1
|
Ghorbani F, Biyabani A, Ghadimi D, Nedaei K, Khodabandehloo H, Hemmati M. Collaborative Effects of Caloric Restriction and Quercetin on Age-related Oxidative Stress Reduction through NQO1/Sirt1 Gene Regulation. Int J Prev Med 2024; 15:74. [PMID: 39867253 PMCID: PMC11759226 DOI: 10.4103/ijpvm.ijpvm_119_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/20/2024] [Indexed: 01/28/2025] Open
Abstract
Background Aging is caused by the progressive accumulation of various changes in the body, which is associated with an increase in free radicals and oxidative stress (OS). The aim of this study was to investigate the potential of caloric restriction (CR) and quercetin (QUER) in alleviating OS in aging and the involvement of the NAD (P) H quinone oxidoreductase 1 (NQO1)/SIRT1 signaling pathway in these effects. Methods Two age groups of male Wistar rats (eight and 20 weeks of age) were included in the study and subdivided into normal diet (ND), ND with QUER (15 mg Kg-1, IP), ND with CR, and ND with QUER and CR groups. The activities of catalase (CAT), paraoxonase (PON1), liver enzymes and lipid profiles, and the expression of SIRT1 and NQO1 genes were analyzed using the desired methods. Results We showed higher liver enzymes (aspartate aminotransferase [AST], alanine transaminase [ALT], and alkaline phosphatase [ALP]), increased atherogenic lipids, and reduced PON1 activity in 20-week-old rats compared with eight-week-old rats, and the administration of QUER and CR restored these values to the normal range. The expression of NQO1 and SIRT1 is also affected by CR and QUER. CR alone and in combination with QUER significantly raised the expression of the NQO1 and SIRT1 genes. This effect was notable in SIRT1. Conclusions QUER and CR together improved the detrimental effects of aging by modulating antioxidant signaling pathways, suggesting this combination is a complementary therapeutic regime for aging and age-related diseases.
Collapse
Affiliation(s)
- Fereshte Ghorbani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Darya Ghadimi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Keivan Nedaei
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hadi Khodabandehloo
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Datkhile KD, Gudur RA, Bhosale SJ, Gudur AK, Durgawale PP, Jagdale NJ, More AL, Patil SR. Superoxide Dismutase (rs2070424, rs4880, rs2536512) and Catalase (rs794316, rs1001179) SNPs and their Association with Breast Cancer Risk: Findings from a Hospital Based Case-Control Study. Asian Pac J Cancer Prev 2024; 25:175-184. [PMID: 38285782 PMCID: PMC10911727 DOI: 10.31557/apjcp.2024.25.1.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND The antioxidant enzymes are important cellular components involved in detoxification of reactive oxygen species (ROS) and protect cells from ROS induced oxidative damage. Single nucleotide polymorphisms (SNPs) of antioxidant enzyme coding genes such as superoxide dismutase (SOD) and catalase (CAT) may alter the enzyme activity which can influence susceptibility towards carcinogenesis. Therefore, the present study was planned to investigate possible SNPs of SOD (SOD1 (Cu,Zn-SOD), SOD2(Mn-SOD), SOD3(EC-SOD) and CAT genes and their possible association with breast cancer risk in rural Indian women. METHODS In this case-control study, the association of SOD and CAT gene polymorphism was studied by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The study was conducted among 400 clinically breast cancer patients and 400 healthy women in a population of South-Western Maharashtra. The logistic regression analysis was carried out to calculate Odds ratio (OR) with 95% confidence interval and p-value, where p ≤0.05 was considered as statistically significant. RESULTS The results of analysis of genotype frequency distribution showed significant association of rs4880 SNP of Mn-SOD with BC risk at homozygous variant (CC/CC) genotype (OR 2.46; 95%CI, 1.61-3.75; p<0.0001) and corresponding frequency of variant (C) allele (OR 1.53; 95%CI, 1.25-1.86; p<0.0001). In CAT gene polymorphisms the variant (T/T) was increased significantly in BC cases as compared to controls (OR 3.45; 95%CI, 2.17-5.50; p<0.0001) along with its variant (T) allele (OR 2.01; 95%CI, 1.63-2.48; p<0.0001). CONCLUSIONS The results implied that, C/C genotype of SOD2-1183T/C polymorphism and T/T genotype of CAT-262 C/T polymorphism may be associated with an increased breast cancer risk. However, SOD1-251 A/G and SOD3-172 G/A polymorphisms did not show any significant difference in variant homozygous genotypes of patients compared to controls.
Collapse
Affiliation(s)
- Kailas D Datkhile
- Department of Molecular Biology and Genetics Krishna Vishwa Vidyapeeth (Deemed to be University) Malkapur, Karad Satara, Maharashtra, India.
| | - Rashmi A Gudur
- Department of Oncology Krishna Vishwa Vidyapeeth (Deemed to be University Taluka-Karad, Dist- Satara, Pin-415 539, Maharashtra, India.
| | - Suresh J Bhosale
- Department of Oncology Krishna Vishwa Vidyapeeth (Deemed to be University Taluka-Karad, Dist- Satara, Pin-415 539, Maharashtra, India.
| | - Anand Krishnarao Gudur
- Department of Oncology Krishna Vishwa Vidyapeeth (Deemed to be University) Malkapur , Karad, Satara, Maharashtra, India.
| | - Pratik P Durgawale
- Department of Molecular Biology and Genetics Krishna Vishwa Vidyapeeth (Deemed to be University) Taluka-Karad, Dist- Satara, Pin-415 1539, Maharashtra, India.
| | - Nilam J Jagdale
- Department of Molecular Biology and Genetics Krishna Vishwa Vidyapeeth (Deemed to be University) Taluka-Karad, Dist- Satara, Pin-415 1539, Maharashtra, India.
| | - Ashwini L More
- Department of Molecular Biology and Genetics Krishna Vishwa Vidyapeeth (Deemed to be University) Taluka-Karad, Dist- Satara, Pin-415 1539, Maharashtra, India.
| | - Satish R Patil
- Department of Molecular Biology and Genetics Krishna Vishwa Vidyapeeth (Deemed to be University) Taluka-Karad, Dist- Satara, Pin-415 1539, Maharashtra, India.
| |
Collapse
|
3
|
Greatorex S, Kaur S, Xirouchaki CE, Goh PK, Wiede F, Genders AJ, Tran M, Jia Y, Raajendiran A, Brown WA, McLean CA, Sadoshima J, Watt MJ, Tiganis T. Mitochondria- and NOX4-dependent antioxidant defense mitigates progression to nonalcoholic steatohepatitis in obesity. J Clin Invest 2023; 134:e162533. [PMID: 38060313 PMCID: PMC10849767 DOI: 10.1172/jci162533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/21/2023] [Indexed: 02/02/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is prevalent in the majority of individuals with obesity, but in a subset of these individuals, it progresses to nonalcoholic steatohepatitis (0NASH) and fibrosis. The mechanisms that prevent NASH and fibrosis in the majority of patients with NAFLD remain unclear. Here, we report that NAD(P)H oxidase 4 (NOX4) and nuclear factor erythroid 2-related factor 2 (NFE2L2) were elevated in hepatocytes early in disease progression to prevent NASH and fibrosis. Mitochondria-derived ROS activated NFE2L2 to induce the expression of NOX4, which in turn generated H2O2 to exacerbate the NFE2L2 antioxidant defense response. The deletion or inhibition of NOX4 in hepatocytes decreased ROS and attenuated antioxidant defense to promote mitochondrial oxidative stress, damage proteins and lipids, diminish insulin signaling, and promote cell death upon oxidant challenge. Hepatocyte NOX4 deletion in high-fat diet-fed obese mice, which otherwise develop steatosis, but not NASH, resulted in hepatic oxidative damage, inflammation, and T cell recruitment to drive NASH and fibrosis, whereas NOX4 overexpression tempered the development of NASH and fibrosis in mice fed a NASH-promoting diet. Thus, mitochondria- and NOX4-derived ROS function in concert to drive a NFE2L2 antioxidant defense response to attenuate oxidative liver damage and progression to NASH and fibrosis in obesity.
Collapse
Affiliation(s)
- Spencer Greatorex
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Supreet Kaur
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | | | - Pei K. Goh
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Florian Wiede
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Amanda J. Genders
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Melanie Tran
- Department of Biochemistry and Molecular Biology
| | - YaoYao Jia
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Arthe Raajendiran
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Wendy A. Brown
- Department of Surgery, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | | | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Matthew J. Watt
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
4
|
Kadam DA, Kalamkar S, Gajjar V, Divate U, Karandikar-Iyer S, Ghaskadbi S, Ashma R. Genetic polymorphisms in Nrf2 and FoxO1: implications for antioxidant enzyme activity in diabetes. J Biomol Struct Dyn 2023; 42:11270-11284. [PMID: 37753733 DOI: 10.1080/07391102.2023.2262580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
In diabetes, persistent hyperglycemia generates excess reactive oxygen species (ROS), leading to oxidative stress (OS). In response to OS, transcription factors (TFs) Nrf2 and FoxO1 get activated, which induce the expression of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). It is well documented that the antioxidant response in diabetic individuals is very low. Since Nrf2 and FoxO1 are the major TFs activating these genes, we were interested in determining if single nucleotide polymorphisms (SNPs) in genes for these TFs have any association with lowered antioxidant enzyme activity in diabetic individuals. The activity of CAT and SOD and total antioxidant capacity (TAC) were quantified from the serum samples of diabetic (n = 98) and non-diabetic (n = 90) individuals. Genomic DNA was isolated, and Nrf2 and FoxO1 were amplified and sequenced by Illumina NextSeq500. Data were screened for SNPs in amplified regions. An independent samples t-test to find an association between CAT, SOD, and TAC and allele frequency of SNP with the diabetic condition was carried out. We found decreased CAT and SOD activity and significantly low TAC in diabetic individuals. Thirty-two and thirty-four SNPs and Single-nucleotide variants (SNVs) were observed in Nrf2 and FoxO1, respectively. However, a statistically significant difference in the allele frequency distribution between study groups was observed only in two intronic SNPs, rs17524059:A > C and rs60373589:Indel(A) of Nrf2 and FoxO1, respectively. SNPs, rs17524059 in the Nrf2 and rs60373589 of FoxO1, were not associated with reduced CAT and SOD activity and level of TAC in Indian diabetic individuals.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dipak A Kadam
- Department of Zoology, Center of Advanced Studies, Savitribai Phule Pune University, Pune, India
- Dr. B. N. Purandare Arts and Smt. S.G. Gupta Commerce & Smt. S. A. Mithaiwala Science College Lonavala, Pune, India
| | - Saurabh Kalamkar
- Department of Zoology, Center of Advanced Studies, Savitribai Phule Pune University, Pune, India
| | - Vijay Gajjar
- Department of Medicine, Jehangir Hospital, Pune, India
| | - Uma Divate
- Jehangir Clinical Development Centre, Pune, India
| | | | - Saroj Ghaskadbi
- Department of Zoology, Center of Advanced Studies, Savitribai Phule Pune University, Pune, India
| | - Richa Ashma
- Department of Zoology, Center of Advanced Studies, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
5
|
Yu J, Qiu J, Zhang Z, Cui X, Guo W, Sheng M, Gao M, Wang D, Xu L, Ma X. Redox Biology in Adipose Tissue Physiology and Obesity. Adv Biol (Weinh) 2023; 7:e2200234. [PMID: 36658733 DOI: 10.1002/adbi.202200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS), a by-product of mitochondrial oxidative phosphorylation and cellular metabolism, is vital for cellular survival, proliferation, damage, and senescence. In recent years, studies have shown that ROS levels and redox status in adipose tissue are strongly associated with obesity and metabolic diseases. Although it was previously considered that excessive production of ROS and impairment of antioxidant capability leads to oxidative stress and potentially contributes to increased adiposity, it has become increasingly evident that an adequate amount of ROS is vital for adipocyte differentiation and thermogenesis. In this review, by providing a systematic overview of the recent understanding of the key factors of redox systems, endogenous mechanisms for redox homeostasis, advanced techniques for dynamic redox monitoring, as well as exogenous stimuli for redox production in adipose tissues and obesity, the importance of redox biology in metabolic health is emphasized.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xinran Ma
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, P. R. China
| |
Collapse
|
6
|
Zenoaga-Barbăroșie C, Berca L, Vassu-Dimov T, Toma M, Nica MI, Alexiu-Toma OA, Ciornei C, Albu A, Nica S, Nistor C, Nica R. The Predisposition for Type 2 Diabetes Mellitus and Metabolic Syndrome. Balkan J Med Genet 2023; 26:21-26. [PMID: 37576792 PMCID: PMC10413885 DOI: 10.2478/bjmg-2023-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) are diseases caused by the interaction of genetic and non-genetic factors. Therefore, the aim of our study was to investigate the association between six common genetic polymorphisms and T2DM and MetS in males. A total of 120 T2DM, 75 MetS, and 120 healthy controls (HC) were included in the study. ACE ID, eNOS 4a/b, ATR1 A1166C, OXTR (A>G), SOD1 +35A/C, CAT-21A/T gene polymorphisms were genotyped by PCR or PCR-RFLP techniques. T2DM was diagnosed at an earlier age compared to MetS (54 vs 55 years old, p=0.0003) and the difference was greater in carriers of the OXTR G allele (54 vs 56 years old, p=0.0002) or both OXTR G and eNOS b alleles (54 vs 56, p=0.00016). The SOD1 AA genotype (O.R.=0.11, p=0.0006) and the presence of both ACE I and OXTR1 A (O.R.=0.39, p=0.0005) alleles revealed to be protective for T2DM. SOD1 AA and AC genotypes were protective factors for triglyceride (p=0.0002 and p=0.0005, respectively) and HDL cholesterol (p=0.0002 and p=0.0004, respectively) levels in T2DM patients. ACE DD was identified more frequently in hypertensive T2DM patients (O.R.=3.77, p=0.0005) and in those who reported drinking alcohol (p=0.0001) comparing to HC and T2DM patients who did not drink alcohol, respectively. We observed that T2DM patients who reported drinking alcohol had an increased frequency of ACE DD and eNOS bb (p<0.0001), or ACE DD and OXTR G (p<0.0001) compared to non-drinkers. No gene polymorphisms were associated with MetS.
