1
|
Matcuk GR, Katal S, Gholamrezanezhad A, Spinnato P, Waldman LE, Fields BKK, Patel DB, Skalski MR. Imaging of lower extremity infections: predisposing conditions, atypical infections, mimics, and differentiating features. Skeletal Radiol 2024; 53:2099-2120. [PMID: 38240759 PMCID: PMC11371866 DOI: 10.1007/s00256-024-04589-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 09/05/2024]
Abstract
Imaging evaluation for lower extremity infections can be complicated, especially in the setting of underlying conditions and with atypical infections. Predisposing conditions are discussed, including diabetes mellitus, peripheral arterial disease, neuropathic arthropathy, and intravenous drug abuse, as well as differentiating features of infectious versus non-infectious disease. Atypical infections such as viral, mycobacterial, fungal, and parasitic infections and their imaging features are also reviewed. Potential mimics of lower extremity infection including chronic nonbacterial osteomyelitis, foreign body granuloma, gout, inflammatory arthropathies, lymphedema, and Morel-Lavallée lesions, and their differentiating features are also explored.
Collapse
Affiliation(s)
- George R Matcuk
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | | | - Ali Gholamrezanezhad
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Paolo Spinnato
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Leah E Waldman
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Brandon K K Fields
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Dakshesh B Patel
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Matthew R Skalski
- Department of Radiology, Palmer College of Chiropractic-West Campus, San Jose, CA, 95134, USA
| |
Collapse
|
2
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
3
|
Amaral JK, Taylor PC, Schoen RT. Bone erosions and joint damage caused by chikungunya virus: a systematic review. Rev Soc Bras Med Trop 2024; 57:e00404. [PMID: 38597523 PMCID: PMC11000508 DOI: 10.1590/0037-8682-0433-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Chikungunya fever is an emerging global infection transmitted by Aedes mosquitoes that manifests as an acute febrile illness with joint pain and can lead to chronic arthritis. The mechanism underlying chronic joint damage remains unclear; however, chronic chikungunya arthritis shares similarities with rheumatoid arthritis. Disease-modifying antirheumatic drugs have revolutionized rheumatoid arthritis treatment by preventing joint damage. However, the role of these therapies in chronic chikungunya arthritis has not been determined. We conducted a systematic review to evaluate the burden of joint structural damage in chronic chikungunya arthritis to help to define the role of disease-modifying therapy in this disease. METHODS This systematic review included retrospective and prospective studies, trials, and case reports evaluating joint damage caused by chikungunya virus. Various databases were searched without any date or language restrictions. Study selection was conducted independently by two researchers, and data were extracted from the articles selected. RESULTS A total of 108 studies were initially evaluated, with 8 meeting the inclusion criteria. Longitudinal studies have reported persistent joint pain from chikungunya infection and the progression of radiographic joint damage up to 13 years post-infection. Joint imaging revealed synovial inflammation, bone erosion, and cartilage destruction in patients with chronic chikungunya arthritis. CONCLUSIONS Few studies have addressed chikungunya-induced joint damage, limiting our understanding of chronic chikungunya arthritis. Nevertheless, chronic chikungunya arthritis has similarities to rheumatoid arthritis. The success of early disease-modifying antirheumatic drug therapy in rheumatoid arthritis underscores the need for comprehensive research on its role in chikungunya arthritis.
Collapse
Affiliation(s)
- José Kennedy Amaral
- Instituto de Medicina Diagnóstica do Cariri, Departamento de Reumatologia, Juazeiro do Norte, CE, Brasil
| | - Peter Charles Taylor
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford, United Kingdom
| | - Robert Taylor Schoen
- Yale University, School of Medicine, Section of Rheumatology, New Haven, Connecticut, United States of America
| |
Collapse
|
4
|
Amaral JK, Lucena G, Schoen RT. Chikungunya Arthritis Treatment with Methotrexate and Dexamethasone: A Randomized, Double-blind, Placebo-controlled Trial. Curr Rheumatol Rev 2024; 20:337-346. [PMID: 38173199 DOI: 10.2174/0115733971278715231208114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Chikungunya fever is a reemerging epidemic disease caused by a single-stranded RNA alphavirus transmitted throughout by Aedes mosquitoes. Chikungunya virus infection is a biphasic disease in which 72% to 95% of affected individuals manifest acute chikungunya fever. Following the acute phase, more than 40% of affected individuals develop arthritis, often lasting more than 3 months, referred to as chronic chikungunya arthritis, which frequently mimics rheumatoid arthritis. OBJECTIVE This study aimed to evaluate the efficacy and safety of treatment of chronic chikungunya arthritis with methotrexate and dexamethasone in a randomized, double-blind, placebo-controlled clinical trial. METHODS The patients were reassessed for treatment response by the DAS28-ESR, tender joint count and swollen joint count, Patient Global Assessment, and for secondary measures, including the Health Assessment Questionnaire Disability Index and Pain Visual Analog Scale. RESULTS Thirty-one subjects were randomized (placebo, n = 16; methotrexate, n = 15); 27 completed treatment and 4 discontinued during the 8-week blinded period. Among the participants, 96.8% were female, with mean ± SD age was 52.9 ± 13. The mean ± SD disease duration prior to treatment was 220.9 ± 51.2 days. At 8 weeks, methotrexate-treated subjects showed a greater numerical trend towards improvement, but there were no significant differences between methotrexate- dexamethasone group and dexamethasone (placebo) group. CONCLUSION In this relatively small cohort, all of whom received background dexamethasone, there was a greater numerical improvement trend in prespecified outcome measures, but methotrexate in combination with dexamethasone was not superior to dexamethasone in chronic chikungunya arthritis.
Collapse
Affiliation(s)
- José Kennedy Amaral
- Department of Rheumatology, Institute of Diagnostic Medicine of Cariri, Juazeiro do Norte, Ceará, Brazil
| | | | - Robert Taylor Schoen
- Section of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Avila-Trejo AM, Rodríguez-Páez LI, Alcántara-Farfán V, Aguilar-Faisal JL. Multiple Factors Involved in Bone Damage Caused by Chikungunya Virus Infection. Int J Mol Sci 2023; 24:13087. [PMID: 37685893 PMCID: PMC10488091 DOI: 10.3390/ijms241713087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic cases of chikungunya fever represent a public health problem in countries where the virus circulates. The disease is prolonged, in some cases, for years, resulting in disabling pain and bone erosion among other bone and joint problems. As time progresses, tissue damage is persistent, although the virus has not been found in blood or joints. The pathogenesis of these conditions has not been fully explained. Additionally, it has been considered that there are multiple factors that might intervene in the viral pathogenesis of the different conditions that develop. Other mechanisms involved in osteoarthritic diseases of non-viral origin could help explain how damage is produced in chronic conditions. The aim of this review is to analyze the molecular and cellular factors that could be involved in the tissue damage generated by different infectious conditions of the chikungunya virus.
Collapse
Affiliation(s)
- Amanda M. Avila-Trejo
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.A.-T.); (L.I.R.-P.); (V.A.-F.)
- Laboratorio de Medicina de Conservación, Secretaría de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Lorena I. Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.A.-T.); (L.I.R.-P.); (V.A.-F.)
| | - Verónica Alcántara-Farfán
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.A.-T.); (L.I.R.-P.); (V.A.-F.)
| | - J. Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación, Secretaría de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| |
Collapse
|
6
|
Staples JE, Gibney KB, Panella AJ, Prince HE, Basile AJ, Laven J, Sejvar JJ, Fischer M. Duration of West Nile Virus Immunoglobulin M Antibodies up to 81 Months Following West Nile Virus Disease Onset. Am J Trop Med Hyg 2022; 106:tpmd211234. [PMID: 35405658 PMCID: PMC9209930 DOI: 10.4269/ajtmh.21-1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/08/2022] [Indexed: 11/07/2022] Open
Abstract
West Nile virus (WNV) IgM antibodies typically indicate a recent infection. However, WNV IgM antibodies can remain detectable for months to years following illness onset. We found that 23% (11/47) of samples tested with a WNV ELISA and 43% (20/47) of samples tested with WNV microsphere immunoassay (MIA) at 16-19 months following WNV illness onset were positive for IgM antibodies. The proportion of samples testing positive for WNV IgM by ELISA decreased over time, but 5% (2/44) of individuals remained positive at 60-63 months after their acute illness and 4% (2/50) were WNV IgM equivocal at 72-81 months. Testing by MIA showed the same general trend of decreased proportion positive over time though the rates of positivity were higher at most time points compared with the ELISA, including 6% (3/50) of participant's samples identified as IgM positive by MIA at 72-81 months post their acute illness. With the MIA, there also was a high proportion of samples with nonspecific results at each time point; average of 23% across all time points. Clinicians and public health officials should consider these findings along with clinical and epidemiologic data when interpreting WNV IgM antibody test results.
