1
|
Sun W, Lu C, Wen L, Liu Y, Zhou X, Xiao X, Guo X, Wang Z, Sun Z, Zhang Z, Zhang Y. Low sucrose availability reduces basal spikelet fertility by inducing abscisic acid and jasmonic acid synthesis in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1967-1981. [PMID: 38069503 DOI: 10.1093/jxb/erad484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/02/2023] [Indexed: 03/28/2024]
Abstract
Within a spike of wheat, the central spikelets usually generate three to four fertile florets, while the basal spikelets generate zero to one fertile floret. The physiological and transcriptional mechanism behind the difference in fertility between the basal and central spikelets is unclear. This study reports a high temporal resolution investigation of transcriptomes, number and morphology of floret primordia, and physiological traits. The W6.5-W7.5 stage was regarded as the boundary to distinguish between fertile and abortive floret primordia; those floret primordia reaching the W6.5-W7.5 stage during the differentiation phase (3-9 d after terminal spikelet stage) usually developed into fertile florets in the next dimorphism phase (12-27 d after terminal spikelet stage), whereas the others aborted. The central spikelets had a greater number of fertile florets than the basal spikelets, which was associated with more floret primordia reaching the W6.5-W7.5 stage. Physiological and transcriptional results demonstrated that the central spikelets had a higher sucrose content and lower abscisic acid (ABA) and jasmonic acid (JA) accumulation than the basal spikelets due to down-regulation of genes involved in ABA and JA synthesis. Collectively, we propose a model in which ABA and JA accumulation is induced under limiting sucrose availability (basal spikelet) through the up-regulation of genes involved in ABA and JA synthesis; this leads to floret primordia in the basal spikelets failing to reach their fertile potential (W6.5-W7.5 stage) during the differentiation phase and then aborting. This fertility repression model may also regulate spikelet fertility in other cereal crops and potentially provides genetic resources to improve spikelet fertility.
Collapse
Affiliation(s)
- Wan Sun
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chongjing Lu
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Liangyun Wen
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yaqun Liu
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaohan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuechen Xiao
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaolei Guo
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Hebei Province, 061800, China
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Hebei Province, 061800, China
| | - Zhen Zhang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Hebei Province, 061800, China
| |
Collapse
|
2
|
Xu G, Tao Z, He Y. Embryonic reactivation of FLOWERING LOCUS C by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation. THE PLANT CELL 2022; 34:2205-2221. [PMID: 35234936 PMCID: PMC9134069 DOI: 10.1093/plcell/koac077] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Many over-wintering plants grown in temperate climate acquire competence to flower upon prolonged cold exposure in winter, through vernalization. In Arabidopsis thaliana, prolonged cold exposure induces the silencing of the potent floral repressor FLOWERING LOCUS C (FLC) through repressive chromatin modifications by Polycomb proteins. This repression is maintained to enable flowering after return to warmth, but is reset during seed development. Here, we show that embryonic FLC reactivation occurs in two phases: resetting of cold-induced FLC silencing during embryogenesis and further FLC activation during embryo maturation. We found that the B3 transcription factor (TF) ABSCISIC ACID-INSENSITIVE 3 (ABI3) mediates both FLC resetting in embryogenesis and further activation of FLC expression in embryo maturation. ABI3 binds to the cis-acting cold memory element at FLC and recruits a scaffold protein with active chromatin modifiers to reset FLC chromatin into an active state in late embryogenesis. Moreover, in response to abscisic acid (ABA) accumulation during embryo maturation, ABI3, together with the basic leucine zipper TF ABI5, binds to an ABA-responsive cis-element to further activate FLC expression to high level. Therefore, we have uncovered the molecular circuitries underlying embryonic FLC reactivation following parental vernalization, which ensures that each generation must experience winter cold prior to flowering.