Collapse
Affiliation(s)
| | - L Berca
- Molecular Biology Department, National Research and Development Institute for Food Bioresources – IBA Bucharest, Bucharest, Romania
| | - T Vassu-Dimov
- Department of Genetics, University of Bucharest, Bucharest, Romania
| | - M Toma
- Emergency Department, Central Military Emergency Hospital Dr. Carol Davila, Bucharest, Romania
| | - MI Nica
- University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - OA Alexiu-Toma
- Department of Genetics, University of Bucharest, Bucharest, Romania
| | - C Ciornei
- Preclinical Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Emergency Department, Bucharest Emergency University Hospital, Bucharest, Romania
| | - A Albu
- Emergency Department, Bucharest Emergency University Hospital, Bucharest, Romania
| | - S Nica
- Emergency Department, Bucharest Emergency University Hospital, Bucharest, Romania
- Clinic Department 4, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - C Nistor
- Preclinical Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Thoracic Surgery, Central Military Emergency Hospital Dr. Carol Davila, Bucharest, Romania
| | - R Nica
- Surgery 2, Central Military Emergency Hospital Dr. Carol Davila, Bucharest, Romania
- Special Disciplines, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| |
Collapse
|
7
|
Sonkar VK, Eustes AS, Ahmed A, Jensen M, Solanki MV, Swamy J, Kumar R, Fidler TP, Houtman JC, Allen BG, Spitz DR, Abel ED, Dayal S. Endogenous SOD2 (Superoxide Dismutase) Regulates Platelet-Dependent Thrombin Generation and Thrombosis During Aging. Arterioscler Thromb Vasc Biol 2023; 43:79-91. [PMID: 36325902 PMCID: PMC9780178 DOI: 10.1161/atvbaha.121.317735] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) contribute to platelet hyperactivation during aging. Several oxidative pathways and antioxidant enzymes have been implicated; however, their mechanistic contributions during aging remain elusive. We hypothesized that mitochondria are an important source of platelet ROS and that mitochondrial SOD2 (superoxide dismutase) protects against mitochondrial ROS-driven platelet activation and thrombosis during aging. METHODS We studied littermates of platelet-specific SOD2-knockout (SOD2fl/flPf4Cre, pSOD2-KO) and control (SOD2fl/fl) mice at young (4-5 months) or old (18-20 months) ages. We examined agonist-induced platelet activation, platelet-dependent thrombin generation potential, and susceptibility to in vivo thrombosis. RESULTS Platelet αIIbβ3 activation, aggregation, and adhesion were increased to similar extents in aged mice of both genotypes compared with young mice. In contrast, the age-dependent increases in mitochondrial and total cellular ROS, calcium elevation, and phosphatidylserine exposure were augmented in platelets from pSOD2-KO mice compared with control mice. Aged pSOD2-KO mice showed increased platelet-dependent thrombin generation compared with aged control mice. In vivo, aged pSOD2-KO mice exhibited enhanced susceptibility to carotid artery and pulmonary thrombosis compared to aged control mice. Adoptive transfer of platelets from aged pSOD2-KO but not aged control mice increased thrombotic susceptibility in aged host mice, suggesting a prothrombotic effect of platelet pSOD2 deficiency. Treatment with avasopasem manganese (GC4419), a SOD mimetic, decreased platelet mitochondrial pro-oxidants, cellular ROS levels, and inhibited procoagulant platelet formation and arterial thrombosis in aged mice. CONCLUSIONS Platelet mitochondrial ROS contributes to age-related thrombosis and endogenous SOD2 protects from platelet-dependent thrombin generation and thrombosis during aging.
Collapse
Affiliation(s)
- Vijay K Sonkar
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Alicia S Eustes
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Azaj Ahmed
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Melissa Jensen
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mitali V Solanki
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Jagadish Swamy
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Rahul Kumar
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Trevor P. Fidler
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Jon C.D. Houtman
- Departments of Microbiology & Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Radiation Oncology, Holden Comprehensive Cancer Center University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Radiation Oncology, Holden Comprehensive Cancer Center University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - E. Dale Abel
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Current address David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa City VA Healthcare System, Iowa City, Iowa
| |
Collapse
|
8
|
Debeljak M, Riel S, Lin MT, Eshleman JR, Paller CJ. Analytical Validation of SOD2 Genotyping. Methods Protoc 2022; 6:mps6010004. [PMID: 36648953 PMCID: PMC9844328 DOI: 10.3390/mps6010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023] Open
Abstract
Manganese superoxide dismutase-2 (SOD2) plays a crucial role in cells' protection against mitochondrial oxidative damage. A genetic polymorphism in the mitochondrial targeting sequence of the SOD2 gene has been implicated in various diseases, including prostate cancer. Paller et al. have shown an increase in prostate-specific antigen (PSA) doubling time in patients with the Ala/Ala (wildtype) genotype when treated with pomegranate/grape extract antioxidants. We developed and validated a pyrosequencing assay that detects the common germline SOD2 SNP (rs_4880) with the aim of identifying men with castrate-resistant prostate cancer eligible for an antioxidant therapy clinical trial. We first selected 37 samples from the 1000 genomes study with known genotypes determined using Illumina-based sequencing and confirmed them by Sanger sequencing. In a blinded design, we then performed the new pyrosequencing assay on these samples and assigned genotypes. Genotypes for all 37 samples (13 homozygous Ala, 12 heterozygous Ala/Val, and 12 homozygous Val) were all concordant by pyrosequencing. The pyrosequencing assay has been live since May 2018 and has proven to be robust and accurate.
Collapse
Affiliation(s)
- Marija Debeljak
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stacy Riel
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ming-Tseh Lin
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James R. Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Correspondence: (J.R.E.); (C.J.P.)
| | - Channing J. Paller
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Correspondence: (J.R.E.); (C.J.P.)
| |
Collapse
|
9
|
Wu N, Zhai X, Yuan F, Li J, Yu N, Zhang F, Li D, Wang J, Zhang L, Shi Y, Ji G, He G, Liu B. Fasting glucose mediates the influence of genetic variants of SOD2 gene on lean non-alcoholic fatty liver disease. Front Genet 2022; 13:970854. [PMID: 36330440 PMCID: PMC9622784 DOI: 10.3389/fgene.2022.970854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2025] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) imposes an enormous burden on public health, and a large proportion of NAFLD patients are lean with normal body weight, which is rarely mentioned. We conducted this study to determine the mediation effects of fasting glucose on the relationships between genetic variants of SOD2 and the susceptibility of lean NAFLD in the elderly Chinese Han population. Methods: Data in this manuscript were collected in a cross-sectional study among 5,387 residents (aged ≥60 years) in the Zhangjiang community center, Shanghai, China, in 2017. Ten (single nucleotide polymorphisms) SNPs previously reported to be related to NAFLD and obesity, including rs9939609, rs1421085, rs9930506, rs626283, rs641738, rs4880, rs58542926, rs738409, rs2281135, and rs2294918 were genotyped. The associations between genetic variations in SOD2 and fasting glucose in five genetic models were analyzed with the SNPassoc R package and rechecked with regression analysis. Mediation models were conducted to explore whether fasting glucose can mediate the association between SNPs and the susceptibility of lean NAFLD. Results: In this study, lean NAFLD individuals had a higher waist circumference and waist-to-hip ratio, ALT, and fasting glucose than lean non-NAFLD individuals (p < 0.050). In comparison, the AA genotypic frequency of rs4880 in SOD2 gene was much lower in lean NAFLD patients (p = 0.005). And rs4800 had a significant indirect effect on lean NAFLD incidence mediated by fasting glucose (p < 0.001). Conclusion: For the first time, the mediation effect of fasting glucose on the association of rs4880 in SOD2 with the susceptibility of lean NAFLD was clarified in the elderly Chinese Han population. It emphasized the connection between glucose homeostasis and oxidative stress in the mechanisms of lean NAFLD.
Collapse
Affiliation(s)
- Na Wu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Zhai
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Li
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Yu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengwei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Li
- Zhangjiang Community Health Service Center of Pudong New District, Shanghai, China
| | - Jianying Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Baocheng Liu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Flemming N, Pernoud L, Forbes J, Gallo L. Mitochondrial Dysfunction in Individuals with Diabetic Kidney Disease: A Systematic Review. Cells 2022; 11:cells11162481. [PMID: 36010558 PMCID: PMC9406893 DOI: 10.3390/cells11162481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of diabetic kidney disease (DKD). Compared to the vast body of evidence from preclinical in vitro and in vivo studies, evidence from human studies is limited. In a comprehensive search of the published literature, findings from studies that reported evidence of mitochondrial dysfunction in individuals with DKD were examined. Three electronic databases (PubMed, Embase, and Scopus) were searched in March 2022. A total of 1339 articles were identified, and 22 articles met the inclusion criteria. Compared to non-diabetic controls (NDC) and/or individuals with diabetes but without kidney disease (DC), individuals with DKD (age ~55 years; diabetes duration ~15 years) had evidence of mitochondrial dysfunction. Individuals with DKD had evidence of disrupted mitochondrial dynamics (11 of 11 articles), uncoupling (2 of 2 articles), oxidative damage (8 of 8 articles), decreased mitochondrial respiratory capacity (1 of 1 article), decreased mtDNA content (5 of 6 articles), and decreased antioxidant capacity (3 of 4 articles) compared to ND and/or DC. Neither diabetes nor glycemic control explained these findings, but rather presence and severity of DKD may better reflect degree of mitochondrial dysfunction in this population. Future clinical studies should include individuals closer to diagnosis of diabetes to ascertain whether mitochondrial dysfunction is implicated in the development of, or is a consequence of, DKD.
Collapse
Affiliation(s)
- Nicole Flemming
- School of Medicine and Dentistry, Griffith University, Birtinya 4556, Australia
- Faculty of Medicine, University of Queensland, Brisbane 4072, Australia
- Mater Research Institute, The University of Queensland (MRI-UQ), Brisbane 4072, Australia
- Correspondence:
| | - Laura Pernoud
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore 4558, Australia
| | - Josephine Forbes
- Mater Research Institute, The University of Queensland (MRI-UQ), Brisbane 4072, Australia
| | - Linda Gallo
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore 4558, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
11
|
Pipal KV, Mamtani M, Patel AA, Jaiswal SG, Jaisinghani MT, Kulkarni H. Susceptibility Loci for Type 2 Diabetes in the Ethnically Endogamous Indian Sindhi Population: A Pooled Blood Genome-Wide Association Study. Genes (Basel) 2022; 13:1298. [PMID: 35893037 PMCID: PMC9331904 DOI: 10.3390/genes13081298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex metabolic derangement that has a strong genetic basis. There is substantial population-specificity in the association of genetic variants with T2D. The Indian urban Sindhi population is at a high risk of T2D. The genetic basis of T2D in this population is unknown. We interrogated 28 pooled whole blood genomes of 1402 participants from the Diabetes In Sindhi Families In Nagpur (DISFIN) study using Illumina's Global Screening Array. From a total of 608,550 biallelic variants, 140 were significantly associated with T2D after adjusting for comorbidities, batch effects, pooling error, kinship status and pooling variation in a random effects multivariable logistic regression framework. Of the 102 well-characterized genes that these variants mapped onto, 70 genes have been previously reported to be associated with T2D to varying degrees with known functional relevance. Excluding open reading frames, intergenic non-coding elements and pseudogenes, our study identified 22 novel candidate genes in the Sindhi population studied. Our study thus points to the potential, interesting candidate genes associated with T2D in an ethnically endogamous population. These candidate genes need to be fully investigated in future studies.