Collapse
Affiliation(s)
- J. Erin Staples
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Katherine B. Gibney
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
- Epidemic Intelligence Service Program, CDC, Atlanta, Georgia
| | - Amanda J. Panella
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Harry E. Prince
- Quest Diagnostics Infectious Disease, Inc., San Juan Capistrano, California
| | - Alison J. Basile
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Janeen Laven
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - James J. Sejvar
- Division of High-Consequence Pathogens and Pathology, CDC, Atlanta, Georgia
| | - Marc Fischer
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
7
|
Hossain S, Choudhury MR, Islam MA, Hassan MM, Yeasmin S, Hossain F, Zaman MM. Post-chikungunya arthritis: a longitudinal study in a tertiary care hospital in Bangladesh. Trop Med Health 2022; 50:21. [PMID: 35260197 PMCID: PMC8903658 DOI: 10.1186/s41182-022-00412-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background and objective To identify the clinical patterns and consequences of post-chikungunya arthritis was the study's objective. Methods This longitudinal study was carried out among 143 Chikungunya virus (CHIKV) infected adult patients at the rheumatology department, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh, during the outbreak of CHIKV infection in 2017. The disease was categorized into three phases: acute or febrile (lasting up to 10 days), subacute (11–90 days), and chronic (> 90 days). Patients who progressed towards the chronic phase were followed up to 1-year. Post-CHIKV de novo chronic inflammatory rheumatisms (CIRs) were characterized by persistent mono or oligoarthritis, undifferentiated polyarthritis, or meet the criteria rheumatoid arthritis (RA) or Spondyloarthritis (SpA). In addition, functional status was assessed by the validated Bangla version of the Health Assessment Questionnaire (HAQ). Results Mean age was 43.3 ± 11.5 years, and 51.0% were male. Within 1-year follow-up, 60 (41.9%) patients were suffering from arthralgia/ arthritis. Of them 52 patients did not have any pre-existing arthralgia/arthritis. 35 (65.3%) had undifferentiated arthritis, 10 (19.2%) had SpA, and 7 (13.5%) had RA. Patients with pre-existing rheumatological disorders, 6(4.2%) had SpA, 1(0.7%) had RA and 1(0.7%) had osteoarthritis. Polyarthralgia (n = 33, 55.0%) and polyarthritis (n = 20, 33.3%) were the main presentations. Female gender (OR: 0.45; CI: 0.21–0.96), positive IgG (OR: 0.30; CI: 0.12–0.76), and moderate to severe functional disability (OR: 3.46; CI: 1.62–7.40) were independent predictors of developing chronic post-CHIKV rheumatism. Conclusions At 1-year follow-up, more than one-third of the patients remained symptomatic. Female gender, positive IgG, and moderate to severe functional disability contributed to the development of chronicity.
Collapse
|
8
|
Kafai NM, Diamond MS, Fox JM. Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. Annu Rev Immunol 2022; 40:615-649. [PMID: 35134315 DOI: 10.1146/annurev-immunol-101220-014952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
9
|
Gazeau P, Guellec D. Arthrites et ténosynovites vénériennes. REVUE DU RHUMATISME MONOGRAPHIES 2022; 89:57-64. [DOI: 10.1016/j.monrhu.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
|
11
|
Hibl BM, Dailey Garnes NJM, Kneubehl AR, Vogt MB, Spencer Clinton JL, Rico-Hesse RR. Mosquito-bite infection of humanized mice with chikungunya virus produces systemic disease with long-term effects. PLoS Negl Trop Dis 2021; 15:e0009427. [PMID: 34106915 PMCID: PMC8189471 DOI: 10.1371/journal.pntd.0009427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus responsible for acute to chronic arthralgias and neuropathies. Although it originated in central Africa, recent reports of disease have come from many parts of the world, including the Americas. While limiting human CHIKV cases through mosquito control has been used, it has not been entirely successful. There are currently no licensed vaccines or treatments specific for CHIKV disease, thus more work is needed to develop effective countermeasures. Current animal research on CHIKV is often not representative of human disease. Most models use CHIKV needle inoculation via unnatural routes to create immediate viremia and localized clinical signs; these methods neglect the natural route of transmission (the mosquito vector bite) and the associated human immune response. Since mosquito saliva has been shown to have a profound effect on viral pathogenesis, we evaluated a novel model of infection that included the natural vector, Aedes species mosquitoes, transmitting CHIKV to mice containing components of the human immune system. Humanized mice infected by 3-6 mosquito bites showed signs of systemic infection, with demonstrable viremia (by qRT-PCR and immunofluorescent antibody assay), mild to moderate clinical signs (by observation, histology, and immunohistochemistry), and immune responses consistent with human infection (by flow cytometry and IgM ELISA). This model should give a better understanding of human CHIKV disease and allow for more realistic evaluations of mechanisms of pathogenesis, prophylaxis, and treatments.
Collapse
Affiliation(s)
- Brianne M. Hibl
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Natalie J. M. Dailey Garnes
- Section of Infectious Disease, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Section of Pediatric Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander R. Kneubehl
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Megan B. Vogt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca R. Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
13
|
Imad HA, Matsee W, Kludkleeb S, Asawapaithulsert P, Phadungsombat J, Nakayama EE, Suzuki K, Leaungwutiwong P, Piyaphanee W, Phumratanaprapin W, Shioda T. Post-Chikungunya Virus Infection Musculoskeletal Disorders: Syndromic Sequelae after an Outbreak. Trop Med Infect Dis 2021; 6:52. [PMID: 33921055 PMCID: PMC8167736 DOI: 10.3390/tropicalmed6020052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
The Chikungunya virus is a re-emerging mosquito-borne alphavirus. Outbreaks are unpredictable and explosive in nature. Fever, arthralgia, and rash are common symptoms during the acute phase. Diagnostic tests are required to differentiate chikungunya virus from other co-circulating arboviruses, as symptoms can overlap, causing a dilemma for clinicians. Arthritis is observed during the sub-acute and chronic phases, which can flare up, resulting in increased morbidity that adversely affects the activities of daily living. During the 2019 chikungunya epidemic in Thailand, cases surged in Bangkok in the last quarter of the year. Here, we demonstrate the chronic sequelae of post-chikungunya arthritis in one of our patients one year after the initial infection. An inflammatory process involving edema, erythema, and tenderness to palpation of her fingers' flexor surfaces was observed, with positive chikungunya IgG and negative IgM tests and antigen. The condition produced stiffness in the patient's fingers and limited their range of motion, adversely affecting daily living activities. Resolution of symptoms was observed with a short course of an anti-inflammatory agent. More research is required to determine whether sanctuaries enable chikungunya virus to evade the host immune response and remain latent, flaring up months later and triggering an inflammatory response that causes post-chikungunya arthritis.
Collapse
Affiliation(s)
- Hisham A. Imad
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.); (T.S.)
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
- Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.M.); (S.K.); (P.A.); (W.P.); (W.P.)
| | - Wasin Matsee
- Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.M.); (S.K.); (P.A.); (W.P.); (W.P.)
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sajikapon Kludkleeb
- Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.M.); (S.K.); (P.A.); (W.P.); (W.P.)
| | - Punyisa Asawapaithulsert
- Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.M.); (S.K.); (P.A.); (W.P.); (W.P.)
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.); (T.S.)
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Emi E. Nakayama
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.); (T.S.)
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Keita Suzuki
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
- Point of Care Testing Products Business Unit, TANAKA Kikinzoku Kogyo, Hiratsuka 254-0076, Japan
| | - Pornsawan Leaungwutiwong
- Tropical Medicine Diagnostic Reference Laboratory, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Watcharapong Piyaphanee
- Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.M.); (S.K.); (P.A.); (W.P.); (W.P.)
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Weerapong Phumratanaprapin
- Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.M.); (S.K.); (P.A.); (W.P.); (W.P.)
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.); (T.S.)
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| |
Collapse
|
14
|
Costa DMDN, Coêlho MRCD, Gouveia PADC, Bezerra LA, Marques CDL, Duarte ALBP, Valente LM, Magalhães V. Long-Term Persistence of Serum-Specific Anti-Chikungunya IgM Antibody - A Case Series of Brazilian Patients. Rev Soc Bras Med Trop 2021; 54:e0855. [PMID: 33886823 PMCID: PMC8047711 DOI: 10.1590/0037-8682-0855-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/26/2021] [Indexed: 11/29/2022] Open
Abstract
The persistence of serum-specific anti-chikungunya IgM antibodies (CHIKV-IgM) can vary after chikungunya fever (CHIK) infection. However, the factors related to its production are not yet known. We described a case series drawn up from data collected from 57 patients between 12 and 36 months after the acute phase of CHIK infection in Northeastern Brazil. CHIKV-IgM was detectable in 7/57 (12.3%) patients after 28.3 months of infection. No frequency differences in chronic musculoskeletal manifestations and underlying conditions were detected between patients with or without CHIKV-IgM. CHIKV-IgM was detected for up to 35 months in Brazilian patients after CHIK infection.
Collapse
Affiliation(s)
| | - Maria Rosângela Cunha Duarte Coêlho
- Universidade Federal de Pernambuco, Departamento de Virologia, Laboratório de Imunopatologia Keizo Asami, Recife, PE, Brasil.,Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Fisiologia e Farmacologia, Recife, PE, Brasil
| | | | - Luan Araújo Bezerra
- Universidade Federal de Pernambuco, Departamento de Virologia, Laboratório de Imunopatologia Keizo Asami, Recife, PE, Brasil
| | | | | | | | - Vera Magalhães
- Universidade Federal de Pernambuco, Hospital das Clínicas, Recife, PE, Brasil
| |
Collapse
|
15
|
|
16
|
Monteiro JD, Valverde JG, Morais IC, Souza CRDM, Fagundes Neto JC, de Melo MF, Nascimento YM, Alves BEB, de Medeiros LG, Pereira HWB, de Paiva AAP, Teixeira DG, Moura MCBDM, Tavares ADM, Fernandes JV, Jeronimo SMB, Araújo JMG. Epidemiologic and clinical investigations during a chikungunya outbreak in Rio Grande do Norte State, Brazil. PLoS One 2020; 15:e0241799. [PMID: 33216743 PMCID: PMC7678967 DOI: 10.1371/journal.pone.0241799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022] Open
Abstract
The first autochthonous case of chikungunya virus (CHIKV) infection in Brazil was in September 2014 in the State of Amapá, and from there it rapidly spread across the country. The present study was conducted in 2016 in the state of Rio Grande do Norte, and the aims were to describe the epidemiological and the clinical aspects of the CHIKV outbreak. Biological samples from 284 chikungunya suspected cases were screened for CHIKV and Flavivirus (FV) RNA using qRT-PCR. Negative PCR samples were also screened for anti-CHIKV and anti-FVIgM by ELISA. CHIKV RNA were detected in 125 samples mostly occurring from January through March (46%), mainly affecting adults and older adults. We found a gradual decrease in viral RNA over the disease time. Anti-CHIKV IgM was found in 47.5% after negative CHIKV qRT-PCR. Interestingly, 45.0% simultaneously had positive results for CHIKV and FV IgM, suggesting the occurrence of virus co-circulation. The most frequent symptom was fever (91%). Women presented more chance to develop nausea and abdominal pain compared to men. Our data described and allows us to better understand the clinical and epidemiological aspects of the 2016 chikungunya outbreak in Rio Grande do Norte and can help in the early clinical diagnosis of the virus.