Collapse
|
3
|
Yu B, Wang Y, Zhou H, Li P, Liu C, Chen S, Peng Y, Zhang Y, Teng S. Genome-wide binding analysis reveals that ANAC060 directly represses sugar-induced transcription of ABI5 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:965-979. [PMID: 32314488 DOI: 10.1111/tpj.14777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The sugar status of a plant acts as a signal affecting growth and development. The phenomenon by which high levels of sugars inhibit seedling establishment has been widely used to gain insight into sugar-signaling pathways. Natural allelic variation has been identified at the ANAC060 locus. The Arabidopsis Columbia ecotype produces a short ANAC060 protein without a transmembrane domain that is constitutively located to the nucleus, causing sugar insensitivity when overexpressed. In this study, we generated a genome-wide DNA-binding map of ANAC060 via chromatin immunoprecipitation sequencing using transgenic lines that express a functional ANAC060-GFP fusion protein in an anac060 background. A total of 3282 genes associated with ANAC060-binding sites were identified. These genes were enriched in biotic and abiotic stress responses, and the G-box binding motif was highly enriched in ANAC060-bound genomic regions. Expression microarray analysis resulted in the identification of 8350 genes whose activities were altered in the anac060 mutant and upon sugar treatment. Cluster analysis revealed that ANAC060 attenuates sugar-regulated gene expression. Direct target genes of ANAC060 included equivalent numbers of genes that were upregulated or downregulated by ANAC060. The various functions of these target genes indicate that ANAC060 has several functions. Our results demonstrate that ANAC060 directly binds to the promoter of ABI5 and represses the sugar-induced transcription of ABI5. Genetic data indicate that ABI5 is epistatic to ANAC060 in both sugar and abscisic acid responses.
Collapse
Affiliation(s)
- Bo Yu
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Yuejun Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Hua Zhou
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Ping Li
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Chunmei Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Sunlu Chen
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Yu Peng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| |
Collapse
|
4
|
Van Leene J, Han C, Gadeyne A, Eeckhout D, Matthijs C, Cannoot B, De Winne N, Persiau G, Van De Slijke E, Van de Cotte B, Stes E, Van Bel M, Storme V, Impens F, Gevaert K, Vandepoele K, De Smet I, De Jaeger G. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. NATURE PLANTS 2019; 5:316-327. [PMID: 30833711 DOI: 10.1038/s41477-019-0378-z] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/28/2019] [Indexed: 05/18/2023]
Abstract
The target of rapamycin (TOR) kinase is a conserved regulatory hub that translates environmental and nutritional information into permissive or restrictive growth decisions. Despite the increased appreciation of the essential role of the TOR complex in plants, no large-scale phosphoproteomics or interactomics studies have been performed to map TOR signalling events in plants. To fill this gap, we combined a systematic phosphoproteomics screen with a targeted protein complex analysis in the model plant Arabidopsis thaliana. Integration of the phosphoproteome and protein complex data on the one hand shows that both methods reveal complementary subspaces of the plant TOR signalling network, enabling proteome-wide discovery of both upstream and downstream network components. On the other hand, the overlap between both data sets reveals a set of candidate direct TOR substrates. The integrated network embeds both evolutionarily-conserved and plant-specific TOR signalling components, uncovering an intriguing complex interplay with protein synthesis. Overall, the network provides a rich data set to start addressing fundamental questions about how TOR controls key processes in plants, such as autophagy, auxin signalling, chloroplast development, lipid metabolism, nucleotide biosynthesis, protein translation or senescence.
Collapse
Affiliation(s)
- Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Chao Han
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, China
| | - Astrid Gadeyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Caroline Matthijs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bernard Cannoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brigitte Van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Francis Impens
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
5
|
Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proc Natl Acad Sci U S A 2018; 115:E11178-E11187. [PMID: 30397148 DOI: 10.1073/pnas.1811491115] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant hormone abscisic acid (ABA) is accumulated after drought stress and plays critical roles in the responses to drought stress in plants, such as gene regulation, stomatal closure, seed maturation, and dormancy. Although previous reports revealed detailed molecular roles of ABA in stress responses, the factors that contribute to the drought-stress responses-in particular, regulation of ABA accumulation-remain unclear. The enzyme NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) is essential for ABA biosynthesis during drought stress, and the NCED3 gene is highly induced by drought stress. In the present study, we isolated NGATHAs (NGAs) as candidate transcriptional regulators of NCED3 through a screen of a plant library harboring the transcription factors fused to a chimeric repressor domain, SRDX. The NGA proteins were directly bound to a cis-element NGA-binding element (NBE) in the 5' untranslated region (5' UTR) of the NCED3 promoter and were suggested to be transcriptional activators of NCED3 Among the single-knockout mutants of four NGA family genes, we found that the NGATHA1 (NGA1) knockout mutant was drought-stress-sensitive with a decreased expression level of NCED3 during dehydration stress. These results suggested that NGA1 essentially functions as a transcriptional activator of NCED3 among the NGA family proteins. Moreover, the NGA1 protein was degraded under nonstressed conditions, and dehydration stress enhanced the accumulation of NGA1 proteins, even in ABA-deficient mutant plants, indicating that there should be ABA-independent posttranslational regulations. These findings emphasize the regulatory mechanisms of ABA biosynthesis during early drought stress.
