1
|
Aksoy HU, Yılmaz C, Orak SA, Ayça S, Polat M. Evaluation of GFAP, S100B, and UCHL-1 Levels in Children With Refractory Epilepsy. J Child Neurol 2024; 39:317-323. [PMID: 39155641 DOI: 10.1177/08830738241273339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
INTRODUCTION A number of biomarkers are used to evaluate the duration of the epileptic seizure and the interictal period following neuronal injury. Invasive diagnostic methods are increasingly being replaced by peripheral or minimally invasive biomarkers that give results faster and are more secure. PURPOSE We aimed to evaluate serum glial fibrillary acidic protein (GFAP), S100B, and ubiquitin C-terminal hydrolase (UCHL-1) levels in children with epilepsy. METHODS Our study included 3 groups: a nonrefractory epilepsy group, a refractory epilepsy group, and a control group. The GFAP, S100B, and UCHL-1 levels in serum samples collected 2-24 hours after the last seizure were analyzed using enzyme-linked immunosorbent assays. RESULTS A total of 69 children participated in the study, with 35 participants in the refractory epilepsy group, 18 in the nonrefractory epilepsy group, and 16 in the control group. The GFAP values in the refractory (25.4 ng/mL) and nonrefractory (26.1 ng/mL) epilepsy groups were found to be statistically significantly higher than those in the control group (17.9 ng/mL; P = .001). The S100B values were found to be significantly higher in the refractory epilepsy group (34.13 pg/mL) than in both the control group and the nonrefractory epilepsy group (28.05 pg/mL; P = .028). No significant differences were observed in the UCHL-1 levels between the 3 groups. CONCLUSIONS We conclude that the observed differences may be due to the increased expression of S100B and GFAP caused by increased and repetitive neuronal damage in refractory epilepsies compared with nonrefractory epilepsies.
Collapse
Affiliation(s)
- Halil Ural Aksoy
- Department of Pediatric Neurology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Celil Yılmaz
- Department of Pediatric Neurology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Sibgatullah Ali Orak
- Department of Pediatric Neurology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Senem Ayça
- Department of Pediatric Neurology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Muzaffer Polat
- Department of Pediatric Neurology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| |
Collapse
|
2
|
Auricchio AM, Baroni S, Rezai Jahromi B, Valz Gris A, Sturiale CL, Ceccarelli GM, Obersnel M, Menna G, Martinelli R, Napoli G, Scarcia L, Alexandre A, Caricato A, Di Bonaventura R, Albanese A, Marchese E, Covino M, Olivi A, Della Pepa GM. Predicting Role of GFAP and UCH-L1 biomarkers in Spontaneous Subarachnoid Hemorrhage: a preliminary study to evaluate in the short-term their correlation with severity of bleeding and prognosis. J Clin Neurosci 2024; 126:119-127. [PMID: 38870641 DOI: 10.1016/j.jocn.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Spontaneous non-traumatic subarachnoid hemorrhage (sSAH) is a severe brain vascular accident. Glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) can be theoretically assayed to predict a patient's progression, picturing different aspects of clinical failure after sSAH. The study aims to: a) explore the correlation between sSAH blood volume and biomarkers variation; b) evaluate if these can be predictive of the neurogenic response after sSAH and be prognostic of patient outcome; c) establish eventual threshold levels of biomarkers to define patients' clinical outcome. METHODS Blood volumetry at CT scan upon admission, GFAP and UCH-L1 were collected at 24 h, at 72 h, and after 7 days from hemorrhage. Trends and cut-off serum sampling were determined. Clinical outcome was assessed with mRS scale at 14 days. RESULTS A strong correlation between GFAP and UCH-L1 and blood diffusion volume in all explored serum intervals related to unfavorable outcome. GFAP and UCH-L1 were very early predictors of unfavorable outcomes at 24 h from sSAH (p = 0.002 and 0.011 respectively). Threshold levels of UCH-L1 apparently revealed a very early, early and late predictor of unfavorable outcomes. CONCLUSION GFAP and UCH-L1 represent a potential tool for prompt monitoring and customization of therapies in neurosurgical patients.
