1
|
Nan Q, Liang H, Mendoza J, Liu L, Fulzele A, Wright A, Bennett EJ, Rasmussen CG, Facette MR. The OPAQUE1/DISCORDIA2 myosin XI is required for phragmoplast guidance during asymmetric cell division in maize. THE PLANT CELL 2023; 35:2678-2693. [PMID: 37017144 PMCID: PMC10291028 DOI: 10.1093/plcell/koad099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Formative asymmetric divisions produce cells with different fates and are critical for development. We show the maize (Zea mays) myosin XI protein, OPAQUE1 (O1), is necessary for asymmetric divisions during maize stomatal development. We analyzed stomatal precursor cells before and during asymmetric division to determine why o1 mutants have abnormal division planes. Cell polarization and nuclear positioning occur normally in the o1 mutant, and the future site of division is correctly specified. The defect in o1 becomes apparent during late cytokinesis, when the phragmoplast forms the nascent cell plate. Initial phragmoplast guidance in o1 is normal; however, as phragmoplast expansion continues o1 phragmoplasts become misguided. To understand how O1 contributes to phragmoplast guidance, we identified O1-interacting proteins. Maize kinesins related to the Arabidopsis thaliana division site markers PHRAGMOPLAST ORIENTING KINESINs (POKs), which are also required for correct phragmoplast guidance, physically interact with O1. We propose that different myosins are important at multiple steps of phragmoplast expansion, and the O1 actin motor and POK-like microtubule motors work together to ensure correct late-stage phragmoplast guidance.
Collapse
Affiliation(s)
- Qiong Nan
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Hong Liang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Janette Mendoza
- Department of Botany, University of New Mexico, Albuquerque, NM 87131, USA
| | - Le Liu
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Amit Fulzele
- Division of Biological Sciences, University of California, Riverside, CA 92093, USA
| | - Amanda Wright
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Eric J Bennett
- Division of Biological Sciences, University of California, Riverside, CA 92093, USA
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Michelle R Facette
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Tian X, Wang X, Li Y. Myosin XI-B is involved in the transport of vesicles and organelles in pollen tubes of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1145-1161. [PMID: 34559914 DOI: 10.1111/tpj.15505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The movement of organelles and vesicles in pollen tubes depends on F-actin. However, the molecular mechanism through which plant myosin XI drives the movement of organelles is still controversial, and the relationship between myosin XI and vesicle movement in pollen tubes is also unclear. In this study, we found that the siliques of the myosin xi-b/e mutant were obviously shorter than those of the wild-type (WT) and that the seed set of the mutant was severely deficient. The pollen tube growth of myosin xi-b/e was significantly inhibited both in vitro and in vivo. Fluorescence recovery after photobleaching showed that the velocity of vesicle movement in the pollen tube tip of the myosin xi-b/e mutant was lower than that of the WT. It was also found that peroxisome movement was significantly inhibited in the pollen tubes of the myosin xi-b/e mutant, while the velocities of the Golgi stack and mitochondrial movement decreased relatively less in the pollen tubes of the mutant. The endoplasmic reticulum streaming in the pollen tube shanks was not significantly different between the WT and the myosin xi-b/e mutant. In addition, we found that myosin XI-B-GFP colocalized obviously with vesicles and peroxisomes in the pollen tubes of Arabidopsis. Taken together, these results indicate that myosin XI-B may bind mainly to vesicles and peroxisomes, and drive their movement in pollen tubes. These results also suggest that the mechanism by which myosin XI drives organelle movement in plant cells may be evolutionarily conserved compared with other eukaryotic cells.
Collapse
Affiliation(s)
- Xiulin Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingjuan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Stephan L, Jakoby M, Das A, Koebke E, Hülskamp M. Unravelling the molecular basis of the dominant negative effect of myosin XI tails on P-bodies. PLoS One 2021; 16:e0252327. [PMID: 34038472 PMCID: PMC8153422 DOI: 10.1371/journal.pone.0252327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/13/2021] [Indexed: 11/30/2022] Open
Abstract
The directional movement and positioning of organelles and macromolecules is essential for regulating and maintaining cellular functions in eukaryotic cells. In plants, these processes are actin-based and driven by class XI myosins, which transport various cargos in a directed manner. As the analysis of myosin function is challenging due to high levels of redundancy, dominant negative acting truncated myosins have frequently been used to study intracellular transport processes. A comparison of the dominant negative effect of the coiled-coil domains and the GTD domains revealed a much stronger inhibition of P-body movement by the GTD domains. In addition, we show that the GTD domain does not inhibit P-body movement when driven by a hybrid myosin in which the GTD domain was replaced by DCP2. These data suggest that the dominant negative effect of myosin tails involves a competition of the GTD domains for cargo binding sites.
Collapse
Affiliation(s)
- Lisa Stephan
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Marc Jakoby
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Arijit Das
- Faculty of Medicine, Institute of Medical Statistics and Computational Biology & Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - Eva Koebke
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
- * E-mail:
| |
Collapse
|
4
|
Diao M, Huang S. An Update on the Role of the Actin Cytoskeleton in Plasmodesmata: A Focus on Formins. FRONTIERS IN PLANT SCIENCE 2021; 12:647123. [PMID: 33659020 PMCID: PMC7917184 DOI: 10.3389/fpls.2021.647123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Cell-to-cell communication in plants is mediated by plasmodesmata (PD) whose permeability is tightly regulated during plant growth and development. The actin cytoskeleton has been implicated in regulating the permeability of PD, but the underlying mechanism remains largely unknown. Recent characterization of PD-localized formin proteins has shed light on the role and mechanism of action of actin in regulating PD-mediated intercellular trafficking. In this mini-review article, we will describe the progress in this area.
Collapse
Affiliation(s)
- Min Diao
- iHuman Institute, Shanghai Tech University, Shanghai, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Oikawa K, Hayashi M, Hayashi Y, Nishimura M. Re-evaluation of physical interaction between plant peroxisomes and other organelles using live-cell imaging techniques. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:836-852. [PMID: 30916439 DOI: 10.1111/jipb.12805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The dynamic behavior of organelles is essential for plant survival under various environmental conditions. Plant organelles, with various functions, migrate along actin filaments and contact other types of organelles, leading to physical interactions at a specific site called the membrane contact site. Recent studies have revealed the importance of physical interactions in maintaining efficient metabolite flow between organelles. In this review, we first summarize peroxisome function under different environmental conditions and growth stages to understand organelle interactions. We then discuss current knowledge regarding the interactions between peroxisome and other organelles, i.e., the oil bodies, chloroplast, and mitochondria from the perspective of metabolic and physiological regulation, with reference to various organelle interactions and techniques for estimating organelle interactions occurring in plant cells.
Collapse
Affiliation(s)
- Kazusato Oikawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, 526-0829, Japan
| | - Yasuko Hayashi
- Department of Biology, Faculty of science, Niigata University, Niigata, 950-2181, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| |
Collapse
|
6
|
Kumar AS, Park E, Nedo A, Alqarni A, Ren L, Hoban K, Modla S, McDonald JH, Kambhamettu C, Dinesh-Kumar SP, Caplan JL. Stromule extension along microtubules coordinated with actin-mediated anchoring guides perinuclear chloroplast movement during innate immunity. eLife 2018; 7:e23625. [PMID: 29338837 PMCID: PMC5815851 DOI: 10.7554/elife.23625] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Dynamic tubular extensions from chloroplasts called stromules have recently been shown to connect with nuclei and function during innate immunity. We demonstrate that stromules extend along microtubules (MTs) and MT organization directly affects stromule dynamics since stabilization of MTs chemically or genetically increases stromule numbers and length. Although actin filaments (AFs) are not required for stromule extension, they provide anchor points for stromules. Interestingly, there is a strong correlation between the direction of stromules from chloroplasts and the direction of chloroplast movement. Stromule-directed chloroplast movement was observed in steady-state conditions without immune induction, suggesting it is a general function of stromules in epidermal cells. Our results show that MTs and AFs may facilitate perinuclear clustering of chloroplasts during an innate immune response. We propose a model in which stromules extend along MTs and connect to AF anchor points surrounding nuclei, facilitating stromule-directed movement of chloroplasts to nuclei during innate immunity.
