1
|
Ishida JK, Costa EC. What we know so far and what we can expect next: A molecular investigation of plant parasitism. Genet Mol Biol 2024; 47Suppl 1:e20240051. [PMID: 39348487 PMCID: PMC11441458 DOI: 10.1590/1678-4685-gmb-2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
The review explores parasitic plants' evolutionary success and adaptability, highlighting their widespread occurrence and emphasizing the role of an invasive organ called haustorium in nutrient acquisition from hosts. It discusses the genetic and physiological adaptations that facilitate parasitism, including horizontal gene transfer, and the impact of environmental factors like climate change on these relationships. It addresses the need for further research into parasitic plants' genomes and interactions with their hosts to better predict environmental changes' impacts.
Collapse
Affiliation(s)
- Juliane Karine Ishida
- Universidade Federal de Minas Gerias (UFMG), Instituto de Ciências Biológicas, Departamento de Botânica, Belo Horizonte, MG, Brazil
| | - Elaine Cotrim Costa
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas, Rio Grande do Sul, RS, Brazil
| |
Collapse
|
2
|
Wendt G, Collins JJ. Horizontal gene transfer of a functional cki homolog in the human pathogen Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596073. [PMID: 38853947 PMCID: PMC11160599 DOI: 10.1101/2024.05.27.596073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Schistosomes are parasitic flatworms responsible for the neglected tropical disease schistosomiasis, causing devastating morbidity and mortality in the developing world. The parasites are protected by a skin-like tegument, and maintenance of this tegument is controlled by a schistosome ortholog of the tumor suppressor TP53. To understand mechanistically how p53-1 controls tegument production, we identified a cyclin dependent kinase inhibitor homolog (cki) that was co-expressed with p53-1. RNA interference of cki resulted in a hyperproliferation phenotype, that, in combination with p53-1 RNA interference yielded abundant tumor-like growths, indicating that cki and p53-1 are bona fide tumor suppressors in Schistosoma mansoni. Interestingly, cki homologs are widely present throughout parasitic flatworms but evidently absent from their free-living ancestors, suggesting this cki homolog came from an ancient horizontal gene transfer event. This in turn implies that the evolution of parasitism in flatworms may have been aided by a highly unusual means of metazoan genetic inheritance.
Collapse
Affiliation(s)
- George Wendt
- Department of Pharmacology, University of Texas Southwestern Medical Center
| | - James J Collins
- Department of Pharmacology, University of Texas Southwestern Medical Center
| |
Collapse
|
3
|
Boukteb A, Sato K, Gan P, Kharrat M, Sakouhi H, Shibata A, Shirasu K, Ichihashi Y, Bouhadida M. Global changes in gene expression during compatible and incompatible interactions of faba bean (Vicia faba L.) during Orobanche foetida parasitism. PLoS One 2024; 19:e0301981. [PMID: 38626155 PMCID: PMC11020376 DOI: 10.1371/journal.pone.0301981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
Orobanche foetida Poiret is the main constraint facing faba bean crop in Tunisia. Indeed, in heavily infested fields with this parasitic plant, yield losses may reach 90%, and the recent estimation of the infested area is around 80,000 ha. Identifying genes involved in the Vicia faba/O. foetida interaction is crucial for the development of effective faba bean breeding programs. However, there is currently no available information on the transcriptome of faba bean responding to O. foetida parasitism. In this study, we employed RNA sequencing to explore the global gene expression changes associated with compatible and incompatible V. faba/O. foetida interactions. In this perspective, two faba bean varieties (susceptible and resistant) were examined at the root level across three stages of O. foetida development (Before Germination (BG), After Germination (AG) and Tubercule Stage (TS)). Our analyses presented an exploration of the transcriptomic profile, including comprehensive assessments of differential gene expression and Gene Ontology (GO) enrichment analyses. Specifically, we investigated key pathways revealing the complexity of molecular responses to O. foetida attack. In this study, we detected differential gene expression of pathways associated with secondary metabolites: flavonoids, auxin, thiamine, and jasmonic acid. To enhance our understanding of the global changes in V. faba response to O. foetida, we specifically examined WRKY genes known to play a role in plant host-parasitic plant interactions. Furthermore, considering the pivotal role of parasitic plant seed germination in this interaction, we investigated genes involved in the orobanchol biosynthesis pathway. Interestingly, we detected the gene expression of VuCYP722C homolog, coding for a key enzyme involved in orobanchol biosynthesis, exclusively in the susceptible host. Clearly, this study enriches our understanding of the V. faba/O. foetida interaction, shedding light on the main differences between susceptible and resistant faba bean varieties during O. foetida infestation at the gene expression level.
Collapse
Affiliation(s)
- Amal Boukteb
- Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Field Crop Laboratory, National Institute of Agricultural Research of Tunisia, Carthage University, Tunis, Tunisia
| | - Kazuki Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pamela Gan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mohamed Kharrat
- Field Crop Laboratory, National Institute of Agricultural Research of Tunisia, Carthage University, Tunis, Tunisia
| | - Hanen Sakouhi
- Field Crop Laboratory, National Institute of Agricultural Research of Tunisia, Carthage University, Tunis, Tunisia
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Mariem Bouhadida
- Field Crop Laboratory, National Institute of Agricultural Research of Tunisia, Carthage University, Tunis, Tunisia
| |
Collapse
|
4
|
Bradley JM, Butlin RK, Scholes JD. Comparative secretome analysis of Striga and Cuscuta species identifies candidate virulence factors for two evolutionarily independent parasitic plant lineages. BMC PLANT BIOLOGY 2024; 24:251. [PMID: 38582844 PMCID: PMC10998327 DOI: 10.1186/s12870-024-04935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Many parasitic plants of the genera Striga and Cuscuta inflict huge agricultural damage worldwide. To form and maintain a connection with a host plant, parasitic plants deploy virulence factors (VFs) that interact with host biology. They possess a secretome that represents the complement of proteins secreted from cells and like other plant parasites such as fungi, bacteria or nematodes, some secreted proteins represent VFs crucial to successful host colonisation. Understanding the genome-wide complement of putative secreted proteins from parasitic plants, and their expression during host invasion, will advance understanding of virulence mechanisms used by parasitic plants to suppress/evade host immune responses and to establish and maintain a parasite-host interaction. RESULTS We conducted a comparative analysis of the secretomes of root (Striga spp.) and shoot (Cuscuta spp.) parasitic plants, to enable prediction of candidate VFs. Using orthogroup clustering and protein domain analyses we identified gene families/functional annotations common to both Striga and Cuscuta species that were not present in their closest non-parasitic relatives (e.g. strictosidine synthase like enzymes), or specific to either the Striga or Cuscuta secretomes. For example, Striga secretomes were strongly associated with 'PAR1' protein domains. These were rare in the Cuscuta secretomes but an abundance of 'GMC oxidoreductase' domains were found, that were not present in the Striga secretomes. We then conducted transcriptional profiling of genes encoding putatively secreted proteins for the most agriculturally damaging root parasitic weed of cereals, S. hermonthica. A significant portion of the Striga-specific secretome set was differentially expressed during parasitism, which we probed further to identify genes following a 'wave-like' expression pattern peaking in the early penetration stage of infection. We identified 39 genes encoding putative VFs with functions such as cell wall modification, immune suppression, protease, kinase, or peroxidase activities, that are excellent candidates for future functional studies. CONCLUSIONS Our study represents a comprehensive secretome analysis among parasitic plants and revealed both similarities and differences in candidate VFs between Striga and Cuscuta species. This knowledge is crucial for the development of new management strategies and delaying the evolution of virulence in parasitic weeds.
Collapse
Affiliation(s)
- James M Bradley
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Present address: Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
| | - Roger K Butlin
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Department of Marine Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Julie D Scholes
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
5
|
Chen Y, Fang T, Su H, Duan S, Ma R, Wang P, Wu L, Sun W, Hu Q, Zhao M, Sun L, Dong X. A reference-grade genome assembly for Astragalus mongholicus and insights into the biosynthesis and high accumulation of triterpenoids and flavonoids in its roots. PLANT COMMUNICATIONS 2023; 4:100469. [PMID: 36307985 PMCID: PMC10030368 DOI: 10.1016/j.xplc.2022.100469] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/18/2022] [Accepted: 10/23/2022] [Indexed: 05/04/2023]
Abstract
Astragalus membranaceus var. mongholicus (AMM), a member of the Leguminosae, is one of the most important medicinal plants worldwide. The dried roots of AMM have a wide range of pharmacological effects and are a traditional Chinese medicine. Here, we report the first chromosome-level reference genome of AMM, comprising nine pseudochromosomes with a total size of 1.47 Gb and 27 868 protein-encoding genes. Comparative genomic analysis reveals that AMM has not experienced an independent whole-genome duplication (WGD) event after the WGD event shared by the Papilionoideae species. Analysis of long terminal repeat retrotransposons suggests a recent burst of these elements at approximately 0.13 million years ago, which may explain the large size of the AMM genome. Multiple gene families involved in the biosynthesis of triterpenoids and flavonoids were expanded, and our data indicate that tandem duplication has been the main driver for expansion of these families. Among the expanded families, the phenylalanine ammonia-lyase gene family was primarily expressed in the roots of AMM, suggesting their roles in the biosynthesis of phenylpropanoid compounds. The functional versatility of 2,3-oxidosqualene cyclase genes in cluster III may play a critical role in the diversification of triterpenoids in AMM. Our findings provide novel insights into triterpenoid and flavonoid biosynthesis and can facilitate future research on the genetics and medical applications of AMM.