Collapse
|
6
|
Pook VG, Nair M, Ryu K, Arpin JC, Schiefelbein J, Schrick K, DeBolt S. Positioning of the SCRAMBLED receptor requires UDP-Glc:sterol glucosyltransferase 80B1 in Arabidopsis roots. Sci Rep 2017; 7:5714. [PMID: 28720840 PMCID: PMC5515990 DOI: 10.1038/s41598-017-05925-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/06/2017] [Indexed: 01/22/2023] Open
Abstract
The biological function of sterol glucosides (SGs), the most abundant sterol derivatives in higher plants, remains uncertain. In an effort to improve our understanding of these membrane lipids we examined phenotypes exhibited by the roots of Arabidopsis (Arabidopsis thaliana) lines carrying insertions in the UDP-Glc:sterol glucosyltransferase genes, UGT80A2 and UGT80B1. We show that although ugt80A2 mutants exhibit significantly lower levels of total SGs they are morphologically indistinguishable from wild-type plants. In contrast, the roots of ugt80B1 mutants are only deficient in stigmasteryl glucosides but exhibit a significant reduction in root hairs. Sub-cellular investigations reveal that the plasma membrane cell fate regulator, SCRAMBLED (SCM), is mislocalized in ugt80B1 mutants, underscoring the aberrant root epidermal cell patterning. Live imaging of roots indicates that SCM:GFP is localized to the cytoplasm in a non cell type dependent manner instead of the hair (H) cell plasma membrane in these mutants. In addition, we provide evidence for the localization of the UGT80B1 enzyme in the plasma membrane. These data lend further support to the notion that deficiencies in specific SGs are sufficient to disrupt normal cell function and point to a possible role for SGs in cargo transport and/or protein targeting to the plasma membrane.
Collapse
Affiliation(s)
- Victoria G Pook
- Department of Horticulture, University of Kentucky, Lexington, KY, 40546, USA
| | - Meera Nair
- Department of Horticulture, University of Kentucky, Lexington, KY, 40546, USA
| | - KookHui Ryu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James C Arpin
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Seth DeBolt
- Department of Horticulture, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
7
|
Castro PH, Verde N, Lourenço T, Magalhães AP, Tavares RM, Bejarano ER, Azevedo H. SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:2297-2311. [PMID: 26468507 DOI: 10.1093/pcp/pcv149] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Post-translational modification mechanisms function as switches that mediate the balance between optimum growth and the response to environmental stimuli, by regulating the activity of key proteins. SUMO (small ubiquitin-like modifier) attachment, or sumoylation, is a post-translational modification that is essential for the plant stress response, also modulating hormonal circuits to co-ordinate developmental processes. The Arabidopsis SUMO E3 ligase SAP and Miz 1 (SIZ1) is the major SUMO conjugation enhancer in response to stress, and is implicated in several aspects of plant development. Here we report that known SUMO targets are over-represented in multiple carbohydrate-related proteins, suggesting a functional link between sumoylation and sugar metabolism and signaling in plants. We subsequently observed that SUMO-conjugated proteins accumulate in response to high doses of sugar in a SIZ1-dependent manner, and that the null siz1 mutant displays increased expression of sucrose and starch catabolic genes and shows reduced starch levels. We demonstrated that SIZ1 controls germination time and post-germination growth via osmotic and sugar-dependent signaling, respectively. Glucose was specifically linked to SUMO-sugar interplay, with high levels inducing root growth inhibition and aberrant root hair morphology in siz1. The use of sugar analogs and sugar marker gene expression analysis allowed us to implicate SIZ1 in a signaling pathway dependent on glucose metabolism, probably involving modulation of SNF1-related kinase 1 (SnRK1) activity.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal These authors contributed equally to this work
| | - Nuno Verde
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal These authors contributed equally to this work
| | - Tiago Lourenço
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Alexandre Papadopoulos Magalhães
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Rui Manuel Tavares
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eduardo Rodríguez Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Herlânder Azevedo
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
8
|
McAdam SAM, Sussmilch FC, Brodribb TJ, Ross JJ. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species. AOB PLANTS 2015; 7:plv091. [PMID: 26216469 PMCID: PMC4583606 DOI: 10.1093/aobpla/plv091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/20/2015] [Indexed: 05/04/2023]
Abstract
Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants.