Collapse
Affiliation(s)
- Joelma D. Monteiro
- Immunogenetics Laboratory, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
- Post-Graduate Program in Parasite Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Molecular Biology for Infectious Diseases and Cancer, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
- Post-Graduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Joanna Gardel Valverde
- Immunogenetics Laboratory, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
- Laboratory of Complex Diseases, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
- Institute of Science and Technology of Tropical Diseases, Brazil
- * E-mail:
| | | | - Cassio Ricardo de Medeiros Souza
- Immunogenetics Laboratory, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
- Laboratory of Complex Diseases, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
- Institute of Science and Technology of Tropical Diseases, Brazil
| | - João Ciro Fagundes Neto
- Post-Graduate Program in Parasite Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Molecular Biology for Infectious Diseases and Cancer, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marília Farias de Melo
- Post-Graduate Program in Parasite Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Molecular Biology for Infectious Diseases and Cancer, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Yasmin Mesquita Nascimento
- Laboratory of Molecular Biology for Infectious Diseases and Cancer, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Brenda Elen Bizerra Alves
- Post-Graduate Program in Parasite Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Molecular Biology for Infectious Diseases and Cancer, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Leandro Gurgel de Medeiros
- Post-Graduate Program in Parasite Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Molecular Biology for Infectious Diseases and Cancer, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Hannaly W. Bezerra Pereira
- Post-Graduate Program in Parasite Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Molecular Biology for Infectious Diseases and Cancer, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Anne Aline Pereira de Paiva
- Laboratory of Molecular Biology for Infectious Diseases and Cancer, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Diego G. Teixeira
- Immunogenetics Laboratory, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
- Laboratory of Complex Diseases, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
- Institute of Science and Technology of Tropical Diseases, Brazil
| | | | | | - José Veríssimo Fernandes
- Post-Graduate Program in Parasite Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Molecular Biology for Infectious Diseases and Cancer, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Selma M. B. Jeronimo
- Immunogenetics Laboratory, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
- Post-Graduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Complex Diseases, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
- Institute of Science and Technology of Tropical Diseases, Brazil
| | - Josélio M. G. Araújo
- Post-Graduate Program in Parasite Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Molecular Biology for Infectious Diseases and Cancer, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Virology, Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
17
|
Foeller ME, Nosrat C, Krystosik A, Noel T, Gérardin P, Cudjoe N, Mapp-Alexander V, Mitchell G, Macpherson C, Waechter R, LaBeaud AD. Chikungunya infection in pregnancy - reassuring maternal and perinatal outcomes: a retrospective observational study. BJOG 2020; 128:1077-1086. [PMID: 33040457 DOI: 10.1111/1471-0528.16562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate pregnancy and neonatal outcomes, disease severity, and mother-to-child transmission of pregnant women with Chikungunya infection (CHIKV). DESIGN Retrospective observational study. SETTING Grenada. POPULATION Women who gave birth during a Chikungunya outbreak between January 2014 and September 2015 were eligible. METHODS This descriptive study investigated 731 mother-infant pairs who gave birth during a CHIKV outbreak. Women and infants underwent serological testing for CHIKV by ELISA. MAIN OUTCOME MEASURES Primary outcomes: composite pregnancy complication (abruption, vaginal bleeding, preterm labour/cervical incompetence, cesarean delivery for fetal distress/abruption/placental abnormality or delivery for fetal distress) and composite neonatal morbidity. RESULTS Of 416 mother-infant pairs, 150 (36%) had CHIKV during pregnancy, 135 (33%) had never had CHIKV, and 131 (31%) had CHIKV outside of pregnancy. Mean duration of joint pain was shorter among women infected during pregnancy (μ = 898 days, σ = 277 days) compared with infections outside of pregnancy (μ = 1064 days, σ = 244 days) (P < 0.0001). Rates of pregnancy complications (RR = 0.76, P = 0.599), intrapartum complications (RR = 1.50, P = 0.633), and neonatal outcomes were otherwise similar. Possible mother-to-child transmission occurred in two (1.3%) mother-infant pairs and two of eight intrapartum infections (25%). CONCLUSION CHIKV infection during pregnancy may be protective against long-term joint pain sequelae that are often associated with acute CHIKV infection. Infection during pregnancy did not appear to pose a risk for pregnancy complications or neonatal health, but maternal infection just prior to delivery might have increased risk of mother-to-child transmission of CHIKV. TWEETABLE ABSTRACT Chikungunya infection did not increase risk of pregnancy complications or adverse neonatal outcomes, unless infection was just prior to delivery.
Collapse
Affiliation(s)
- M E Foeller
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - C Nosrat
- Program in Human Biology, Stanford University, Stanford, CA, USA
| | - A Krystosik
- Division of Infectious Disease, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, USA
| | - T Noel
- Windward Islands Research and Education Foundation, True Blue, Grenada.,St. George's University, St. Georges, Grenada
| | - P Gérardin
- INSERM CIC1410, Centre Hospitalier Universitaire de la Réunion, Saint Pierre, Réunion.,Unité Mixte 134 PIMIT (INSERM 1187, CNRS 9192, IRD 249, Université de La Réunion), Sainte Clotilde, Réunion
| | - N Cudjoe
- Windward Islands Research and Education Foundation, True Blue, Grenada
| | - V Mapp-Alexander
- Windward Islands Research and Education Foundation, True Blue, Grenada.,St. George's University, St. Georges, Grenada
| | - G Mitchell
- Ministry of Health, St. Georges, Grenada
| | - C Macpherson
- Windward Islands Research and Education Foundation, True Blue, Grenada.,St. George's University, St. Georges, Grenada
| | - R Waechter
- Windward Islands Research and Education Foundation, True Blue, Grenada.,St. George's University, St. Georges, Grenada
| | - A D LaBeaud
- Division of Infectious Disease, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
|
19
|
Abstract
Alphaviruses, members of the enveloped, positive-sense, single-stranded RNA Togaviridae family, represent a reemerging public health threat as mosquito vectors expand into new geographic territories. The Old World alphaviruses, which include chikungunya virus, Ross River virus, and Sindbis virus, tend to cause a clinical syndrome characterized by fever, rash, and arthritis, whereas the New World alphaviruses, which consist of Venezuelan equine encephalitis virus, eastern equine encephalitis virus, and western equine encephalitis virus, induce encephalomyelitis. Following recovery from the acute phase of infection, many patients are left with debilitating persistent joint and neurological complications that can last for years. Clues from human cases and studies using animal models strongly suggest that much of the disease and pathology induced by alphavirus infection, particularly atypical and chronic manifestations, is mediated by the immune system rather than directly by the virus. This review discusses the current understanding of the immunopathogenesis of the arthritogenic and neurotropic alphaviruses accumulated through both natural infection of humans and experimental infection of animals, particularly mice. As treatment following alphavirus infection is currently limited to supportive care, understanding the contribution of the immune system to the disease process is critical to developing safe and effective therapies.
Collapse
Affiliation(s)
- Victoria K Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
20
|
Suzuki K, Huits R, Phadungsombat J, Tuekprakhon A, Nakayama EE, van den Berg R, Barbé B, Cnops L, Rahim R, Hasan A, Iwamoto H, Leaungwutiwong P, van Esbroeck M, Rahman M, Shioda T. Promising application of monoclonal antibody against chikungunya virus E1-antigen across genotypes in immunochromatographic rapid diagnostic tests. Virol J 2020; 17:90. [PMID: 32615978 PMCID: PMC7330967 DOI: 10.1186/s12985-020-01364-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Three different genotypes of chikungunya virus (CHIKV) have been classified: East/Central/South African (ECSA), West African (WA), and Asian. Previously, a rapid immunochromatographic (IC) test detecting CHIKV E1-antigen showed high sensitivity for certain ECSA-genotype viruses, but this test showed poor performance against the Asian-genotype virus that is spreading in the American continents. We found that the reactivity of one monoclonal antibody (MAb) used in the IC rapid diagnostic test (RDT) is affected by a single amino acid substitution in E1. Therefore, we developed new MAbs that exhibited specific recognition of all three genotypes of CHIKV. METHODS Using a combination of the newly generated MAbs, we developed a novel version of the IC RDT with improved sensitivity to Asian-genotype CHIKV. To evaluate the sensitivity, specificity, and cross-reactivity of the new version of the IC RDT, we first used CHIKV isolates and E1-pseudotyped lentiviral vectors. We then used clinical specimens obtained in Aruba in 2015 and in Bangladesh in 2017 for further evaluation of RDT sensitivity and specificity. Another alphavirus, sindbis virus (SINV), was used to test RDT cross-reactivity. RESULTS The new version of the RDT detected Asian-genotype CHIKV at titers as low as 10^4 plaque-forming units per mL, a concentration that was below the limit of detection of the old version. The new RDT had sensitivity to the ECSA genotype that was comparable with that of the old version, yielding 92% (92 out of 100) sensitivity (95% confidence interval 85.0-95.9) and 100% (100 out of 100) specificity against a panel of 100 CHIKV-positive and 100 CHIKV-negative patient sera obtained in the 2017 outbreak in Bangladesh. CONCLUSIONS Our newly developed CHIKV antigen-detecting RDT demonstrated high levels of sensitivity and lacked cross-reactivity against SINV. These results suggested that our new version of the CHIKV E1-antigen RDT is promising for use in areas in which the Asian and ECSA genotypes of CHIKV circulate. Further validation with large numbers of CHIKV-positive and -negative clinical samples is warranted. (323 words).