Collapse
Affiliation(s)
- Kanchan V. Pipal
- Lata Medical Research Foundation, Nagpur 440002, India; (K.V.P.); (M.M.); (A.A.P.); (S.G.J.); (M.T.J.)
| | - Manju Mamtani
- Lata Medical Research Foundation, Nagpur 440002, India; (K.V.P.); (M.M.); (A.A.P.); (S.G.J.); (M.T.J.)
- M&H Research, LLC, San Antonio, TX 78249, USA
| | - Ashwini A. Patel
- Lata Medical Research Foundation, Nagpur 440002, India; (K.V.P.); (M.M.); (A.A.P.); (S.G.J.); (M.T.J.)
| | - Sujeet G. Jaiswal
- Lata Medical Research Foundation, Nagpur 440002, India; (K.V.P.); (M.M.); (A.A.P.); (S.G.J.); (M.T.J.)
| | - Manisha T. Jaisinghani
- Lata Medical Research Foundation, Nagpur 440002, India; (K.V.P.); (M.M.); (A.A.P.); (S.G.J.); (M.T.J.)
| | - Hemant Kulkarni
- Lata Medical Research Foundation, Nagpur 440002, India; (K.V.P.); (M.M.); (A.A.P.); (S.G.J.); (M.T.J.)
- M&H Research, LLC, San Antonio, TX 78249, USA
| |
Collapse
|
12
|
Albeladi FI, Mostafa MM, Zayed MA, Atta H. Association of Polymorphisms in Antioxidant Enzyme-Encoding Genes with Diabetic Nephropathy in a Group of Saudi Arabian Patients with Type II Diabetes Mellitus. Int J Gen Med 2022; 15:5919-5928. [PMID: 35799998 PMCID: PMC9255407 DOI: 10.2147/ijgm.s367673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Fatma I Albeladi
- Department of Nephrology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mostafa M Mostafa
- Department of Clinical Biochemistry, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Zayed
- Department of Medical Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Correspondence: Mohamed A Zayed, Department of Medical Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia, Tel +966562603213, Fax +9666400000, Email
| | - Hazem Atta
- Department of Clinical Biochemistry, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Kadam DA, Kalamkar SD, Saraf A, Pathan I, Acharya J, Pekhale K, Shouche Y, Lole K, Ghaskadbi S, Ashma R. SNPs in the catalase promoter: a study based on Indian diabetic individuals. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Androgen-Dependent Prostate Cancer Cells Reprogram Their Metabolic Signature upon GLUT1 Upregulation by Manganese Superoxide Dismutase. Antioxidants (Basel) 2022; 11:antiox11020313. [PMID: 35204196 PMCID: PMC8868133 DOI: 10.3390/antiox11020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer in men across the globe. The prostate gland accounts for some unique glycolytic metabolic characteristics, which causes the metabolic features of prostate tumor initiation and progression to remain poorly characterized. The mitochondrial superoxide dismutase (SOD2) is one of the major redox metabolism regulators. This study points out SOD2 as one major regulator for both redox and glycolytic metabolism in prostate cancer. SOD2 overexpression increases glucose transporter GLUT-1 and glucose uptake. This is not an insulin-mediated effect and seems to be sex-dependent, being present in male mice only. This event concurs with a series of substantial metabolic rearrangements at cytoplasmic and mitochondrial level. A concomitant decrease in glycolytic and pentose phosphate activity, and an increase in electron transfer in the mitochondrial electronic chain, were observed. The Krebs Cycle is altered to produce amino-acid intermediates by decreasing succinate dehydrogenase. This in turn generates a 13-fold increase in the oncometabolite succinate. The protein energy sensor AMPK is decreased at basal and phosphorylated levels in response to glucose deprivation. Finally, preliminary results in prostate cancer patients indicate that glandular areas presenting high levels of SOD2 show a very strong correlation with GLUT-1 protein levels (R2 = 0.287 p-value < 0.0001), indicating that in patients there may exist an analogous phenomenon to those observed in cell culture and mice.
Collapse
|
15
|
Holbrook OT, Molligoda B, Bushell KN, Gobrogge KL. Behavioral consequences of the downstream products of ethanol metabolism involved in alcohol use disorder. Neurosci Biobehav Rev 2021; 133:104501. [PMID: 34942269 DOI: 10.1016/j.neubiorev.2021.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 01/04/2023]
Abstract
Research concerning Alcohol Use Disorder (AUD) has previously focused primarily on either the behavioral or chemical consequences experienced following ethanol intake, but these areas of research have rarely been considered in tandem. Compared with other drugs of abuse, ethanol has been shown to have a unique metabolic pathway once it enters the body, which leads to the formation of downstream metabolites which can go on to form biologically active products. These metabolites can mediate a variety of behavioral responses that are commonly observed with AUD, such as ethanol intake, reinforcement, and vulnerability to relapse. The following review considers the preclinical and chemical research implicating these downstream products in AUD and proposes a chemobehavioral model of AUD.
Collapse
Affiliation(s)
- Otto T Holbrook
- Program in Neuroscience, Boston University, Boston, MA, 02215-2425, USA.
| | - Brandon Molligoda
- Program in Neuroscience, Boston University, Boston, MA, 02215-2425, USA.
| | - Kristen N Bushell
- Program in Neuroscience, Boston University, Boston, MA, 02215-2425, USA
| | - Kyle L Gobrogge
- Program in Neuroscience, Boston University, Boston, MA, 02215-2425, USA
| |
Collapse
|
16
|
Xirouchaki CE, Jia Y, McGrath MJ, Greatorex S, Tran M, Merry TL, Hong D, Eramo MJ, Broome SC, Woodhead JST, D’souza RF, Gallagher J, Salimova E, Huang C, Schittenhelm RB, Sadoshima J, Watt MJ, Mitchell CA, Tiganis T. Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance. SCIENCE ADVANCES 2021; 7:eabl4988. [PMID: 34910515 PMCID: PMC8673768 DOI: 10.1126/sciadv.abl4988] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/26/2021] [Indexed: 05/27/2023]
Abstract
Reactive oxygen species (ROS) generated during exercise are considered integral for the health-promoting effects of exercise. However, the precise mechanisms by which exercise and ROS promote metabolic health remain unclear. Here, we demonstrate that skeletal muscle NADPH oxidase 4 (NOX4), which is induced after exercise, facilitates ROS-mediated adaptive responses that promote muscle function, maintain redox balance, and prevent the development of insulin resistance. Conversely, reductions in skeletal muscle NOX4 in aging and obesity contribute to the development of insulin resistance. NOX4 deletion in skeletal muscle compromised exercise capacity and antioxidant defense and promoted oxidative stress and insulin resistance in aging and obesity. The abrogated adaptive mechanisms, oxidative stress, and insulin resistance could be corrected by deleting the H2O2-detoxifying enzyme GPX-1 or by treating mice with an agonist of NFE2L2, the master regulator of antioxidant defense. These findings causally link NOX4-derived ROS in skeletal muscle with adaptive responses that promote muscle function and insulin sensitivity.
Collapse
Affiliation(s)
- Chrysovalantou E. Xirouchaki
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Yaoyao Jia
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Meagan J. McGrath
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Spencer Greatorex
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Melanie Tran
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Troy L. Merry
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
- Discipline of Nutrition, Faculty of Medical and
Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Dawn Hong
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Matthew J. Eramo
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Sophie C. Broome
- Discipline of Nutrition, Faculty of Medical and
Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jonathan S. T. Woodhead
- Discipline of Nutrition, Faculty of Medical and
Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Randall F. D’souza
- Discipline of Nutrition, Faculty of Medical and
Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jenny Gallagher
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University,
Clayton, Victoria 3800, Australia
| | - Cheng Huang
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
- Monash Proteomics and Metabolomics Facility, Monash
University, Clayton, Victoria 3800, Australia
| | - Ralf B. Schittenhelm
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
- Monash Proteomics and Metabolomics Facility, Monash
University, Clayton, Victoria 3800, Australia
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine,
Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ
07103, USA
| | - Matthew J. Watt
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Physiology, Monash University, Clayton,
Victoria 3800, Australia
| | - Christina A. Mitchell
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash
University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology,
Monash University, Clayton, Victoria 3800, Australia
- Monash Metabolic Phenotyping Facility, Monash
University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Al-Mawlah YH, Alasadi YF, Al-Darraji MN. Association between genetic polymorphisms of (Cu/ZnSOD and CAT C262T) and the risk of breast cancer. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Ates KM, Estes AJ, Liu Y. Potential underlying genetic associations between keratoconus and diabetes mellitus. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2021; 1:100005. [PMID: 34746916 PMCID: PMC8570550 DOI: 10.1016/j.aopr.2021.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
Background Keratoconus (KC) is the most common ectatic corneal disease, characterized by significantly localized thinning of the corneal stroma. Genetic, environmental, hormonal, and metabolic factors contribute to the pathogenesis of KC. Additionally, multiple comorbidities, such as diabetes mellitus, may affect the risk of KC. Main Body Patients with diabetes mellitus (DM) have been reported to have lower risk of developing KC by way of increased endogenous collagen crosslinking in response to chronic hyperglycemia. However, this remains a debated topic as other studies have suggested either a positive association or no association between DM and KC. To gain further insight into the underlying genetic components of these two diseases, we reviewed candidate genes associated with KC and central corneal thickness in the literature. We then explored how these genes may be regulated similarly or differentially under hyperglycemic conditions and the role they play in the systemic complications associated with DM. Conclusion Our comprehensive review of potential genetic factors underlying KC and DM provides a direction for future studies to further determine the genetic etiology of KC and how it is influenced by systemic diseases such as diabetes.
Collapse
Affiliation(s)
- Kristin M. Ates
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
19
|
Elsaid A, Samir Eid O, Said SB, Zahran RF. Association of NOS3 (rs 2070744) and SOD2Val16Ala (rs4880) gene polymorphisms with increased risk of ESRD among Egyptian patients. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:158. [PMID: 34661767 PMCID: PMC8523625 DOI: 10.1186/s43141-021-00260-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/02/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chronic kidney Failure (CKD), particularly End-Stage Renal Disease (ESRD), may be serious ill-health related to a high death rate. Uremic syndrome leads to increased oxidative stress, inflammation, and dyslipidemia. Our study aimed at identifying the association of NOS3 (rs 2070744) and SOD2 Val16Ala (rs4880) gene polymorphisms within ESRD Egyptian patients. METHODS This work was conducted on 100 ESRD and 16 CKD Egyptian patients who were compared to 100 healthy controls. DNA was genotyped for these variants using the (T-ARMS-PCR) technique. RESULTS ESRD patients showed a significant association of the genotype of NOS3 gene polymorphism compared with healthy controls (P = 0.032). In the contrast, the present study revealed that no statistically significant differences were found among the CKD, ESRD, and control groups as regards the SOD2 genotypes (P = 0.064). CONCLUSIONS Our findings indicated a significant association between NOS3 (rs 2070744) gene polymorphism and increased risk of ESRD and CKD among Egyptian patients.