Collapse
Affiliation(s)
- Anna Maria Auricchio
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Silvia Baroni
- Department of Diagnostic and Laboratory Medicine, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Corelab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Basic Biotechnological Sciences, Intensive Care and Perioperative Clinics Research, Catholic University of the Sacred Heart, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Angelica Valz Gris
- Department of Life Sciences and Public Health, Section of Hygiene, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carmelo Lucio Sturiale
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Maria Ceccarelli
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Obersnel
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Grazia Menna
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Renata Martinelli
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Napoli
- Department of Diagnostic and Laboratory Medicine, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Corelab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Scarcia
- Department of Diagnostic Radiology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Alexandre
- Department of Diagnostic Radiology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anselmo Caricato
- Department of Emergency, Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessio Albanese
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enrico Marchese
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marcello Covino
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Olivi
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
3
|
Chayoua W, Visser K, de Koning ME, Beishuizen A, IJmker R, van der Naalt J, Krabbe JG, van der Horn HJ. Evaluation of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 Using a Rapid Point of Care Test for Predicting Head Computed Tomography Lesions After Mild Traumatic Brain Injury in a Dutch Multi-Center Cohort. J Neurotrauma 2024; 41:e1630-e1640. [PMID: 38326742 DOI: 10.1089/neu.2023.0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is a common condition seen in emergency departments worldwide. Blood-based biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) are recently U.S. Food and Drug Administration-approved for the prediction of intracranial lesions on head computed tomography (CT) scans in mTBI. We evaluated the diagnostic performance of GFAP and UCH-L1 in a Dutch cohort using the i-STAT TBI assay. In a multi-center observational study, we enrolled 253 mTBI patients. Head CT scans were scored using the Marshall classification system. Logistic regression models were used to assess the contribution of biomarkers and clinical parameters to diagnostic performance. Detection of UCH-L1 and GFAP resulted in a sensitivity of 97% and specificity of 19% for CT positivity in mTBI patients, along with a negative predictive value of 95% (88-100%) and a positive predictive value of 27% (21-33%). Combining biomarker testing with loss of consciousness and time to sample increased specificity to 46%. Combined testing of UCH-L1 and GFAP testing resulted in possibly more unnecessary CT scans compared with GFAP testing alone, with only limited increase in sensitivity. This study confirmed high sensitivity of GFAP and UCH-L1 for CT abnormalities in mTBI patients using the i-STAT TBI test. The results support the potential use of GFAP and UCH-L1 as tools for determining the indication for CT scanning in mTBI patients, possibly offering a cost- and time-effective approach to management of patients with mTBI. Prospective studies in larger cohorts are warranted to validate our findings.
Collapse
Affiliation(s)
- Walid Chayoua
- Department of Clinical Chemistry and Laboratory Medicine, Medlon BV, Enschede, the Netherlands
- Department of Clinical Chemistry and Laboratory Medicine, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Koen Visser
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Myrthe E de Koning
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Neurology, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Albertus Beishuizen
- Department of Intensive Care Medicine, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Rein IJmker
- Department of Emergency Medicine, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Johannes G Krabbe
- Department of Clinical Chemistry and Laboratory Medicine, Medlon BV, Enschede, the Netherlands
- Department of Clinical Chemistry and Laboratory Medicine, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Harm Jan van der Horn
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Wojdała AL, Bellomo G, Gaetani L, Toja A, Chipi E, Shan D, Chiasserini D, Parnetti L. Trajectories of CSF and plasma biomarkers across Alzheimer's disease continuum: disease staging by NF-L, p-tau181, and GFAP. Neurobiol Dis 2023; 189:106356. [PMID: 37977432 DOI: 10.1016/j.nbd.2023.106356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
CSF-to-plasma transition will open new avenues for molecular phenotyping of Alzheimer's disease (AD). Here we evaluated a panel of AD biomarkers in matched CSF and plasma samples across the AD continuum, from preclinical AD to dementia. The aims were to: 1) compare diagnostic performance of the two biofluids, 2) evaluate trajectories of the biomarkers along AD progression. We analyzed CSF and plasma Aβ42/40, p-tau181, p-tau231, t-tau, NF-L, GFAP, UCHL-1 and CSF SNAP-25 in a cohort (n = 173) of preclinical AD, MCI-AD, AD dementia, frontotemporal dementia patients, and controls. We found a significant correlation between CSF and plasma levels of Aβ42/40, p-tau181, p-tau231, NF-L, and GFAP, while no CSF-plasma correlation was observed for t-tau and UCHL-1. Next to the core CSF biomarkers (Aβ42/40, p-tau181, t-tau), those providing the best discrimination between controls and preclinical AD were CSF p-tau231 and SNAP-25 and plasma Aβ42/40, p-tau231, and GFAP. Among plasma biomarkers, we found Aβ42/Aβ40, GFAP, and p-tau231 to show the largest rate of change at the CSF biomarker-defined cut-offs for amyloidosis and tauopathy. Finally, we identified GFAP, NF-L, and p-tau181 as the biomarkers most significantly associated with disease progression in both CSF and plasma. We suggest that a well-standardized and validated panel of selected plasma markers can facilitate early AD diagnosis, even at the asymptomatic disease stage. We propose that both CSF and plasma measurement of NF-L, p-tau181, and GFAP may play a significant role in disease staging and monitoring.