Collapse
Affiliation(s)
- Yi Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ting Fang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - He Su
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Sifei Duan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ruirui Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lin Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenbin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qichen Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Xuehui Dong
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Wang Y, Shahid MQ. Genome sequencing and resequencing identified three horizontal gene transfers and uncovered the genetic mechanism on the intraspecies adaptive evolution of Gastrodia elata Blume. FRONTIERS IN PLANT SCIENCE 2023; 13:1035157. [PMID: 36684780 PMCID: PMC9848658 DOI: 10.3389/fpls.2022.1035157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Horizontal gene transfer is a rare and useful genetic mechanism in higher plants. Gastrodia elata Blume (GE) (Orchidaceae), well known as traditional medicinal material in East Asia, adopts a heterotrophic lifestyle, thus being considered to be more prone to horizontal gene transfer (HGT). GE is a "polytypic species" that currently comprised of five recognized forms according to the plant morphology. G. elata Blume forma elata (GEE) and G. elata Bl.f.glauca (GEG) are two common forms that naturally grow in different habitats with difference in altitude and latitude. G. elata Bl.f.viridis (GEV) often occurs sporadically in cultivated populations of GEE and GEG. However, the genetic relationships and genetic mechanism underpinned the divergent ecological adaptations of GEE and GEG have not been revealed. Here, we assembled a chromosome-level draft genome of GEE with 1.04 Gb. Among predicted 17,895 protein coding genes, we identified three HGTs. Meanwhile, we resequenced 10 GEE accessions, nine GEG accessions, and 10 GEV accessions, and identified two independent genetic lineages: GEG_pedigree (GEG individuals and GEV individuals collected from GEG populations) and GEE_pedigree (GEE individuals and GEV individuals collected from GEE populations), which strongly support the taxonomic status of GEE and GEG as subspecies, not as different forms. In highly differentiated genomic regions of GEE_pedigree and GEG_pedigree, three chalcone synthase-encoding genes and one Phox/Bem1p (PB1) domain of encoding Auxin (AUX)/Indoleacetic acid (IAA) were identified in selection sweeping genome regions, which suggested that differentiation between GEE_pedigree and GEG_pedigree was promoted by the selection of genes related to photoresponse and growth and development. Overall, this new genome would be helpful for breeding and utilization of GE and the new findings would deepen the understanding about ecological adaptation and evolution of GE.
Collapse
Affiliation(s)
- Yunsheng Wang
- School of Health and Life Science, Kaili University, Kaili, Guizhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Zhang Y, Zhang Y, Jiang L, Li Z, Zhang M. Metabolomics Analysis Provides New Insights Into the Molecular Mechanisms of Parasitic Plant Dodder Elongation in vitro. FRONTIERS IN PLANT SCIENCE 2022; 13:921245. [PMID: 35795348 PMCID: PMC9251578 DOI: 10.3389/fpls.2022.921245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Dodder (Cuscuta spp.) species are obligate parasitic flowering plants that totally depend on host plants for growth and reproduction and severely suppress hosts' growth. As a rootless and leafless plant, excised dodder shoots exhibit rapid growth and elongation for several days to hunt for new host stems, and parasitization could be reestablished. This is one unique ability of the dodder to facilitate its success in nature. Clearly, excised dodder stems have to recycle stored nutrients to elongate as much as possible. However, the mechanism of stored nutrient recycling in the in vitro dodder shoots is still poorly understood. Here, we found that dodder is a carbohydrate-rich holoparasitic plant. During the in vitro dodder shoot development, starch was dramatically and thoroughly degraded in the dodder shoots. Sucrose derived from starch degradation in the basal stems was transported to the shoot tips, in which EMP and TCA pathways were activated to compensate for carbon demand for the following elongation according to the variations of sugar content related to the crucial gene expression, and the metabolomics analysis. Additionally, antioxidants were significantly accumulated in the shoot tips in contrast to those in the basal stems. The variations of phytohormones (jasmonic acid, indole-3-acetic acid, and abscisic acid) indicated that they played essential roles in this process. All these data suggested that starch and sucrose degradation, EMP and TCA activation, antioxidants, and phytohormones were crucial and associated with the in vitro dodder shoot elongation.
Collapse
Affiliation(s)
- Yuexia Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yushi Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Linjian Jiang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Bendaoud F, Kim G, Larose H, Westwood JH, Zermane N, Haak DC. Genotyping-by-sequencing analysis of Orobanche crenata populations in Algeria reveals genetic differentiation. Ecol Evol 2022; 12:e8750. [PMID: 35356582 PMCID: PMC8948082 DOI: 10.1002/ece3.8750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Crenate broomrape (Orobanche crenata Forsk.) is a serious long-standing parasitic weed problem in Algeria, mainly affecting legumes but also vegetable crops. Unresolved questions for parasitic weeds revolve around the extent to which these plants undergo local adaptation, especially with respect to host specialization, which would be expected to be a strong selective factor for obligate parasitic plants. In the present study, the genotyping-by-sequencing (GBS) approach was used to analyze genetic diversity and population structure of 10 Northern Algerian O. crenata populations with different geographical origins and host species (faba bean, pea, chickpea, carrot, and tomato). In total, 8004 high-quality single-nucleotide polymorphisms (5% missingness) were obtained and used across the study. Genetic diversity and relationships of 95 individuals from 10 populations were studied using model-based ancestry analysis, principal components analysis, discriminant analysis of principal components, and phylogeny approaches. The genetic differentiation (F ST) between pairs of populations was lower between adjacent populations and higher between geographically separated ones, but no support was found for isolation by distance. Further analyses identified four genetic clusters and revealed evidence of structuring among populations and, although confounded with location, among hosts. In the clearest example, O. crenata growing on pea had a SNP profile that was distinct from other host/location combinations. These results illustrate the importance and potential of GBS to reveal the dynamics of parasitic weed dispersal and population structure.
Collapse
Affiliation(s)
- Farah Bendaoud
- Department of BotanyEcole Nationale Supérieure Agronomique, ENSAAlgiersAlgeria
| | - Gunjune Kim
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburgVirginiaUSA
| | - Hailey Larose
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburgVirginiaUSA
| | - James H. Westwood
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburgVirginiaUSA
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| | | | - David C. Haak
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburgVirginiaUSA
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
9
|
Mitochondrial genomes of two parasitic Cuscuta species lack clear evidence of horizontal gene transfer and retain unusually fragmented ccmF C genes. BMC Genomics 2021; 22:816. [PMID: 34772334 PMCID: PMC8588681 DOI: 10.1186/s12864-021-08105-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/19/2021] [Indexed: 01/30/2023] Open
Abstract
Background The intimate association between parasitic plants and their hosts favours the exchange of genetic material, potentially leading to horizontal gene transfer (HGT) between plants. With the recent publication of several parasitic plant nuclear genomes, there has been considerable focus on such non-sexual exchange of genes. To enhance the picture on HGT events in a widely distributed parasitic genus, Cuscuta (dodders), we assembled and analyzed the organellar genomes of two recently sequenced species, C. australis and C. campestris, making this the first account of complete mitochondrial genomes (mitogenomes) for this genus. Results The mitogenomes are 265,696 and 275,898 bp in length and contain a typical set of mitochondrial genes, with 10 missing or pseudogenized genes often lost from angiosperm mitogenomes. Each mitogenome also possesses a structurally unusual ccmFC gene, which exhibits splitting of one exon and a shift to trans-splicing of its intron. Based on phylogenetic analysis of mitochondrial genes from across angiosperms and similarity-based searches, there is little to no indication of HGT into the Cuscuta mitogenomes. A few candidate regions for plastome-to-mitogenome transfer were identified, with one suggestive of possible HGT. Conclusions The lack of HGT is surprising given examples from the nuclear genomes, and may be due in part to the relatively small size of the Cuscuta mitogenomes, limiting the capacity to integrate foreign sequences. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08105-z.
Collapse
|
10
|
Aubin E, El Baidouri M, Panaud O. Horizontal Gene Transfers in Plants. Life (Basel) 2021; 11:life11080857. [PMID: 34440601 PMCID: PMC8401529 DOI: 10.3390/life11080857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
In plants, as in all eukaryotes, the vertical transmission of genetic information through reproduction ensures the maintenance of the integrity of species. However, many reports over the past few years have clearly shown that horizontal gene transfers, referred to as HGTs (the interspecific transmission of genetic information across reproductive barriers) are very common in nature and concern all living organisms including plants. The advent of next-generation sequencing technologies (NGS) has opened new perspectives for the study of HGTs through comparative genomic approaches. In this review, we provide an up-to-date view of our current knowledge of HGTs in plants.