Collapse
Affiliation(s)
| | - Eunsook Park
- Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisUnited States
- The Genome Center, College of Biological SciencesUniversity of California, DavisDavisUnited States
| | - Alexander Nedo
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
| | - Ali Alqarni
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareNewarkUnited States
| | - Li Ren
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareNewarkUnited States
| | - Kyle Hoban
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
| | - Shannon Modla
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
| | - John H McDonald
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
| | - Chandra Kambhamettu
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareNewarkUnited States
- Department of Computer and Information Sciences, College of EngineeringUniversity of DelawareNewarkUnited States
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisUnited States
- The Genome Center, College of Biological SciencesUniversity of California, DavisDavisUnited States
| | - Jeffrey Lewis Caplan
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareNewarkUnited States
| |
Collapse
|
7
|
Sun H, Furt F, Vidali L. Myosin XI localizes at the mitotic spindle and along the cell plate during plant cell division in Physcomitrella patens. Biochem Biophys Res Commun 2018; 506:409-421. [PMID: 29339158 DOI: 10.1016/j.bbrc.2018.01.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023]
Abstract
Cell division is a fundamental biological process that has been extensively investigated in different systems. Similar to most eukaryotic cells, plant cells assemble a mitotic spindle to separate replicated chromosomes. In contrast, to complete cell division, plant cells assemble a phragmoplast, which is composed of aligned microtubules and actin filaments. This structure helps transport vesicles containing new cell wall material, which then fuse to form the cell plate; the cell plate will expand to create the new dividing cell wall. Because vesicles are known to be transported by myosin motors during interphase, we hypothesized this could also be the case during cell division and we investigated the localization of the plant homologue of myosin V - myosin XI, in cell division. In this work, we used the protonemal cells of the moss Physcomitrella patens as a model, because of its simple cellular morphology and ease to generate transgenic cell lines expressing fluorescent tagged proteins. Using a fluorescent protein fusion of myosin XI, we found that, during mitosis, this molecule appears to associate with the kinetochores immediately after nuclear envelope breakdown. Following metaphase, myosin XI stays associated with the spindle's midzone during the rest of mitosis, and when the phragmoplast is formed, it concentrates at the cell plate. Using an actin polymerization inhibitor, latrunculin B, we found that the association of myosin XI with the mitotic spindle and the phragmoplast are only partially dependent on the presence of filamentous actin. We also showed that myosin XI on the spindle partially overlaps with a v-SNARE vesicle marker but is not co-localized with the endoplasmic reticulum and a RabA vesicle marker. These observations suggest an actin-dependent and an actin-independent behavior of myosin XI during cell division, and provide novel insights to our understanding of the function of myosin XI during plant cell division.
Collapse
Affiliation(s)
- Hao Sun
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Fabienne Furt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| |
Collapse
|
8
|
Dual-targeting of Arabidopsis DMP1 isoforms to the tonoplast and the plasma membrane. PLoS One 2017; 12:e0174062. [PMID: 28384172 PMCID: PMC5383025 DOI: 10.1371/journal.pone.0174062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
The reports of dual-targeted proteins in plants have steadily increased over the past years. The vast majority of these proteins are soluble proteins distributed between compartments of the non-secretory pathway, predominantly chloroplasts and mitochondria. In contrast, dual-targeted transmembrane proteins, especially of the secretory pathway, are rare and the mechanisms leading to their differential targeting remain largely unknown. Here, we report dual-targeting of the Arabidopsis DUF679 Membrane Protein 1 (DMP1) to the tonoplast (TP) and the plasma membrane (PM). In Arabidopsis and tobacco two equally abundant DMP1 isoforms are synthesized by alternative translation initiation: a full length protein, DMP1.1, and a truncated one, DMP1.2, which lacks the N-terminal 19 amino acids including a TP-targeting dileucine motif. Accumulation of DMP1.1 and DMP1.2 in the TP and the PM, respectively, is Brefeldin A-sensitive, indicating transit via the Golgi. However, DMP1.2 interacts with DMP1.1, leading to extensive rerouting of DMP1.2 to the TP and “eclipsed” localization of DMP1.2 in the PM where it is barely visible by confocal laser scanning microscopy but clearly detectable by membrane fractionation. It is demonstrated that eGFP fusion to either DMP1 terminus can cause mistargeting artifacts: C-terminal fusion to DMP1.1 or DMP1.2 results in altered ER export and N-terminal fusion to DMP1.1 causes mistargeting to the PM, presumably by masking of the TP targeting signal. These results illustrate how the interplay of alternative translation initiation, presence or absence of targeting information and rerouting due to protein-protein interaction determines the ultimate distribution of a transmembrane protein between two membranes.
Collapse
|
9
|
Geitmann A, Nebenführ A. Navigating the plant cell: intracellular transport logistics in the green kingdom. Mol Biol Cell 2016; 26:3373-8. [PMID: 26416952 PMCID: PMC4591683 DOI: 10.1091/mbc.e14-10-1482] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions.
Collapse
Affiliation(s)
- Anja Geitmann
- Department of Biological Sciences, Institut de recherche en biologie végétale, University of Montreal, Montreal, QC H1X 2B2, Canada
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|
10
|
Neuhaus A, Eggeling C, Erdmann R, Schliebs W. Why do peroxisomes associate with the cytoskeleton? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1019-26. [DOI: 10.1016/j.bbamcr.2015.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
|
11
|
Abstract
Over the last few decades, our understanding of directed cell growth in different organisms has substantially improved. Tip-growing cells in plants elongate rapidly via targeted deposition of cell wall and membrane material at the cell apex, and use turgor pressure as a driving force for expansion. This type of polar growth requires a high degree of coordination between a plethora of cellular and extracellular components and compounds, including calcium dynamics, apoplastic reactive oxygen species and pH, the cytoskeleton, and vesicular trafficking. In this review, we attempt to outline and summarize the factors that control root hair growth and how they work together as a team.
Collapse
Affiliation(s)
- Amelie Mendrinna
- Max-Planck Institute for Molecular Plant PhysiologyAm Muehlenberg 1, 14476 PotsdamGermany
| | - Staffan Persson
- Max-Planck Institute for Molecular Plant PhysiologyAm Muehlenberg 1, 14476 PotsdamGermany
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of MelbourneParkville 3010, VictoriaAustralia
| |
Collapse
|
12
|
Cai G, Parrotta L, Cresti M. Organelle trafficking, the cytoskeleton, and pollen tube growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:63-78. [PMID: 25263392 DOI: 10.1111/jipb.12289] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 06/03/2023]
Abstract
The pollen tube is fundamental for the reproduction of seed plants. Characteristically, it grows relatively quickly and uni-directionally ("polarized growth") to extend the male gametophyte to reach the female gametophyte. The pollen tube forms a channel through which the sperm cells move so that they can reach their targets in the ovule. To grow quickly and directionally, the pollen tube requires an intense movement of organelles and vesicles that allows the cell's contents to be distributed to sustain the growth rate. While the various organelles distribute more or less uniformly within the pollen tube, Golgi-released secretory vesicles accumulate massively at the pollen tube apex, that is, the growing region. This intense movement of organelles and vesicles is dependent on the dynamics of the cytoskeleton, which reorganizes differentially in response to external signals and coordinates membrane trafficking with the growth rate of pollen tubes.