Collapse
Affiliation(s)
- Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7005, Australia
| | - Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7005, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7005, Australia
| | - John J Ross
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7005, Australia
| |
Collapse
|
9
|
Liang CH, Yang CC. Identification of ICE1 as a negative regulator of ABA-dependent pathways in seeds and seedlings of Arabidopsis. PLANT MOLECULAR BIOLOGY 2015; 88:459-70. [PMID: 26048037 DOI: 10.1007/s11103-015-0335-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/25/2015] [Indexed: 05/22/2023]
Abstract
Inducer of CBF expression 1 (ICE1) mediates the cold stress signal via an abscisic acid (ABA)-independent pathway. A possible role of ICE1 in ABA-dependent pathways was examined in this study. Seedling growth was severely reduced in a T-DNA insertion mutant of ICE1, ice1-2, when grown on 1/2 MS medium lacking sugars, but was restored to wild-type (WT) levels by supplementation with 56 mM glucose. In addition to this sugar-dependent phenotype, germination and establishment of ice1-2 were more sensitive to high glucose concentrations than in the WT. Hypersensitivity to ABA was also observed in ice1-2, suggesting its sensitivity to glucose might be mediated through the ABA signaling pathway. Glucose and ABA induced much higher expression of two genes related to ABA signal transduction, ABA-INSENSITIVE 3 (ABI3) and ABA-INSENSITIVE 4 (ABI4), in ice1-2 than in the WT during establishment. In summary, in addition to its known roles in regulating cold responses, stomatal development, and endosperm breakdown, ICE1 is a negative regulator of ABA-dependent responses.
Collapse
Affiliation(s)
- Ching-Hsing Liang
- Department of Biochemical Science and Technology, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, Taiwan
| | | |
Collapse
|
10
|
Matsoukas IG. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Front Genet 2014; 5:218. [PMID: 25165468 PMCID: PMC4131243 DOI: 10.3389/fgene.2014.00218] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/24/2014] [Indexed: 11/13/2022] Open
Abstract
NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research.
Collapse
Affiliation(s)
- Ianis G Matsoukas
- Institute for Renewable Energy and Environmental Technologies, University of Bolton Bolton, UK ; Systems and Synthetic Biology, Institute for Materials Research and Innovation, University of Bolton Bolton, UK
| |
Collapse
|
11
|
Sheen J. Master Regulators in Plant Glucose Signaling Networks. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2014; 57:67-79. [PMID: 25530701 PMCID: PMC4270195 DOI: 10.1007/s12374-014-0902-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The daily life of photosynthetic plants revolves around sugar production, transport, storage and utilization, and the complex sugar metabolic and signaling networks integrate internal regulators and environmental cues to govern and sustain plant growth and survival. Although diverse sugar signals have emerged as pivotal regulators from embryogenesis to senescence, glucose is the most ancient and conserved regulatory signal that controls gene and protein expression, cell-cycle progression, central and secondary metabolism, as well as growth and developmental programs. Glucose signals are perceived and transduced by two principal mechanisms: direct sensing through glucose sensors and indirect sensing via a variety of energy and metabolite sensors. This review focuses on the comparative and functional analyses of three glucose-modulated master regulators in Arabidopsis thaliana, the hexokinase1 (HXK1) glucose sensor, the energy sensor kinases KIN10/KIN11 inactivated by glucose, and the glucose-activated target of rapamycin (TOR) kinase. These regulators are evolutionarily conserved, but have evolved universal and unique regulatory wiring and functions in plants and animals. They form protein complexes with multiple partners as regulators or effectors to serve distinct functions in different subcellular locales and organs, and play integrative and complementary roles from cellular signaling and metabolism to development in the plant glucose signaling networks.