Collapse
Affiliation(s)
- Afaf Elsaid
- Genetics Unit, Children Hospital, Mansoura University, Mansoura, Egypt
| | - Omnia Samir Eid
- Department of Chemistry, Biochemistry Division, Faculty of Science, Damietta University, New-Damietta, Egypt
| | - Samy B Said
- Department of Chemistry, Faculty of Science, Damietta University, New-Damietta, 34517, Egypt
| | - Rasha F Zahran
- Department of Chemistry, Biochemistry Division, Faculty of Science, Damietta University, New-Damietta, Egypt.
| |
Collapse
|
20
|
Xu S, Wang B, Han L, Pu Y, Zhu B, Zhang J. Polymorphisms in the FAS gene are associated with susceptibility to noise-induced hearing loss. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21754-21765. [PMID: 33411277 DOI: 10.1007/s11356-020-12028-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the relationship between genetic polymorphisms in the FAS gene and noise-induced hearing loss (NIHL) risk among Chinese workers exposed to occupational noise, and the molecular mechanism of NIHL caused by noise. In this case-control study, 692 NIHL workers and 650 controls were selected for genotyping of four single nucleotide polymorphisms (SNPs) of the FAS gene. Logistic regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI) of the association of these genetic polymorphisms and NIHL. At the same time, a noise-exposed rat model was constructed to further clarify the effect of noise exposure on fas gene expression and the pathogenic mechanism of NIHL. Two polymorphisms, rs1468063 and rs2862833, were associated with NIHL in the case-control study. Individuals with the rs1468063-TT or rs2862833-AA genotypes had decreased NIHL risk (p < 0.01, p = 0.02, respectively). Compared with the control group, the hearing threshold of the case group of rats increased, while serum MDA, urine 8-OHdG, and fas gene expression increased, but let-7e expression decreased. Genetic polymorphisms in the FAS gene are related to the risk of NIHL in the Chinese population. Noise can cause a large amount of reactive oxygen species (ROS) in the cochlea tissue and blood, which lead to oxidative stress, lipid peroxidation, and DNA damage, further activating the FAS gene, and ultimately leading to hearing loss.
Collapse
Affiliation(s)
- Shouxiang Xu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Boshen Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Lei Han
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Baoli Zhu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China.
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
21
|
Antioxidants-Related Superoxide Dismutase ( SOD), Catalase ( CAT), Glutathione Peroxidase ( GPX), Glutathione-S-Transferase ( GST), and Nitric Oxide Synthase ( NOS) Gene Variants Analysis in an Obese Population: A Preliminary Case-Control Study. Antioxidants (Basel) 2021; 10:antiox10040595. [PMID: 33924357 PMCID: PMC8070436 DOI: 10.3390/antiox10040595] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress and antioxidants play an important role in obesity etiopathology. Genetic variants, including single nucleotide polymorphisms (SNPs) of the antioxidant-related genes, may impact disease risk in several populations. This preliminary study aimed to explore the association of 12 SNPs related to superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) genes with obesity susceptibility in a Saudi population. A total of 384 unrelated participants, including 154 (40.1%) obese individuals, were enrolled. TaqMan OpenArray Genotyping assays were used. Six SNPs were significantly more prevalent in obese cohorts: (1) GSTM1 rs1056806*C/T; (2) SOD1 rs2234694*A; (3) SOD2 rs4880*G; (4) SOD3 rs2536512*A; (5) GPX1 rs1800668*A; (6) NOS3 rs1799983*G. Four SNPs were associated with higher obesity risk under heterozygote and dominant models for GSTM1 rs1056806 (C/T), homozygote model for SOD2 rs4880 (A/G), and homozygote and recessive models for GPX1 rs1800668 (A/G). In contrast, SOD3 rs2536512 (A/G) were less likely to be obese under heterozygote and dominant models. The CGAG, CAAA, TGGG, and CGAG combined genotypes showed a higher risk of obesity. In conclusion, the present results suggest that oxidative-stress-related genetic determinants could significantly associate with obesity risk in the study population.
Collapse
|
22
|
Lewandowski Ł, Urbanowicz I, Kepinska M, Milnerowicz H. Concentration/activity of superoxide dismutase isozymes and the pro-/antioxidative status, in context of type 2 diabetes and selected single nucleotide polymorphisms (genes: INS, SOD1, SOD2, SOD3) - Preliminary findings. Biomed Pharmacother 2021; 137:111396. [PMID: 33761612 DOI: 10.1016/j.biopha.2021.111396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022] Open
Abstract
The alterations in concentration/activity of superoxide dismutase isozymes in the context of type 2 diabetes or obesity are well-described. Moreover, many hereditary factors, including single-nucleotide polymorphisms (SNPs) of genes for coding insulin, insulin receptors, or insulin receptor substrates (INS, INSR, IRS1, IRS2) or superoxide dismutase isozymes (SOD1, SOD2, SOD3), have been linked with the incidence of obesity and diabetes. However, the underlying changes in the plasma concentration/activity of superoxide dismutase isozymes and their potential connection with the said hereditary factors remain unexplored. Previously, we have observed that the plasma concentration/activity of superoxide dismutase isozymes differs in the context of obesity and/or rs2234694 (SOD1) and rs4880 (SOD2) and that the concentrations of SOD1, SOD2, SOD3 are correlated with each other. Intersexual variability of SOD1 concentration was detected regardless of obesity. In this study, the variability of concentration/activity of superoxide dismutase isozymes in plasma is considered in the context of type 2 diabetes and/or SNPs: rs2234694 (SOD1), rs5746105 (SOD2), rs4880 (SOD2), rs927450 (SOD2), rs8192287 (SOD3). Genotypic variability of SNP rs3842729 (INS), previously studied in the context of insulin-dependent diabetes, is investigated in terms of selected clinical parameters associated with type 2 diabetes. This study revealed higher SOD1 concentration in diabetic men compared to women, and extremely high SOD1 concentration, higher total superoxide dismutase, and copper-zinc superoxide dismutase activity, and lower superoxide dismutase and copper-zinc superoxide dismutase activity (when adjusted for the concentration of SODs) in the diabetic group regardless of sex. Multiple logistic regression, applied to explore possible links between the studied SNPs and other factors with the odds of type 2 diabetes or obesity, revealed that the genotypic variability of rs4880 (SOD2) could affect these odds, supporting the findings of several other studies.
Collapse
Affiliation(s)
- Łukasz Lewandowski
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wrocław, Poland.
| | - Iwona Urbanowicz
- Department of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wrocław, Poland
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wrocław, Poland
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wrocław, Poland
| |
Collapse
|
23
|
Zhao L, Mao Z, Mou D, Huang L, Yang M, Ding D, Yan H, Fang Z, Che L, Zhuo Y, Jiang X, Xu S, Lin Y, Li J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal cholecalciferol supplementation during gestation improves antioxidant capacities in gilts and piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1961616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Lianpeng Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daolin Mou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Long Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Min Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Dajing Ding
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Gusti AMT, Qusti SY, Bahijri SM, Toraih EA, Bokhari S, Attallah SM, Alzahrani A, Alshehri WMA, Alotaibi H, Fawzy MS. Glutathione S-Transferase ( GSTT1 rs17856199) and Nitric Oxide Synthase ( NOS2 rs2297518) Genotype Combination as Potential Oxidative Stress-Related Molecular Markers for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:1385-1403. [PMID: 33790606 PMCID: PMC8006960 DOI: 10.2147/dmso.s300525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Deregulation of the antioxidant enzymes was implicated in pathogenesis and complications of type 2 diabetes mellitus (T2DM). The data relate the genetic variants of these enzymes to T2DM are inconsistent among various populations. PURPOSE We aimed to explore the association of 13 genetic variants of "superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and nitric oxide synthase (NOS)" with T2DM susceptibility and the available clinical laboratory data. SUBJECTS AND METHODS A total of 384 individuals were enrolled in this work. Different genotypes of the genes mentioned above were characterized using TaqMan OpenArray Genotyping assays on a Real-Time polymerase chain reaction system. RESULTS After age- and sex-adjustment, among the studied 13 variants, GSTT1 rs17856199 was associated with T2DM under homozygote (OR=3.42; 95% CI:1.04-11.2, p=0.031), and recessive (OR=3.57; 95% CI: 1.11-11.4, p=0.029) comparison models. The NOS2 rs2297518*A allele was more frequent among the T2DM cohort (58.1% vs 35.4%, p<0.001) and showed a dose-response effect; being heterozygote was associated with higher odds for developing DM (OR=4.06, 95% CI=2.13-7.73, p<0.001), whereas being AA homozygote had double the risk (OR=9.06, 95% CI=3.41-24.1, p<0.001). Combined NOS2 rs2297518*A and either GSTT1 rs17856199*A or *C genotype carriers were more likely to develop T2DM. Different associations with sex, BMI, hyperglycemia, and/or hyperlipidemia were evident. The principal component analysis revealed NOS2 rs2297518*G, old age, dyslipidemia, high systolic blood pressure, and elevated HbA1c were the main classifiers of T2DM patients. CONCLUSION The oxidative stress-related molecular markers, GSTT1 rs17856199 and NOS2 rs2297518 variants were significantly associated with T2DM risk and phenotype in the study population.
Collapse
Affiliation(s)
- Amani M T Gusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory, Biochemistry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Safaa Y Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suhad M Bahijri
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Saudi Diabetes Research Group, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA
- Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samia Bokhari
- Department of Endocrinology and Diabetes, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Sami M Attallah
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Clinical Pathology, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdulwahab Alzahrani
- Department of Molecular Biology, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Wafaa M A Alshehri
- Department of Chemistry, Faculty of Science, University of Bisha, Al Namas, Saudi Arabia
| | | | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Kingdom of Saudi Arabia
- Correspondence: Manal S Fawzy Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, EgyptTel + 20 1008584720Fax + 20 64 3216496 Email
| |
Collapse
|
25
|
Wu D, Chen Y, Wan X, Liu D, Wen Y, Chen X, Zhao C. Structural characterization and hypoglycemic effect of green alga Ulva lactuca oligosaccharide by regulating microRNAs in Caenorhabditis elegans. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Abdul-Maksoud RS, Fouad RA, Elsayed TG, Ibrahem RA, Badawi AE. The impact of catalase and glutathione peroxidase-1 genetic polymorphisms on their enzyme activities among Egyptian patients with keratoconus. J Gene Med 2020; 22:e3192. [PMID: 32203639 DOI: 10.1002/jgm.3192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 02/12/2020] [Accepted: 03/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Elevated oxidative stress plays a significant role in pathophysiology of keratoconus (KC). Polymorphisms of the antioxidant enzymes as CAT and GPX-1 might alter their antioxidant enzyme capacities leading to increase in the oxidative damage induced KC. AIM To analyze the impact of CAT rs7943316 A/T and GPX-1 rs1050450 C/T single nucleotide polymorphisms (SNPs) on the risk and severity of KC among a group of Egyptian population. SUBJECT & METHODS CAT rs7943316 and GPX-1 rs1050450 SNPs were examined using polymerase chain reaction-restriction fragment length polymorphism in 100 control subjects and 150 KC patients [50 patients (KC stages 1&2), 50 patients (KC stage 3) and 50 patients (KC stage 4)]. RESULTS Patients with TT genotype of CAT rs7943316 were at high risk of developing KC. T allele of GPX-1 rs1050450 was significantly associated with KC risk (P ˂0.001). The frequency of CAT TT genotype and T allele was significantly higher among severe stages of KC compared to mild and moderate stages. GPX-1 T allele frequency was significantly higher among severe stages of KC compared to mild and moderate stages. A very significant decrease in the antioxidant enzyme activities was observed in association with these SNPs. Age of the patients, CAT and GPX-1 SNPs as well as their enzyme activities were independent predictors of KC severity. CONCLUSION Our study suggests that CAT (rs7943316) and GPX-1 (rs1050450) SNPs act as independent predictors for different grades of KC and that these SNPs might have a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Rehab S Abdul-Maksoud
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rania A Fouad
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer G Elsayed
- Ophthalmology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Reda A Ibrahem
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Amani E Badawi
- Ophthalmology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
27
|
Polat S, Şimşek Y. Five variants of the superoxide dismutase genes in Turkish women with polycystic ovary syndrome. Free Radic Res 2020; 54:467-476. [PMID: 32715851 DOI: 10.1080/10715762.2020.1802022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is one of the most common endocrine-reproductive-metabolic disorders of women at reproductive age. Many investigations have revealed that reactive oxygen species (ROS) level is significantly increased in patients with PCOS compared to healthy women. OBJECT The goal of the current study is to investigate the association between superoxide dismutase (SOD) variants and the risk of PCOS among Turkish women. METHOD AND SUBJECTS Three hundred twelve voluntary premenopausal women (148 healthy controls and 164 patients with PCOS) 18-45 years of age were include the study. All volunteers underwent physical examination and biochemical hormones evaluation. Five selected variants in SOD1 (+35 A/C (rs2234694) and SOD2 (-102 C > T, 3'UTRT > A (rs2842980), 3'UTRA > G (rs5746136), and Ala16ValC > T (rs4880) were analysed by using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) method. RESULT 3'UTRA > G and Ala16ValC > T variants showed significant differences between study groups. In the additive model of rs5746136 variant having AG and GG genotype increased the PCOS risk 2-fold (OR: 1.7, 95% CI: 1.08-2.77, p = 0.003) and 5-fold (OR: 5, 95% CI: 1.7-14.2,p = 0.003) compared to AA genotype, respectively. To have a GG + AG genotype increased the PCOS risk 2-fold (OR: 2.95% Cl: 1.2-3.1, p = 0.003) compared to AA genotype in "G" dominant model. In case of the "G" recessive model, having a GG genotype increased the PCOS risk 4-fold (OR: 3.8, 95% CI: 1.3-10.4, p = 0.01) compared to AA + AG genotype. The TT genotype of rs4880 showed almost 2-fold (OR: 1.8, 95% CI: 1.12-3.0) increased PCOS risk in the "T" recessive model. CONCLUSION It is quite likely that the variants which result in decreased function in the antioxidant defence mechanism related genes contribute to PCOS aetiology with inhibiting/reducing of ROS elimination.