Collapse
Affiliation(s)
- Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | | | | |
Collapse
|
13
|
Buchnik L, Abu-Abied M, Sadot E. Role of plant myosins in motile organelles: is a direct interaction required? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:23-30. [PMID: 25196231 DOI: 10.1111/jipb.12282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/31/2014] [Indexed: 06/03/2023]
Abstract
Plant organelles are highly motile, with speed values of 3-7 µm/s in cells of land plants and about 20-60 µm/s in characean algal cells. This movement is believed to be important for rapid distribution of materials around the cell, for the plant's ability to respond to environmental biotic and abiotic signals and for proper growth. The main machinery that propels motility of organelles within plant cells is based on the actin cytoskeleton and its motor proteins the myosins. Most plants express multiple members of two main classes: myosin VIII and myosin XI. While myosin VIII has been characterized as a slow motor protein, myosins from class XI were found to be the fastest motor proteins known in all kingdoms. Paradoxically, while it was found that myosins from class XI regulate most organelle movement, it is not quite clear how or even if these motor proteins attach to the organelles whose movement they regulate.
Collapse
Affiliation(s)
- Limor Buchnik
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan, 50250, Israel
| | | | | |
Collapse
|
14
|
Henn A, Sadot E. The unique enzymatic and mechanistic properties of plant myosins. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:65-70. [PMID: 25435181 DOI: 10.1016/j.pbi.2014.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/04/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Myosins are molecular motors that move along actin-filament tracks. Plants express two main classes of myosins, myosin VIII and myosin XI. Along with their relatively conserved sequence and functions, plant myosins have acquired some unique features. Myosin VIII has the enzymatic characteristics of a tension sensor and/or a tension generator, similar to functions found in other eukaryotes. Interestingly, class XI plant myosins have gained a novel function that consists of propelling the exceptionally rapid cytoplasmic streaming. This specific class includes the fastest known translocating molecular motors, which can reach an extremely high velocity of about 60μms(-1). However, the enzymatic properties and mechanistic basis for these remarkable manifestations are not yet fully understood. Here we review recent progress in understanding the uniqueness of plant myosins, while emphasizing the unanswered questions.
Collapse
Affiliation(s)
- Arnon Henn
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Einat Sadot
- The Institute of Plant Sciences, Volcani Center, PO Box 6, Bet-Dagan 5025000, Israel.
| |
Collapse
|
15
|
Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J. Root hairs. THE ARABIDOPSIS BOOK 2014; 12:e0172. [PMID: 24982600 PMCID: PMC4075452 DOI: 10.1199/tab.0172] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology.
Collapse
Affiliation(s)
- Claire Grierson
- School of Biological Sciences, University of Bristol, Bristol, UK BS8 1UG
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Tijs Ketelaarc
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 48109
| |
Collapse
|
16
|
Haraguchi T, Tominaga M, Matsumoto R, Sato K, Nakano A, Yamamoto K, Ito K. Molecular characterization and subcellular localization of Arabidopsis class VIII myosin, ATM1. J Biol Chem 2014; 289:12343-55. [PMID: 24637024 PMCID: PMC4007431 DOI: 10.1074/jbc.m113.521716] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/12/2014] [Indexed: 02/02/2023] Open
Abstract
Land plants possess myosin classes VIII and XI. Although some information is available on the molecular properties of class XI myosins, class VIII myosins are not characterized. Here, we report the first analysis of the enzymatic properties of class VIII myosin. The motor domain of Arabidopsis class VIII myosin, ATM1 (ATM1-MD), and the motor domain plus one IQ motif (ATM1-1IQ) were expressed in a baculovirus system and characterized. ATM1-MD and ATM1-1IQ had low actin-activated Mg(2+)-ATPase activity (Vmax = 4 s(-1)), although their affinities for actin were high (Kactin = 4 μM). The actin-sliding velocities of ATM1-MD and ATM1-1IQ were 0.02 and 0.089 μm/s, respectively, from which the value for full-length ATM1 is calculated to be ∼0.2 μm/s. The results of actin co-sedimentation assay showed that the duty ratio of ATM1 was ∼90%. ADP dissociation from the actin·ATM1 complex (acto-ATM1) was extremely slow, which accounts for the low actin-sliding velocity, low actin-activated ATPase activity, and high duty ratio. The rate of ADP dissociation from acto-ATM1 was markedly biphasic with fast and slow phase rates (5.1 and 0.41 s(-1), respectively). Physiological concentrations of free Mg(2+) modulated actin-sliding velocity and actin-activated ATPase activity by changing the rate of ADP dissociation from acto-ATM1. GFP-fused full-length ATM1 expressed in Arabidopsis was localized to plasmodesmata, plastids, newly formed cell walls, and actin filaments at the cell cortex. Our results suggest that ATM1 functions as a tension sensor/generator at the cell cortex and other structures in Arabidopsis.
Collapse
Affiliation(s)
- Takeshi Haraguchi
- From the Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522
| | - Motoki Tominaga
- the Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198
- the Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, and
| | - Rie Matsumoto
- From the Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522
| | - Kei Sato
- the Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- the Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198
- the Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichi Yamamoto
- From the Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522
| | - Kohji Ito
- From the Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522
| |
Collapse
|
17
|
Steffens A, Jaegle B, Tresch A, Hülskamp M, Jakoby M. Processing-body movement in Arabidopsis depends on an interaction between myosins and DECAPPING PROTEIN1. PLANT PHYSIOLOGY 2014; 164:1879-92. [PMID: 24525673 PMCID: PMC3982750 DOI: 10.1104/pp.113.233031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/12/2014] [Indexed: 05/18/2023]
Abstract
Processing (P)-bodies are cytoplasmic RNA protein aggregates responsible for the storage, degradation, and quality control of translationally repressed messenger RNAs in eukaryotic cells. In mammals, P-body-related RNA and protein exchanges are actomyosin dependent, whereas P-body movement requires intact microtubules. In contrast, in plants, P-body motility is actin based. In this study, we show the direct interaction of the P-body core component DECAPPING PROTEIN1 (DCP1) with the tails of different unconventional myosins in Arabidopsis (Arabidopsis thaliana). By performing coexpression studies with AtDCP1, dominant-negative myosin fragments, as well as functional full-length myosin XI-K, the association of P-bodies and myosins was analyzed in detail. Finally, the combination of mutant analyses and characterization of P-body movement patterns showed that myosin XI-K is essential for fast and directed P-body transport. Together, our data indicate that P-body movement in plants is governed by myosin XI members through direct binding to AtDCP1 rather than through an adapter protein, as known for membrane-coated organelles. Interspecies and intraspecies interaction approaches with mammalian and yeast protein homologs suggest that this mechanism is evolutionarily conserved among eukaryotes.
Collapse
|
18
|
The circular F-actin bundles provide a track for turnaround and bidirectional movement of mitochondria in Arabidopsis root hair. PLoS One 2014; 9:e91501. [PMID: 24626218 PMCID: PMC3953408 DOI: 10.1371/journal.pone.0091501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/10/2014] [Indexed: 12/20/2022] Open
Abstract
Background The movement of organelles in root hairs primarily occurs along the actin cytoskeleton. Circulation and “reverse fountain” cytoplasmic streaming constitute the typical forms by which most organelles (such as mitochondria and the Golgi apparatus) in plant root hair cells engage in bidirectional movement. However, there remains a lack of in-depth research regarding the relationship between the distribution of the actin cytoskeleton and turnaround organelle movement in plant root hair cells. Results In this paper, Arabidopsis seedlings that had been stably transformed with a GFP-ABD2-GFP (green fluorescent protein-actin-binding domain 2-green fluorescent protein) construct were utilized to study the distribution of bundles of filamentous (F)-actin and the directed motion of mitochondria along these bundles in root hairs. Observations with a confocal laser scanning microscope revealed that there were widespread circular F-actin bundles in the epidermal cells and root hairs of Arabidopsis roots. In root hairs, these circular bundles primarily start at the sub-apical region, which is the location where the turnaround movement of organelles occurs. MitoTracker probes were used to label mitochondria, and the dynamic observation of root hair cells with a confocal laser scanning microscope indicated that turnaround mitochondrial movement occurred along circular F-actin bundles. Conclusions Relevant experimental results demonstrated that the circular F-actin bundles provide a track for the turnaround and bidirectional movement of mitochondria.