Collapse
Affiliation(s)
- Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
12
|
Li P, Zhou H, Shi X, Yu B, Zhou Y, Chen S, Wang Y, Peng Y, Meyer RC, Smeekens SC, Teng S. The ABI4-induced Arabidopsis ANAC060 transcription factor attenuates ABA signaling and renders seedlings sugar insensitive when present in the nucleus. PLoS Genet 2014; 10:e1004213. [PMID: 24625790 PMCID: PMC3953025 DOI: 10.1371/journal.pgen.1004213] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/15/2014] [Indexed: 01/06/2023] Open
Abstract
Seedling establishment is inhibited on media containing high levels (∼ 6%) of glucose or fructose. Genetic loci that overcome the inhibition of seedling growth on high sugar have been identified using natural variation analysis and mutant selection, providing insight into sugar signaling pathways. In this study, a quantitative trait locus (QTL) analysis was performed for seedling sensitivity to high sugar in a Col/C24 F2 population of Arabidopsis thaliana. A glucose and fructose-sensing QTL, GSQ11, was mapped through selective genotyping and confirmed in near-isogenic lines in both Col and C24 backgrounds. Allelism tests and transgenic complementation showed that GSQ11 lies within the ANAC060 gene. The Col ANAC060 allele confers sugar insensitivity and was dominant over the sugar-sensitive C24 allele. Genomic and mRNA analyses showed that a single-nucleotide polymorphism (SNP) in Col ANAC060 affects the splicing patterns of ANAC060 such that 20 additional nucleotides are present in the mRNA. The insertion created a stop codon, resulting in a truncated ANAC60 protein lacking the transmembrane domain (TMD) that is present in the C24 ANAC060 protein. The absence of the TMD results in the nuclear localization of ANAC060. The short version of the ANAC060 protein is found in ∼ 12% of natural Arabidopsis accessions. Glucose induces GSQ11/ANAC060 expression in a process that requires abscisic acid (ABA) signaling. Chromatin immunoprecipitation-qPCR and transient expression analysis showed that ABI4 directly binds to the GSQ11/ANAC060 promoter to activate transcription. Interestingly, Col ANAC060 reduced ABA sensitivity and Glc-induced ABA accumulation, and ABI4 expression was also reduced in Col ANAC060 lines. Thus, the sugar-ABA signaling cascade induces ANAC060 expression, but the truncated Col ANAC060 protein attenuates ABA induction and ABA signaling. This negative feedback from nuclear ANAC060 on ABA signaling results in sugar insensitivity.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Photosynthesis and Environmental Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | - Hua Zhou
- Laboratory of Photosynthesis and Environmental Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | - Xiaoliang Shi
- Laboratory of Photosynthesis and Environmental Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | - Bo Yu
- Laboratory of Photosynthesis and Environmental Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhou
- Laboratory of Photosynthesis and Environmental Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | - Suli Chen
- Laboratory of Photosynthesis and Environmental Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | - Yufeng Wang
- Laboratory of Photosynthesis and Environmental Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | - Yu Peng
- Laboratory of Photosynthesis and Environmental Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | - Rhonda C. Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland OT Gatersleben, Germany
| | - Sjef C. Smeekens
- Department of Molecular Plant Physiology, Utrecht University, Utrecht, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
Huang Y, Li CY, Qi Y, Park S, Gibson SI. SIS8, a putative mitogen-activated protein kinase kinase kinase, regulates sugar-resistant seedling development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:577-88. [PMID: 24320620 DOI: 10.1111/tpj.12404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/21/2013] [Accepted: 12/03/2013] [Indexed: 05/21/2023]
Abstract
Sugar signaling pathways have been evolutionarily conserved among eukaryotes and are postulated to help regulate plant growth, development and responses to environmental cues. Forward genetic screens have identified sugar signaling or response mutants. Here we report the identification and characterization of Arabidopsis thaliana sugar insensitive8 (sis8) mutants, which display a sugar-resistant seedling development phenotype. Unlike many other sugar insensitive mutants, sis8 mutants exhibit wild-type responses to the inhibitory effects of abscisic acid and paclobutrazol (an inhibitor of gibberellin biosynthesis) on seed germination. Positional cloning of the SIS8 gene revealed that it encodes a putative mitogen-activated protein kinase kinase kinase (MAPKKK; At1g73660). SIS8mRNA is expressed ubiquitously among Arabidopsis organs. A UDP-glucosyltransferase, UGT72E1 (At3g50740), was identified as an interacting partner of SIS8 based on a yeast two-hybrid screen and in planta bimolecular fluorescence complementation. Both SIS8-yellow fluorescent protein (YFP) and UGT72E1-YFP fusion proteins localize to the nucleus when transiently expressed in tobacco leaf cells. T-DNA insertions in At3g50740 cause a sugar-insensitive phenotype. These results indicate that SIS8, a putative MAPKKK, is a regulator of sugar response in Arabidopsis and interacts with a UDP-glucosyltransferase in the nucleus.