Collapse
Affiliation(s)
- Seher Polat
- Medical Faculty, Department of Medical Genetics, Erzincan University, Erzincan, Turkey
| | - Yasin Şimşek
- Endocrinology Department, Kayseri Training and Research Hospital, Kayseri, Turkey
| |
Collapse
|
28
|
Lewandowski Ł, Kepinska M, Milnerowicz H. Alterations in Concentration/Activity of Superoxide Dismutases in Context of Obesity and Selected Single Nucleotide Polymorphisms in Genes: SOD1, SOD2, SOD3. Int J Mol Sci 2020; 21:ijms21145069. [PMID: 32709094 PMCID: PMC7404310 DOI: 10.3390/ijms21145069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Little is known about the contribution of each of the three superoxide dismutase isozymes (SODs) to the total SOD activity in extracellular fluids. This study was aimed to investigate the alterations in concentration/activity of (SODs) in plasma, in context of sex, obesity, exposition to cigarette smoke, and genotypic variability of five selected single nucleotide polymorphisms (SNPs) in genes SOD1, SOD2, SOD3. Men showed higher SOD1 concentration, lower SOD3 concentration and higher total antioxidative capacity (TAC) values. Intersexual variability was observed in concentration of copper, zinc, and cadmium. The obese showed higher total oxidative capacity regardless of sex. An increase in SOD2 activity was coexistent with obesity in men, and exposition to cigarette smoke in non-obese individuals. Additionally, in state of this exposition, Cu,Zn-SOD contribution to the total SOD was lower. Interestingly, over 90% of the obese were of C/T genotype of rs4880 (SOD2). Non-obese of T/T genotype (rs4880) were of lower total SOD activity due to decrease in both Cu,Zn-SOD and Mn-SOD activities. SNP rs2234694 was associated with differences in concentration of SODs, depending on obesity status. Correlations indicate that both TAC and SODs, together, may adapt to insulin resistance and inflammation-derived oxidative stress found in obesity. This topic should be further investigated.
Collapse
|
29
|
Xu P, Zhu Y, Liang X, Gong C, Xu Y, Huang C, Liu XL, Zhou JC. Genetic polymorphisms of superoxide dismutase 1 are associated with the serum lipid profiles of Han Chinese adults in a sexually dimorphic manner. PLoS One 2020; 15:e0234716. [PMID: 32559230 PMCID: PMC7304602 DOI: 10.1371/journal.pone.0234716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 06/01/2020] [Indexed: 11/19/2022] Open
Abstract
Inspired by the mechanistic correlations between superoxide dismutase 1 (SOD1) and lipid metabolism, the associations of SOD1 single nucleotide polymorphisms (SNPs) with circulating lipid levels were explored. In 2621 Chinese Han adults, randomly recruited from a health examination center without organic diseases, cancers, and pregnancy, three tag SNPs, rs4998557, rs1041740, and rs17880487 selected by Haploview software were genotyped with a probe-based real-time quantitative PCR method. In both genders, most parameters of the dyslipidemia adults were inferior (P < 0.001) to those of the non-dyslipidemia adults, and genotype frequencies of rs4998557 and rs17880487 were significantly different (P < 0.05) between the normal and abnormal subgroups of total cholesterol (TC) or high-density lipoprotein cholesterol (HDLC). Adjusted for confounding factors, logistic regression analyses revealed that in males rs4998557A, rs1041740T, and rs17880487T reduced the risk of high TC and/or LDLC (P < 0.05), and rs4998557A and rs17880487T increased the risk of low HDLC (P < 0.05); but in females, none of the SNPs had associations with any of the lipid parameters (P > 0.05). Conclusively, characterized by a sexual dimorphism, the SOD1 polymorphisms were associated with the lipid disorders in the adult males but not females of the Chinese Han population.
Collapse
Affiliation(s)
- Ping Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumei Zhu
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Xiongshun Liang
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Chunmei Gong
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Yuanfei Xu
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Changhua Huang
- Shenzhen Qilinshan Sanatorium, Shenzhen, Guangdong, China
| | - Xiao-Li Liu
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
30
|
Obafemi TO, Olasehinde OR, Olaoye OA, Jaiyesimi KF, Adewumi FD, Adewale OB, Afolabi BA. Metformin/Donepezil combination modulates brain antioxidant status and hippocampal endoplasmic reticulum stress in type 2 diabetic rats. J Diabetes Metab Disord 2020; 19:499-510. [PMID: 32550202 DOI: 10.1007/s40200-020-00541-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/26/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Purpose Diabetes mellitus is associated with perturbations in brain biochemical parameters associated with dementia. This study aimed at comparing the effect of metformin and metformin/donepezil combination on oxidative stress, endoplasmic reticulum stress and inflammation in the brain of diabetic Wistar rats. Methods Diabetes was induced by single intraperitoneal injection of 40 mg/kg streptozotocin after administration of 10% fructose for 14 days. Animals were randomly assigned to four groups of five animals each. Group 1 was the normal control and received only distilled water. Groups 2 and 3 were diabetic rats treated with metformin/donepezil combination and metformin only respectively, while group 4 was diabetic control. Treatment lasted for 21 days after confirmation of diabetes. Activities of acetylcholinesterase (AchE), butyrylcholinesterase (BchE), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase were evaluated in the brain of diabetic rats. Enzyme-linked immunosorbent assay was used to estimate brain levels of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) malondialdehyde and glucose transporter-4 (GLUT4), while expression of endoplasmic reticulum stress markers - glucose regulated protein-78 (GRP78), activating transcription factor-4 (ATF4) and C/EBP homologous protein (CHOP) was determined using real-time PCR in the hippocampus of diabetic rats. Results Treatment with metformin/donepezil combination significantly reduced the activities of AchE, BchE as well as levels of malondialdehyde, TNF-α and IL-6, while the activities of SOD, GPx and catalase were significantly increased in the brain. Moreover, expression of ER stress markers was attenuated in the hippocampus. Conclusion Metformin/donepezil combination appeared more efficacious than metformin only and could be considered for managing diabetes-associated dementia.
Collapse
Affiliation(s)
- Tajudeen Olabisi Obafemi
- Biochemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, PMB 5454 Nigeria
| | - Oluwaseun R Olasehinde
- Medical Biochemistry Unit, College of Health Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, Nigeria
| | - Oyindamola A Olaoye
- Biochemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, PMB 5454 Nigeria
| | - Kikelomo F Jaiyesimi
- Biochemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, PMB 5454 Nigeria
| | - Funmilayo D Adewumi
- Industrial Chemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, PMB 5454 Nigeria
| | - Olusola B Adewale
- Biochemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, PMB 5454 Nigeria
| | | |
Collapse
|
31
|
Tripathi P, Agarwal S, Sarangi AN, Tewari S, Mandal K. Genetic Variation in SOD1 Gene Promoter Ins/Del and Its Influence on Oxidative Stress in Beta Thalassemia Major Patients. Int J Hematol Oncol Stem Cell Res 2020; 14:110-117. [PMID: 32461794 PMCID: PMC7231791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Background: A genetic polymorphism of 50 bp insertion/deletion (Ins/Del) (rs 36232792) in the promoter region of the SOD1 was reported to influence the enzyme activity. The present study aimed to evaluate the status of this polymorphism of human peripheral blood cells and its association with SOD enzyme activity in beta-thalassemia major patients. Material and Methods: The study was carried out on 200 thalassemia major patients and 200 healthy controls healthy. The SOD1 genotypes were determined using a polymerase chain reaction (PCR)-based method. Serum SOD activity were assessed using SOD assay kit. In-silico analysis was assessed using loss-of-function (LoFtool) (PMID: 27563026). Results: No association was found between the insertion/deletion (Ins/Del) polymorphism and SOD enzyme activity in thalassemia major patients Conclusion: The results of this study indicated that the SOD enzyme activity is not affected by the 50 bp Ins/Del polymorphism of SOD1in thalassemia major patients. Further research with larger sample size and with other genes of antioxidant system is required.
Collapse
Affiliation(s)
- Poonam Tripathi
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India ,Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, Uttar Pradesh, India,Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, Uttar Pradesh, India
| | - Sarita Agarwal
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, Uttar Pradesh, India
| | - Aditya Narayan Sarangi
- Department of Biomedical Informatics Center, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, India
| | - Satyendra Tewari
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, Uttar Pradesh, India
| | - Kausik Mandal
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
32
|
Darroudi S, Tajbakhsh A, Esmaily H, Ghazizadeh H, Zamani P, Sadabadi F, Tayefi M, Tayefi B, Fereydouni N, Mouhebati M, Akbari Sark N, Avan A, Ferns GA, Mohammadpour AH, Asadi Z, Ghayour-Mobarhan M. 50 bp deletion in promoter superoxide dismutase 1 gene and increasing risk of cardiovascular disease in Mashhad stroke and heart atherosclerotic disorder cohort study. Biofactors 2020; 46:55-63. [PMID: 31670860 DOI: 10.1002/biof.1575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD), one of the main mortality causes worldwide is considered to be affected by general oxidative stress and inadequacy antioxidant system. Superoxide dismutase 1 (SOD1), a cytosolic antioxidant enzyme has a key role in neutralizing the excessive prooxidant by scavenging the super oxide anions. SOD1 polymorphic variants exhibit the altered activity properties. In the current study, we are aimed to investigate the association between the SOD1 polymorphism and CVD prevalence. A 6-years case control follow up study was designed to genotype the 526 participants (311 controls and 215 cases) for studying the 50 bp INS/DEL polymorphism at SOD1 promoter gene and analyze their blood lipid profile and anthropometric characteristics. Among the two possible alleles of the SOD1 gene (Wild [W] and Mutant [M]) the meaningful association was detected between the Mutants' frequency and the prevalence of CVD patients (p-value <.001). The W and M allele refer to inserted and deleted 50 bp in the polymorphic site of the SOD1 promoter, respectively. The WM and MM genotypes' frequency which indicate the wild heterozygotes and Mutant homozygotes, respectively, were significantly correlated with the prevalence of cardiovascular disease (p-value <.001). The present study has the potential to introduce the 50 bp INS/DEL polymorphism of SOD1 genotyping as a novel unique diagnostic approach for screening the high risk CVD.
Collapse
Affiliation(s)
- Susan Darroudi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Tajbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Ghazizadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadabadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Tayefi
- Maryam Tayefi change to Norwegian Center for e-health Research, University hospital of North Norway, Tromsø, Norway
| | - Batool Tayefi
- Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Fereydouni
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mouhebati
- Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noushin Akbari Sark
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, Sussex, UK
| | - Amir H Mohammadpour
- Pharmaceutical Research Center, Pharmaceutical Institute Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Asadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome research center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome research center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Wang Y, Dai G, Li L, Liu L, Jiang L, Li S, Liao S, Wang F, Du W, Li Y. Transcriptome signatures reveal candidate key genes in the whole blood of patients with lumbar disc prolapse. Exp Ther Med 2019; 18:4591-4602. [PMID: 31777557 PMCID: PMC6862187 DOI: 10.3892/etm.2019.8137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate differentially expressed genes (DEGs) in whole blood (WB) obtained from patients with lumbar disc prolapse (LDP) and healthy volunteers. A total of 8 patients with LDP and 8 healthy volunteers were recruited. An Agilent SurePrint G3 human gene expression microarray 8×60 K was used to perform the microarray analyses. R was employed to identify DEGs, which were then subjected to bioinformatics analysis, including a Gene Ontology (GO) analysis, Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis and protein-protein interaction (PPI) network analysis. DEGs in the degenerative annulus fibrosis (AF) and nucleus pulposus (NP) compared with non-degenerative tissues were also identified based on microarray data and the intersections of the three were assessed. Furthermore, reverse transcription-quantitative (RT-q)PCR was performed to confirm the aberrant expression levels of selected DEGs in the WB of all subjects. A total of 161 DEGs between LDP patients and the healthy controls were identified (128 upregulated and 33 downregulated). These DEGs were enriched in 293 biological process, 36 cellular component and 21 molecular function GO terms, as well as in 24 KEGG pathways. The PPI network contained 4 submodules, and Toll-like receptor 4 had the highest degree centrality. A total of 22 DEGs were common to the three groups of DEGs. The RT-qPCR assay confirmed that the expression levels of cytochrome P450 family 27 subfamily A member 1, superoxide dismutase 2, protein disulfide isomerase family A member 4, FKBP prolyl isomerase 11 and ectonucleotide pyrophosphatase/phosphodiesterase 4 were significantly different between the patient group and the volunteer group. In conclusion, several genes were identified as potential biomarkers in WB that should be further explored in future studies to determine their potential application in the clinical treatment and diagnosis of LDP, and the present bioinformatics analysis revealed several GO terms, KEGG pathways and submodules of the PPI network that may be involved in LDP, although the exact mechanisms remain elusive.