Collapse
|
19
|
Chloroplast Movement in Higher Plants, Ferns and Bryophytes: A Comparative Point of View. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-007-6988-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Ketelaar T. The actin cytoskeleton in root hairs: all is fine at the tip. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:749-56. [PMID: 24446547 DOI: 10.1016/j.pbi.2013.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Filamentous actin forms characteristic bundles in plant cells that facilitate cytoplasmic streaming. In contrast, networks of actin exhibiting fast turnover are found especially near sites of rapid cell expansion. These networks may serve various functions including delivering and retaining vesicles while preventing penetration of organelles into the area where cell growth occurs thereby allowing fast turnover of vesicles to and from the plasma membrane. Root hairs elongate by polarized growth at their tips and the local accumulation of fine F-actin near the tip has provided valuable insight into the organization of these networks. Here we will sequentially focus on the role of the actin cytoskeleton in root hair tip growth and on how activities of different actin binding proteins in the apical part of growing root hairs contribute to build the fine F-actin configuration that correlates with tip growth.
Collapse
|
21
|
Madison SL, Nebenführ A. Understanding myosin functions in plants: are we there yet? CURRENT OPINION IN PLANT BIOLOGY 2013; 16:710-717. [PMID: 24446546 DOI: 10.1016/j.pbi.2013.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Myosins are motor proteins that drive movements along actin filaments and have long been assumed to be responsible for cytoplasmic streaming in plant cells. This conjecture is now firmly established by genetic analysis in the reference species, Arabidopsis thaliana. This work and similar approaches in the moss, Physcomitrella patens, also established that myosin-driven movements are necessary for cell growth and polarity, organelle distribution and shape, and actin organization and dynamics. Identification of a mechanistic link between intracellular movements and cell expansion has proven more challenging, not the least because of the high level of apparent genetic redundancy among myosin family members. Recent progress in the creation of functional complementation constructs and identification of interaction partners promises a way out of this dilemma.
Collapse
|
22
|
Park E, Nebenführ A. Myosin XIK of Arabidopsis thaliana accumulates at the root hair tip and is required for fast root hair growth. PLoS One 2013; 8:e76745. [PMID: 24116145 PMCID: PMC3792037 DOI: 10.1371/journal.pone.0076745] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Myosin motor proteins are thought to carry out important functions in the establishment and maintenance of cell polarity by moving cellular components such as organelles, vesicles, or protein complexes along the actin cytoskeleton. In Arabidopsis thaliana, disruption of the myosin XIK gene leads to reduced elongation of the highly polar root hairs, suggesting that the encoded motor protein is involved in this cell growth. Detailed live-cell observations in this study revealed that xik root hairs elongated more slowly and stopped growth sooner than those in wild type. Overall cellular organization including the actin cytoskeleton appeared normal, but actin filament dynamics were reduced in the mutant. Accumulation of RabA4b-containing vesicles, on the other hand, was not significantly different from wild type. A functional YFP-XIK fusion protein that could complement the mutant phenotype accumulated at the tip of growing root hairs in an actin-dependent manner. The distribution of YFP-XIK at the tip, however, did not match that of the ER or several tip-enriched markers including CFP-RabA4b. We conclude that the myosin XIK is required for normal actin dynamics and plays a role in the subapical region of growing root hairs to facilitate optimal growth.
Collapse
Affiliation(s)
- Eunsook Park
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
23
|
Carrie C, Whelan J. Widespread dual targeting of proteins in land plants: when, where, how and why. PLANT SIGNALING & BEHAVIOR 2013; 8:25034. [PMID: 23733068 PMCID: PMC3999085 DOI: 10.4161/psb.25034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Since the discovery of the first dual targeted protein in plants in 1995 the number of dual targeted proteins in plants has grown to over 250 proteins. Much work and investigations have focused on identifying how or what makes a protein dual targeted. Recently, more research has focused on the evolution and conservation of dual targeting of proteins in plants. This new work has demonstrated that dual targeting arose early within the evolution of plants and because it is rarely lost, once gained, it must be under some positive selection pressure. The possible reasons as why proteins are dual targeted and why it was conserved during the evolution of plants are discussed.
Collapse
Affiliation(s)
- Chris Carrie
- Department of Biology I, Botany; Ludwig-Maximilians Universität München; Planegg-Martinsried, Germany
- Correspondence to: Chris Carrie,
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; Crawley, WA Australia
| |
Collapse
|
24
|
Brandizzi F, Wasteneys GO. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:339-49. [PMID: 23647215 DOI: 10.1111/tpj.12227] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 05/07/2023]
Abstract
Movement of secretory organelles is a fascinating yet largely mysterious feature of eukaryotic cells. Microtubule-based endomembrane and organelle motility utilizing the motor proteins dynein and kinesin is commonplace in animal cells. In contrast, it has been long accepted that intracellular motility in plant cells is predominantly driven by myosin motors dragging organelles and endomembrane-bounded cargo along actin filament bundles. Consistent with this, defects in the acto-myosin cytoskeleton compromise plant growth and development. Recent findings, however, challenge the actin-centric view of the motility of critical secretory organelles and distribution of associated protein machinery. In this review, we provide an overview of the current knowledge on actin-mediated organelle movement within the secretory pathway of plant cells, and report on recent and exciting findings that support a critical role of microtubules in plant cell development, in fine-tuning the positioning of Golgi stacks, as well as their involvement in cellulose synthesis and auxin polar transport. These emerging aspects of the biology of microtubules highlight adaptations of an ancestral machinery that plants have specifically evolved to support the functioning of the acto-myosin cytoskeleton, and mark new trends in our global appreciation of the complexity of organelle movement within the plant secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-Department of Energy-Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824-1312, USA
| | | |
Collapse
|
25
|
|
26
|
Sattarzadeh A, Schmelzer E, Hanson MR. Arabidopsis myosin XI sub-domains homologous to the yeast myo2p organelle inheritance sub-domain target subcellular structures in plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:407. [PMID: 24187546 PMCID: PMC3807578 DOI: 10.3389/fpls.2013.00407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/26/2013] [Indexed: 05/20/2023]
Abstract
Myosin XI motor proteins transport plant organelles on the actin cytoskeleton. The Arabidopsis gene family that encodes myosin XI has 13 members, 12 of which have sub-domains within the tail region that are homologous to well-characterized cargo-binding domains in the yeast myosin V myo2p. Little is presently known about the cargo-binding domains of plant myosin XIs. Prior experiments in which most or all of the tail regions of myosin XIs have been fused to yellow fluorescent protein (YFP) and transiently expressed have often not resulted in fluorescent labeling of plant organelles. We identified 42 amino-acid regions within 12 Arabidopsis myosin XIs that are homologous to the yeast myo2p tail region known to be essential for vacuole and mitochondrial inheritance. A YFP fusion of the yeast region expressed in plants did not label tonoplasts or mitochondria. We investigated whether the homologous Arabidopsis regions, termed by us the "PAL" sub-domain, could associate with subcellular structures following transient expression of fusions with YFP in Nicotiana benthamiana. Seven YFP::PAL sub-domain fusions decorated Golgi and six were localized to mitochondria. In general, the myosin XI PAL sub-domains labeled organelles whose motility had previously been observed to be affected by mutagenesis or dominant negative assays with the respective myosins. Simultaneous transient expression of the PAL sub-domains of myosin XI-H, XI-I, and XI-K resulted in inhibition of movement of mitochondria and Golgi.