Collapse
Affiliation(s)
- Yadong Huang
- Department of Plant Biology, University of Minnesota, St Paul, MN, 55108, USA
| | | | | | | | | |
Collapse
|
14
|
Heisel TJ, Li CY, Grey KM, Gibson SI. Mutations in HISTONE ACETYLTRANSFERASE1 affect sugar response and gene expression in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:245. [PMID: 23882272 PMCID: PMC3713338 DOI: 10.3389/fpls.2013.00245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/19/2013] [Indexed: 05/23/2023]
Abstract
Nutrient response networks are likely to have been among the first response networks to evolve, as the ability to sense and respond to the levels of available nutrients is critical for all organisms. Although several forward genetic screens have been successful in identifying components of plant sugar-response networks, many components remain to be identified. Toward this end, a reverse genetic screen was conducted in Arabidopsis thaliana to identify additional components of sugar-response networks. This screen was based on the rationale that some of the genes involved in sugar-response networks are likely to be themselves sugar regulated at the steady-state mRNA level and to encode proteins with activities commonly associated with response networks. This rationale was validated by the identification of hac1 mutants that are defective in sugar response. HAC1 encodes a histone acetyltransferase. Histone acetyltransferases increase transcription of specific genes by acetylating histones associated with those genes. Mutations in HAC1 also cause reduced fertility, a moderate degree of resistance to paclobutrazol and altered transcript levels of specific genes. Previous research has shown that hac1 mutants exhibit delayed flowering. The sugar-response and fertility defects of hac1 mutants may be partially explained by decreased expression of AtPV42a and AtPV42b, which are putative components of plant SnRK1 complexes. SnRK1 complexes have been shown to function as central regulators of plant nutrient and energy status. Involvement of a histone acetyltransferase in sugar response provides a possible mechanism whereby nutritional status could exert long-term effects on plant development and metabolism.
Collapse
Affiliation(s)
| | | | | | - Susan I. Gibson
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of MinnesotaSaint Paul, MN, USA
| |
Collapse
|
15
|
Luo QJ, Mittal A, Jia F, Rock CD. An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. PLANT MOLECULAR BIOLOGY 2012; 80:117-29. [PMID: 21533841 PMCID: PMC3272322 DOI: 10.1007/s11103-011-9778-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 04/12/2011] [Indexed: 05/18/2023]
Abstract
miR828 in Arabidopsis triggers the cleavage of Trans-Acting SiRNA Gene 4 (TAS4) transcripts and production of small interfering RNAs (ta-siRNAs). One siRNA, TAS4-siRNA81(-), targets a set of MYB transcription factors including PAP1, PAP2, and MYB113 which regulate the anthocyanin biosynthesis pathway. Interestingly, miR828 also targets MYB113, suggesting a close relationship between these MYBs, miR828, and TAS4, but their evolutionary origins are unknown. We found that PAP1, PAP2, and TAS4 expression is induced specifically by exogenous treatment with sucrose and glucose in seedlings. The induction is attenuated in abscisic acid (ABA) pathway mutants, especially in abi3-1 and abi5-1 for PAP1 or PAP2, while no such effect is observed for TAS4. PAP1 is under regulation by TAS4, demonstrated by the accumulation of PAP1 transcripts and anthocyanin in ta-siRNA biogenesis pathway mutants. TAS4-siR81(-) expression is induced by physiological concentrations of Suc and Glc and in pap1-D, an activation-tagged line, indicating a feedback regulatory loop exists between PAP1 and TAS4. Bioinformatic analysis revealed MIR828 homologues in dicots and gymnosperms, but only in one basal monocot, whereas TAS4 is only found in dicots. Consistent with this observation, PAP1, PAP2, and MYB113 dicot paralogs show peptide and nucleotide footprints for the TAS4-siR81(-) binding site, providing evidence for purifying selection in contrast to monocots. Extended sequence similarities between MIR828, MYBs, and TAS4 support an inverted duplication model for the evolution of MIR828 from an ancestral gymnosperm MYB gene and subsequent formation of TAS4 by duplication of the miR828* arm. We obtained evidence by modified 5'-RACE for a MYB mRNA cleavage product guided by miR828 in Pinus resinosa. Taken together, our results suggest that regulation of anthocyanin biosynthesis by TAS4 and miR828 in higher plants is evolutionarily significant and consistent with the evolution of TAS4 since the dicot-monocot divergence.
Collapse
|
16
|
Baron KN, Schroeder DF, Stasolla C. Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 188-189:48-59. [PMID: 22525244 DOI: 10.1016/j.plantsci.2012.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 05/22/2023]
Abstract
The phytohormone abscisic acid (ABA) plays an important role in developmental processes in addition to mediating plant adaptation to stress. In the current study, transcriptional response of 17 genes involved in ABA metabolism and transport has been examined in vegetative and reproductive organs exposed to cold and heat stress. Temperature stress activated numerous genes involved in ABA biosynthesis, catabolism and transport; however, several ABA biosynthesis genes (ABA1, ABA2, ABA4, AAO3, NCED3) were differentially expressed (up- or down-regulated) in an organ-specific manner. Key genes (CYP707As) involved in ABA catabolism responded differentially to temperature stress. Cold stress strongly activated ABA catabolism in all organs examined, whereas heat stress triggered more subtle activation and repression of select CYP707A genes. Genes involved in conjugation (UGT71B6), hydrolysis (AtBG1), and transport (ABCG25, ABCG40) of ABA or ABA glucose ester responded to temperature stress and displayed unique organ-specific expression patterns. Comparing the transcriptional response of vegetative and reproductive organs revealed ABA homeostasis is differentially regulated at the whole plant level. Taken together our findings indicate organs in close physical proximity undergo vastly different transcriptional programs in response to abiotic stress and developmental cues.