Collapse
Affiliation(s)
- Keita Suzuki
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,POCT Products Business Unit, TANAKA Kikinzoku Kogyo K.K, Hiratsuka, Japan
| | - Ralph Huits
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Aekkachai Tuekprakhon
- Mahidol-Osaka Center for Infectious Diseases, Mahidol University, Bangkok, Thailand.,Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lieselotte Cnops
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Abu Hasan
- Apollo Hospitals Dhaka, Dhaka, Bangladesh
| | - Hisahiko Iwamoto
- POCT Products Business Unit, TANAKA Kikinzoku Kogyo K.K, Hiratsuka, Japan
| | | | - Marjan van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan. .,Mahidol-Osaka Center for Infectious Diseases, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
21
|
Srivastava P, Kumar A, Hasan A, Mehta D, Kumar R, Sharma C, Sunil S. Disease Resolution in Chikungunya-What Decides the Outcome? Front Immunol 2020; 11:695. [PMID: 32411133 PMCID: PMC7198842 DOI: 10.3389/fimmu.2020.00695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Chikungunya disease (CHIKD) is a viral infection caused by an alphavirus, chikungunya virus (CHIKV), and triggers large outbreaks leading to epidemics. Despite the low mortality rate, it is a major public health concern owing to high morbidity in affected individuals. The complete spectrum of this disease can be divided into four phases based on its clinical presentation and immunopathology. When a susceptible individual is bitten by an infected mosquito, the bite triggers inflammatory responses attracting neutrophils and initiating a cascade of events, resulting in the entry of the virus into permissive cells. This phase is termed the pre-acute or the intrinsic incubation phase. The virus utilizes the cellular components of the innate immune system to enter into circulation and reach primary sites of infection such as the lymph nodes, spleen, and liver. Also, at this point, antigen-presenting cells (APCs) present the viral antigens to the T cells thereby activating and initiating adaptive immune responses. This phase is marked by the exhibition of clinical symptoms such as fever, rashes, arthralgia, and myalgia and is termed the acute phase of the disease. Viremia reaches its peak during this phase, thereby enhancing the antigen-specific host immune response. Simultaneously, T cell-mediated activation of B cells leads to the formation of CHIKV specific antibodies. Increase in titres of neutralizing IgG/IgM antibodies results in the clearance of virus from the bloodstream and marks the initiation of the post-acute phase. Immune responses mounted during this phase of the infection determine the degree of disease progression or its resolution. Some patients may progress to a chronic arthritic phase of the disease that may last from a few months to several years, owing to a compromised disease resolution. The present review discusses the immunopathology of CHIKD and the factors that dictate disease progression and its resolution.
Collapse
Affiliation(s)
- Priyanshu Srivastava
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ankit Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abdul Hasan
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Divya Mehta
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ramesh Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chetan Sharma
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sujatha Sunil
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
22
|
Kumar R, Shrivastava T, Samal S, Ahmed S, Parray HA. Antibody-based therapeutic interventions: possible strategy to counter chikungunya viral infection. Appl Microbiol Biotechnol 2020; 104:3209-3228. [PMID: 32076776 PMCID: PMC7223553 DOI: 10.1007/s00253-020-10437-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted disease that belongs to the genus Alphaviruses, has been emerged as an epidemic threat over the last two decades, and the recent co-emergence of this virus along with other circulating arboviruses and comorbidities has influenced atypical mortality rate up to 10%. Genetic variation in the virus has resulted in its adaptability towards the new vector Aedes albopictus other than Aedes aegypti, which has widen the horizon of distribution towards non-tropical and non-endemic areas. As of now, no licensed vaccines or therapies are available against CHIKV; the treatment regimens for CHIKV are mostly symptomatic, based on the clinical manifestations. Development of small molecule drugs and neutralizing antibodies are potential alternatives of worth investigating until an efficient or safe vaccine is approved. Neutralizing antibodies play an important role in antiviral immunity, and their presence is a hallmark of viral infection. In this review, we describe prospects for effective vaccines and highlight importance of neutralizing antibody-based therapeutic and prophylactic applications to combat CHIKV infections. We further discuss about the progress made towards CHIKV therapeutic interventions as well as challenges and limitation associated with the vaccine development. Furthermore this review describes the lesson learned from chikungunya natural infection, which could help in better understanding for future development of antibody-based therapeutic measures.
Collapse
Affiliation(s)
- Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
23
|
Guerrero-Arguero I, Høj TR, Tass ES, Berges BK, Robison RA. A comparison of Chikungunya virus infection, progression, and cytokine profiles in human PMA-differentiated U937 and murine RAW264.7 monocyte derived macrophages. PLoS One 2020; 15:e0230328. [PMID: 32163514 PMCID: PMC7067478 DOI: 10.1371/journal.pone.0230328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 11/29/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes rash, fever and severe polyarthritis that can last for years in humans. Murine models display inflammation and macrophage infiltration only in the adjacent tissues at the site of inoculation, showing no signs of systemic polyarthritis. Monocyte-derived macrophages are one cell type suspected to contribute to a systemic CHIKV infection. The purpose of this study was to analyze differences in CHIKV infection in two different cell lines, human U937 and murine RAW264.7 monocyte derived macrophages. PMA-differentiated U937 and RAW264.7 macrophages were infected with CHIKV, and infectious virus production was measured by plaque assay and by reverse transcriptase quantitative PCR at various time points. Secreted cytokines in the supernatants were measured using cytometric bead arrays. Cytokine mRNA levels were also measured to supplement expression data. Here we show that CHIKV replicates more efficiently in human macrophages compared to murine macrophages. In addition, infected human macrophages produced around 10-fold higher levels of infectious virus when compared to murine macrophages. Cytokine induction by CHIKV infection differed between human and murine macrophages; IL-1, IL-6, IFN-γ, and TNF were significantly upregulated in human macrophages. This evidence suggests that CHIKV replicates more efficiently and induces a much greater pro-inflammatory cytokine profile in human macrophages, when compared to murine macrophages. This may shed light on the critical role that macrophages play in the CHIKV inflammatory response.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Taalin R. Høj
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - E. Shannon Tass
- Department of Statistics, College of Physical and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
24
|
Ninla-Aesong P, Mitarnun W, Noipha K. Long-Term Persistence of Chikungunya Virus-Associated Manifestations and Anti-Chikungunya Virus Antibody in Southern Thailand: 5 Years After an Outbreak in 2008-2009. Viral Immunol 2020; 33:86-93. [PMID: 31976828 DOI: 10.1089/vim.2019.0168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chikungunya fever, a disease caused by chikungunya virus (CHIKV), reemerged and affected over 52,000 people in southern Thailand in 2008 and 2009. The CHIKV strain involved in this outbreak was the East Central South African (ECSA) strain with the E1-A226V mutation. The prevalence of CHIKV-associated chronic discomfort varied by virus lineage. This retrospective cohort study aims to describe the CHIKV-related symptoms persisting in CHIKV-affected patients, related factors, and the presence of anti-CHIKV immunoglobulin G (IgG) antibodies 5 years after the onset of disease. From 5,344 of the study population screened, a total of 89 affected patients reported persistent arthralgia 5 years after the disease onset (nonrecovery rate = 1.7%). Of the 141 affected patients enrolled, 122 cases (86.5%; 77 cases with persistent arthralgia and 45 cases of fully recovered) still had detectable levels of anti-CHIKV IgG antibodies. Long-term persistence of chronic joint symptoms is associated with the severity of the disease during the initial phase of the infection, but not gender, age, or comorbidities. The common manifestations were arthralgia (75.3%), morning joint stiffness (39.0%), muscle pain (19.5%), and occasional joint swelling (16.9%). Chronic joint symptoms could occur in either a fluctuating or a persistent manner and usually caused moderate pain. The joints affected were mainly fingers (71.4%), wrists (51.9%), and knees (50.6%). Most patients had polyarthralgia with symmetrical joint involvement. In some cases with persistent arthralgia, atypical manifestations, including severe depression with suicide attempts, severe weight loss, and severe hair loss, were found, and some patients still experienced severe joint pain.