Collapse
|
11
|
Zagorchev L, Stöggl W, Teofanova D, Li J, Kranner I. Plant Parasites under Pressure: Effects of Abiotic Stress on the Interactions between Parasitic Plants and Their Hosts. Int J Mol Sci 2021; 22:7418. [PMID: 34299036 PMCID: PMC8304456 DOI: 10.3390/ijms22147418] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023] Open
Abstract
Parasitic angiosperms, comprising a diverse group of flowering plants, are partially or fully dependent on their hosts to acquire water, mineral nutrients and organic compounds. Some have detrimental effects on agriculturally important crop plants. They are also intriguing model systems to study adaptive mechanisms required for the transition from an autotrophic to a heterotrophic metabolism. No less than any other plant, parasitic plants are affected by abiotic stress factors such as drought and changes in temperature, saline soils or contamination with metals or herbicides. These effects may be attributed to the direct influence of the stress, but also to diminished host availability and suitability. Although several studies on abiotic stress response of parasitic plants are available, still little is known about how abiotic factors affect host preferences, defense mechanisms of both hosts and parasites and the effects of combinations of abiotic and biotic stress experienced by the host plants. The latter effects are of specific interest as parasitic plants pose additional pressure on contemporary agriculture in times of climate change. This review summarizes the existing literature on abiotic stress response of parasitic plants, highlighting knowledge gaps and discussing perspectives for future research and potential agricultural applications.
Collapse
Affiliation(s)
- Lyuben Zagorchev
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China;
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Wolfgang Stöggl
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (W.S.); (I.K.)
| | - Denitsa Teofanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China;
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (W.S.); (I.K.)
| |
Collapse
|
12
|
Lyko P, Wicke S. Genomic reconfiguration in parasitic plants involves considerable gene losses alongside global genome size inflation and gene births. PLANT PHYSIOLOGY 2021; 186:1412-1423. [PMID: 33909907 PMCID: PMC8260112 DOI: 10.1093/plphys/kiab192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/13/2021] [Indexed: 05/02/2023]
Abstract
Parasitic plant genomes and transcriptomes reveal numerous genetic innovations, the functional-evolutionary relevance and roles of which open unprecedented research avenues.
Collapse
Affiliation(s)
- Peter Lyko
- Institute for Biology, Humboldt-University of Berlin, Germany
| | - Susann Wicke
- Institute for Biology, Humboldt-University of Berlin, Germany
- Author for communication:
| |
Collapse
|
13
|
Random Transfer of Ogataea polymorpha Genes into Saccharomyces cerevisiae Reveals a Complex Background of Heat Tolerance. J Fungi (Basel) 2021; 7:jof7040302. [PMID: 33921057 PMCID: PMC8071464 DOI: 10.3390/jof7040302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 01/20/2023] Open
Abstract
Horizontal gene transfer, a process through which an organism acquires genes from other organisms, is a rare evolutionary event in yeasts. Artificial random gene transfer can emerge as a valuable tool in yeast bioengineering to investigate the background of complex phenotypes, such as heat tolerance. In this study, a cDNA library was constructed from the mRNA of a methylotrophic yeast, Ogataea polymorpha, and then introduced into Saccharomyces cerevisiae. Ogataea polymorpha was selected because it is one of the most heat-tolerant species among yeasts. Screening of S. cerevisiae populations expressing O. polymorpha genes at high temperatures identified 59 O. polymorpha genes that contribute to heat tolerance. Gene enrichment analysis indicated that certain S. cerevisiae functions, including protein synthesis, were highly temperature-sensitive. Additionally, the results confirmed that heat tolerance in yeast is a complex phenotype dependent on multiple quantitative loci. Random gene transfer would be a useful tool for future bioengineering studies on yeasts.
Collapse
|
14
|
Mutuku JM, Cui S, Yoshida S, Shirasu K. Orobanchaceae parasite-host interactions. THE NEW PHYTOLOGIST 2021; 230:46-59. [PMID: 33202061 DOI: 10.1111/nph.17083] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Parasitic plants in the family Orobanchaceae, such as Striga, Orobanche and Phelipanche, often cause significant damage to agricultural crops. The Orobanchaceae family comprises more than 2000 species in about 100 genera, providing an excellent system for studying the molecular basis of parasitism and its evolution. Notably, the establishment of model Orobanchaceae parasites, such as Triphysaria versicolor and Phtheirospermum japonicum, that can infect the model host Arabidopsis, has greatly facilitated transgenic analyses of genes important for parasitism. In addition, recent genomic and transcriptomic analyses of several Orobanchaceae parasites have revealed fascinating molecular insights into the evolution of parasitism and strategies for adaptation in this family. This review highlights recent progress in understanding how Orobanchaceae parasites attack their hosts and how the hosts mount a defense against the threats.
Collapse
Affiliation(s)
- J Musembi Mutuku
- The Central and West African Virus Epidemiology (WAVE). Pôle Scientifique et d'Innovation de Bingerville, Université Félix Houphouët-Boigny, BP V34, Abidjan, 01, Côte d'Ivoire
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Songkui Cui
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoko Yoshida
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
15
|
Zhao JH, Zhang T, Liu QY, Guo HS. Trans-kingdom RNAs and their fates in recipient cells: advances, utilization, and perspectives. PLANT COMMUNICATIONS 2021; 2:100167. [PMID: 33898979 PMCID: PMC8060725 DOI: 10.1016/j.xplc.2021.100167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 05/09/2023]
Abstract
The phenomenon and potential mechanisms of trans-kingdom RNA silencing (or RNA interference, RNAi) are among the most exciting topics in science today. Based on trans-kingdom RNAi, host-induced gene silencing (HIGS) has been widely applied to create crops with resistance to various pests and pathogens, overcoming the limitations of resistant cultivars. However, a lack of transformation technology in many crops limits the application of HIGS. Here, we describe the various fates of trans-kingdom RNAs in recipient organisms. Based on the assumption that small RNAs can be transferred between the host and its microbiome or among microbiome members, we propose a possible alternative strategy for plant protection against pathogens without the need for crop genetic modification.
Collapse
|
16
|
Mahelka V, Krak K, Fehrer J, Caklová P, Nagy Nejedlá M, Čegan R, Kopecký D, Šafář J. A Panicum-derived chromosomal segment captured by Hordeum a few million years ago preserves a set of stress-related genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1141-1164. [PMID: 33484020 DOI: 10.1111/tpj.15167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Intra-specific variability is a cornerstone of evolutionary success of species. Acquiring genetic material from distant sources is an important adaptive mechanism in bacteria, but it can also play a role in eukaryotes. In this paper, we investigate the nature and evolution of a chromosomal segment of panicoid (Poaceae, Panicoideae) origin occurring in the nuclear genomes of species of the barley genus Hordeum (Pooideae). The segment, spanning over 440 kb in the Asian Hordeum bogdanii and 219 kb in the South American Hordeum pubiflorum, resides on a pair of nucleolar organizer region (NOR)-bearing chromosomes. Conserved synteny and micro-collinearity of the segment in both species indicate a common origin of the segment, which was acquired before the split of the respective barley lineages 5-1.7 million years ago. A major part of the foreign DNA consists of several approximately 68 kb long repeated blocks containing five stress-related protein-coding genes and transposable elements (TEs). Whereas outside these repeats, the locus was invaded by multiple TEs from the host genome, the repeated blocks are rather intact and appear to be preserved. The protein-coding genes remained partly functional, as indicated by conserved reading frames, a low amount of non-synonymous mutations, and expression of mRNA. A screen across Hordeum species targeting the panicoid protein-coding genes revealed the presence of the genes in all species of the section Stenostachys. In summary, our study shows that grass genomes can contain large genomic segments obtained from distantly related species. These segments usually remain undetected, but they may play an important role in the evolution and adaptation of species.