Collapse
Affiliation(s)
- Amirali Sattarzadeh
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
| | - Elmon Schmelzer
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Elmon Schmelzer, Central Microscopy Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany e-mail:
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
27
|
Peremyslov VV, Klocko AL, Fowler JE, Dolja VV. Arabidopsis Myosin XI-K Localizes to the Motile Endomembrane Vesicles Associated with F-actin. FRONTIERS IN PLANT SCIENCE 2012; 3:184. [PMID: 22969781 PMCID: PMC3432474 DOI: 10.3389/fpls.2012.00184] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/28/2012] [Indexed: 05/18/2023]
Abstract
Plant myosins XI were implicated in cell growth, F-actin organization, and organelle transport, with myosin XI-K being a critical contributor to each of these processes. However, subcellular localization of myosins and the identity of their principal cargoes remain poorly understood. Here, we generated a functionally competent, fluorescent protein-tagged, myosin XI-K, and investigated its spatial distribution within Arabidopsis cells. This myosin was found to associate primarily not with larger organelles (e.g., Golgi) as was broadly assumed, but with endomembrane vesicles trafficking along F-actin. Subcellular localization and fractionation experiments indicated that the nature of myosin-associated vesicles is organ- and cell type-specific. In leaves, a large proportion of these vesicles aligned and co-fractionated with a motile endoplasmic reticulum (ER) subdomain. In roots, non-ER vesicles were a dominant myosin cargo. Myosin XI-K showed a striking polar localization at the tips of growing, but not mature, root hairs. These results strongly suggest that a major mechanism whereby myosins contribute to plant cell physiology is vesicle transport, and that this activity can be regulated depending on the growth phase of a cell.
Collapse
Affiliation(s)
- Valera V. Peremyslov
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - Amy L. Klocko
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - John E. Fowler
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| |
Collapse
|
28
|
Ojangu EL, Tanner K, Pata P, Järve K, Holweg CL, Truve E, Paves H. Myosins XI-K, XI-1, and XI-2 are required for development of pavement cells, trichomes, and stigmatic papillae in Arabidopsis. BMC PLANT BIOLOGY 2012; 12:81. [PMID: 22672737 PMCID: PMC3424107 DOI: 10.1186/1471-2229-12-81] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 05/28/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND The positioning and dynamics of vesicles and organelles, and thus the growth of plant cells, is mediated by the acto-myosin system. In Arabidopsis there are 13 class XI myosins which mediate vesicle and organelle transport in different cell types. So far the involvement of five class XI myosins in cell expansion during the shoot and root development has been shown, three of which, XI-1, XI-2, and XI-K, are essential for organelle transport. RESULTS Simultaneous depletion of Arabidopsis class XI myosins XI-K, XI-1, and XI-2 in double and triple mutant plants affected the growth of several types of epidermal cells. The size and shape of trichomes, leaf pavement cells and the elongation of the stigmatic papillae of double and triple mutant plants were affected to different extent. Reduced cell size led to significant size reduction of shoot organs in the case of triple mutant, affecting bolt formation, flowering time and fertility. Phenotype analysis revealed that the reduced fertility of triple mutant plants was caused by delayed or insufficient development of pistils. CONCLUSIONS We conclude that the class XI myosins XI-K, XI-1 and XI-2 have partially redundant roles in the growth of shoot epidermis. Myosin XI-K plays more important role whereas myosins XI-1 and XI-2 have minor roles in the determination of size and shape of epidermal cells, because the absence of these two myosins is compensated by XI-K. Co-operation between myosins XI-K and XI-2 appears to play an important role in these processes.
Collapse
Affiliation(s)
- Eve-Ly Ojangu
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Krista Tanner
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Pille Pata
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Kristel Järve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Carola L Holweg
- Nachhaltigkeits-Projekte, Alte Str. 13, 79249, Merzhausen, Germany
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Heiti Paves
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
29
|
Furt F, Lemoi K, Tüzel E, Vidali L. Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells. BMC PLANT BIOLOGY 2012; 12:70. [PMID: 22594499 PMCID: PMC3476433 DOI: 10.1186/1471-2229-12-70] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/17/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND In the last decade, the moss Physcomitrella patens has emerged as a powerful plant model system, amenable for genetic manipulations not possible in any other plant. This moss is particularly well suited for plant polarized cell growth studies, as in its protonemal phase, expansion is restricted to the tip of its cells. Based on pollen tube and root hair studies, it is well known that tip growth requires active secretion and high polarization of the cellular components. However, such information is still missing in Physcomitrella patens. To gain insight into the mechanisms underlying the participation of organelle organization in tip growth, it is essential to determine the distribution and the dynamics of the organelles in moss cells. RESULTS We used fluorescent protein fusions to visualize and track Golgi dictyosomes, mitochondria, and peroxisomes in live protonemal cells. We also visualized and tracked chloroplasts based on chlorophyll auto-fluorescence. We showed that in protonemata all four organelles are distributed in a gradient from the tip of the apical cell to the base of the sub-apical cell. For example, the density of Golgi dictyosomes is 4.7 and 3.4 times higher at the tip than at the base in caulonemata and chloronemata respectively. While Golgi stacks are concentrated at the extreme tip of the caulonemata, chloroplasts and peroxisomes are totally excluded. Interestingly, caulonemata, which grow faster than chloronemata, also contain significantly more Golgi dictyosomes and fewer chloroplasts than chloronemata. Moreover, the motility analysis revealed that organelles in protonemata move with low persistency and average instantaneous speeds ranging from 29 to 75 nm/s, which are at least three orders of magnitude slower than those of pollen tube or root hair organelles. CONCLUSIONS To our knowledge, this study reports the first quantitative analysis of organelles in Physcomitrella patens and will make possible comparisons of the distribution and dynamics of organelles from different tip growing plant cells, thus enhancing our understanding of the mechanisms of plant polarized cell growth.
Collapse
Affiliation(s)
- Fabienne Furt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Kyle Lemoi
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Erkan Tüzel
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| |
Collapse
|
30
|
Avisar D, Abu-Abied M, Belausov E, Sadot E. Myosin XIK is a major player in cytoplasm dynamics and is regulated by two amino acids in its tail. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:241-9. [PMID: 21914656 PMCID: PMC3245463 DOI: 10.1093/jxb/err265] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 05/18/2023]
Abstract
It has recently been found that among the 17 Arabidopsis myosins, six (XIC, XIE, XIK, XI-I, MYA1, and MYA2) have a major role in the motility of Golgi bodies and mitochondria in Nicotiana benthamiana and Nicotiana tabacum. Here, the same dominant negative tail fragments were also found to arrest the movement of Gogi bodies when transiently expressed in Arabidopsis plants. However, when a Golgi marker was transiently expressed in plants knocked out in these myosins, its movement was dramatically inhibited only in the xik mutant. In addition, a tail fragment of myosin XIK could inhibit the movement of several post-Golgi organelles, such as the trans-Golgi network, pre-vacuolar compartment, and endosomes, as well as total cytoplasmic streaming, suggesting that myosin XIK is a major player in cytoplasm kinetics. However, no co-localization of myosin tails with the arrested organelles was observed. Several deletion truncations of the myosin XIK tail were generated to corroborate function with localization. All deletion mutants possessing an inhibitory effect on organelle movement exhibited a diffuse cytoplasmic distribution. Point mutations in the tail of myosin XIK revealed that Arg1368 and Arg1443 are essential for its activity. These residues correspond to Lys1706 and Lys1779 from mouse myosin Va, which mediate the inhibitory head-tail interaction in this myosin. Therefore, such an interaction might underlie the dominant negative effect of truncated plant myosin tails and explain the mislocalization with target organelles.
Collapse
Affiliation(s)
| | | | | | - Einat Sadot
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Takacs EM, Suzuki M, Scanlon MJ. Discolored1 (DSC1) is an ADP-Ribosylation Factor-GTPase Activating Protein Required to Maintain Differentiation of Maize Kernel Structures. FRONTIERS IN PLANT SCIENCE 2012; 3:115. [PMID: 22666226 PMCID: PMC3364507 DOI: 10.3389/fpls.2012.00115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/14/2012] [Indexed: 05/20/2023]
Abstract
The embryo and endosperm are the products of double fertilization and comprise the clonally distinct products of angiosperm seed development. Recessive mutations in the maize gene discolored1 (dsc1) condition inviable seed that are defective in both embryo and endosperm development. Here, detailed phenotypic analyses illustrate that discolored mutant kernels are able to establish, but fail to maintain, differentiated embryo, and endosperm structures. Development of the discolored mutant embryo and endosperm is normal albeit delayed, prior to the abortion and subsequent degeneration of all differentiated kernel structures. Using a genomic fragment that was previously isolated by transposon tagging, the full length dsc1 transcript is identified and shown to encode an ADP-ribosylation factor-GTPase activating protein (ARF-GAP) that co-localizes with the trans-Golgi network/early endosomes and the plasma membrane during transient expression assays in N. benthamiana leaves. DSC1 function during endomembrane trafficking and the maintenance of maize kernel differentiation is discussed.