Collapse
Affiliation(s)
- Yi Wang
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Guogang Dai
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Lengtao Li
- Postgraduate School, Chengdu Sport Institute, Chengdu, Sichuan 610041, P.R. China
| | - Lijuan Liu
- Postgraduate School, Chengdu Sport Institute, Chengdu, Sichuan 610041, P.R. China
| | - Ling Jiang
- College Hospital, Sichuan Agricultural University - Chengdu Campus, Chengdu, Sichuan 611130, P.R. China
| | - Shengwu Li
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Shichuan Liao
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Feng Wang
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Wanli Du
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yuewen Li
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
34
|
Wang Y, Dai G, Wang L, Shang F, Jiang L, Li S, Huang L, Xia J, Wei H. Identification of Key Genes Potentially Related to Intervertebral Disk Degeneration by Microarray Analysis. Genet Test Mol Biomarkers 2019; 23:610-617. [PMID: 31368816 DOI: 10.1089/gtmb.2019.0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aims: This study was designed to investigate differentially expressed genes (DEGs) in the annulus fibrosus (AF), nucleus pulposus (NP), and whole blood (WB) of intervertebral disk degeneration (IDD) patients. Materials and Methods: We retrieved microarray data set GSE70362, which contains the gene expression profiles of 24 AF and 24 NP samples from the Gene Expression Omnibus and identified DEGs in degenerative AF (AF-DEGs) and NP (NP-DEGs) samples compared with nondegenerative samples. We also examined gene expression profiles in WB from patients with IDD and healthy volunteers to identify DEGs in WB (WB-DEGs). We performed functional analyses on the DEGs common to AF-DEGs, NP-DEGs, and WB-DEGs. Expression of the common DEGs was partially validated by quantitative real-time-polymerase chain reaction (QRT-PCR). Results: In total, 846 AF-DEGs, 902 NP-DEGs, and 862 WB-DEGs were identified, and 22 DEGs were common among the three groups. Functional analyses showed that the common DEGs were enriched in 33 biological processes, 16 cellular components, 4 molecular functions, and 9 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways; 13 of the common DEGs were included in the protein-protein interaction (PPI) network and superoxide dismutase 2 (SOD2) was identified as a hub gene in the PPI network. The QRT-PCR results for the expression of the genes protein disulfide isomerase family A member 4, FKBP prolyl isomerase 11, ectonucleotide pyrophosphatase/phosphodiesterase 4, SOD2, and actin binding LIM protein 1, were consistent with the gene chip hybridization results. Conclusions: This study identified key genes for future investigations of the underlying molecular mechanisms of IDD. These genes may provide future targets for the clinical treatment and diagnosis of IDD.
Collapse
Affiliation(s)
- Yi Wang
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Guogang Dai
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Lanjie Wang
- Postgraduate School, Chengdu Sport Institute, Chengdu, China
| | - Fangru Shang
- Postgraduate School, Chengdu Sport Institute, Chengdu, China
| | - Ling Jiang
- College Hospital, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Shengwu Li
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Lei Huang
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Jiao Xia
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Hao Wei
- Cervicodynia/Omalgia/Lumbago/Sciatica Department 2, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| |
Collapse
|
35
|
Baig A, Ata-Ur-Rehman, Zarina S. Association of PON2 and PON3 polymorphism with risk of developing cataract. Saudi J Ophthalmol 2019; 33:153-158. [PMID: 31384158 PMCID: PMC6664307 DOI: 10.1016/j.sjopt.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/08/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose Paraoxonases (PON) are calcium bound enzymes offering protection against oxidative stress by working as endogenous free-radical scavenging molecules. Oxidative stress has been implicated in pathophysiology of many diseases including cataract. Lens opacity is an age related disorder which is a principal cause of blindness in Pakistani population. Relationship of PON2 and PON3 polymorphism with genetic predisposition for incidence of cataract has not been investigated till date. Objective of the current study was to explore possible association between PON2 and PON3 polymorphism with incidence of cataract in local population. Methods Our study design comprised of fifty-one cataractous and fifty-nine healthy individuals. Identification of single nucleotide polymorphism (SNP) at positions (C311S and G148A) for PON2 and C133A for PON3 was conducted using restriction fragment length polymorphism (RFLP). Results Statistical analysis revealed significant association of PON2 G148 allele with incidence of cataract. GG allele was found to be higher in cataract patients as compared to control (p < 0.001) suggesting distribution of PON2 G148A genotype and allele frequency is linked with cataractogenesis. There was no noticeable association between PON2 C311S and PON3 C133A. Significant difference was observed in distribution of 311CS/148A combined genotype with highest frequency in control individuals (88.89%), while 311S/148G combined genotypes showed the highest frequencies among the cataract patients (71.42%). Conclusion Our data suggests mutation at G148A might be related with incidence of cataract in studied population.
Collapse
Affiliation(s)
- Amena Baig
- National Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Ata-Ur-Rehman
- Department of Ophthalmology, Liaquat National Hospital, Karachi, Pakistan
| | - Shamshad Zarina
- National Center for Proteomics, University of Karachi, Karachi, Pakistan
| |
Collapse
|
36
|
A Low Glycemic Index Decreases Inflammation by Increasing the Concentration of Uric Acid and the Activity of Glutathione Peroxidase (GPx3) in Patients with Polycystic Ovary Syndrome (PCOS). Molecules 2019; 24:molecules24081508. [PMID: 30999628 PMCID: PMC6514917 DOI: 10.3390/molecules24081508] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 11/17/2022] Open
Abstract
Introduction: According to a review of the literature, there is a lack of data on the mechanisms that participate in the suppression of inflammation that accompanies polycystic ovary syndrome (PCOS). Additionally, the changes in oxidative status resulting from a low-calorie diet have not been studied in a group of women with PCOS, and the oxidation and reduction processes associated with PCOS have not been explained. Material and methods: The study involved 49 women who were diagnosed with PCOS according to Rotterdam’s criteria, and 24 women voluntarily agreed to a three-month dietary intervention. The dietary intervention was carried out for 3 months. Glutathione peroxidase (GPx3) activity, the Ferric reducing ability of plasma, and uric acid concentration were measured spectrophotometrically both before and after the intervention. Statistical analysis was performed with the Statistica 10.0 software package, and a Pearson’s correlation matrix was generated. Results: A lower concentration of GPx3 was observed in women with PCOS (before the dietetic intervention began) compared with the GPx3 levels in healthy women. A relationship was shown between GPx3 levels and the concentration of prolactin, insulin on fasting, and triglycerides. After the dietary intervention, increases in uric acid and GPx3 activity were noted, as well as numerous relationships between anthropometric and biochemical parameters. The ferric reducing/antioxidant power did not change significantly. Conclusions: Inhibiting the effect of prolactin (by the level of reactive oxygen species) on the activity of GPx3 could be a starting point for the increase in antioxidative stress and the development of the inflammatory state associated with PCOS pathophysiology. Following a low-calorie diet with a lower glycemic index is proposed to silence inflammation by increasing the concentration of uric acid. During GPx3 mobilization, women with PCOS have a higher demand for selenium, and its deficiencies may contribute to disordered thyroid hormone synthesis. The three-month dietary intervention did not silence redox processes in the examined group of women.
Collapse
|
37
|
Mao C, Yuan JQ, Lv YB, Gao X, Yin ZX, Kraus VB, Luo JS, Chei CL, Matchar DB, Zeng Y, Shi XM. Associations between superoxide dismutase, malondialdehyde and all-cause mortality in older adults: a community-based cohort study. BMC Geriatr 2019; 19:104. [PMID: 30987591 PMCID: PMC6466801 DOI: 10.1186/s12877-019-1109-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/21/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Oxidative stress is an important theory of aging but population-based evidence has been lacking. This study aimed to evaluate the associations between biomarkers of oxidative stress, including plasma superoxide dismutase (SOD) activity and malondialdehyde (MDA), with all-cause mortality in older adults. METHODS This is a community-based cohort study of 2224 participants (women:1227, median age: 86 years). We included individuals aged 65 or above and with plasma SOD activity and/or MDA tests at baseline. We evaluated the hazard ratios (HRs) and 95% confidence intervals (CIs) by multivariable Cox models. RESULTS We documented 858 deaths during six years of follow-up. There was a significant interaction effect of sex with the association between SOD activity and mortality (P < 0.001). Compared with the lowest quintile, the risk of all-cause mortality was inversely associated with increasing quintiles of plasma SOD activity in women(P-trend< 0.001), with adjusted HRs for the second through fifth quintiles of 0.73 (95% CI 0.53-1.02), 0.52(95% CI 0.38-0.72), 0.53(95% CI 0.39-0.73), and 0.48(95% CI 0.35-0.66). There were no significant associations between SOD activity and mortality in men (P-trend = 0.64), and between MDA and mortality in all participants (P-trend = 0.79). CONCLUSIONS Increased activity of SOD was independently associated with lower all-cause mortality in older women but not in men. This epidemiological study lent support for the free radical/oxidative stress theory of aging.
Collapse
Affiliation(s)
- Chen Mao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Qiu Yuan
- Scientific Research & International Exchange Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yue-Bin Lv
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli, Chaoyang, Beijing, 100021, China
| | - Xiang Gao
- Nutritional Epidemiology Lab, Pennsylvania State University, Philadelphia, PA, USA
| | - Zhao-Xue Yin
- Nutritional Epidemiology Lab, Pennsylvania State University, Philadelphia, PA, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute and Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jie-Si Luo
- Division of Non-Communicable Disease Control and Community Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Choy-Lye Chei
- Program in Health Services and Systems Research, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - David Bruce Matchar
- Program in Health Services and Systems Research, Duke-NUS Graduate Medical School, Singapore, Singapore
- Center for Study of Healthy Aging and Development Studies, Peking University, Beijing, China
| | - Yi Zeng
- Center for the study of Aging and Human Development and the Geriatric Division of School of Medicine, Duke University, Durham, North Carolina, USA
- Center for Study of Healthy Aging and Development Studies, Peking University, Beijing, China
| | - Xiao-Ming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, #7 Panjiayuan Nanli, Chaoyang, Beijing, 100021, China.
- Nutritional Epidemiology Lab, Pennsylvania State University, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Interactions between plasma copper concentrations and SOD1 gene polymorphism for impaired glucose regulation and type 2 diabetes. Redox Biol 2019; 24:101172. [PMID: 30909159 PMCID: PMC6434161 DOI: 10.1016/j.redox.2019.101172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 01/11/2023] Open
Abstract
Aims To examine the associations of plasma copper concentrations and superoxide dismutase 1 (SOD1) polymorphisms as well as their gene-environment interaction with newly diagnosed impaired glucose regulation (IGR) and type 2 diabetes (T2D). Methods We performed a large case-control study in 2520 Chinese Han subjects: 1004 newly diagnosed T2D patients, 512 newly diagnosed IGR patients and 1004 individuals with normal glucose tolerance. Results After multivariable adjustment, the ORs (95% CIs) of T2D across tertiles of plasma copper were 1.00 (reference), 1.85 (95% CI: 1.39, 2.45), and 4.21 (95% CI: 3.20, 5.55) (P-trend < 0.001). Each SD increment of ln-transformed plasma copper was associated with 104% higher odds (OR 2.04, 95%CI 1.82–2.28) increment in ORs of T2D. Meanwhile, compared with the GG genotype of rs2070424, the OR of T2D associated with AG and AA genotypes were 1.44 (95% CI 1.15–1.81) and 1.74 (95% CI 1.33–2.28), respectively. In addition, the positive association between plasma copper and T2D was modified by rs2070424 genotypes. The adjusted ORs and 95% CIs of T2D per SD increment of ln-transformed plasma copper were 2.40 (1.93–2.99), 1.85 (1.59–2.16) and 1.76 (1.44–2.15) in rs2070424 GG, AG and GG carriers respectively (P for interaction < 0.05). Similar interactions were also found for IGR and IGR&T2D. When the joint effects were examined, individuals with rs2070424 AA genotype and the highest tertile of plasma copper concentration had a much higher risk of IGR&T2D (OR 5.34, 95% CI 3.48–8.21) than those with rs2070424 GG genotype and the lowest tertile of plasma copper concentrations. Conclusions Plasma copper concentrations are positively and significantly associated with IGR as well as T2D, and these associations may be modified by SOD1 polymorphism. Further studies are warranted to elucidate the potential mechanisms. Plasma copper concentrations are positively and significantly associated with IGR as well as T2D. Compared with the GG genotype of rs2070424, the risk of T2D associated with AG and AA genotypes were higher. The associations between copper and T2D as well as IGR may be modified by SOD1 rs2070424 polymorphism. Evaluating the interaction of copper and gene polymorphisms may shed etiologic insight into the copper-diabetes relation.