Collapse
Affiliation(s)
- Václav Mahelka
- Institute of Botany, Czech Academy of Sciences, Průhonice, 25243, Czech Republic
| | - Karol Krak
- Institute of Botany, Czech Academy of Sciences, Průhonice, 25243, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 6, 16500, Czech Republic
| | - Judith Fehrer
- Institute of Botany, Czech Academy of Sciences, Průhonice, 25243, Czech Republic
| | - Petra Caklová
- Institute of Botany, Czech Academy of Sciences, Průhonice, 25243, Czech Republic
| | | | - Radim Čegan
- Institute of Biophysics, Czech Academy of Sciences, Brno, 61265, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| |
Collapse
|
17
|
Neumann P, Oliveira L, Čížková J, Jang TS, Klemme S, Novák P, Stelmach K, Koblížková A, Doležel J, Macas J. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta. THE NEW PHYTOLOGIST 2021; 229:2365-2377. [PMID: 33090498 DOI: 10.1111/nph.17003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/01/2020] [Indexed: 05/06/2023]
Abstract
The parasitic genus Cuscuta (Convolvulaceae) is exceptional among plants with respect to centromere organization, including both monocentric and holocentric chromosomes, and substantial variation in genome size and chromosome number. We investigated 12 species representing the diversity of the genus in a phylogenetic context to reveal the molecular and evolutionary processes leading to diversification of their genomes. We measured genome sizes and investigated karyotypes and centromere organization using molecular cytogenetic techniques. We also performed low-pass whole genome sequencing and comparative analysis of repetitive DNA composition. A remarkable 102-fold variation in genome sizes (342-34 734 Mbp/1C) was detected for monocentric Cuscuta species, while genomes of holocentric species were of moderate sizes (533-1545 Mbp/1C). The genome size variation was primarily driven by the differential accumulation of LTR-retrotransposons and satellite DNA. The transition to holocentric chromosomes in the subgenus Cuscuta was associated with loss of histone H2A phosphorylation and elimination of centromeric retrotransposons. In addition, basic chromosome number of holocentric species (x = 7) was smaller than in monocentrics (x = 15 or 16). We demonstrated that the transition to holocentricity in Cuscuta was accompanied by significant changes in epigenetic marks, chromosome number and the repetitive DNA sequence composition.
Collapse
Affiliation(s)
- Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Ludmila Oliveira
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, CZ-779 00, Czech Republic
| | - Tae-Soo Jang
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sonja Klemme
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Katarzyna Stelmach
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, 29 Listopada 54, Krakow, 31-425, Poland
| | - Andrea Koblížková
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, CZ-779 00, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
18
|
Zhang Y, Zhang Y, Xing J, Li Y, Yang Y, Wang Y, Jiang L, Zhang M, Li Z. Efficient carbon recycling and modulation of antioxidants involved in elongation of the parasitic plant dodder (Cuscuta spp.) in vitro. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110770. [PMID: 33487354 DOI: 10.1016/j.plantsci.2020.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/31/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Dodder is a holoparasitic flowering plant that re-establishes parasitism with the host when broken off from the host. However, how in vitro dodder shoots recycle stored nutrients to maintain growth for reparasitizing hosts is not well characterized. Here, the spatial and temporal distribution characteristics of carbohydrates and reactive oxygen species (ROS) were analysed to explore the mechanism of recycling stored nutrients in dodder shoots in vitro. Our results showed that in vitro dodder shoots grew actively for more than 10 d, while dry mass decreased continuously. During this process, the transcript levels and activities of amylases gradually increased until 2 d and then declined in basal stems, which induced starch degradation at the tissue, cellular and subcellular levels. Additionally, the distribution characteristics of H2O2 and the activities and transcript levels of antioxidant enzymes indicated that shoot tips exhibited more robust ROS-scavenging capacity, and basal stems maintained higher ROS accumulation. Comparative proteomics analysis revealed that starch in basal stems acted as an energy source, and the glycolysis, TCA cycle and pentose phosphate pathway represented the energy supply for shoot tip elongation with time. These results indicated that efficient nutrient recycling and ROS modulation facilitated the parasitism of dodder grown in vitro by promoting shoot elongation growth to reach the host.
Collapse
Affiliation(s)
- Yuexia Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yushi Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiapeng Xing
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yajun Li
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Yan Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yubin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Linjian Jiang
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Hu L, Wang J, Yang C, Islam F, Bouwmeester HJ, Muños S, Zhou W. The Effect of Virulence and Resistance Mechanisms on the Interactions between Parasitic Plants and Their Hosts. Int J Mol Sci 2020; 21:E9013. [PMID: 33260931 PMCID: PMC7730841 DOI: 10.3390/ijms21239013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/06/2023] Open
Abstract
Parasitic plants have a unique heterotrophic lifestyle based on the extraction of water and nutrients from host plants. Some parasitic plant species, particularly those of the family Orobanchaceae, attack crops and cause substantial yield losses. The breeding of resistant crop varieties is an inexpensive way to control parasitic weeds, but often does not provide a long-lasting solution because the parasites rapidly evolve to overcome resistance. Understanding mechanisms underlying naturally occurring parasitic plant resistance is of great interest and could help to develop methods to control parasitic plants. In this review, we describe the virulence mechanisms of parasitic plants and resistance mechanisms in their hosts, focusing on obligate root parasites of the genera Orobanche and Striga. We noticed that the resistance (R) genes in the host genome often encode proteins with nucleotide-binding and leucine-rich repeat domains (NLR proteins), hence we proposed a mechanism by which host plants use NLR proteins to activate downstream resistance gene expression. We speculated how parasitic plants and their hosts co-evolved and discussed what drives the evolution of virulence effectors in parasitic plants by considering concepts from similar studies of plant-microbe interaction. Most previous studies have focused on the host rather than the parasite, so we also provided an updated summary of genomic resources for parasitic plants and parasitic genes for further research to test our hypotheses. Finally, we discussed new approaches such as CRISPR/Cas9-mediated genome editing and RNAi silencing that can provide deeper insight into the intriguing life cycle of parasitic plants and could potentially contribute to the development of novel strategies for controlling parasitic weeds, thereby enhancing crop productivity and food security globally.
Collapse
Affiliation(s)
- Luyang Hu
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (L.H.); (J.W.); (F.I.)
| | - Jiansu Wang
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (L.H.); (J.W.); (F.I.)
| | - Chong Yang
- Bioengineering Research Laboratory, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (L.H.); (J.W.); (F.I.)
| | - Harro J. Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE Amsterdam, The Netherlands;
| | - Stéphane Muños
- LIPM, Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France;
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (L.H.); (J.W.); (F.I.)
| |
Collapse
|
20
|
Wang X, Yang Z, Zhang Y, Zhou W, Zhang A, Lu C. Pentatricopeptide repeat protein PHOTOSYSTEM I BIOGENESIS FACTOR2 is required for splicing of ycf3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1741-1761. [PMID: 32250043 DOI: 10.1111/jipb.12936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/27/2020] [Indexed: 05/04/2023]
Abstract
To gain a better understanding of the molecular mechanisms of photosystem I (PSI) biogenesis, we characterized the Arabidopsis thaliana photosystem I biogenesis factor 2 (pbf2) mutant, which lacks PSI complex. PBF2 encodes a P-class pentatricopeptide repeat (PPR) protein. In the pbf2 mutants, we observed a striking decrease in the transcript level of only one gene, the chloroplast gene ycf3, which is essential for PSI assembly. Further analysis of ycf3 transcripts showed that PBF2 is specifically required for the splicing of ycf3 intron 1. Computational prediction of binding sequences and electrophoretic mobility shift assays reveal that PBF2 specifically binds to a sequence in ycf3 intron 1. Moreover, we found that PBF2 interacted with two general factors for group II intron splicing CHLOROPLAST RNA SPLICING2-ASSOCIATED FACTOR1 (CAF1) and CAF2, and facilitated the association of these two factors with ycf3 intron 1. Our results suggest that PBF2 is specifically required for the splicing of ycf3 intron 1 through cooperating with CAF1 and CAF2. Our results also suggest that additional proteins are required to contribute to the specificity of CAF-dependent group II intron splicing.
Collapse
Affiliation(s)
- Xuemei Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipan Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Wen Zhou
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aihong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
21
|
Petersen G, Anderson B, Braun HP, Meyer EH, Møller IM. Mitochondria in parasitic plants. Mitochondrion 2020; 52:173-182. [DOI: 10.1016/j.mito.2020.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/05/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
22
|
Banerjee A. Inter-plant communication via parasitic bridging. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:749-750. [PMID: 31971243 DOI: 10.1093/jxb/erz507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article comments on:
Li S, Zhang J, Liu H, Liu N, Shen G, Zhuang H, Wu J. 2020. Dodder-transmitted mobile signals prime host plants for enhanced salt tolerance. Journal of Experimental Botany 71, 1171–1184.
Collapse
Affiliation(s)
- Arjan Banerjee
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
The architecture of the Plasmodiophora brassicae nuclear and mitochondrial genomes. Sci Rep 2019; 9:15753. [PMID: 31673019 PMCID: PMC6823432 DOI: 10.1038/s41598-019-52274-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/15/2019] [Indexed: 11/09/2022] Open
Abstract
Plasmodiophora brassicae is a soil-borne pathogen that attacks roots of cruciferous plants causing clubroot disease. The pathogen belongs to the Plasmodiophorida order in Phytomyxea. Here we used long-read SMRT technology to clarify the P. brassicae e3 genomic constituents along with comparative and phylogenetic analyses. Twenty contigs representing the nuclear genome and one mitochondrial (mt) contig were generated, together comprising 25.1 Mbp. Thirteen of the 20 nuclear contigs represented chromosomes from telomere to telomere characterized by [TTTTAGGG] sequences. Seven active gene candidates encoding synaptonemal complex-associated and meiotic-related protein homologs were identified, a finding that argues for possible genetic recombination events. The circular mt genome is large (114,663 bp), gene dense and intron rich. It shares high synteny with the mt genome of Spongospora subterranea, except in a unique 12 kb region delimited by shifts in GC content and containing tandem minisatellite- and microsatellite repeats with partially palindromic sequences. De novo annotation identified 32 protein-coding genes, 28 structural RNA genes and 19 ORFs. ORFs predicted in the repeat-rich region showed similarities to diverse organisms suggesting possible evolutionary connections. The data generated here form a refined platform for the next step involving functional analysis, all to clarify the complex biology of P. brassicae.