Collapse
Affiliation(s)
| | - Winyou Mitarnun
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hatyai, Thailand
| | - Kusumarn Noipha
- Faculty of Health and Sports Science, Thaksin University, Paphayom, Thailand
| |
Collapse
|
25
|
Vouga M, Chiu YC, Pomar L, de Meyer SV, Masmejan S, Genton B, Musso D, Baud D, Stojanov M. Dengue, Zika and chikungunya during pregnancy: pre- and post-travel advice and clinical management. J Travel Med 2019; 26:taz077. [PMID: 31616923 PMCID: PMC6927317 DOI: 10.1093/jtm/taz077] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
RATIONALE FOR REVIEW Young adults of childbearing age and pregnant women are travelling more frequently to tropical areas, exposing them to specific arboviral infections such as dengue, zika and chikungunya viruses, which may impact ongoing and future pregnancies. In this narrative review, we analyse their potential consequences on pregnancy outcomes and discuss current travel recommendations. MAIN FINDINGS Dengue virus may be associated with severe maternal complications, particularly post-partum haemorrhage. Its association with adverse fetal outcomes remains unclear, but prematurity, growth retardation and stillbirths may occur, particularly in cases of severe maternal infection. Zika virus is a teratogenic infectious agent associated with severe brain lesions, with similar risks to other well-known TORCH pathogens. Implications of chikungunya virus in pregnancy are mostly related to intrapartum transmission that may be associated with severe neonatal infections and long-term morbidity. TRAVEL RECOMMENDATIONS Few agencies provide specific travel recommendations for travelling pregnant patients or couples trying to conceive and discrepancies exist, particularly regarding Zika virus prevention. The risks significantly depend on epidemiological factors that may be difficult to predict. Prevention relies principally on mosquito control measures. Couples trying to conceive and pregnant women should receive adequate information about the potential risks. It seems reasonable to advise pregnant women to avoid unnecessary travel to Aedes spp. endemic regions. The current rationale to avoid travel and delay conception is debatable in the absence of any epidemic. Post-travel laboratory testing should be reserved for symptomatic patients.
Collapse
Affiliation(s)
- Manon Vouga
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Yen-Chi Chiu
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Léo Pomar
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sara V de Meyer
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sophie Masmejan
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Blaise Genton
- Travel Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Didier Musso
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Milos Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
26
|
Ninla-Aesong P, Mitarnun W, Noipha K. Proinflammatory Cytokines and Chemokines as Biomarkers of Persistent Arthralgia and Severe Disease After Chikungunya Virus Infection: A 5-Year Follow-Up Study in Southern Thailand. Viral Immunol 2019; 32:442-452. [PMID: 31718485 DOI: 10.1089/vim.2019.0064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chikungunya fever is a re-emerging viral disease caused by chikungunya virus (CHIKV). The disease is generally self-limiting, but chronic arthralgia/arthritis may persist for months or years. We evaluated the expression of 12 cytokines/chemokines and matrix metalloproteinases (MMP)-1 and MMP-3 using enzyme-linked immunosorbent assays (ELISAs) and compared among patients who still had arthralgia (persistent arthralgia), patients who had fully recovered, and healthy controls. There was a significant increase in interleukin (IL)-1β, IL-6, IL-8, monocyte chemotactic protein-1 (MCP-1), MMP-1, and MMP-3 levels in patients with persistent arthralgia in comparison to healthy controls (p < 0.05) and a significant increase in tumor necrosis factor-alpha (TNF-α), MMP-1, and MMP-3 levels in patients with persistent arthralgia in comparison to patients who had fully recovered (p < 0.05). Interferon (IFN)-γ, IL-6, and transforming growth factor beta (TGF-β) levels tended to be increased in patients with chronic CHIKV-induced arthritis compared with fully recovered. TNF-α, IL-12, and MCP-1 levels were elevated (p < 0.05), whereas regulated on activation, normal T cell expressed and secreted (RANTES) levels were decreased in patients with severe pain compared with patients with nonsevere pain (p < 0.05). IFN-γ, IL-1β, IL-6, and IL-8 levels tended to be elevated in patients with severe pain compared with patients with nonsevere pain. We proposed a role played by TNF-α, IL-6, IL-8, and MCP-1 in persistent arthralgia or chronic disease through the activation of MMP-1 and MMP-3. The increase in TNF-α, IL-12, and MCP-1 levels (and the tendency toward an increase in IFN-γ, IL-1β, IL-6, and IL-8 levels) in patients with severe pain compared with patients with nonsevere pain suggests the role of these inflammatory markers in chronic disease and severity of the disease.
Collapse
Affiliation(s)
| | - Winyou Mitarnun
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Kusumarn Noipha
- Faculty of Health and Sports Science, Thaksin University, Paphayom, Phatthalung, Thailand
| |
Collapse
|
27
|
Castro-Domínguez F, Salman-Monte TC, Ojeda F, Corzo P, Carrión-Barberá I, Garcia-Duitama IC, Monfort J. Chikungunya-related Erosive Arthritis: Case Report and Literature Review. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.reumae.2018.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Castro-Domínguez F, Salman-Monte TC, Ojeda F, Corzo P, Carrión-Barberá I, Garcia-Duitama IC, Monfort J. Chikungunya-related erosive arthritis: case report and literature review. REUMATOLOGIA CLINICA 2019; 15:e119-e121. [PMID: 29191474 DOI: 10.1016/j.reuma.2017.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/05/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Chikungunya virus infection (CHIKV) is associated with joint involvement in half of the cases. This can lead to erosive arthritis which, given the high intervariability of clinical and serological presentations, and the probable role of genetic conditioning in the severity and chronification of the condition, represents a great diagnostic and therapeutic challenge. There is an important lack of scientific evidence that would enable us to characterize the variability of the patient and choose the most appropriate approach.
Collapse
Affiliation(s)
| | | | - Fabiola Ojeda
- Servicio de Reumatología, Hospital del Mar, Parc de Salut Mar, IMIM, Barcelona, España
| | - Patricia Corzo
- Servicio de Reumatología, Hospital del Mar, Parc de Salut Mar, IMIM, Barcelona, España
| | - Irene Carrión-Barberá
- Servicio de Reumatología, Hospital del Mar, Parc de Salut Mar, IMIM, Barcelona, España
| | - Ivan Camilo Garcia-Duitama
- Sección de Radiología Musculoesquelética, Servicio de Radiología, Hospital del Mar, Parc de Salut Mar, Barcelona, España
| | - Jordi Monfort
- Servicio de Reumatología, Hospital del Mar, Parc de Salut Mar, IMIM, Barcelona, España
| |
Collapse
|
29
|
Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, Ralandison S, Gasque P. Methotrexate an Old Drug with New Tricks. Int J Mol Sci 2019; 20:E5023. [PMID: 31658782 PMCID: PMC6834162 DOI: 10.3390/ijms20205023] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Methotrexate (MTX) is the first line drug for the treatment of a number of rheumatic and non-rheumatic disorders. It is currently used as an anchor disease, modifying anti-rheumatic drug in the treatment of rheumatoid arthritis (RA). Despite the development of numerous new targeted therapies, MTX remains the backbone of RA therapy due to its potent efficacy and tolerability. There has been also a growing interest in the use of MTX in the treatment of chronic viral mediated arthritis. Many viruses-including old world alphaviruses, Parvovirus B19, hepatitis B/C virus, and human immunodeficiency virus-have been associated with arthritogenic diseases and reminiscent of RA. MTX may provide benefits although with the potential risk of attenuating patients' immune surveillance capacities. In this review, we describe the emerging mechanisms of action of MTX as an anti-inflammatory drug and complementing its well-established immunomodulatory activity. The mechanisms involve adenosine signaling modulation, alteration of cytokine networks, generation of reactive oxygen species and HMGB1 alarmin suppression. We also provide a comprehensive understanding of the mechanisms of MTX toxic effects. Lastly, we discussed the efficacy, as well as the safety, of MTX used in the management of viral-related rheumatic syndromes.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Xavier Guillot
- Service de Rhumatologie, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Jimmy Sélambarom
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Pascale Guiraud
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Claude Giry
- Laboratoire de biologie, CNR associé des arbovirus, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Marie Christine Jaffar-Bandjee
- Laboratoire de biologie, CNR associé des arbovirus, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Stéphane Ralandison
- Service de Rhumatologie-Médecine Interne, CHU Morafeno, Route d'Ivoloina 501, Toamasina, Madagascar.
| | - Philippe Gasque
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
- Pôle de Biologie, secteur Laboratoire d'Immunologie Clinique et Expérimentale de la zone de l'Océan Indien (LICE-OI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| |
Collapse
|
30
|
Amaral JK, Sutaria R, Schoen RT. Treatment of Chronic Chikungunya Arthritis With Methotrexate: A Systematic Review. Arthritis Care Res (Hoboken) 2019; 70:1501-1508. [PMID: 29361202 DOI: 10.1002/acr.23519] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/16/2018] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Chikungunya virus infection is a rapidly emerging global viral infection that can cause chronic, debilitating arthritis that in some ways mimics rheumatoid arthritis. The aim of this study was to evaluate the available evidence regarding the efficacy and safety of methotrexate (MTX), a therapy that is widely used in rheumatoid arthritis, for the treatment of chronic chikungunya arthritis. METHODS A systematic literature search was performed to identify all published trials that evaluated MTX as monotherapy or combination therapy in patients with chronic chikungunya arthritis. PubMed, SciELO, Scopus, and Cochrane Library databases were searched from study inception to August 2017. We also searched Google Scholar, the International Clinical Trials Registry Platform Search Portal, and clinicaltrials.gov. RESULTS Among 131 possibly relevant studies, 6 met our criteria for evaluation: 4 were retrospective studies, 1 was a non-controlled prospective study, and 1 was an unblinded randomized clinical trial of combination MTX therapy. In the randomized clinical trial, triple therapy with MTX, hydroxychloroquine, and sulfasalazine was superior to hydroxychloroquine monotherapy, as assessed by the mean ± SD Disease Activity Score in 28 joints using the erythrocyte sedimentation rate (3.39 ± 0.87 versus 4.74 ± 0.65; P < 0.0001) and the Health Assessment Questionnaire score (1.14 ± 0.31 versus 1.88 ± 0.47; P < 0.0001). CONCLUSION The number of available studies is limited, but taken together, these studies demonstrate that MTX is sufficiently efficacious to justify further study of MTX for the treatment of chronic chikungunya arthritis. The trials lacked rigorous study designs and used different treatment strategies and outcome measures. This systematic review underscores the need for randomized, prospective, placebo-controlled studies of MTX monotherapy for the treatment of chronic chikungunya arthritis.