Collapse
Affiliation(s)
- Anna Lidia Wojdała
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Giovanni Bellomo
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Andrea Toja
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Elena Chipi
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Dandan Shan
- Quanterix Corporation, Billerica, MA 01821, United States of America
| | - Davide Chiasserini
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy.
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy.
| |
Collapse
|
5
|
Ider M, Naseri A, Ok M, Erturk A, Durgut MK, Iyigun SS. Surveilling brain damage using brain biomarkers in hypoglycemic neonatal calves with diarrhea. Front Vet Sci 2023; 10:1240846. [PMID: 38026658 PMCID: PMC10644661 DOI: 10.3389/fvets.2023.1240846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Hypoglycemia is a condition associated with neonatal diarrhea in calves, leading to increased mortality and neurological clinical signs. The aim of the present study was to determine the development of brain damage in hypoglycemic calves with neonatal diarrhea and the diagnostic and prognostic significance of these biomarkers. Ten healthy and 50 hypoglycemic calves with diarrhea were included in the study. Clinical examination, blood gases and complete blood count were performed at admission. Blood serum calcium-binding protein B (S100B), neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal hydrolysis isoenzyme-1 (UCHL-1), activitin A (ACT), adrenomodullin (AM) concentrations, and creatine kinase-BB (CK-BB) enzyme activity were measured using commercial bovine-specific ELISA kits to assess brain damage. Of the hypoglycemic calves enrolled in the study, 13 (26%) survived and 37 (74%) died. In addition, 32 (64%) of the calves had severe acidosis and 24 (48%) had sepsis. S100B, GFAP, UCHL-1, CK-BB (p < 0.001) and NSE (p < 0.05) concentrations were significantly higher in hypoglycemic calves compared to healthy calves, while ACT concentrations were lower. Blood glucose concentration was negatively correlated with serum S100B, GFAP, UCHL-1, and CK-BB enzyme activity and positively correlated with ACT in hypoglycemic calves (p < 0.01). Brain injury biomarkers were not predictive of mortality (p > 0.05). Morever, severe hypoglycemia, severe acidosis and sepsis variables were not found to have sufficient capacity to predict mortality when considered alone or together (p > 0.05). In conclusion, brain damage may develop as a consequence of hypoglycemia in calves. S100B, NSE, GFAP, UCHL-1, ACT, and CK-BB concentrations can be used to diagnose brain damage in hypoglycemic calves. However, the variables of severe hypoglycemia, severe acidosis, and sepsis together with the biomarkers of brain injury have a limited value in predicting the prognosis of neonatal calves with diarrhea.
Collapse
Affiliation(s)
- Merve Ider
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| | - Amir Naseri
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| | - Mahmut Ok
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| | - Alper Erturk
- Faculty of Veterinary Medicine, Department of Internal Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Murat Kaan Durgut
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| | - Suleyman Serhat Iyigun
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| |
Collapse
|
6
|
Aktas O, Hartung HP, Smith MA, Rees WA, Fujihara K, Paul F, Marignier R, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM, Cutter G, She D, Gunsior M, Cimbora D, Katz E, Cree BA. Serum neurofilament light chain levels at attack predict post-attack disability worsening and are mitigated by inebilizumab: analysis of four potential biomarkers in neuromyelitis optica spectrum disorder. J Neurol Neurosurg Psychiatry 2023; 94:757-768. [PMID: 37221052 PMCID: PMC10447388 DOI: 10.1136/jnnp-2022-330412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To investigate relationships between serum neurofilament light chain (sNfL), ubiquitin C-terminal hydrolase L1 (sUCHL1), tau (sTau) and glial fibrillary acidic protein (sGFAP) levels and disease