Collapse
|
24
|
Yang Z, Wafula EK, Kim G, Shahid S, McNeal JR, Ralph PE, Timilsena PR, Yu WB, Kelly EA, Zhang H, Person TN, Altman NS, Axtell MJ, Westwood JH, dePamphilis CW. Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. NATURE PLANTS 2019; 5:991-1001. [PMID: 31332314 DOI: 10.1038/s41477-019-0458-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/23/2019] [Indexed: 05/20/2023]
Abstract
Horizontal gene transfer (HGT), the movement and genomic integration of DNA across species boundaries, is commonly associated with bacteria and other microorganisms, but functional HGT (fHGT) is increasingly being recognized in heterotrophic parasitic plants that obtain their nutrients and water from their host plants through direct haustorial feeding. Here, in the holoparasitic stem parasite Cuscuta, we identify 108 transcribed and probably functional HGT events in Cuscuta campestris and related species, plus 42 additional regions with host-derived transposon, pseudogene and non-coding sequences. Surprisingly, 18 Cuscuta fHGTs were acquired from the same gene families by independent HGT events in Orobanchaceae parasites, and the majority are highly expressed in the haustorial feeding structures in both lineages. Convergent retention and expression of HGT sequences suggests an adaptive role for specific additional genes in parasite biology. Between 16 and 20 of the transcribed HGT events are inferred as ancestral in Cuscuta based on transcriptome sequences from species across the phylogenetic range of the genus, implicating fHGT in the successful radiation of Cuscuta parasites. Genome sequencing of C. campestris supports transfer of genomic DNA-rather than retroprocessed RNA-as the mechanism of fHGT. Many of the C. campestris genes horizontally acquired are also frequent sources of 24-nucleotide small RNAs that are typically associated with RNA-directed DNA methylation. One HGT encoding a leucine-rich repeat protein kinase overlaps with a microRNA that has been shown to regulate host gene expression, suggesting that HGT-derived parasite small RNAs may function in the parasite-host interaction. This study enriches our understanding of HGT by describing a parasite-host system with unprecedented gene exchange that points to convergent evolution of HGT events and the functional importance of horizontally transferred coding and non-coding sequences.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Gunjune Kim
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Future Technology Corporate R&D, Seoul, Republic of Korea
| | - Saima Shahid
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Joel R McNeal
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Prakash R Timilsena
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Wen-Bin Yu
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Elizabeth A Kelly
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Huiting Zhang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Thomas Nate Person
- Intercollege Graduate Program in Bioinformatics and Genomics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Naomi S Altman
- Department of Statistics and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Michael J Axtell
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Claude W dePamphilis
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Intercollege Graduate Program in Bioinformatics and Genomics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
25
|
Johnson NR, Axtell MJ. Small RNA warfare: exploring origins and function of trans-species microRNAs from the parasitic plant Cuscuta. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:76-81. [PMID: 31029811 DOI: 10.1016/j.pbi.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 05/02/2023]
Abstract
Parasitic plants make direct contact with their host's vasculature. In parasitism by Cuscuta, RNA and other macromolecules regularly move between host and parasite. Recently, trans-species microRNA from Cuscuta have been shown to functionally target host genes which have essential roles in host defense. Known pathways for the evolution of microRNAs, and the prevalence of horizontal gene transfer events in the Cuscuta lineage, hint that trans-species microRNAs could originate from captured host genes. It is unknown how the delivery of microRNAs from the parasite to the host takes place. One exciting possibility is through apoplastic export using extracellular vesicles, a process which has recently been shown to transport select small RNAs in plants and fungi. These discoveries represent the initial findings of what may be a widespread mechanism of interactions between species.
Collapse
Affiliation(s)
- Nathan R Johnson
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
26
|
Cusimano N, Renner SS. Sequential horizontal gene transfers from different hosts in a widespread Eurasian parasitic plant, Cynomorium coccineum. AMERICAN JOURNAL OF BOTANY 2019; 106:679-689. [PMID: 31081928 DOI: 10.1002/ajb2.1286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Parasitic plants with large geographic ranges, and different hosts in parts of their range, may acquire horizontally transferred genes (HGTs), which might sometimes leave a footprint of gradual host and range expansion. Cynomorium coccineum, the only member of the Saxifragales family Cynomoriaceae, is a root holoparasite that occurs in water-stressed habitats from western China to the Canary Islands. It parasitizes at least 10 angiosperm families from different orders, some of them only in parts of its range. This parasite therefore offers an opportunity to trace HGTs as long as parasite-host pairs can be obtained and sequenced. METHODS By sequencing mitochondrial, plastid, and nuclear loci from parasite-host pairs from throughout the parasite's range and with prior information from completely assembled mitochondrial and plastid genomes, we detected 10 HGTs of five mitochondrial genes. RESULTS The 10 HGTs appear to have occurred sequentially as C. coccineum expanded from East to West. Molecular-clock models yield Cynomorium stem ages between 66 and 156 Myr, with relaxed clocks converging on 66-67 Myr. Chinese Sapindales, probably Nitraria, were the first source of transferred genes, followed by Iranian and Mediterranean Caryophyllales. The most recently acquired gene appears to come from a Tamarix host in the Iberian Peninsula. CONCLUSIONS Data on HGTs that have accumulated over the past 15 years, along with this discovery of multiple HGTs within a single widespread species, underline the need for more whole-genome data from parasite-host pairs to investigate whether and how transferred copies coexist with, or replace, native functional genes.
Collapse
Affiliation(s)
- Natalie Cusimano
- Systematic Botany and Mycology, Faculty of Biology, University of Munich (LMU), Munich, Germany
| | - Susanne S Renner
- Systematic Botany and Mycology, Faculty of Biology, University of Munich (LMU), Munich, Germany
| |
Collapse
|
27
|
Kado T, Innan H. Horizontal Gene Transfer in Five Parasite Plant Species in Orobanchaceae. Genome Biol Evol 2018; 10:3196-3210. [PMID: 30407540 PMCID: PMC6294234 DOI: 10.1093/gbe/evy219] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
We sequenced genomes of five parasite species in family Orobanchaceae to explore the evolutionary role of horizontal gene transfer in plants. Orobanche minor and Aeginetia indica are obligate parasites with no photosynthetic activity, whereas the other three (Pedicularis keiskei, Phtheirospermum japonicum, and Melampyrum roseum) are facultative parasites. By using reference genome sequences and/or transcriptomes of 14 species from Fabaceae and Poaceae, their major host families, we detected 106 horizontally transferred genes (HGT genes), only in the genomes of the two obligate parasites (22 and 84 for Oro. minor and Ae. indica, respectively), whereas none in the three facultative parasites. The HGT genes, respectively, account for roughly 0.1% and 0.2% of the coding genes in the two species. We found that almost all HGT genes retained introns at the same locations as their homologs in potential host species, indicating a crucial role of DNA-mediated gene transfer, rather than mRNA mediated retro transfer. Furthermore, some of the HGT genes might have transferred simultaneously because they located very closely in the host reference genome, indicating that the length of transferred DNA could exceed 100 kb. We confirmed that almost all introns are spliced in the current genome of the parasite species, and that about half HGT genes do not have any missense mutations or frameshift-causing indels, suggesting that some HGT genes may be still functional. Evolutionary analyses revealed that the nonsynonymous–synonymous substitution ratio is on average elevated on the lineage leading to HGT genes, due to either relaxation of selection or positive selection.
Collapse
Affiliation(s)
- Tomoyuki Kado
- SOKENDAI, Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | - Hideki Innan
- SOKENDAI, Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| |
Collapse
|
28
|
Guo L, Qiu J, Li LF, Lu B, Olsen K, Fan L. Genomic Clues for Crop-Weed Interactions and Evolution. TRENDS IN PLANT SCIENCE 2018; 23:1102-1115. [PMID: 30293809 DOI: 10.1016/j.tplants.2018.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 09/11/2018] [Indexed: 05/11/2023]
Abstract
Agronomically critical weeds that have evolved alongside crop species are characterized by rapid adaptation and invasiveness, which can result in an enormous reduction in annual crop yield worldwide. We discuss here recent genome-based research studies on agricultural weeds and crop-weed interactions that reveal several major evolutionary innovations such as de-domestication, interactions mediated by allelochemical secondary metabolites, and parasitic genetic elements that play crucial roles in enhancing weed invasiveness in agricultural settings. We believe that these key studies will guide future research into the evolution of crop-weed interactions, and further the development of practical applications in agricultural weed control and crop breeding.
