding sites (as evidenced by CHIP-seq data) in NOLPs compared to randomly sampled near-gene NOLP-like DNA , that is linked to significant sequence conservation. Conversely, there is no such evidence for a general significant link between NOLPs and formation of small interfering RNAs (siRNAs), with the substantial majority of unique siRNAs arising from the overlapping portions of the cis-NATs. Conclusions In aggregate, our results suggest that many cis-NAT NOLPs function in the regulation of conserved promoter/regulatory elements that they ‘over-hang’. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1587-0) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Liu X, Hao L, Li D, Zhu L, Hu S. Long non-coding RNAs and their biological roles in plants. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:137-47. [PMID: 25936895 PMCID: PMC4563214 DOI: 10.1016/j.gpb.2015.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 12/31/2022]
Abstract
With the development of genomics and bioinformatics, especially the extensive applications of high-throughput sequencing technology, more transcriptional units with little or no protein-coding potential have been discovered. Such RNA molecules are called non-protein-coding RNAs (npcRNAs or ncRNAs). Among them, long npcRNAs or ncRNAs (lnpcRNAs or lncRNAs) represent diverse classes of transcripts longer than 200 nucleotides. In recent years, the lncRNAs have been considered as important regulators in many essential biological processes. In plants, although a large number of lncRNA transcripts have been predicted and identified in few species, our current knowledge of their biological functions is still limited. Here, we have summarized recent studies on their identification, characteristics, classification, bioinformatics, resources, and current exploration of their biological functions in plants.
Collapse
Affiliation(s)
- Xue Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Hao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
45
|
Hu H, Yu D, Liu H. Bioinformatics analysis of small RNAs in pima (Gossypium barbadense L.). PLoS One 2015; 10:e0116826. [PMID: 25679373 PMCID: PMC4332481 DOI: 10.1371/journal.pone.0116826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022] Open
Abstract
Small RNAs (sRNAs) are ~20 to 24 nucleotide single-stranded RNAs that play crucial roles in regulation of gene expression. In plants, sRNAs are classified into microRNAs (miRNAs), repeat-associated siRNAs (ra-siRNAs), phased siRNAs (pha-siRNAs), cis and trans natural antisense transcript siRNAs (cis- and trans-nat siRNAs). Pima (Gossypium barbadense L.) is one of the most economically important fiber crops, producing the best and longest spinnable fiber. Although some miRNAs are profiled in Pima, little is known about siRNAs, the largest subclass of plant sRNAs. In order to profile these gene regulators in Pima, a comprehensive analysis of sRNAs was conducted by mining publicly available sRNA data, leading to identification of 678 miRNAs, 3,559,126 ra-siRNAs, 627 pha-siRNAs, 136,600 cis-nat siRNAs and 79,994 trans-nat siRNAs. The 678 miRNAs, belonging to 98 conserved and 402 lineage-specific families, were produced from 2,138 precursors, of which 297 arose from introns, exons, or intron/UTR-exon junctions of protein-coding genes. Ra-siRNAs were produced from various repeat loci, while most (97%) were yielded from retrotransposons, especially LTRs (long terminal repeats). The genes encoding auxin-signaling-related proteins, NBS-LRRs and transcription factors were major sources of pha-siRNAs, while two conserved TAS3 homologs were found as well. Most cis-NATs in Pima overlapped in enclosed and convergent orientations, while a few hybridized in divergent and coincided orientations. Most cis- and trans-nat siRNAs were produced from overlapping regions. Additionally, characteristics of length and the 5’-first nucleotide of each sRNA class were analyzed as well. Results in this study created a valuable molecular resource that would facilitate studies on mechanism of controlling gene expression.
Collapse
Affiliation(s)
- Hongtao Hu
- Center for Bio-Pesticide Research, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Department of Biological Engineering, Hubei Vocational College of Biological Sciences and Technology, Wuhan, Hubei, China
| | - Dazhao Yu
- Institute of Plant Protection & Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Hong Liu
- College of Life Sciences, Hunan University of Arts and Sciences, Changde, Hunan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
46
|
Lavania D, Dhingra A, Siddiqui MH, Al-Whaibi MH, Grover A. Current status of the production of high temperature tolerant transgenic crops for cultivation in warmer climates. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:100-108. [PMID: 25438142 DOI: 10.1016/j.plaphy.2014.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/20/2014] [Indexed: 05/19/2023]
Abstract
Climate change is resulting in heightened incidences of plant heat stress episodes. Production of transgenic crops with enhanced heat stress tolerance is a highly desired agronomic trait for the sustainability of food production in 21st century. We review the current status of our understanding of the high temperature stress response of plants. We specifically deliberate on the progress made in altering levels of heat shock proteins (Hsp100, Hsp70/Hsp40 and sHsps), heat shock factors and specific metabolic proteins in improving plant tolerance to heat stress by transgenic approach.
Collapse
Affiliation(s)
- Dhruv Lavania
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India.
| | - Anuradha Dhingra
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia.
| | - Mohamed H Al-Whaibi
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia.