activity/disability in neuromyelitis optica spectrum disorder (NMOSD), and the effects of inebilizumab on these biomarkers in N-MOmentum. METHODS N-MOmentum randomised participants to receive inebilizumab or placebo with a randomised controlled period (RCP) of 28 weeks and an open-label follow-up period of ≥2 years. The sNfL, sUCHL1, sTau and sGFAP were measured using single-molecule arrays in 1260 scheduled and attack-related samples from N-MOmentum participants (immunoglobulin G (IgG) autoantibodies to aquaporin-4-positive, myelin oligodendrocyte glycoprotein-IgG-positive or double autoantibody-negative) and two control groups (healthy donors and patients with relapsing-remitting multiple sclerosis). RESULTS The concentration of all four biomarkers increased during NMOSD attacks. At attack, sNfL had the strongest correlation with disability worsening during attacks (Spearman R2=0.40; p=0.01) and prediction of disability worsening after attacks (sNfL cut-off 32 pg/mL; area under the curve 0.71 (95% CI 0.51 to 0.89); p=0.02), but only sGFAP predicted upcoming attacks. At RCP end, fewer inebilizumab-treated than placebo-treated participants had sNfL>16 pg/mL (22% vs 45%; OR 0.36 (95% CI 0.17 to 0.76); p=0.004). CONCLUSIONS Compared with sGFAP, sTau and sUCHL1, sNfL at attack was the strongest predictor of disability worsening at attack and follow-up, suggesting a role for identifying participants with NMOSD at risk of limited post-relapse recovery. Treatment with inebilizumab was associated with lower levels of sGFAP and sNfL than placebo. TRIAL REGISTRATION NUMBER NCT02200770.
Collapse
Affiliation(s)
- Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Medical University Vienna, Vienna, Austria
- Department of Neurology, Palacky University in Olomouc, Olomouc, Czech Republic
| | | | | | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Koriyama, Fukushima, Japan
- Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Romain Marignier
- Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Hopital Neurologique et Neurochirurgical Pierre Wertheimer Centre de reference des syndromes neurologiques paraneoplasiques et encephalites auto-immun, Lyon, Auvergne-Rhône-Alpes, France
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Republic of Korea
| | - Brian G Weinshenker
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Sean J Pittock
- Department of Neurology and Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dewei She
- Horizon Therapeutics plc, Gaithersburg, Maryland, USA
| | | | | | - Eliezer Katz
- Horizon Therapeutics plc, Gaithersburg, Maryland, USA
| | - Bruce A Cree
- Department of Neurology, UCSF, Weill Institute for Neurosciences, University California of San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Giovannini G, Meletti S. Fluid Biomarkers of Neuro-Glial Injury in Human Status Epilepticus: A Systematic Review. Int J Mol Sci 2023; 24:12519. [PMID: 37569895 PMCID: PMC10420319 DOI: 10.3390/ijms241512519] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
As per the latest ILAE definition, status epilepticus (SE) may lead to long-term irreversible consequences, such as neuronal death, neuronal injury, and alterations in neuronal networks. Consequently, there is growing interest in identifying biomarkers that can demonstrate and quantify the extent of neuronal and glial injury. Despite numerous studies conducted on animal models of status epilepticus, which clearly indicate seizure-induced neuronal and glial injury, as well as signs of atrophy and gliosis, evidence in humans remains limited to case reports and small case series. The implications of identifying such biomarkers in clinical practice are significant, including improved prognostic stratification of patients and the early identification of those at high risk of developing irreversible complications. Moreover, the clinical validation of these biomarkers could be crucial in promoting neuroprotective strategies in addition to antiseizure medications. In this study, we present a systematic review of research on biomarkers of neuro-glial injury in patients with status epilepticus.