Collapse
Affiliation(s)
- Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; These authors contributed equally to this work
| | - Jie Qiu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; These authors contributed equally to this work
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Baorong Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Kenneth Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Longjiang Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Vogel A, Schwacke R, Denton AK, Usadel B, Hollmann J, Fischer K, Bolger A, Schmidt MHW, Bolger ME, Gundlach H, Mayer KFX, Weiss-Schneeweiss H, Temsch EM, Krause K. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat Commun 2018; 9:2515. [PMID: 29955043 PMCID: PMC6023873 DOI: 10.1038/s41467-018-04344-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 04/23/2018] [Indexed: 11/09/2022] Open
Abstract
A parasitic lifestyle, where plants procure some or all of their nutrients from other living plants, has evolved independently in many dicotyledonous plant families and is a major threat for agriculture globally. Nevertheless, no genome sequence of a parasitic plant has been reported to date. Here we describe the genome sequence of the parasitic field dodder, Cuscuta campestris. The genome contains signatures of a fairly recent whole-genome duplication and lacks genes for pathways superfluous to a parasitic lifestyle. Specifically, genes needed for high photosynthetic activity are lost, explaining the low photosynthesis rates displayed by the parasite. Moreover, several genes involved in nutrient uptake processes from the soil are lost. On the other hand, evidence for horizontal gene transfer by way of genomic DNA integration from the parasite's hosts is found. We conclude that the parasitic lifestyle has left characteristic footprints in the C. campestris genome.
Collapse
Affiliation(s)
- Alexander Vogel
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg 3, RWTH Aachen University, Aachen, 52074, Germany
| | - Rainer Schwacke
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, 52428, Germany
| | - Alisandra K Denton
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg 3, RWTH Aachen University, Aachen, 52074, Germany.,Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Björn Usadel
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg 3, RWTH Aachen University, Aachen, 52074, Germany.,Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, 52428, Germany
| | - Julien Hollmann
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Biologibygget, Framstredet 39, Tromsø, 9037, Norway
| | - Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Biologibygget, Framstredet 39, Tromsø, 9037, Norway
| | - Anthony Bolger
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg 3, RWTH Aachen University, Aachen, 52074, Germany
| | - Maximilian H-W Schmidt
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg 3, RWTH Aachen University, Aachen, 52074, Germany
| | - Marie E Bolger
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, 52428, Germany
| | - Heidrun Gundlach
- Helmholtz Zentrum München (HMGU), Plant Genome and Systems Biology (PGSB), Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Klaus F X Mayer
- Helmholtz Zentrum München (HMGU), Plant Genome and Systems Biology (PGSB), Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Technical University Munich, School of Life Sciences Weihenstephan, Alte Akademie 8, Freising, 85354, Germany
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, Faculty Center Biodiversity, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, Faculty Center Biodiversity, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Biologibygget, Framstredet 39, Tromsø, 9037, Norway.
| |
Collapse
|
30
|
Schmickl R, Marburger S, Bray S, Yant L. Hybrids and horizontal transfer: introgression allows adaptive allele discovery. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5453-5470. [PMID: 29096001 DOI: 10.1093/jxb/erx297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evolution has devised countless remarkable solutions to diverse challenges. Understanding the mechanistic basis of these solutions provides insights into how biological systems can be subtly tweaked without maladaptive consequences. The knowledge gained from illuminating these mechanisms is equally important to our understanding of fundamental evolutionary mechanisms as it is to our hopes of developing truly rational plant breeding and synthetic biology. In particular, modern population genomic approaches are proving very powerful in the detection of candidate alleles for mediating consequential adaptations that can be tested functionally. Especially striking are signals gained from contexts involving genetic transfers between populations, closely related species, or indeed between kingdoms. Here we discuss two major classes of these scenarios, adaptive introgression and horizontal gene flow, illustrating discoveries made across kingdoms.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic
| | - Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sian Bray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
31
|
Vásquez-Mayorga M, Fuchs EJ, Hernández EJ, Herrera F, Hernández J, Moreira I, Arnáez E, Barboza NM. Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica. PeerJ 2017; 5:e2931. [PMID: 28289556 PMCID: PMC5345823 DOI: 10.7717/peerj.2931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/21/2016] [Indexed: 11/20/2022] Open
Abstract
We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and a Maximum Likelihood (ML) tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346), but considerable compared to worldwide values for J. curcas. The PIC (PIC = 0.274) and inbreeding coefficient (f = − 0.102) were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24) from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the Jatropha curcas germplasm bank in Costa Rica.
Collapse
Affiliation(s)
- Marcela Vásquez-Mayorga
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica , San Pedro , San José , Costa Rica
| | - Eric J Fuchs
- Escuela de Biología, Universidad de Costa Rica , San Pedro , San José , Costa Rica
| | - Eduardo J Hernández
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica , San Pedro , San José , Costa Rica
| | - Franklin Herrera
- Estación Experimental Fabio Baudrit Moreno, Universidad de Costa Rica , Alajuela , Costa Rica
| | - Jesús Hernández
- Ministerio de Agricultura y Ganadería , San José , Costa Rica
| | - Ileana Moreira
- Escuela de Biología, Instituto Tecnológico de Costa Rica , Cartago , Costa Rica
| | - Elizabeth Arnáez
- Escuela de Biología, Instituto Tecnológico de Costa Rica , Cartago , Costa Rica
| | - Natalia M Barboza
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro, San José, Costa Rica; Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San Pedro, San José, Costa Rica; Centro Nacional en Ciencia y Tecnología de Alimentos, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| |
Collapse
|
32
|
Mahelka V, Krak K, Kopecký D, Fehrer J, Šafář J, Bartoš J, Hobza R, Blavet N, Blattner FR. Multiple horizontal transfers of nuclear ribosomal genes between phylogenetically distinct grass lineages. Proc Natl Acad Sci U S A 2017; 114:1726-1731. [PMID: 28137844 PMCID: PMC5320982 DOI: 10.1073/pnas.1613375114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The movement of nuclear DNA from one vascular plant species to another in the absence of fertilization is thought to be rare. Here, nonnative rRNA gene [ribosomal DNA (rDNA)] copies were identified in a set of 16 diploid barley (Hordeum) species; their origin was traceable via their internal transcribed spacer (ITS) sequence to five distinct Panicoideae genera, a lineage that split from the Pooideae about 60 Mya. Phylogenetic, cytogenetic, and genomic analyses implied that the nonnative sequences were acquired between 1 and 5 Mya after a series of multiple events, with the result that some current Hordeum sp. individuals harbor up to five different panicoid rDNA units in addition to the native Hordeum rDNA copies. There was no evidence that any of the nonnative rDNA units were transcribed; some showed indications of having been silenced via pseudogenization. A single copy of a Panicum sp. rDNA unit present in H. bogdanii had been interrupted by a native transposable element and was surrounded by about 70 kbp of mostly noncoding sequence of panicoid origin. The data suggest that horizontal gene transfer between vascular plants is not a rare event, that it is not necessarily restricted to one or a few genes only, and that it can be selectively neutral.
Collapse
MESH Headings
- Cell Nucleus/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Diploidy
- Evolution, Molecular
- Gene Transfer, Horizontal
- Genes, Plant/genetics
- Hordeum/classification
- Hordeum/genetics
- Phylogeny
- Poaceae/classification
- Poaceae/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Václav Mahelka
- Institute of Botany, The Czech Academy of Sciences, Průhonice 25243, Czech Republic;
| | - Karol Krak
- Institute of Botany, The Czech Academy of Sciences, Průhonice 25243, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 6 16500, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
| | - Judith Fehrer
- Institute of Botany, The Czech Academy of Sciences, Průhonice 25243, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
| | - Jan Bartoš
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
| | - Roman Hobza
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
- Institute of Biophysics, The Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Nicolas Blavet
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
| | - Frank R Blattner
- Experimental Taxonomy, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
33
|
Mercenaro L, Nieddu G, Porceddu A, Pezzotti M, Camiolo S. Sequence Polymorphisms and Structural Variations among Four Grapevine ( Vitis vinifera L.) Cultivars Representing Sardinian Agriculture. FRONTIERS IN PLANT SCIENCE 2017; 8:1279. [PMID: 28775732 PMCID: PMC5517397 DOI: 10.3389/fpls.2017.01279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/06/2017] [Indexed: 05/04/2023]
Abstract
The genetic diversity among grapevine (Vitis vinifera L.) cultivars that underlies differences in agronomic performance and wine quality reflects the accumulation of single nucleotide polymorphisms (SNPs) and small indels as well as larger genomic variations. A combination of high throughput sequencing and mapping against the grapevine reference genome allows the creation of comprehensive sequence variation maps. We used next generation sequencing and bioinformatics to generate an inventory of SNPs and small indels in four widely cultivated Sardinian grape cultivars (Bovale sardo, Cannonau, Carignano and Vermentino). More than 3,200,000 SNPs were identified with high statistical confidence. Some of the SNPs caused the appearance of premature stop codons and thus identified putative pseudogenes. The analysis of SNP distribution along chromosomes led to the identification of large genomic regions with uninterrupted series of homozygous SNPs. We used a digital comparative genomic hybridization approach to identify 6526 genomic regions with significant differences in copy number among the four cultivars compared to the reference sequence, including 81 regions shared between all four cultivars and 4953 specific to single cultivars (representing 1.2 and 75.9% of total copy number variation, respectively). Reads mapping at a distance that was not compatible with the insert size were used to identify a dataset of putative large deletions with cultivar Cannonau revealing the highest number. The analysis of genes mapping to these regions provided a list of candidates that may explain some of the phenotypic differences among the Bovale sardo, Cannonau, Carignano and Vermentino cultivars.