Collapse
Affiliation(s)
- Kevin N Baron
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | | | | |
Collapse
|
17
|
Daszkowska-Golec A. Arabidopsis Seed Germination Under Abiotic Stress as a Concert of Action of Phytohormones. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:763-74. [DOI: 10.1089/omi.2011.0082] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Agata Daszkowska-Golec
- University of Silesia, Faculty of Biology and Environmental Protection, Department of Genetics, Jagiellonska, Katowice, Poland
| |
Collapse
|
18
|
Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon Y. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1715-29. [PMID: 21239376 DOI: 10.1093/jxb/erq438] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, carbon (C) molecules provide building blocks for biomass production, fuel for energy, and exert signalling roles to shape development and metabolism. Accordingly, plant growth is well correlated with light interception and energy conversion through photosynthesis. Because water deficits close stomata and thus reduce C entry, it has been hypothesised that droughted plants are under C starvation and their growth under C limitation. In this review, these points are questioned by combining literature review with experimental and modelling illustrations in various plant organs and species. First, converging evidence is gathered from the literature that water deficit generally increases C concentration in plant organs. The hypothesis is raised that this could be due to organ expansion (as a major C sink) being affected earlier and more intensively than photosynthesis (C source) and metabolism. How such an increase is likely to interact with C signalling is not known. Hence, the literature is reviewed for possible links between C and stress signalling that could take part in this interaction. Finally, the possible impact of water deficit-induced C accumulation on growth is questioned for various sink organs of several species by combining published as well as new experimental data or data generated using a modelling approach. To this aim, robust correlations between C availability and sink organ growth are reported in the absence of water deficit. Under water deficit, relationships weaken or are modified suggesting release of the influence of C availability on sink organ growth. These results are interpreted as the signature of a transition from source to sink growth limitation under water deficit.
Collapse
Affiliation(s)
- Bertrand Muller
- INRA, UMR 759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut de Biologie Intégrative des Plantes, F-34060 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain. Proc Natl Acad Sci U S A 2011; 108:3436-41. [PMID: 21300879 DOI: 10.1073/pnas.1018665108] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In living organisms sugars not only provide energy and carbon skeletons but also act as evolutionarily conserved signaling molecules. The three major soluble sugars in plants are sucrose, glucose, and fructose. Information on plant glucose and sucrose signaling is available, but to date no fructose-specific signaling pathway has been reported. In this study, sugar repression of seedling development was used to study fructose sensitivity in the Landsberg erecta (Ler)/Cape Verde Islands (Cvi) recombinant inbred line population, and eight fructose-sensing quantitative trait loci (QTLs) (FSQ1-8) were mapped. Among them, FSQ6 was confirmed to be a fructose-specific QTL by analyzing near-isogenic lines in which Cvi genomic fragments were introgressed in the Ler background. These results indicate the existence of a fructose-specific signaling pathway in Arabidopsis. Further analysis demonstrated that the FSQ6-associated fructose-signaling pathway functions independently of the hexokinase1 (HXK1) glucose sensor. Remarkably, fructose-specific FSQ6 downstream signaling interacts with abscisic acid (ABA)- and ethylene-signaling pathways, similar to HXK1-dependent glucose signaling. The Cvi allele of FSQ6 acts as a suppressor of fructose signaling. The FSQ6 gene was identified using map-based cloning approach, and FSQ6 was shown to encode the transcription factor gene Arabidopsis NAC (petunia No apical meristem and Arabidopsis transcription activation factor 1, 2 and Cup-shaped cotyledon 2) domain containing protein 89 (ANAC089). The Cvi allele of FSQ6/ANAC089 is a gain-of-function allele caused by a premature stop in the third exon of the gene. The truncated Cvi FSQ6/ANAC089 protein lacks a membrane association domain that is present in ANAC089 proteins from other Arabidopsis accessions. As a result, Cvi FSQ6/ANAC089 is constitutively active as a transcription factor in the nucleus.