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India.
| |
Collapse
|
47
|
Liu J, Feng L, Li J, He Z. Genetic and epigenetic control of plant heat responses. FRONTIERS IN PLANT SCIENCE 2015; 6:267. [PMID: 25964789 PMCID: PMC4408840 DOI: 10.3389/fpls.2015.00267] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/03/2015] [Indexed: 05/18/2023]
Abstract
Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27°C), high temperature (27-30°C) and extremely high temperature (37-42°C, also known as heat stress) for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of circadian clock and plant immunity by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damages. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.
Collapse
Affiliation(s)
- Junzhong Liu
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences – Chinese Academy of SciencesShanghai, China
| | - Lili Feng
- School of Life Science and Technology, ShanghaiTech UniversityShanghai, China
| | - Jianming Li
- Plant Signaling Laboratory, The Plant Stress Biology Center, Shanghai Institutes for Biological Sciences – Chinese Academy of SciencesShanghai, China
- *Correspondence: Zuhua He, National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences – Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China ; Jianming Li, Plant Signaling Laboratory, The Plant Stress Biology Center, Shanghai Institutes for Biological Sciences – Chinese Academy of Sciences, 3888 Chenhua Road, Songjiang District, Shanghai 201602, China
| | - Zuhua He
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences – Chinese Academy of SciencesShanghai, China
- *Correspondence: Zuhua He, National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences – Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China ; Jianming Li, Plant Signaling Laboratory, The Plant Stress Biology Center, Shanghai Institutes for Biological Sciences – Chinese Academy of Sciences, 3888 Chenhua Road, Songjiang District, Shanghai 201602, China
| |
Collapse
|
48
|
Nishiyama MY, Ferreira SS, Tang PZ, Becker S, Pörtner-Taliana A, Souza GM. Full-length enriched cDNA libraries and ORFeome analysis of sugarcane hybrid and ancestor genotypes. PLoS One 2014; 9:e107351. [PMID: 25222706 PMCID: PMC4164538 DOI: 10.1371/journal.pone.0107351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/14/2014] [Indexed: 11/18/2022] Open
Abstract
Sugarcane is a major crop used for food and bioenergy production. Modern cultivars are hybrids derived from crosses between Saccharum officinarum and Saccharum spontaneum. Hybrid cultivars combine favorable characteristics from ancestral species and contain a genome that is highly polyploid and aneuploid, containing 100–130 chromosomes. These complex genomes represent a huge challenge for molecular studies and for the development of biotechnological tools that can facilitate sugarcane improvement. Here, we describe full-length enriched cDNA libraries for Saccharum officinarum, Saccharum spontaneum, and one hybrid genotype (SP803280) and analyze the set of open reading frames (ORFs) in their genomes (i.e., their ORFeomes). We found 38,195 (19%) sugarcane-specific transcripts that did not match transcripts from other databases. Less than 1.6% of all transcripts were ancestor-specific (i.e., not expressed in SP803280). We also found 78,008 putative new sugarcane transcripts that were absent in the largest sugarcane expressed sequence tag database (SUCEST). Functional annotation showed a high frequency of protein kinases and stress-related proteins. We also detected natural antisense transcript expression, which mapped to 94% of all plant KEGG pathways; however, each genotype showed different pathways enriched in antisense transcripts. Our data appeared to cover 53.2% (17,563 genes) and 46.8% (937 transcription factors) of all sugarcane full-length genes and transcription factors, respectively. This work represents a significant advancement in defining the sugarcane ORFeome and will be useful for protein characterization, single nucleotide polymorphism and splicing variant identification, evolutionary and comparative studies, and sugarcane genome assembly and annotation.
Collapse
Affiliation(s)
| | | | - Pei-Zhong Tang
- ThermoFisher Scientific, Carlsbad, California, United States of America
| | - Scott Becker
- ThermoFisher Scientific, Carlsbad, California, United States of America
| | | | - Glaucia Mendes Souza
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
49
|
Bai Y, Dai X, Harrison AP, Chen M. RNA regulatory networks in animals and plants: a long noncoding RNA perspective. Brief Funct Genomics 2014; 14:91-101. [PMID: 24914100 DOI: 10.1093/bfgp/elu017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A recent highlight of genomics research has been the discovery of many families of transcripts which have function but do not code for proteins. An important group is long noncoding RNAs (lncRNAs), which are typically longer than 200 nt, and whose members originate from thousands of loci across genomes. We review progress in understanding the biogenesis and regulatory mechanisms of lncRNAs. We describe diverse computational and high throughput technologies for identifying and studying lncRNAs. We discuss the current knowledge of functional elements embedded in lncRNAs as well as insights into the lncRNA-based regulatory network in animals. We also describe genome-wide studies of large amount of lncRNAs in plants, as well as knowledge of selected plant lncRNAs with a focus on biotic/abiotic stress-responsive lncRNAs.
Collapse
|