Collapse
Affiliation(s)
| | - Masaharu Suzuki
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
| | - Michael J. Scanlon
- Department of Plant Biology, Cornell UniversityIthaca, NY, USA
- *Correspondence: Michael J. Scanlon, Department of Plant Biology, Cornell University, 412 Mann Library, Ithaca, NY 14853, USA. e-mail:
| |
Collapse
|
32
|
White RG, Barton DA. The cytoskeleton in plasmodesmata: a role in intercellular transport? JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5249-66. [PMID: 21862484 DOI: 10.1093/jxb/err227] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Actin and myosin are components of the plant cell cytoskeleton that extend from cell to cell through plasmodesmata (PD), but it is unclear how they are organized within the cytoplasmic sleeve or how they might behave as regulatory elements. Early work used antibodies to locate actin and myosin to PD, at the electron microscope level, or to pitfields (aggregations of PD in the cell wall), using immunofluorescence techniques. More recently, a green fluorescent protein (GFP)-tagged plant myosin VIII was located specifically at PD-rich pitfields in cell walls. Application of actin or myosin disrupters may modify the conformation of PD and alter rates of cell-cell transport, providing evidence for a role in regulating PD permeability. Intriguingly, there is now evidence of differentiation between types of PD, some of which open in response to both actin and myosin disrupters, and others which are unaffected by actin disrupters or which close in response to myosin inhibitors. Viruses also interact with elements of the cytoskeleton for both intracellular and intercellular transport. The precise function of the cytoskeleton in PD may change during cell development, and may not be identical in all tissue types, or even in all PD within a single cell. Nevertheless, it is likely that actin- and myosin-associated proteins play a key role in regulating cell-cell transport, by interacting with cargo and loading it into PD, and may underlie the capacity for one-way transport across particular cell and tissue boundaries.
Collapse
Affiliation(s)
- Rosemary G White
- Commonwealth Scientific and Industrial Research Organisation, Division of Plant Industry, Canberra, ACT 2601, Australia.
| | | |
Collapse
|
33
|
Sparkes I. Recent advances in understanding plant myosin function: life in the fast lane. MOLECULAR PLANT 2011; 4:805-812. [PMID: 21772028 DOI: 10.1093/mp/ssr063] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant myosins are required for organelle movement, and a role in actin organization has recently come to light. Myosin mutants display several gross morphological phenotypes, the most severe being dwarfism and reduced fecundity, and there is a correlation between reduced organelle movement and morphological defects. This review aims to discuss recent findings in plants relating to the role of myosins in actin dynamics, development, and organelle movement, more specifically the endoplasmic reticulum (ER). One overarching theme is that there still appear to be more questions than answers relating to plant myosin function and regulation.
Collapse
Affiliation(s)
- Imogen Sparkes
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
34
|
Kong SG, Wada M. New insights into dynamic actin-based chloroplast photorelocation movement. MOLECULAR PLANT 2011; 4:771-81. [PMID: 21772030 DOI: 10.1093/mp/ssr061] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chloroplast movement is essential for plants to survive under various environmental light conditions. Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction. Recently, novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement. Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses. This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments, thus providing a basis for reflection on their biochemical activities and functions.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biology, Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | |
Collapse
|
35
|
Zhang Z, Zhang Y, Tan H, Wang Y, Li G, Liang W, Yuan Z, Hu J, Ren H, Zhang D. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. THE PLANT CELL 2011; 23:681-700. [PMID: 21307283 PMCID: PMC3077795 DOI: 10.1105/tpc.110.081349] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/01/2011] [Accepted: 01/18/2011] [Indexed: 05/19/2023]
Abstract
Multicellular organisms contain a large number of formins; however, their physiological roles in plants remain poorly understood. Here, we reveal that formin homology 5 (FH5), a type II formin mutated in rice morphology determinant (rmd), plays a crucial role in determining rice (Oryza sativa) morphology. FH5/RMD encodes a formin-like protein consisting of an N-terminal phosphatase tensin (PTEN)-like domain, an FH1 domain, and an FH2 domain. The rmd mutants display a bending growth pattern in seedlings, are stunted as adult plants, and have aberrant inflorescence (panicle) and seed shape. Cytological analysis showed that rmd mutants have severe cell elongation defects and abnormal microtubule and microfilament arrays. FH5/RMD is ubiquitously expressed in rice tissues, and its protein localization to the chloroplast surface is mediated by the PTEN domain. Biochemical assays demonstrated that recombinant FH5 protein can nucleate actin polymerization from monomeric G-actin or actin/profilin complexes, cap the barbed end of actin filaments, and bundle actin filaments in vitro. Moreover, FH5 can directly bind to and bundle microtubules through its FH2 domain in vitro. Our findings suggest that the rice formin protein FH5 plays a critical role in determining plant morphology by regulating actin dynamics and proper spatial organization of microtubules and microfilaments.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Hexin Tan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Yuan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianping Hu
- Michigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Address correspondence to
| |
Collapse
|
36
|
Isayenkov S, Isner JC, Maathuis FJ. Rice two-pore K+ channels are expressed in different types of vacuoles. THE PLANT CELL 2011; 23:756-68. [PMID: 21224427 PMCID: PMC3077780 DOI: 10.1105/tpc.110.081463] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 11/30/2010] [Accepted: 12/17/2010] [Indexed: 05/17/2023]
Abstract
Potassium (K+) is a major nutrient for plant growth and development. Vacuolar K+ ion channels of the two-pore K+ (TPK) family play an important role in maintaining K+ homeostasis. Several TPK channels were previously shown to be expressed in the lytic vacuole (LV) tonoplast. Plants also contain smaller protein storage vacuoles (PSVs) that contain membrane transporters. However, the mechanisms that define how membrane proteins reach different vacuolar destinations are largely unknown. The Oryza sativa genome encodes two TPK isoforms (TPKa and TPKb) that have very similar sequences and are ubiquitously expressed. The electrophysiological properties of both TPKs were comparable, showing inward rectification and voltage independence. In spite of high levels of similarity in sequence and transport properties, the cellular localization of TPKa and TPKb channels was different, with TPKa localization predominantly at the large LV and TPKb primarily in smaller PSV-type compartments. Trafficking of TPKa was sensitive to brefeldin A, while that of TPKb was not. The use of TPKa:TPKb chimeras showed that C-terminal domains are crucial for the differential targeting of TPKa and TPKb. Site-directed mutagenesis of C-terminal residues that were different between TPKa and TPKb identified three amino acids that are important in determining ultimate vacuolar destination.