Collapse
Affiliation(s)
- Luca Mercenaro
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
| | - Giovanni Nieddu
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
| | - Andrea Porceddu
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
| | - Mario Pezzotti
- Dipartimento di Biotecnologie, Università degli Studi di VeronaVerona, Italy
| | - Salvatore Camiolo
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
- *Correspondence: Salvatore Camiolo,
| |
Collapse
|
34
|
Yang Z, Zhang Y, Wafula EK, Honaas LA, Ralph PE, Jones S, Clarke CR, Liu S, Su C, Zhang H, Altman NS, Schuster SC, Timko MP, Yoder JI, Westwood JH, dePamphilis CW. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proc Natl Acad Sci U S A 2016; 113:E7010-E7019. [PMID: 27791104 PMCID: PMC5111717 DOI: 10.1073/pnas.1608765113] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Horizontal gene transfer (HGT) is the transfer of genetic material across species boundaries and has been a driving force in prokaryotic evolution. HGT involving eukaryotes appears to be much less frequent, and the functional implications of HGT in eukaryotes are poorly understood. We test the hypothesis that parasitic plants, because of their intimate feeding contacts with host plant tissues, are especially prone to horizontal gene acquisition. We sought evidence of HGTs in transcriptomes of three parasitic members of Orobanchaceae, a plant family containing species spanning the full spectrum of parasitic capabilities, plus the free-living Lindenbergia Following initial phylogenetic detection and an extensive validation procedure, 52 high-confidence horizontal transfer events were detected, often from lineages of known host plants and with an increasing number of HGT events in species with the greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient lineages provide evidence for integration of genomic fragments far more often than retro-processed RNA sequences. Purifying selection predominates in functionally transferred sequences, with a small fraction of adaptively evolving sites. HGT-acquired genes are preferentially expressed in the haustorium-the organ of parasitic plants-and are strongly biased in predicted gene functions, suggesting that expression products of horizontally acquired genes are contributing to the unique adaptive feeding structure of parasitic plants.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Yeting Zhang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Loren A Honaas
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Sam Jones
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Christopher R Clarke
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Siming Liu
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Chun Su
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Huiting Zhang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Naomi S Altman
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Stephan C Schuster
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Claude W dePamphilis
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802;
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
35
|
Yang Z, Liu L, Fang H, Li P, Xu S, Cao W, Xu C, Huang J, Zhou Y. Origin of the plant Tm-1-like gene via two independent horizontal transfer events and one gene fusion event. Sci Rep 2016; 6:33691. [PMID: 27647002 PMCID: PMC5028733 DOI: 10.1038/srep33691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/31/2016] [Indexed: 01/07/2023] Open
Abstract
The Tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a direct inhibitor of ToMV RNA replication to protect tomato from infection. The plant Tm-1-like (Tm-1L) protein is predicted to contain an uncharacterized N-terminal UPF0261 domain and a C-terminal TIM-barrel signal transduction (TBST) domain. Homologous searches revealed that proteins containing both of these two domains are mainly present in charophyte green algae and land plants but absent from glaucophytes, red algae and chlorophyte green algae. Although Tm-1 homologs are widely present in bacteria, archaea and fungi, UPF0261- and TBST-domain-containing proteins are generally encoded by different genes in these linages. A co-evolution analysis also suggested a putative interaction between UPF0261- and TBST-domain-containing proteins. Phylogenetic analyses based on homologs of these two domains revealed that plants have acquired UPF0261- and TBST-domain-encoding genes through two independent horizontal gene transfer (HGT) events before the origin of land plants from charophytes. Subsequently, gene fusion occurred between these two horizontally acquired genes and resulted in the origin of the Tm-1L gene in streptophytes. Our results demonstrate a novel evolutionary mechanism through which the recipient organism may acquire genes with functional interaction through two different HGT events and further fuse them into one functional gene.
Collapse
Affiliation(s)
- Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Li Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Huimin Fang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Shuhui Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Wei Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
36
|
Bellot S, Cusimano N, Luo S, Sun G, Zarre S, Gröger A, Temsch E, Renner SS. Assembled Plastid and Mitochondrial Genomes, as well as Nuclear Genes, Place the Parasite Family Cynomoriaceae in the Saxifragales. Genome Biol Evol 2016; 8:2214-30. [PMID: 27358425 PMCID: PMC4987112 DOI: 10.1093/gbe/evw147] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cynomoriaceae, one of the last unplaced families of flowering plants, comprise one or two species or subspecies of root parasites that occur from the Mediterranean to the Gobi Desert. Using Illumina sequencing, we assembled the mitochondrial and plastid genomes as well as some nuclear genes of a
Cynomorium
specimen from Italy. Selected genes were also obtained by Sanger sequencing from individuals collected in China and Iran, resulting in matrices of 33 mitochondrial, 6 nuclear, and 14 plastid genes and rDNAs enlarged to include a representative angiosperm taxon sampling based on data available in GenBank. We also compiled a new geographic map to discern possible discontinuities in the parasites’ occurrence.
Cynomorium
has large genomes of 13.70–13.61 (Italy) to 13.95–13.76 pg (China). Its mitochondrial genome consists of up to 49 circular subgenomes and has an overall gene content similar to that of photosynthetic angiosperms, while its plastome retains only 27 of the normally 116 genes. Nuclear, plastid and mitochondrial phylogenies place Cynomoriaceae in Saxifragales, and we found evidence for several horizontal gene transfers from different hosts, as well as intracellular gene transfers.
Collapse
Affiliation(s)
- Sidonie Bellot
- Department of Plant Sciences, Plant Biodiversity Research, Technical University of Munich (TUM), Freising, Germany
| | - Natalie Cusimano
- Systematic Botany and Mycology, Faculty of Biology, University of Munich (LMU), Germany
| | - Shixiao Luo
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Guangzhou, China
| | - Guiling Sun
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, China
| | - Shahin Zarre
- Department of Plant Sciences, University of Tehran, Iran
| | | | - Eva Temsch
- Department of Systematic and Evolutionary Botany, University of Vienna, Austria
| | - Susanne S Renner
- Systematic Botany and Mycology, Faculty of Biology, University of Munich (LMU), Germany
| |
Collapse
|
37
|
Sun T, Renner SS, Xu Y, Qin Y, Wu J, Sun G. Two hAT transposon genes were transferred from Brassicaceae to broomrapes and are actively expressed in some recipients. Sci Rep 2016; 6:30192. [PMID: 27452947 PMCID: PMC4958966 DOI: 10.1038/srep30192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022] Open
Abstract
A growing body of evidence is pointing to an important role of horizontal gene transfer (HGT) in the evolution of higher plants. However, reports of HGTs of transposable elements (TEs) in plants are still scarce, and only one case is known of a class II transposon horizontally transferred between grasses. To investigate possible TE transfers in dicots, we performed transcriptome screening in the obligate root parasite Phelipanche aegyptiaca (Orobanchaceae), data-mining in the draft genome assemblies of four other Orobanchaceae, gene cloning, gene annotation in species with genomic information, and a molecular phylogenetic analysis. We discovered that the broomrape genera Phelipanche and Orobanche acquired two related nuclear genes (christened BO transposase genes), a new group of the hAT superfamily of class II transposons, from Asian Sisymbrieae or a closely related tribe of Brassicaceae, by HGT. The collinearity of the flanking genes, lack of a classic border structure, and low expression levels suggest that BO transposase genes cannot transpose in Brassicaceae, whereas they are highly expressed in P. aegyptiaca.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475004, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Susanne S. Renner
- Systematic Botany and Mycology, University of Munich (LMU), Munich 80638, Germany
| | - Yuxing Xu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yan Qin
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jianqiang Wu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guiling Sun
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475004, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
38
|
Sun T, Xu Y, Zhang D, Zhuang H, Wu J, Sun G. An acyltransferase gene that putatively functions in anthocyanin modification was horizontally transferred from Fabaceae into the genus Cuscuta. PLANT DIVERSITY 2016; 38:149-155. [PMID: 30159459 PMCID: PMC6112201 DOI: 10.1016/j.pld.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/19/2016] [Accepted: 04/29/2016] [Indexed: 05/27/2023]
Abstract
Horizontal gene transfer (HGT) refers to the flow of genetic materials to non-offspring, and occasionally HGT in plants can improve the adaptation of organisms in new niches due to expanded metabolic capability. Anthocyanins are an important group of water-soluble red, purple, or blue secondary metabolites, whose diversity results from modification after the main skeleton biosynthesis. Cuscuta is a stem holoparasitic genus, whose members form direct connection with hosts to withdraw water, nutrients, and macromolecules. Such intimate association is thought to increase the frequency of HGT. By transcriptome screening for foreign genes in Cuscuta australis, we discovered that one gene encoding a putative anthocyanin acyltransferase gene of the BAHD family, which is likely to be involved in anthocyanin modification, was acquired by C. australis from Fabaceae through HGT. The anthocyanin acyltransferase-like (AT-like) gene was confirmed to be present in the genome assembly of C. australis and the transcriptomes of Cuscuta pentagona. The higher transcriptional level in old stems is consistent with its putative function in secondary metabolism by stabilizing anthocyanin at neutral pH and thus HGT of this AT-like gene may have improved biotic and abiotic resistance of Cuscuta.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yuxing Xu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Dale Zhang
- College of Life Science, Henan University, 85 Minglun Street, Kaifeng 475001, Henan, China
| | - Huifu Zhuang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jianqiang Wu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guiling Sun
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
39
|
Yoshida S, Cui S, Ichihashi Y, Shirasu K. The Haustorium, a Specialized Invasive Organ in Parasitic Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:643-67. [PMID: 27128469 DOI: 10.1146/annurev-arplant-043015-111702] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Parasitic plants thrive by infecting other plants. Flowering plants evolved parasitism independently at least 12 times, in all cases developing a unique multicellular organ called the haustorium that forms upon detection of haustorium-inducing factors derived from the host plant. This organ penetrates into the host stem or root and connects to its vasculature, allowing exchange of materials such as water, nutrients, proteins, nucleotides, pathogens, and retrotransposons between the host and the parasite. In this review, we focus on the formation and function of the haustorium in parasitic plants, with a specific emphasis on recent advances in molecular studies of root parasites in the Orobanchaceae and stem parasites in the Convolvulaceae.