Collapse
|
20
|
Huang Y, Li CY, Pattison DL, Gray WM, Park S, Gibson SI. SUGAR-INSENSITIVE3, a RING E3 ligase, is a new player in plant sugar response. PLANT PHYSIOLOGY 2010; 152:1889-900. [PMID: 20147494 PMCID: PMC2850021 DOI: 10.1104/pp.109.150573] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 02/08/2010] [Indexed: 05/19/2023]
Abstract
Sugars, such as sucrose and glucose, have been implicated in the regulation of diverse developmental events in plants and other organisms. We isolated an Arabidopsis (Arabidopsis thaliana) mutant, sugar-insensitive3 (sis3), that is resistant to the inhibitory effects of high concentrations of exogenous glucose and sucrose on early seedling development. In contrast to wild-type plants, sis3 mutants develop green, expanded cotyledons and true leaves when sown on medium containing high concentrations (e.g. 270 mm) of sucrose. Unlike some other sugar response mutants, sis3 exhibits wild-type responses to the inhibitory effects of abscisic acid and paclobutrazol, a gibberellic acid biosynthesis inhibitor, on seed germination. Map-based cloning revealed that SIS3 encodes a RING finger protein. Complementation of the sis3-2 mutant with a genomic SIS3 clone restored sugar sensitivity of sis3-2, confirming the identity of the SIS3 gene. Biochemical analyses demonstrated that SIS3 is functional in an in vitro ubiquitination assay and that the RING motif is sufficient for its activity. Our results indicate that SIS3 encodes a ubiquitin E3 ligase that is a positive regulator of sugar signaling during early seedling development.
Collapse
|
21
|
Rounsley SD, Last RL. Shotguns and SNPs: how fast and cheap sequencing is revolutionizing plant biology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:922-7. [PMID: 20409267 DOI: 10.1111/j.1365-313x.2009.04030.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In 1998 Cereon Genomics LLC, a subsidiary of Monsanto Co., performed a shotgun sequencing of the Arabidopsis thaliana Landsberg erecta genome to a depth of twofold coverage using 'classic' Sanger sequencing. This sequence was assembled and aligned to the Columbia ecotype sequence produced by the Arabidopsis Genome Initiative. The analysis provided tens of thousands of high-confidence predictions of polymorphisms between these two varieties of A. thaliana, and the predicted polymorphisms and Landsberg erecta sequence were subsequently made available to the not-for-profit research community by Monsanto. These data have been used for a wide variety of published studies, including map-based gene identification from forward genetic screens, studies of recombination and organelle genetics, and gene expression studies. The combination of resequencing approaches with next-generation sequencing technology has led to an increasing number of similar studies of genome-wide genetic diversity in A. thaliana, including the 1001 genomes project (http://1001genomes.org). Similar approaches are becoming possible in any number of crop species as DNA sequencing costs plummet and throughput rapidly increases, promising to lay the groundwork for revolutionizing our understanding of the relationship between genotype and phenotype in plants.
Collapse
Affiliation(s)
- Steven D Rounsley
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
22
|
Xing Y, Jia W, Zhang J. AtMKK1 and AtMPK6 are involved in abscisic acid and sugar signaling in Arabidopsis seed germination. PLANT MOLECULAR BIOLOGY 2009; 70:725-36. [PMID: 19484493 DOI: 10.1007/s11103-009-9503-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 05/17/2009] [Indexed: 05/06/2023]
Abstract
Abscisic acid (ABA) and sugars have been well established to be crucial factors controlling seed germination of Arabidopsis. Here we demonstrate that AtMKK1 and AtMPK6 are both critical signals involved in ABA and sugar-regulated seed germination. Wild type plants depended on stratification and after-ripening for seed germination, whereas this dependence on either stratification or after-ripening was not required for mutants of mkk1 and mpk6 as well as their double mutant mkk1 mpk6. While seed germination of wild type plants was sensitively inhibited by ABA and glucose, mkk1, mpk6 and mkk1 mpk6 were all strongly resistant to ABA or glucose treatments, and in contrast, plants overexpressing MKK1 or MPK6 were super-sensitive to ABA and glucose. Glucose treatment significantly induced increases in MKK1 and MPK6 activities. These results clearly indicate that MKK1 and MPK6 are involved in the ABA and sugar signaling in the process of seed germination. Further experiments showed that glucose was capable of inducing ABA biosynthesis by up-regulating NCED3 and ABA2, and furthermore, this up-regulation of NCED3 and ABA2 was arrested in the mkk1 mpk6 double mutant, indicating that the inhibition of seed germination by glucose is potentially resulted from sugar-induced up-regulation of the ABA level.
Collapse
Affiliation(s)
- Yu Xing
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | | |
Collapse
|