Collapse
Affiliation(s)
| | | | - Frans J.M. Maathuis
- University of York, Biology Department/Area 9, York YO10 5DD, United Kingdom
| |
Collapse
|
37
|
Sattarzadeh A, Schmelzer E, Hanson MR. Analysis of Organelle Targeting by DIL Domains of the Arabidopsis Myosin XI Family. FRONTIERS IN PLANT SCIENCE 2011; 2:72. [PMID: 22645548 PMCID: PMC3355782 DOI: 10.3389/fpls.2011.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/16/2011] [Indexed: 05/07/2023]
Abstract
The Arabidopsis thaliana genome encodes 13 myosin XI motor proteins. Previous insertional mutant analysis has implicated substantial redundancy of function of plant myosin XIs in transport of intracellular organelles. Considerable information is available about the interaction of cargo with the myosin XI-homologous yeast myosin V protein myo2p. We identified a region in each of 12 myosin XI sequences that correspond to the yeast myo2p secretory-vesicle binding domain (the "DIL" domain). Structural modeling of the myosin DIL domain region of plant myosin XIs revealed significant similarity to the yeast myo2p and myo4p DIL domains. Transient expression of YFP fusions with the Arabidopsis myosin XI DIL domain resulted in fluorescent labeling of a variety of organelles, including the endoplasmic reticulum, peroxisomes, Golgi, and nuclear envelope. With the exception of the YFP::MYA1 DIL fusion, expression of the DIL-YFP fusions resulted in loss of motility of labeled organelles, consistent with a dominant-negative effect. Certain fusions resulted in localization to the cytoplasm, plasma membrane, or to unidentified vesicles. The same YFP-domain fusion sometimes labeled more than one organelle. Expression of a YFP fusion to a yeast myo2p DIL domain resulted in labeling of plant peroxisomes. Fusions with some of the myosin XI domains resulted in labeling of known cargoes of the particular myosin XI; however, certain myosin XI YFP fusions labeled organelles that had not previously been found to be detectably affected by mutations nor by expression of dominant-negative constructs.
Collapse
Affiliation(s)
- Amirali Sattarzadeh
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
| | - Elmon Schmelzer
- Central Microscopy, Max-Planck-Institute for Plant Breeding ResearchCologne, Germany
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
- *Correspondence: Maureen R. Hanson, Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA. e-mail:
| |
Collapse
|
38
|
Radford JE, White RG. Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata. PROTOPLASMA 2011; 248:205-16. [PMID: 21113638 DOI: 10.1007/s00709-010-0244-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 11/10/2010] [Indexed: 05/13/2023]
Abstract
Actin and myosin are components of plasmodesmata, the cytoplasmic channels between plant cells, but their role in regulating these channels is unclear. Here, we investigated the role of myosin in regulating plasmodesmata in a well-studied, simple system comprising single filaments of cells which form stamen hairs in Tradescantia virginiana flowers. Effects of myosin inhibitors were assessed by analysing cell-to-cell movement of fluorescent tracers microinjected into treated cells. Incubation in the myosin inhibitor, 2,3-butanedione monoxime (BDM) or injection of anti-myosin antibodies increased cell-cell transport of fluorescent dextrans, while treatment with the myosin inhibitor N-ethylmaleimide (NEM) decreased cell-cell transport. Pretreatment with the callose synthesis inhibitor, deoxy-D: -glucose (DDG), enhanced transport induced by BDM treatment or injection of myosin antibodies but did not relieve NEM-induced reduction in transport. In contrast to the myosin inhibitors, cell-to-cell transport was unaffected by treatment with the actin polymerisation inhibitor, latrunculin B, after controlling for callose synthesis with DDG. Transport was increased following azide treatment, and reduced after injection of ATP, as in previous studies. We propose that myosin detachment from actin, induced by BDM, opens T. virginiana plasmodesmata whereas the firm attachment of myosin to actin, promoted by NEM, closes them.
Collapse
Affiliation(s)
- Janine E Radford
- Department of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | | |
Collapse
|
39
|
Suetsugu N, Dolja VV, Wada M. Why have chloroplasts developed a unique motility system? PLANT SIGNALING & BEHAVIOR 2010; 5:1190-6. [PMID: 20855973 PMCID: PMC3115347 DOI: 10.4161/psb.5.10.12802] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 05/17/2023]
Abstract
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction, and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| | - Valerian V Dolja
- Department of Botany and Plant Pathology; Center for Genome Research and Biocomputing; Oregon State University; Corvallis, OR USA
| | - Masamitsu Wada
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| |
Collapse
|
40
|
Königer M, Jessen B, Yang R, Sittler D, Harris GC. Light, genotype, and abscisic acid affect chloroplast positioning in guard cells of Arabidopsis thaliana leaves in distinct ways. PHOTOSYNTHESIS RESEARCH 2010; 105:213-227. [PMID: 20614182 DOI: 10.1007/s11120-010-9580-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 06/24/2010] [Indexed: 05/29/2023]
Abstract
The goal of this study was to investigate the effects of light intensity, genotype, and various chemical treatments on chloroplast movement in guard cells of Arabidopsis thaliana leaves. After treatment at various light intensities (dark, low, and high light), leaf discs were fixed with glutaraldehyde, and imaged using confocal laser microscopy. Each chloroplast was assigned a horizontal (close to pore, center, or epidermal side) and vertical (outer, middle, inner) position. White light had a distinct effect on chloroplast positioning, most notably under high light (HL) when chloroplasts on the upper leaf surface of wild-type (WT) moved from epidermal and center positions toward the pore. This was not the case for phot1-5/phot2-1 or phot2-1 plants, thus phototropins are essential for chloroplast positioning in guard cells. In npq1-2 mutants, fewer chloroplasts moved to the pore position under HL than in WT plants, indicating that white light can affect chloroplast positioning also in a zeaxanthin-dependent way. Cytochalasin B inhibited the movement of chloroplasts to the pore under HL, while oryzalin did not, supporting the idea that actin plays a role in the movement. The movement along actin cables is dependent on CHUP1 since chloroplast positioning in chup1 was significantly altered. Abscisic acid (ABA) caused most chloroplasts in WT and phot1-5/phot2-1 to be localized in the center, middle part of the guard cells irrespective of light treatment. This indicates that not only light but also water stress influences chloroplast positioning.
Collapse
Affiliation(s)
- Martina Königer
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Organelle movement in plants cells is extremely dynamic. Movement is driven by the acto-myosin system. Higher plant myosins fall into two classes: classes XI and VIII. Localization studies have highlighted that myosins are present throughout the cytosol, label motile puncta and decorate the nuclear envelope and plasma membrane. Functional studies through expression of dominant-negative myosin variants, RNAi (RNA interference) and T-DNA insertional analysis have shown that class XI myosins are required for organelle movement. Intriguingly, organelle movement is also linked to Arabidopsis growth and development. The present review tackles current findings relating to plant organelle movement and the role of myosins.
Collapse
|
42
|
Vidali L, Burkart GM, Augustine RC, Kerdavid E, Tüzel E, Bezanilla M. Myosin XI is essential for tip growth in Physcomitrella patens. THE PLANT CELL 2010; 22:1868-82. [PMID: 20525854 PMCID: PMC2910981 DOI: 10.1105/tpc.109.073288] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/29/2010] [Accepted: 05/14/2010] [Indexed: 05/18/2023]
Abstract
Class XI myosins are plant specific and responsible for cytoplasmic streaming. Because of the large number of myosin XI genes in angiosperms, it has been difficult to determine their precise role, particularly with respect to tip growth. The moss Physcomitrella patens provides an ideal system to study myosin XI function. P. patens has only two myosin XI genes, and these genes encode proteins that are 94% identical to each other. To determine their role in tip growth, we used RNA interference to specifically silence each myosin XI gene using 5' untranslated region sequences. We discovered that the two myosin XI genes are functionally redundant, since silencing of either gene does not affect growth or polarity. However, simultaneous silencing of both myosin XIs results in severely stunted plants composed of small rounded cells. Although similar to the phenotype resulting from silencing of other actin-associated proteins, we show that this phenotype is not due to altered actin dynamics. Consistent with a role in tip growth, we show that a functional, full-length fusion of monomeric enhanced green fluorescent protein (mEGFP) to myosin XI accumulates at a subcortical, apical region of actively growing protonemal cells.