Collapse
|
39
|
Sari MI, Daulay M, Wahyuni DD. Superoxide Dismutase Levels and Polymorphism ( Ala16val) In Tuberculosis Patients with Diabetes Mellitus in Medan City. Open Access Maced J Med Sci 2019; 7:730-735. [PMID: 30962829 PMCID: PMC6447346 DOI: 10.3889/oamjms.2019.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Infectious diseases and metabolic disorders would result in oxidative stress in cells. Superoxide dismutase (SOD) is an antioxidant present inside cells that acts against oxidative stress. SOD gene polymorphism can affect the activity and levels of SOD. AIM This study aimed to analyse SOD levels and polymorphism of gene (ala16val) that regulated SOD in tuberculosis patients with diabetes mellitus in Medan city. METHODS A total of 40 tuberculosis patients with diabetes mellitus and 40 healthy subjects participated in the study. The levels of SOD were measured using enzyme-linked immunosorbent assay (ELISA). Analysis of SOD gene polymorphism (ala16val) was done using polymerase chain reaction-restriction fragment lengths polymorphisms (PCR-RFLP) with BsaW1 as the restriction enzyme. The statistical significance was determined using the Mann Whitney test, Fisher's exact test, and Kruskal Wallis test (p < 0.05). RESULTS The SOD levels of tuberculosis patients with diabetes mellitus were lower than those of the healthy subjects (102.474 ± 36.07 U/L vs 294.543 ± 58.75 U/L, p < 0.05). Patients of tuberculosis with diabetes mellitus tend to have more value/Val genotypes than the healthy group (57.5% vs 50%, p > 0.05). There was no association between SOD levels and SOD gene polymorphism (ala16val) in tuberculosis patients with diabetes mellitus. CONCLUSION In this study, there was an association between the levels of SOD and tuberculosis patients with diabetes mellitus, but not for the SOD gene polymorphism (ala16val). The SOD gene polymorphism (ala16val) was not the key role to influence the SOD levels in tuberculosis patients with diabetes mellitus in Medan city.
Collapse
Affiliation(s)
- Mutiara Indah Sari
- Departement of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Jl. Dr. Mansur No.5 Medan, Indonesia
| | - Milahayati Daulay
- Departement of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Jl. Dr. Mansur No.5 Medan, Indonesia
| | - Dian Dwi Wahyuni
- Departement of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Jl. Dr. Mansur No.5 Medan, Indonesia
| |
Collapse
|
40
|
Kupsco A, Kioumourtzoglou MA, Just AC, Amarasiriwardena C, Estrada-Gutierrez G, Cantoral A, Sanders AP, Braun JM, Svensson K, Brennan KJM, Oken E, Wright RO, Baccarelli AA, Téllez-Rojo MM. Prenatal Metal Concentrations and Childhood Cardiometabolic Risk Using Bayesian Kernel Machine Regression to Assess Mixture and Interaction Effects. Epidemiology 2019; 30:263-273. [PMID: 30720588 PMCID: PMC6402346 DOI: 10.1097/ede.0000000000000962] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Trace metal concentrations may affect cardiometabolic risk, but the role of prenatal exposure is unclear. We examined (1) the relation between blood metal concentrations during pregnancy and child cardiometabolic risk factors; (2) overall effects of metals mixture (essential vs. nonessential); and (3) interactions between metals. METHODS We measured 11 metals in maternal second-trimester whole blood in a prospective birth cohort in Mexico City. In children 4-6 years old, we measured body mass index (BMI), percent body fat, and blood pressure (N = 609); and plasma hemoglobin A1C (HbA1c), non-high-density lipoprotein (HDL) cholesterol, triglycerides, leptin, and adiponectin (N = 411). We constructed cardiometabolic component scores using age- and sex-adjusted z scores and averaged five scores to create a global risk score. We estimated linear associations of each metal with individual z scores and used Bayesian Kernel Machine Regression to assess metal mixtures and interactions. RESULTS Higher total metals were associated with lower HbA1c, leptin, and systolic blood pressure, and with higher adiponectin and non-HDL cholesterol. We observed no interactions between metals. Higher selenium was associated with lower triglycerides in linear (β = -1.01 z score units per 1 unit ln(Se), 95% CI = -1.84, -0.18) and Bayesian Kernel Machine Regression models. Manganese was associated with decreased HbA1c in linear models (β = -0.32 and 95% CI = -0.61, -0.03). Antimony and arsenic were associated with lower leptin in Bayesian Kernel Machine Regression models. Essential metals were more strongly associated with cardiometabolic risk than were nonessential metals. CONCLUSIONS Low essential metals during pregnancy were associated with increased cardiometabolic risk factors in childhood.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Marianthi-Anna Kioumourtzoglou
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alejandra Cantoral
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Katherine Svensson
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kasey JM Brennan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Maria M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| |
Collapse
|
41
|
Ben Anes A, Ben Nasr H, Garrouche A, Bchir S, Dhaouefi Z, Chabchoub E, Tabka Z, Chahed K. The Cu/Zn superoxide dismutase +35A/C (rs2234694) variant correlates with altered levels of protein carbonyls and glutathione and associates with severity of COPD in a Tunisian population. Free Radic Res 2019; 53:293-303. [DOI: 10.1080/10715762.2019.1572888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Amel Ben Anes
- Unité de recherche UR12ES06 Physiologie de l’Exercice et Physiopathologie: de l’Intégré au Moléculaire « Biologie, Médecine et Santé », Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Hela Ben Nasr
- Unité de recherche UR12ES06 Physiologie de l’Exercice et Physiopathologie: de l’Intégré au Moléculaire « Biologie, Médecine et Santé », Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Abdelhamid Garrouche
- Service de Pneumo-Allergologie Centre hospitalier universitaire Farhat Hached, Sousse, Tunisia
| | - Sarra Bchir
- Unité de recherche UR12ES06 Physiologie de l’Exercice et Physiopathologie: de l’Intégré au Moléculaire « Biologie, Médecine et Santé », Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Zaineb Dhaouefi
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté de Médecine Dentaire, Université de Monastir, Monastir, Tunisia
| | - Elyes Chabchoub
- Unité de Recherche 04/UR/08-05 Molecular Immunogenetics Faculté de Médecine, Sousse, Tunisia
| | - Zouhair Tabka
- Unité de recherche UR12ES06 Physiologie de l’Exercice et Physiopathologie: de l’Intégré au Moléculaire « Biologie, Médecine et Santé », Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Karim Chahed
- Unité de recherche UR12ES06 Physiologie de l’Exercice et Physiopathologie: de l’Intégré au Moléculaire « Biologie, Médecine et Santé », Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
- Faculté des Sciences de Sfax, Sfax, Tunisia
| |
Collapse
|
42
|
Lewandowski Ł, Kepinska M, Milnerowicz H. The copper-zinc superoxide dismutase activity in selected diseases. Eur J Clin Invest 2019; 49:e13036. [PMID: 30316201 DOI: 10.1111/eci.13036] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/23/2018] [Accepted: 10/10/2018] [Indexed: 12/28/2022]
Abstract
Copper-zinc superoxide dismutase (Cu,Zn-SOD) plays a protective role in various types of tissue protecting them from oxidative damage. Alterations in Cu,Zn-SOD (SOD1 and SOD3) activity and its expression have been observed in pathological occurrences most prevalent in modern society, including inflammatory bowel disease, obesity and its implications-diabetes and hypertension, and chronic obstructive pulmonary disease. Moreover, several SOD1 and SOD3 gene polymorphisms have been associated with the risk of developing a particular type of disease, or its exacerbation. This article features recent observations in this topic, aiming to show the importance of proper gene sequence and activity of Cu,Zn-SOD in the aforementioned diseases.
Collapse
Affiliation(s)
- Łukasz Lewandowski
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Wrocław, Poland
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Wrocław, Poland
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
43
|
Genetic Polymorphisms of Catalase and Glutathione Peroxidase-1 in Keratoconus. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:1567-1574. [PMID: 30524988 PMCID: PMC6277734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Keratoconus (KC) is a degenerative eye disease which results from thinning of the cornea and causes vision distortion. Oxidative stress damage to KC corneas may be because of the failure of corneas to process reactive oxygen species which leads to corneal thinning and loss of vision. Genetic variants in antioxidant defense genes such as catalase (CAT) and glutathione peroxidase (GPX) can decrease antioxidant capacity or increase oxidative stress and alter the risk of KC in patients. We investigated and evaluated the effects of single nucleotide polymorphisms in CAT, GPX-1 on the risk of KC in an Iranian population sample. METHODS This case-control study was performed on 140 patients with KC and 150 healthy control subjects in a sample of Iranian population from Zahedan, southern Iran in 2015. Genotyping of CAT rs7943316 and GPX-1 rs1050450 polymorphisms was done using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) method. RESULTS CAT rs7943316 A/T, AA genotype and A allele have a protective role against disease (OR =0.28, 95% CI =0.13-0.61, P=0.001 and OR = 0.50, 95% CI =0.35-0.72, P=0.0001, respectively) and decreased the risk of KC. Moreover, GPX-1 rs1050450 T allele increased the risk of KC in comparison with C allele (OR = 1.42, 95% CI = 1.01-2.03, P=0.03). CONCLUSION CAT rs7943316 A/T, AA genotype, and A allele decreased the risk of KC. Moreover, in GPX-1 rs1050450 C/T polymorphism, T allele was associated with an increased risk of KC in our population.
Collapse
|
44
|
Kahl VFS, da Silva FR, Alves JDS, da Silva GF, Picinini J, Dhillon VS, Fenech M, de Souza MR, Dias JF, de Souza CT, Salvador M, Branco CDS, Thiesen FV, Simon D, da Silva J. Role of PON1, SOD2, OGG1, XRCC1, and XRCC4 polymorphisms on modulation of DNA damage in workers occupationally exposed to pesticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:164-171. [PMID: 29747151 DOI: 10.1016/j.ecoenv.2018.04.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Tobacco farming has been proving to induce poor health outcomes in agricultural workers, genomic instability being the triggering one. This study evaluated influence of PON1 (paraoxonase 1), SOD2 (superoxide dismutase), OGG1 (8-oxoguanine glycosylase), XRCC1 (X-ray repair cross-complementing protein 1), and XRCC4 (X-ray repair cross-complementing protein 4) genes polymorphisms on DNA damage in 121 subjects occupationally exposed to pesticides mixtures and nicotine at tobacco fields and 121 non-exposed individuals. Inorganic elements (Cl, P, S and Zn) and cotinine levels were found increased in farmers, confirming exposure. Results show higher frequencies of buccal micronucleus (MN), nuclear buds (NBUD), binucleated cells (BN) and damage index (comet assay), reduced telomere length (TL), and increased parameters of oxidative stress in farmers compared to non-exposed individuals. PON1 Gln/Gln genotype was associated with increased MN frequency. SOD2 Val/Val showed association with increased frequency of MN and NBUD and decreased antioxidant activity. The XRCC1 Arg/Arg showed protective effect for MN, BN and TL, which was also positively influenced by OGG1 -/Cys. MN was decreased in XRCC4 -/Ile farmers. These genotypes also showed a risk for antioxidant activity. Our study proposes that PON1 and SOD2 variants play a role in xenobiotic-metabolizing system in farmers, while base excision repair (BER) pathway could be the repair mechanism involved in genomic instability suffered by tobacco farmers.