Collapse
Affiliation(s)
- Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; , , ,
| | - Songkui Cui
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; , , ,
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; , , ,
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; , , ,
| |
Collapse
|
40
|
Prentice HC, Li Y, Lönn M, Tunlid A, Ghatnekar L. A horizontally transferred nuclear gene is associated with microhabitat variation in a natural plant population. Proc Biol Sci 2015; 282:20152453. [PMID: 26674953 PMCID: PMC4707765 DOI: 10.1098/rspb.2015.2453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/11/2015] [Indexed: 11/12/2022] Open
Abstract
Horizontal gene transfer involves the non-sexual interspecific transmission of genetic material. Even if they are initially functional, horizontally transferred genes are expected to deteriorate into non-expressed pseudogenes, unless they become adaptively relevant in the recipient organism. However, little is known about the distributions of natural transgenes within wild species or the adaptive significance of natural transgenes within wild populations. Here, we examine the distribution of a natural plant-to-plant nuclear transgene in relation to environmental variation within a wild population. Festuca ovina is polymorphic for an extra (second) expressed copy of the nuclear gene (PgiC) encoding cytosolic phosphoglucose isomerase, with the extra PgiC locus having been acquired horizontally from the distantly related grass genus Poa. We investigated variation at PgiC in samples of F. ovina from a fine-scale, repeating patchwork of grassland microhabitats, replicated within spatially separated sites. Even after accounting for spatial effects, the distributions of F. ovina individuals carrying the additional PgiC locus, and one of the enzyme products encoded by the locus, are significantly associated with fine-scale habitat variation. Our results suggest that the PgiC transgene contributes, together with the unlinked 'native' PgiC locus, to local adaptation to a fine-scale mosaic of edaphic and biotic grassland microhabitats.
Collapse
Affiliation(s)
| | - Yuan Li
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Mikael Lönn
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, 141 89 Huddinge, Sweden
| | - Anders Tunlid
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Lena Ghatnekar
- Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
41
|
Abstract
Horizontal gene transfer (HGT) is the sharing of genetic material between organisms that are not in a parent-offspring relationship. HGT is a widely recognized mechanism for adaptation in bacteria and archaea. Microbial antibiotic resistance and pathogenicity are often associated with HGT, but the scope of HGT extends far beyond disease-causing organisms. In this Review, we describe how HGT has shaped the web of life using examples of HGT among prokaryotes, between prokaryotes and eukaryotes, and even between multicellular eukaryotes. We discuss replacement and additive HGT, the proposed mechanisms of HGT, selective forces that influence HGT, and the evolutionary impact of HGT on ancestral populations and existing populations such as the human microbiome.
Collapse
|
42
|
Davis CC, Xi Z. Horizontal gene transfer in parasitic plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:14-19. [PMID: 26051213 DOI: 10.1016/j.pbi.2015.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Horizontal gene transfer (HGT) between species has been a major focus of plant evolutionary research during the past decade. Parasitic plants, which establish a direct connection with their hosts, have provided excellent examples of how these transfers are facilitated via the intimacy of this symbiosis. In particular, phylogenetic studies from diverse clades indicate that parasitic plants represent a rich system for studying this phenomenon. Here, HGT has been shown to be astonishingly high in the mitochondrial genome, and appreciable in the nuclear genome. Although explicit tests remain to be performed, some transgenes have been hypothesized to be functional in their recipient species, thus providing a new perspective on the evolution of novelty in parasitic plants.
Collapse
Affiliation(s)
- Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA.
| | - Zhenxiang Xi
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
43
|
Kim G, Westwood JH. Macromolecule exchange in Cuscuta-host plant interactions. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:20-5. [PMID: 26051214 DOI: 10.1016/j.pbi.2015.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/01/2015] [Accepted: 05/13/2015] [Indexed: 05/06/2023]
Abstract
Cuscuta species (dodders) are parasitic plants that are able to grow on many different host plants and can be destructive to crops. The connections between Cuscuta and its hosts allow movement of not only water and small nutrients, but also macromolecules including mRNA, proteins and viruses. Recent studies show that RNAs move bidirectionally between hosts and parasites and involve a large number of different genes. Although the function of mobile mRNAs has not been demonstrated in this system, small RNAs are also transmitted and a silencing construct expressed in hosts is able to affect expression of the target gene in the parasite. High throughput sequencing of host-parasite associations has the potential to greatly accelerate understanding of this remarkable interaction.
Collapse
Affiliation(s)
- Gunjune Kim
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Latham Hall (0390), Blacksburg, VA 24061, USA
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Latham Hall (0390), Blacksburg, VA 24061, USA.
| |
Collapse
|
44
|
Yang Z, Wafula EK, Honaas LA, Zhang H, Das M, Fernandez-Aparicio M, Huang K, Bandaranayake PCG, Wu B, Der JP, Clarke CR, Ralph PE, Landherr L, Altman NS, Timko MP, Yoder JI, Westwood JH, dePamphilis CW. Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty. Mol Biol Evol 2014; 32:767-90. [PMID: 25534030 PMCID: PMC4327159 DOI: 10.1093/molbev/msu343] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative “parasitism genes.” Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Loren A Honaas
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Huiting Zhang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Department of Biology, The Pennsylvania State University
| | - Malay Das
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University
| | - Monica Fernandez-Aparicio
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University Department of Biology, University of Virginia
| | - Kan Huang
- Department of Biology, University of Virginia
| | | | - Biao Wu
- Department of Plant Sciences, University of California, Davis
| | - Joshua P Der
- Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Christopher R Clarke
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University
| | - Lena Landherr
- Department of Biology, The Pennsylvania State University
| | - Naomi S Altman
- Department of Statistics and Huck Institutes of the Life Sciences, The Pennsylvania State University
| | | | - John I Yoder
- Department of Plant Sciences, University of California, Davis
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University
| | - Claude W dePamphilis
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| |
Collapse
|
45
|
Kim G, LeBlanc ML, Wafula EK, dePamphilis CW, Westwood JH. Plant science. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 2014; 345:808-11. [PMID: 25124438 DOI: 10.1126/science.1253122] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Movement of RNAs between cells of a single plant is well documented, but cross-species RNA transfer is largely unexplored. Cuscuta pentagona (dodder) is a parasitic plant that forms symplastic connections with its hosts and takes up host messenger RNAs (mRNAs). We sequenced transcriptomes of Cuscuta growing on Arabidopsis and tomato hosts to characterize mRNA transfer between species and found that mRNAs move in high numbers and in a bidirectional manner. The mobile transcripts represented thousands of different genes, and nearly half the expressed transcriptome of Arabidopsis was identified in Cuscuta. These findings demonstrate that parasitic plants can exchange large proportions of their transcriptomes with hosts, providing potential mechanisms for RNA-based interactions between species and horizontal gene transfer.
Collapse
Affiliation(s)
- Gunjune Kim
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Megan L LeBlanc
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric K Wafula
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Claude W dePamphilis
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|