Collapse
Affiliation(s)
- Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Peremyslov VV, Prokhnevsky AI, Dolja VV. Class XI myosins are required for development, cell expansion, and F-Actin organization in Arabidopsis. THE PLANT CELL 2010; 22:1883-97. [PMID: 20581304 PMCID: PMC2910955 DOI: 10.1105/tpc.110.076315] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 05/26/2010] [Accepted: 06/10/2010] [Indexed: 05/18/2023]
Abstract
The actomyosin system is conserved throughout eukaryotes. Although F-actin is essential for cell growth and plant development, roles of the associated myosins are poorly understood. Using multiple gene knockouts in Arabidopsis thaliana, we investigated functional profiles of five class XI myosins, XI-K, XI-1, XI-2, XI-B, and XI-I. Plants lacking three myosins XI showed stunted growth and delayed flowering, whereas elimination of four myosins further exacerbated these defects. Loss of myosins led to decreased leaf cell expansion, with the most severe defects observed in the larger leaf cells. Root hair length in myosin-deficient plants was reduced approximately 10-fold, with quadruple knockouts showing morphological abnormalities. It was also found that trafficking of Golgi and peroxisomes was entirely myosin dependent. Surprisingly, myosins were required for proper organization of F-actin and the associated endoplasmic reticulum networks, revealing a novel, architectural function of the class XI myosins. These results establish critical roles of myosin-driven transport and F-actin organization during polarized and diffuse cell growth and indicate that myosins are key factors in plant growth and development.
Collapse
|
44
|
Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers. Biochem Soc Trans 2010; 38:823-8. [DOI: 10.1042/bst0380823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In interphase plant cells, the actin cytoskeleton is essential for intracellular transport and organization. To fully understand how the actin cytoskeleton functions as the structural basis for cytoplasmic organization, both molecular and physical aspects of the actin organization have to be considered. In the present review, we discuss literature that gives an insight into how cytoplasmic organization is achieved and in which actin-binding proteins have been identified that play a role in this process. We discuss how physical properties of the actin cytoskeleton in the cytoplasm of live plant cells, such as deformability and elasticity, can be probed by using optical tweezers. This technique allows non-invasive manipulation of cytoplasmic organization. Optical tweezers, integrated in a confocal microscope, can be used to manipulate cytoplasmic organization while studying actin dynamics. By combining this with mutant studies and drug applications, insight can be obtained about how the physical properties of the actin cytoskeleton, and thus the cytoplasmic organization, are influenced by different cellular processes.
Collapse
|
45
|
Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci U S A 2010; 107:6894-9. [PMID: 20351265 DOI: 10.1073/pnas.0911482107] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants exhibit an ultimate case of the intracellular motility involving rapid organelle trafficking and continuous streaming of the endoplasmic reticulum (ER). Although it was long assumed that the ER dynamics is actomyosin-driven, the responsible myosins were not identified, and the ER streaming was not characterized quantitatively. Here we developed software to generate a detailed velocity-distribution map for the GFP-labeled ER. This map revealed that the ER in the most peripheral plane was relatively static, whereas the ER in the inner plane was rapidly streaming with the velocities of up to approximately 3.5 microm/sec. Similar patterns were observed when the cytosolic GFP was used to evaluate the cytoplasmic streaming. Using gene knockouts, we demonstrate that the ER dynamics is driven primarily by the ER-associated myosin XI-K, a member of a plant-specific myosin class XI. Furthermore, we show that the myosin XI deficiency affects organization of the ER network and orientation of the actin filament bundles. Collectively, our findings suggest a model whereby dynamic three-way interactions between ER, F-actin, and myosins determine the architecture and movement patterns of the ER strands, and cause cytosol hauling traditionally defined as cytoplasmic streaming.
Collapse
|
46
|
Bereiter-Hahn J, Jendrach M. Mitochondrial dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:1-65. [PMID: 20875628 DOI: 10.1016/s1937-6448(10)84001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dynamics is a key feature for the interaction of mitochondria with other organelles within a cell and also for the maintenance of their own integrity. Four types of mitochondrial dynamics are discussed: Movement within a cell and interactions with the cytoskeleton, fusion and fission events which establish coherence within the chondriome, the dynamic behavior of cristae and their components, and finally, formation and disintegration of mitochondria (mitophagy). Due to these essential functions, disturbed mitochondrial dynamics are inevitably connected to a variety of diseases. Localized ATP gradients, local control of calcium-based messaging, production of reactive oxygen species, and involvement of other metabolic chains, that is, lipid and steroid synthesis, underline that physiology not only results from biochemical reactions but, in addition, resides on the appropriate morphology and topography. These events and their molecular basis have been established recently and are the topic of this review.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Center of Excellence Macromolecular Complexes, Institute for Cell Biology and Neurosciences, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
47
|
Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, Moreau F, Steinmetz A. Actin bundling in plants. ACTA ACUST UNITED AC 2009; 66:940-57. [DOI: 10.1002/cm.20389] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Natesan SKA, Sullivan JA, Gray JC. Myosin XI is required for actin-associated movement of plastid stromules. MOLECULAR PLANT 2009; 2:1262-72. [PMID: 19995729 DOI: 10.1093/mp/ssp078] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stromules are highly dynamic stroma-filled tubules extending from the surface of plastids and occasionally interconnecting individual plastids, allowing the movement of complex biological molecules between the interconnected plastids. Experiments with inhibitors of cytoskeleton assembly have indicated the involvement of an actin-based system in stromule movement. However, the motor protein associated with the system had not been identified. Here, we present direct evidence that myosin XI is involved in the formation and movement of stromules in tobacco leaves. Application of 2,3-butanedione 2-monoxime, an inhibitor of myosin ATPase activity, resulted in the loss of stromules from tobacco leaf epidermal cells. Transient RNA interference of myosin XI in leaves of Nicotiana benthamiana also resulted in the loss of stromules from epidermal cells, without any effect on transcripts for actin or myosin VIII. Transient expression of a GFP-tagged myosin XI tail domain in tobacco leaf epidermal cells showed that the fusion protein localized to the chloroplast envelope, as well as to mitochondria and other organelles. Our findings identify myosin XI as a key protein involved in the formation and movement of stromules.
Collapse
Affiliation(s)
- Senthil Kumar A Natesan
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | |
Collapse
|
49
|
Sattarzadeh A, Krahmer J, Germain AD, Hanson MR. A myosin XI tail domain homologous to the yeast myosin vacuole-binding domain interacts with plastids and stromules in Nicotiana benthamiana. MOLECULAR PLANT 2009; 2:1351-8. [PMID: 19995734 DOI: 10.1093/mp/ssp094] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The actin cytoskeleton plays a role in mobility of many different organelles in plant cells, including chloroplasts, mitochondria, Golgi, and peroxisomes. While progress has been made in identifying the myosin motors involved in trafficking of various plant organelles, not all of the cargoes mobilized by different members of the myosin XI family have yet been identified. The involvement of myosins in chloroplast positioning and mitochondrial movement was demonstrated by expression of a virus-induced gene silencing (VIGS) construct in tobacco. When VIGS with two different conserved sequences from a myosin XI motor was performed in plants with either GFP-labeled plastids or mitochondria, chloroplast positioning in the dark was abnormal, and mitochondrial movement ceased. Because these and prior observations have implicated a role for myosins and the actin cytoskeleton in plastid and stromule movement, we searched for myosin tail domains that could associate with plastids and stromules. While a yellow fluorescent protein (YFP) fusion with the entire tail region of myosin XI-F was usually found only in the cytoplasm, we observed that an Arabidopsis or Nicotiana benthamiana YFP::myosin XI-F tail domain homologous to the yeast myo2p vacuole-binding domain associated with plastids and stromules after transient expression in N. benthamiana. Taken together, these observations implicate myosin motor proteins in dynamics of plastids and stromules.
Collapse
Affiliation(s)
- Amir Sattarzadeh
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
50
|
Wiltshire EJ, Collings DA. New Dynamics in an Old Friend: Dynamic Tubular Vacuoles Radiate Through the Cortical Cytoplasm of Red Onion Epidermal Cells. ACTA ACUST UNITED AC 2009; 50:1826-39. [DOI: 10.1093/pcp/pcp124] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|