Collapse
Affiliation(s)
- Vivian F Silva Kahl
- Laboratory of Toxicological Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | | | - Jodel da Silva Alves
- Laboratory of Toxicological Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Gabrieli Flesch da Silva
- Laboratory of Toxicological Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana Picinini
- Laboratory of Toxicological Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Varinderpal Singh Dhillon
- Health and Biosecurity Flagship, Commonwealth Scientific and Industrial Research Organization (CSIRO), Adelaide, SA, Australia
| | - Michael Fenech
- Health and Biosecurity Flagship, Commonwealth Scientific and Industrial Research Organization (CSIRO), Adelaide, SA, Australia
| | - Melissa Rosa de Souza
- Laboratory of Toxicological Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Johnny F Dias
- Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Claudia Telles de Souza
- Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mirian Salvador
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | | | - Flávia Valadão Thiesen
- Toxicology Institute, Catholic Pontifice University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Simon
- Laboratory of Human Molecular Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Toxicological Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| |
Collapse
|
45
|
Eddaikra A, Amroun H, Raache R, Galleze A, Abdallah-Elhadj N, Azzouz M, Meçabih F, Mechti B, Abbadi MC, Touil-Boukoffa C, Attal N. Clinical variables and ethnicity may influenced by polymorphism of CAT -262C/T and MnSOD 47C/T antioxidant enzymes in Algerian type1 diabetes without complications. Gene 2018; 670:182-192. [PMID: 29859283 DOI: 10.1016/j.gene.2018.05.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/21/2018] [Accepted: 05/29/2018] [Indexed: 01/11/2023]
Abstract
The latest studies in Algeria show that the frequency of type 1 diabetes (T1D) without complications is lower than that with complications and represents a significant burden in terms of cost and treatment. For this reason, we are interested in uncomplicated type1 diabetes and risk factors that are related to polymorphisms of antioxidant enzymes in order to prevent its complications. A total of 260 blood samples of young Algerian adults were examined. The genotypic analysis of Catalase gene (CAT -262C/T, rs1001179) and the superoxide dismutase gene (MnSOD 47C/T, rs4880) was performed by real-time PCR using TaqMan technology. The genotypic distribution of the CAT -262C/T promoter gene's polymorphism showed a significant difference between control and T1D patients for the CC genotype (p = 0.009; OR = 0.30) and for the T allele (p = 0.002; OR = 2.82). In addition, the genotypic distribution of the MnSOD 47C/T gene showed an association with T1D for the CT genotype (p = 0.040; OR = 2.37). Our results revealed that polymorphisms of CAT and MnSOD may be associated with physiopathology causing the onset of T1D. Our data, suggest that the genotypic frequencies of these SNPs appear to be influenced by clinical variables and by the Arab-Berber ethnic origin of the Algerian population.
Collapse
Affiliation(s)
- A Eddaikra
- Department of Cellular Biology and Physiology, Faculty of Nature and Life, University Saad Dahleb, Blida, Algeria; Department of Cellular and Molecular Biology, Team Cytokines and Nitric Oxide Synthases, Faculty of Biology, University Houari Boumediene USTHB, Algiers, Algeria.
| | - H Amroun
- Department of Immunology, Institute Pasteur of Algeria, Algiers, Algeria
| | - R Raache
- Department of Cellular and Molecular Biology, Team Cytokines and Nitric Oxide Synthases, Faculty of Biology, University Houari Boumediene USTHB, Algiers, Algeria; Department of Immunology, Institute Pasteur of Algeria, Algiers, Algeria
| | - A Galleze
- Department of Cellular and Molecular Biology, Team Cytokines and Nitric Oxide Synthases, Faculty of Biology, University Houari Boumediene USTHB, Algiers, Algeria
| | - N Abdallah-Elhadj
- Diabetology Department, Trichine Ibrahime Fabore Hospital, Blida, Algeria
| | - M Azzouz
- Diabetology Department, Mustapha Pacha Hospital, Algiers, Algeria
| | - F Meçabih
- Department of Immunology, Institute Pasteur of Algeria, Algiers, Algeria
| | - B Mechti
- Department of Immunology, Institute Pasteur of Algeria, Algiers, Algeria
| | - M C Abbadi
- Department of Immunology, Institute Pasteur of Algeria, Algiers, Algeria
| | - C Touil-Boukoffa
- Department of Cellular and Molecular Biology, Team Cytokines and Nitric Oxide Synthases, Faculty of Biology, University Houari Boumediene USTHB, Algiers, Algeria
| | - N Attal
- Department of Immunology, Institute Pasteur of Algeria, Algiers, Algeria
| |
Collapse
|
46
|
Association between Polymorphisms of Antioxidant Gene (MnSOD, CAT, and GPx1) and Risk of Coronary Artery Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5086869. [PMID: 30225256 PMCID: PMC6129348 DOI: 10.1155/2018/5086869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 12/27/2022]
Abstract
Objective Reactive oxygen species (ROS) been cited as one of the major causes of atherosclerosis and coronary artery disease which are possible agents inducing DNA damage. Manganese superoxide dismutase (MnSOD), catalase (CAT), and glutathione peroxidase-1 (GPx1) have evolved to address primary defense against free radical mediated damage in mitochondria. The aim of this study was to delineate the association of MnSOD, CAT, and GPx1 polymorphisms and risk of CAD in Taiwan. Methods We conducted a case-control study with 657 participants recruited at a medical center. All subjects were evaluated by noninvasive stress test and then quantitative coronary angiography to confirm the diagnosis of CAD. 447 CAD cases were defined as >50% stenosis of coronary artery and 210 controls were stenosed below 50%. Polymorphisms of MnSOD (Val16Ala), CAT (C-262T), and GPx1 (Pro198Leu) genes were determined by polymerase chain reaction methods. Multivariate logistic regression model was used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs). Results The MnSOD Val/Ala+Ala/Ala genotype was significantly associated with an increased risk of CAD compared to the Val/Val genotype (OR = 1.86, 95% CI = 1.15-3.01). This polymorphism was also associated with the severity of CAD of single and two vessel diseases. The corresponding ORs were 2.31 (95% CI = 1.32-4.03) and 1.92 (95% CI = 1.02-3.61), respectively. Among cigarette smokers, the harmful genetic effect of MnSOD Ala allele on CAD risk was much higher (OR = 2.23, 95% CI = 1.02-4.88). However, the interaction between MnSOD genotype and cigarette smoking on CAD risk was not significant. No significant association between CAT and GPx1 polymorphisms and CAD risk was observed. Conclusion Our results suggest that MnSOD polymorphism is an independent risk factor for susceptibility to CAD in the Chinese population.
Collapse
|
47
|
Hou Y, Shi Y, Han B, Liu X, Qiao X, Qi Y, Wang L. The antioxidant peptide SS31 prevents oxidative stress, downregulates CD36 and improves renal function in diabetic nephropathy. Nephrol Dial Transplant 2018; 33:1908-1918. [PMID: 30388276 DOI: 10.1093/ndt/gfy021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yanjuan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Baosheng Han
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Xuqian Liu
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, China
| | - Xi Qiao
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yue Qi
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
48
|
Ryu DY, Rahman MS, Pang MG. Determination of Highly Sensitive Biological Cell Model Systems to Screen BPA-Related Health Hazards Using Pathway Studio. Int J Mol Sci 2017; 18:ijms18091909. [PMID: 28878155 PMCID: PMC5618558 DOI: 10.3390/ijms18091909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 02/01/2023] Open
Abstract
Bisphenol-A (BPA) is a ubiquitous endocrine-disrupting chemical. Recently, many issues have arisen surrounding the disease pathogenesis of BPA. Therefore, several studies have been conducted to investigate the proteomic biomarkers of BPA that are associated with disease processes. However, studies on identifying highly sensitive biological cell model systems in determining BPA health risk are lacking. Here, we determined suitable cell model systems and potential biomarkers for predicting BPA-mediated disease using the bioinformatics tool Pathway Studio. We compiled known BPA-mediated diseases in humans, which were categorized into five major types. Subsequently, we investigated the differentially expressed proteins following BPA exposure in several cell types, and analyzed the efficacy of altered proteins to investigate their associations with BPA-mediated diseases. Our results demonstrated that colon cancer cells (SW480), mammary gland, and Sertoli cells were highly sensitive biological model systems, because of the efficacy of predicting the majority of BPA-mediated diseases. We selected glucose-6-phosphate dehydrogenase (G6PD), cytochrome b-c1 complex subunit 1 (UQCRC1), and voltage-dependent anion-selective channel protein 2 (VDAC2) as highly sensitive biomarkers to predict BPA-mediated diseases. Furthermore, we summarized proteomic studies in spermatozoa following BPA exposure, which have recently been considered as another suitable cell type for predicting BPA-mediated diseases.
Collapse
Affiliation(s)
- Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| |
Collapse
|
49
|
Hernández-Guerrero C, Hernández-Chávez P, Romo-Palafox I, Blanco-Melo G, Parra-Carriedo A, Pérez-Lizaur A. Genetic Polymorphisms in SOD (rs2070424, rs7880) and CAT (rs7943316, rs1001179) Enzymes Are Associated with Increased Body Fat Percentage and Visceral Fat in an Obese Population from Central Mexico. Arch Med Res 2017; 47:331-339. [PMID: 27751366 DOI: 10.1016/j.arcmed.2016.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Oxidative disturbance is an important factor involved in the etiology of comorbidities associated with obesity. Genetic polymorphisms such as SOD1 -251A>G, SOD2 47 C>T, CAT -21A>T and CAT -262 C>T have been described to alter the activity of antioxidant enzymes. The aim of the present work was to analyze the association of the mentioned SNPs with obesity and their relationship with anthropometric and clinical variables in this group. METHODS The study included 416 Mexican women (208 normal weight, NW and 208 subjects with obesity, OB). Dietary intake, anthropometric, biochemical and clinical features were evaluated and then analyzed in function of the genotypes. RESULTS The mutated carriers (GA+GG) of SOD -251 were significantly higher in the OB group (0.24) compared to the NW group (0.08). The other SNPs showed no differences compared with control group. When comparing carrier mutated subjects with obesity vs. wild-type obese participants with the SNPs SOD1 -251, SOD2 47 and CAT -262, the carriers showed a significantly (p <0.05) higher value in body fat percentage. Also, carriers of SOD2 47 and CAT-262 showed significantly higher values (p = 0.002) and (p = 0.01), respectively, when visceral fat was compared between groups. Systolic blood pressure was significantly higher (p = 0.02) in carriers of mutated CAT-21. CONCLUSION SOD1 -251A>G is associated with obesity independent of the presence of diabetes or dyslipidemia. Mutated obese carries of SOD1 -251, SOD2 47 and CAT -262 are associated with a higher distribution of fat in comparison with obese wild-type carriers.
Collapse
Affiliation(s)
| | | | - Inés Romo-Palafox
- Departamento de Salud, Universidad Iberoamericana, Mexico City, México
| | | | | | - Ana Pérez-Lizaur
- Dirección de Posgrado, Universidad Iberoamericana, Mexico City, México
| |
Collapse
|
50
|
Karahalil B, Elkama A, Orhan G. Oxidative stress gene polymorphisms may have an impact in the development of ischemic stroke. J Gene Med 2017; 19. [PMID: 28198160 DOI: 10.1002/jgm.2947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antioxidants are responsible for detoxification of harmful effects of reactive oxygen species. Genetic factors may influence antioxidant activity as a result of polymorphisms on antioxidant enzymes. These polymorphisms can be risk in ischemic stroke (IS) risk. IS is a disorder with genetic and environmental factors contributing to overall risk. Although a few studies have been conducted, there have been no reports on catalase (CAT C262T), manganese superoxide dismutase (MnSOD Ala16Val) and glutathione peroxidase 1 (GPX1 Pro198Leu) gene polymorphisms and IS risk. METHODS We aimed to perform a case-control study to increase the awareness of the impact of oxidative stress (OS) gene polymorphism in the development of IS. A restriction fragment length polymorphism-polymerase chain reaction was used to determine genotypes. The interactions between genes and smoking and possible risk factors were evaluated. RESULTS An approximately four-fold higher IS risk was found in patients with the Val allele compared to the Ala allele. Smoking was a risk factor in the development of IS for CAT TT and MnSOD Ala/Val genotypes; we found a 3.5- to 5.5-fold higher IS risk in CAT TT and MnSOD Ala/Val genotypes. Different logistic regression models were performed for possible risk factors (smoking, body mass index, low-density lipoprotein and diabetes mellitus). The IS risk increases statistically significant only with age by multiple logistic regression analysis. CAT gene polymorphisms in IS patients were not different from controls. CONCLUSIONS It is unlikely that CAT and GPX1 single nucleotide polymorphisms are risk factors for IS. The results of the present study show that smoking may be a risk factor for IS risk in patients with MnSOD mutant genotypes.
Collapse
Affiliation(s)
- Bensu Karahalil
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey
| | - Aylin Elkama
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey
| | - Gürdal Orhan
- Clinics of Neurology, Ankara Numune Hospital, Ankara, Turkey
| |
Collapse
|