Collapse
Affiliation(s)
- J Kennedy Amaral
- Faculty of Medicine Estácio of Juazeiro de Norte, Juazeiro de Norte, Brazil
| | | | | |
Collapse
|
31
|
Wolf S, Taylor A, Zaid A, Freitas J, Herrero LJ, Rao S, Suhrbier A, Forwood MR, Bucala R, Mahalingam S. Inhibition of Interleukin-1β Signaling by Anakinra Demonstrates a Critical Role of Bone Loss in Experimental Arthritogenic Alphavirus Infections. Arthritis Rheumatol 2019; 71:1185-1190. [PMID: 30747500 DOI: 10.1002/art.40856] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 02/07/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Arthritogenic alphaviruses, such as Ross River virus (RRV) and chikungunya virus (CHIKV), particularly affect joints of the extremities and can lead to debilitating and potentially chronic polyarthritis/polyarthralgia. The innate immune response of the host plays a crucial role in inducing proinflammatory host factors, leading to tissue destruction and bone loss in the joints. This study was performed to assess how the inhibition of interleukin-1β (IL-1β) signaling using the clinical rheumatoid arthritis drug anakinra influences bone loss in mice with arthritogenic alphavirus infections. METHODS Mice (n = 5 per group) were infected with RRV or CHIKV and then treated with anakinra. Weight gain and disease severity were measured, tissue viral titers were determined, and histologic changes in joint tissues were assessed. RESULTS Anakinra therapy reduced RRV- and CHIKV-induced bone loss in this murine model (P < 0.001 and P < 0.05, respectively). Histologic analysis of the knee joint showed that treatment with anakinra decreased epiphyseal growth plate thinning, loss of epiphyseal bone volume, and osteoclastogenesis in the tibia. Importantly, pharmacologic IL-1 receptor (IL-1R) blockade did not improve other clinical features, including disease score, weight loss, or viremia. CONCLUSION The present findings suggest that anakinra therapy may reduce bone loss in experimental murine models of RRV and CHIKV. Further investigations are needed to assess the potential therapeutic benefits of anakinra in patients with arthritogenic alphavirus disease.
Collapse
Affiliation(s)
- Stefan Wolf
- Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Adam Taylor
- Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Ali Zaid
- Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Joseph Freitas
- Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Lara J Herrero
- Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | | | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Mark R Forwood
- Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Richard Bucala
- Yale University School of Medicine, New Haven, Connecticut
| | - Suresh Mahalingam
- Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
32
|
Levi LI, Vignuzzi M. Arthritogenic Alphaviruses: A Worldwide Emerging Threat? Microorganisms 2019; 7:microorganisms7050133. [PMID: 31091828 PMCID: PMC6560413 DOI: 10.3390/microorganisms7050133] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
Arthritogenic alphaviruses are responsible for a dengue-like syndrome associated with severe debilitating polyarthralgia that can persist for months or years and impact life quality. Chikungunya virus is the most well-known member of this family since it was responsible for two worldwide epidemics with millions of cases in the last 15 years. However, other arthritogenic alphaviruses that are as of yet restrained to specific territories are the cause of neglected tropical diseases: O'nyong'nyong virus in Sub-Saharan Africa, Mayaro virus in Latin America, and Ross River virus in Australia and the Pacific island countries and territories. This review evaluates their emerging potential in light of the current knowledge for each of them and in comparison to chikungunya virus.
Collapse
Affiliation(s)
- Laura I Levi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
- Ecole doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Marco Vignuzzi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW To review the emergence, clinical features, pathogenesis, and treatment of acute chikungunya (CHIK) fever and chronic CHIK arthritis. RECENT FINDINGS Since 2004, CHIK, an arboviral infection, has spread throughout the world, infecting millions of people. The illness occurs in two phases: an acute viremic infection followed by chronic arthritis. In less developed countries, there are limited resources and effective treatment. For acutely ill CHIK fever patients, management is symptomatic. The treatment of chronic CHIK arthritis should be determined by an understanding of pathogenesis. Is chronic CHIK arthritis a persistent viral infection or a postinfectious inflammatory process? Multiple proinflammatory cytokines, chemokines, and growth factors have been identified in chronic CHIK arthritis. Attempts to isolate CHIK virus from synovial fluid have been unsuccessful. Given pathogenetic similarities (as well as differences) compared with rheumatoid arthritis and the painful, disabling nature of the arthritis, it is not surprising that disease-modifying antirheumatic drugs such as methotrexate have begun to be used. SUMMARY CHIK infection has emerged with major arthritic epidemics for which evidence-based therapy is limited. But there is an opportunity to improve the treatment of chronic CHIK arthritis and, from this disease, to gain understanding of the pathogenesis and treatment of inflammatory arthritis more generally.
Collapse
|
34
|
GloPID-R report on Chikungunya, O'nyong-nyong and Mayaro virus, part I: Biological diagnostics. Antiviral Res 2019; 166:66-81. [PMID: 30905821 DOI: 10.1016/j.antiviral.2019.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/17/2019] [Indexed: 11/20/2022]
Abstract
The GloPID-R (Global Research Collaboration for Infectious Disease Preparedness) Chikungunya (CHIKV), O'nyong-nyong (ONNV) and Mayaro virus (MAYV) Working Group is investigating the natural history, epidemiology and medical management of infection by these viruses, to identify knowledge gaps and to propose recommendations for direct future investigations and rectification measures. Here, we present the first report dedicated to diagnostic aspects of CHIKV, ONNV and MAYV. Regarding diagnosis of the disease at the acute phase, molecular assays previously described for the three viruses require further evaluation, standardized protocols and the availability of international standards representing the genetic diversity of the viruses. Detection of specific IgM would benefit from further investigations to clarify the extent of cross-reactivity among the three viruses, the sensitivity of the assays, and the possible interfering role of cryoglobulinaemia. Implementation of reference panels and external quality assessments for both molecular and serological assays is necessary. Regarding sero-epidemiological studies, there is no reported high-throughput assay that can distinguish among these different viruses in areas of potential co-circulation. New specific tools and/or improved standardized protocols are needed to enable large-scale epidemiological studies of public health relevance to be performed. Considering the high risk of future CHIKV, MAYV and ONNV outbreaks, the Working Group recommends that a major investigation should be initiated to fill the existing diagnostic gaps.
Collapse
|
35
|
de Souza TMA, Ribeiro ED, Corrêa VCE, Damasco PV, Santos CC, de Bruycker-Nogueira F, Chouin-Carneiro T, Faria NRDC, Nunes PCG, Heringer M, Lima MDRQ, Badolato-Corrêa J, Cipitelli MDC, Azeredo ELD, Nogueira RMR, Dos Santos FB. Following in the Footsteps of the Chikungunya Virus in Brazil: The First Autochthonous Cases in Amapá in 2014 and Its Emergence in Rio de Janeiro during 2016. Viruses 2018; 10:v10110623. [PMID: 30424530 PMCID: PMC6266966 DOI: 10.3390/v10110623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022] Open
Abstract
Currently, Brazil lives a triple arboviruses epidemic (DENV, ZIKV and CHIKV) making the differential diagnosis difficult for health professionals. Here, we aimed to investigate chikungunya cases and the possible occurrence of co-infections during the epidemic in Amapá (AP) that started in 2014 when the first autochthonous cases were reported and in Rio de Janeiro (RJ) in 2016. We further performed molecular characterization and genotyping of representative strains. In AP, 51.4% of the suspected cases were confirmed for CHIKV, 71.0% (76/107). Of those, 24 co-infections by CHIKV/DENV, two by CHIKV/DENV-1, and two by CHIKV/DENV-4 were observed. In RJ, 76.9% of the suspected cases were confirmed for CHIKV and co-infections by CHIKV/DENV (n = 8) and by CHIKV/ZIKV (n = 17) were observed. Overall, fever, arthralgia, myalgia, prostration, edema, exanthema, conjunctival hyperemia, lower back pain, dizziness, nausea, retroorbital pain, and anorexia were the predominating chikungunya clinical symptoms described. All strains analyzed from AP belonged to the Asian genotype and no amino acid changes were observed. In RJ, the East-Central-South-African genotype (ECSA) circulation was demonstrated and no E1-A226V mutation was observed. Despite this, an E1-V156A substitution was characterized in two samples and for the first time, the E1-K211T mutation was reported in all samples analyzed.
Collapse
Affiliation(s)
| | | | | | - Paulo Vieira Damasco
- Rio-Laranjeiras Hospital, 22240-000 Rio de Janeiro, Brazil.
- Gaffrée Guinle University Hospital, Federal University of the State of Rio de Janeiro, 20270-003 Rio de Janeiro, Brazil.
- Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, 20551-030 Rio de Janeiro, Brazil.
| | | | | | - Thaís Chouin-Carneiro
- Viral Immunology Laboratory, Oswaldo Cruz Institute, 21040-360 Rio de Janeiro, Brazil.
| | | | | | - Manoela Heringer
- Viral Immunology Laboratory, Oswaldo Cruz Institute, 21040-360 Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Robin B McFee
- Department of Emergency/Family Medicine, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN
| |
Collapse
|
37
|
Guaraldo L, Wakimoto MD, Ferreira H, Bressan C, Calvet GA, Pinheiro GC, Siqueira AM, Brasil P. Treatment of chikungunya musculoskeletal disorders: a systematic review. Expert Rev Anti Infect Ther 2018; 16:333-344. [PMID: 29533103 DOI: 10.1080/14787210.2018.1450629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/07/2018] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Chikungunya virus is amongst the fastest expanding vector transmissible diseases in recent years and has been causing massive epidemics in Africa, Asia, Latin America and the Caribbean. Despite human infection by this virus being first described in the 1950s, there is a lack of adequate therapeutic evaluations to guide evidence-based recommendations. The current guidelines rely heavily in specialists' opinion and experience instead of using higher rated evidence. Areas covered: A systematic review of the literature was performed- not restricted to clinical trials - reporting the therapeutic response against this infection with the intent to gather the best evidence of the treatment options against musculoskeletal disorders following chikungunya fever. The 15 studies included in the analysis were categorized considering the initiation of treatment during the acute, subacute and chronic phase. Expert commentary: This review demonstrates the complexity of chikungunya fever and difficulty of therapeutic management. This review found no current evidence-based treatment recommendations for the musculoskeletal disorders following chikungunya fever. To provide an optimal treatment that prevents perpetuation or progression of chikungunya infection to a potentially destructive and permanent condition without causing more harm is an aim that must be pursued by researchers and health professionals working with this disease.
Collapse
Affiliation(s)
- Lusiele Guaraldo
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| | - Mayumi Duarte Wakimoto
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| | - Heloisa Ferreira
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| | - Clarisse Bressan
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| | - Guilherme Amaral Calvet
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| | - Geraldo Castelar Pinheiro
- b Departamento de Reumatologia , Universidade Estadual do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - Andre Machado Siqueira
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| | - Patrícia Brasil
- a Instituto Nacional de Infectologia Evandro Chagas , Fundação Oswaldo Cruz , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
38
|
Zaid A, Gérardin P, Taylor A, Mostafavi H, Malvy D, Mahalingam S. Chikungunya Arthritis: Implications of Acute and Chronic Inflammation Mechanisms on Disease Management. Arthritis Rheumatol 2018; 70:484-495. [PMID: 29287308 DOI: 10.1002/art.40403] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Abstract
In the past decade, arboviruses-arthropod-borne viruses-have been the focus of public health institutions worldwide following a spate of devastating outbreaks. Chikungunya virus, an arbovirus that belongs to the alphavirus genus, is a reemerging arthritogenic virus that has caused explosive outbreaks since 2006, notably on Réunion Island, and more recently in the Caribbean, South America, India, and Southeast Asia. The severity of arthritic disease caused by chikungunya virus has prompted public health authorities in affected countries to develop specific guidelines to tackle this pathogen. Chikungunya virus disease manifests first as an acute stage of severe joint inflammation and febrile illness, which later progresses to a chronic stage, during which patients may experience debilitating and persisting articular pain for extended periods. This review aims to provide a broad perspective on current knowledge of chikungunya virus pathogenesis by identifying key clinical and experimental studies that have contributed to our understanding of chikungunya virus to date. In addition, the review explores the practical aspects of treatment and management of both acute and chronic chikungunya virus based on clinical experience during chikungunya virus outbreaks. Finally, recent findings on potential therapeutic solutions-from antiviral agents to immunomodulators-are reviewed to provide both viral immunologists and clinical rheumatologists with a balanced perspective on the nature of a reemerging arboviral disease of significant public health concern, and insight into future therapeutic approaches to better address the treatment and management of chikungunya virus.
Collapse
Affiliation(s)
- Ali Zaid
- Griffith University, Gold Coast, Queensland, Australia
| | - Patrick Gérardin
- INSERM CIC1410, Centre Hospitalier Universitaire de la Réunion, Saint Pierre, Réunion, France, and CNRS 9192, INSERM U1187, Université de la Réunion, Sainte Clotilde, Réunion, France
| | - Adam Taylor
- Griffith University, Gold Coast, Queensland, Australia
| | | | - Denis Malvy
- Department of Tropical Medicine and Clinical International Health, University Hospital Center and INSERM 1219, University of Bordeaux, Bordeaux, France
| | | |
Collapse
|
39
|
Leao JC, Marques C, Duarte A, de Almeida OP, Porter S, Gueiros LA. Chikungunya fever: General and oral healthcare implications. Oral Dis 2018; 24:233-237. [PMID: 29480628 DOI: 10.1111/odi.12777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/20/2017] [Indexed: 12/11/2022]
Abstract
Chikungunya virus (CHIKV) was first isolated in humans in 1952, following an epidemic in Tanzania. The origin of the name means "to bend forward or become contorted," in reference to the posture adopted by patients due to the joint pain that occurs during the infection. Epidemiology data suggest that by the end of 2015, about 1.6 million people had been infected with CHIKV. The acute period of the disease is characterized by high fever, myalgia, joint pain, and severe and disabling polyarthritis, sometimes accompanied by headache, backache, and maculopapular rash, predominantly on the thorax. Around half of the patients will progress to the subacute and chronic phases, that is manifested by persistent polyarthritis/polyarthralgia, accompanied by morning stiffness and fatigue, which could remain for years. Oral features may include gingivitis possibly as a consequence of arthralgia of the hands leading to limited oral health measures as well as burning sensation and oral mucosal ulceration. Treatment in the acute phase includes acetaminophen, and weak opioids (tramadol or codeine) should be used in cases of severe or refractory pain. For patients who have progressed to the subacute stage and who have not had notable benefit from common analgesics or opioids, NSAIDs, or adjunctive pain medications (anticonvulsants or antidepressants) may be of benefit. In patients with moderate-to-severe musculoskeletal pain or in those who cannot be given or tolerate NSIADs or opiates, prednisolone should be prescribed.
Collapse
Affiliation(s)
- J C Leao
- Oral Medicine Unit, Departamento de Clínica e Odontologia Preventiva, Universidade Federal de Pernambuco, Recife, Brazil
| | - Cdl Marques
- Rheumatology Unit, Hospital das Clínicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Albp Duarte
- Rheumatology Unit, Hospital das Clínicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - O P de Almeida
- Área de Patologia, Departamento de Diagnóstico Oral, Facldade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, Brazil
| | - S Porter
- UCL Eastman Dental Institute, Oral Theme of the UCL/UCLH NIHR Biomedical Research Centre, London, UK
| | - L A Gueiros
- Oral Medicine Unit, Departamento de Clínica e Odontologia Preventiva, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
40
|
Affiliation(s)
- Shefali Khanna Sharma
- Unit of Clinical Immunology and Rheumatology; Department of Internal Medicine; Postgraduate Institute of Medical Education and Research; Chandigarh India
| | - Sanjay Jain
- Unit of Clinical Immunology and Rheumatology; Department of Internal Medicine; Postgraduate Institute of Medical Education and Research; Chandigarh India
| |
Collapse
|
41
|
Mogami R, Pereira Vaz JL, de Fátima Barcelos Chagas Y, de Abreu MM, Torezani RS, de Almeida Vieira A, Junqueira Filho EA, Barbosa YB, Carvalho ACP, Lopes AJ. Ultrasonography of Hands and Wrists in the Diagnosis of Complications of Chikungunya Fever. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:511-520. [PMID: 28786505 DOI: 10.1002/jum.14344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this series was to describe the ultrasonographic and radiographic manifestations of changes to the hands and wrists in 50 patients with chronic musculoskeletal symptoms secondary to Chikungunya fever during the 2016 outbreak that occurred in Rio de Janeiro, Brazil. Most of the plain radiographs were normal (62%). The most common ultrasonographic findings were small joint synovitis (84%), wrist synovitis (74%), finger tenosynovitis (70%), and cellulitis (50%). In most cases, power Doppler did not show an increase in synovial vascular flow. The plain radiographs showed no specific findings, whereas the ultrasound images revealed synovial compromise and neural thickening.
Collapse
Affiliation(s)
- Roberto Mogami
- Department of Radiology, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Pereira Vaz
- Department of Rheumatology, Gafrée e Guinle University Hospital, Federal State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yêdda de Fátima Barcelos Chagas
- Department of Rheumatology, Gafrée e Guinle University Hospital, Federal State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mirhelen Mendes de Abreu
- Department of Rheumatology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Sperling Torezani
- Department of Radiology, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - André de Almeida Vieira
- Department of Radiology, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Yasmin Baptista Barbosa
- Department of Radiology, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Carlos Pires Carvalho
- Department of Radiology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Agnaldo José Lopes
- Postgraduate Programe in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Amdekar S, Parashar D, Alagarasu K. Chikungunya Virus-Induced Arthritis: Role of Host and Viral Factors in the Pathogenesis. Viral Immunol 2017; 30:691-702. [PMID: 28910194 DOI: 10.1089/vim.2017.0052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV), a member of Alphavirus genus, is responsible for chikungunya fever (CHIKF), which is characterized by the presence of fever, rash, myalgia, and arthralgia. Reemergence of CHIKV has become a significant public health concern in Asian and African countries and is newly emerging in the Middle East, Pacific, American, and European countries. Cytokines, innate (monocytes, natural killer cells) and adaptive immune response (role of B cells and T cells i.e. CD4+ and CD8+), and/or viral factors contribute to CHIKV-induced arthritis. Vector factors such as vector competence (that includes extrinsic and intrinsic factors) and effect of genome mutations on viral replication and fitness in mosquitoes are responsible for the spread of virus, although they are not directly responsible for CHIKV-induced arthritis. CHIKV-induced arthritis mimics arthritis by involving joints and a common pattern of leukocyte infiltrate, cytokine production, and complement activation. Successful establishment of CHIKV infection and induction of arthritis depends on its ability to manipulate host cellular processes or host factors. CHIKV-induced joint damage is due to host inflammatory response mediated by macrophages, T cells, and antibodies, as well as the possible persistence of the virus in hidden sites. This review provides insight into mechanisms of CHIKV-induced arthritis. Understanding the pathogenesis of CHIKV-induced arthritis will help in developing novel strategies to predict and prevent the disease in virus-infected subjects and combat the disease, thereby decreasing the worldwide burden of the disease.
Collapse
Affiliation(s)
- Sarika Amdekar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | - Deepti Parashar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | | |
Collapse
|
43
|
Management of chikungunya arthritis. Clin Rheumatol 2017; 36:2179-2186. [PMID: 28776302 DOI: 10.1007/s10067-017-3766-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022]
Abstract
Chikungunya fever (CHIKF) is an emerging viral infection that has spread widely, along with its Aedes vectors, throughout the tropics and beyond, causing explosive epidemics of both acute illness and persistent disabling arthritis. There is an urgent need to mitigate the devastating impact of this illness, through vector control, personal protection, and possibly vaccine development. There is also a need to improve treatment for both acute illness and chronic arthritis. In this review, we will review the emergence of CHIK, what is known about pathogenesis and clinical manifestations, and then focus on current understanding of how to treat individual patients, in particular, those who develop chronic arthritis.
Collapse
|
44
|
Yang S, Fink D, Hulse A, Pratt RD. Regulatory considerations in development of vaccines to prevent disease caused by Chikungunya virus. Vaccine 2017; 35:4851-4858. [PMID: 28760614 DOI: 10.1016/j.vaccine.2017.07.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 12/01/2022]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus. Chikungunya disease (CHIK) in humans is characterized by sudden onset of high fever, cutaneous rash, myalgia and debilitating polyarthralgia. Until recently the virus was considered endemic to only Africa and Asia, but since 2004 CHIK has spread to previously non-endemic regions, including Europe and the Americas, thereby emerging as a global health threat. Although a variety of CHIKV vaccine candidates have been tested in animals, and a few have advanced to human clinical trials, no licensed vaccine is currently available for prevention of disease. In this article, we review recent efforts in CHIKV vaccine development and discuss regulatory considerations for CHIKV vaccine licensure under U.S. FDA regulations. Several licensure pathways are available, and the most appropriate licensure pathway for a CHIK vaccine will depend on the type of evidence that can be generated to demonstrate the vaccine's effectiveness. If "traditional approval" following demonstration of direct benefit in adequate and well-controlled clinical disease endpoint studies is not possible, the Accelerated Approval and Animal Rule pathways are potential alternatives. In terms of vaccine safety, the potential for vaccine associated arthralgia and antibody-dependent enhancement of infectivity and disease severity are important issues that should be addressed in both pre-clinical and clinical studies. CHIK vaccine developers are encouraged to communicate with the FDA during all stages of vaccine development.
Collapse
Affiliation(s)
- Sixun Yang
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States.
| | - Doran Fink
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Andrea Hulse
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - R Douglas Pratt
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
45
|
Recommendations of the Brazilian Society of Rheumatology for diagnosis and treatment of Chikungunya fever. Part 1 - Diagnosis and special situations. REVISTA BRASILEIRA DE REUMATOLOGIA 2017; 57 Suppl 2:421-437. [PMID: 28751131 DOI: 10.1016/j.rbre.2017.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/22/2017] [Indexed: 01/26/2023] Open
Abstract
Chikungunya fever has become a relevant public health problem in countries where epidemics occur. Until 2013, only imported cases occurred in the Americas, but in October of that year, the first cases were reported in Saint Marin island in the Caribbean. The first autochthonous cases were confirmed in Brazil in September 2014; until epidemiological week 37 of 2016, 236,287 probable cases of infection with Chikungunya virus had been registered, 116,523 of which had serological confirmation. Environmental changes caused by humans, disorderly urban growth and an ever-increasing number of international travelers were described as the factors responsible for the emergence of large-scale epidemics. Clinically characterized by fever and joint pain in the acute stage, approximately half of patients progress to the chronic stage (beyond 3 months), which is accompanied by persistent and disabling pain. The aim of the present study was to formulate recommendations for the diagnosis and treatment of Chikungunya fever in Brazil. A literature review was performed in the MEDLINE, SciELO and PubMed databases to ground the decisions for recommendations. The degree of concordance among experts was established through the Delphi method, involving 2 in-person meetings and several online voting rounds. In total, 25 recommendations were formulated and divided into 3 thematic groups: (1) clinical, laboratory and imaging diagnosis; (2) special situations; and (3) treatment. The first 2 themes are presented in part 1, and treatment is presented in part 2.
Collapse
|
46
|
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes acute and chronic arthritis. The virus reemerged in the Indian Ocean islands in 2005-2006 and is responsible for outbreaks in the Caribbean islands and the Americas since late 2013. Despite the wealth of research over the past 10 years, there are no commercially available antiviral drugs or vaccines. Treatment usually involves analgesics, anti-inflammatory drugs, and supportive care. Most studies have been focused on understanding the pathogenesis of CHIKV infection through clinical observation and with animal models. In this review, the clinical manifestations of CHIKV that define the disease and the use of relevant animal models, from mice to nonhuman primates, are discussed. Understanding key cellular factors in CHIKV infection and the interplay with the immune system will aid in the development of preventive and therapeutic approaches to combat this painful viral disease in humans.
Collapse
Affiliation(s)
- Lisa F P Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648; .,Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
47
|
Abstract
Chikungunya is caused by an alphavirus that is transmitted to humans via the Aedes species mosquito. Chikungunya is endemic to tropical Africa and South and Southeast Asia, but over the past decade, the geographic distribution of the virus has been expanding rapidly. The disease is characterized by fever and severe polyarthritis, and although symptoms typically resolve within 7 to 10 days, some patients experience persistent arthritis and arthralgias for months to years.In December 2013, the first local transmission of chikungunya virus in the Americas was identified in the Caribbean Island of Saint Martin. Since then, the number of afflicted individuals has spread throughout the Caribbean and Central America, as well as into South America. The United States reported 2788 chikungunya virus disease cases among travelers returning from affected areas in 2014. In addition, 11 locally acquired cases were reported in Florida. Further spread and establishment of the disease in the Americas are likely considering the high levels of viremia in infected individuals, widespread distribution of effective vectors, lack of immunity among people living in the Americas, and the popularity of international travel.Considering the prominent rheumatic manifestations of chikungunya, rheumatologists are likely to encounter patients with the disease in their practice. We recommend that rheumatologists consider chikungunya in their differential diagnosis when evaluating patients presenting with fever and joint pain following travel to a chikungunya endemic area. Early diagnosis would ensure timely management and reduction of polypharmacy and its associated complications. In this article, we briefly describe the epidemiology of chikungunya, the clinical features, laboratory testing, prevention, and treatment of disease.
Collapse
|
48
|
Kajeguka DC, Msonga M, Schiøler KL, Meyrowitsch DW, Syrianou P, Tenu F, Alifrangis M, Mosha FW, Kavishe RA. Individual and environmental risk factors for dengue and chikungunya seropositivity in North-Eastern Tanzania. Infect Dis Health 2017. [DOI: 10.1016/j.idh.2017.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Brito CAAD, Sohsten AKAV, Leitão CCDS, Brito RDCCMD, Valadares LDDA, Fonte CAMD, Mesquita ZBD, Cunha RV, Luz K, Leão HMC, Brito CMD, Frutuoso LCV. Pharmacologic management of pain in patients with Chikungunya: a guideline. Rev Soc Bras Med Trop 2017; 49:668-679. [PMID: 28001212 DOI: 10.1590/0037-8682-0279-2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/23/2016] [Indexed: 11/21/2022] Open
Abstract
From the arrival of Chikungunya virus in the Americas in 2013 until March 2016, approximately two million cases of the disease have been reported. In Brazil, the virus was identified in 2014 and thousands of people have been affected. The disease has high attack rates, infecting 50% of a population within a few months. Approximately 50% of infected people develop chronic symptoms lasting for months or years. Joint involvement is the main clinical manifestation of Chikungunya. It is characterized by swelling and intense pain that is poorly responsive to analgesics, both in the acute and chronic phase of the disease. This significantly compromises quality of life and may have immeasurable psychosocial and economic repercussions, constituting therefore, a serious public health problem requiring a targeted approach. Physicians are often not familiar with how to approach the management of pain, frequently prescribing limited analgesics, such as dipyrone, in sub-therapeutic doses. In addition, there are few published studies or guidelines on the approach to the treatment of pain in patients with Chikungunya. Some groups of specialists from different fields have thus developed a protocol for the pharmacologic treatment of Chikungunya-associated acute and chronic joint pain; this will be presented in this review.
Collapse
Affiliation(s)
| | - Ana Karla Arraes von Sohsten
- Instituto de Tratamento da Dor, Real Hospital Português de Beneficência em Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | | | - Zelina Barbosa de Mesquita
- Departamento de Pediatria, Instituto de Medicina Integral Professor Fernando Figueira, Recife, Pernambuco, Brazil
| | - Rivaldo Venâncio Cunha
- Departamento de Infectologia, Universidade Federal de Mato Grosso do Sul, Campo grande, Mato Groso do Sul, Brazil.,Fundação Oswaldo Cruz, Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Kleber Luz
- Departamento de Infectologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Helena Maria Carneiro Leão
- Escola Superior de Ética e Bioética, Conselho Regional de Medicina de Pernambuco, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
50
|
Silva LA, Dermody TS. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest 2017; 127:737-749. [PMID: 28248203 PMCID: PMC5330729 DOI: 10.1172/jci84417] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research.
Collapse
|