Collapse
Affiliation(s)
- Giada Giovannini
- Neurology Department, Azienda Ospedaliera-Universitaria di Modena, 41126 Modena, Italy;
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio-Emilia, 41121 Modena, Italy
| | - Stefano Meletti
- Neurology Department, Azienda Ospedaliera-Universitaria di Modena, 41126 Modena, Italy;
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, 41121 Modena, Italy
| |
Collapse
|
8
|
Huang C, You Z, He Y, Li J, Liu Y, Peng C, Liu Z, Liu X, Sun J. Combined transcriptomics and proteomics forecast analysis for potential biomarker in the acute phase of temporal lobe epilepsy. Front Neurosci 2023; 17:1145805. [PMID: 37065920 PMCID: PMC10097945 DOI: 10.3389/fnins.2023.1145805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundTemporal lobe epilepsy (TLE) is a common chronic episodic illness of the nervous system. However, the precise mechanisms of dysfunction and diagnostic biomarkers in the acute phase of TLE are uncertain and hard to diagnose. Thus, we intended to qualify potential biomarkers in the acute phase of TLE for clinical diagnostics and therapeutic purposes.MethodsAn intra-hippocampal injection of kainic acid was used to induce an epileptic model in mice. First, with a TMT/iTRAQ quantitative labeling proteomics approach, we screened for differentially expressed proteins (DEPs) in the acute phase of TLE. Then, differentially expressed genes (DEGs) in the acute phase of TLE were identified by linear modeling on microarray data (limma) and weighted gene co-expression network analysis (WGCNA) using the publicly available microarray dataset GSE88992. Co-expressed genes (proteins) in the acute phase of TLE were identified by overlap analysis of DEPs and DEGs. The least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) algorithms were used to screen Hub genes in the acute phase of TLE, and logistic regression algorithms were applied to develop a novel diagnostic model for the acute phase of TLE, and the sensitivity of the diagnostic model was validated using receiver operating characteristic (ROC) curves.ResultsWe screened a total of 10 co-expressed genes (proteins) from TLE-associated DEGs and DEPs utilizing proteomic and transcriptome analysis. LASSO and SVM-RFE algorithms for machine learning were applied to identify three Hub genes: Ctla2a, Hapln2, and Pecam1. A logistic regression algorithm was applied to establish and validate a novel diagnostic model for the acute phase of TLE based on three Hub genes in the publicly accessible datasets GSE88992, GSE49030, and GSE79129.ConclusionOur study establishes a reliable model for screening and diagnosing the acute phase of TLE that provides a theoretical basis for adding diagnostic biomarkers for TLE acute phase genes.
Collapse
Affiliation(s)
- Cong Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhipeng You
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yijie He
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiran Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunyan Peng
- Department of Orthopedics, Xinyu People’s Hospital, Xinyu, China
| | - Zhixiong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingan Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jiahang Sun,
| |
Collapse
|
9
|
Banote RK, Akel S, Zelano J. Blood biomarkers in epilepsy. Acta Neurol Scand 2022; 146:362-368. [PMID: 35411571 PMCID: PMC9790299 DOI: 10.1111/ane.13616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/04/2022] [Accepted: 03/19/2022] [Indexed: 12/30/2022]
Abstract
Robust and accessible biomarkers are greatly needed in epilepsy. Diagnostic and prognostic precision in the clinic needs to improve, and there is a need for objective quantification of seizure burden. In recent years, there have been advances in the development of accessible and cost-effective blood-based biomarkers in neurology, and these are increasingly studied in epilepsy. However, the field is in its infancy and specificity and sensitivity for most biomarkers in most clinical situations are not known. This review describes advancements regarding human blood biomarkers in epilepsy. Examples of biochemical markers that have been shown to have higher blood concentrations in study subjects with epilepsy include brain proteins like S100B or neuronal specific enolase, and neuroinflammatory proteins like interleukins, and tumor necrosis factor-alpha. Some of the blood biomarkers also seem to reflect seizure duration or frequency, and levels decrease in response to treatment with antiseizure medication. For most biomarkers, the literature contains seemingly conflicting results. This is to be expected in an emerging field and could reflect different study populations, sampling or analysis techniques, and epilepsy classification. More studies are needed with emphasis put on the classification of epilepsy and seizure types. More standardized reporting could perhaps decrease result heterogeneity and increase the potential for data sharing and subgroup analyses.
Collapse
Affiliation(s)
- Rakesh Kumar Banote
- Department of NeurologySahlgrenska University HospitalGothenburgSweden,Department of Clinical NeuroscienceSahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| | - Sarah Akel
- Department of Clinical NeuroscienceSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Johan Zelano
- Department of NeurologySahlgrenska University HospitalGothenburgSweden,Department of Clinical NeuroscienceSahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
10
|
Tyagi M, Kapoor I, Mahajan C, Gupta N, Prabhakar H. Brain Biomarkers in Patients with COVID-19 and Neurological Manifestations: A Narrative Review. JOURNAL OF NEUROANAESTHESIOLOGY AND CRITICAL CARE 2022. [DOI: 10.1055/s-0042-1744395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AbstractAcute hyperinflammatory response (cytokine storm) and immunosuppression are responsible for critical illness in patients infected with coronavirus disease 2019 (COVID-19). It is a serious public health crisis that has affected millions of people worldwide. The main clinical manifestations are mostly by respiratory tract involvement and have been extensively researched. Increasing numbers of evidence from emerging studies point out the possibility of neurological involvement by COVID-19 highlighting the need for developing technology to diagnose, manage, and treat brain injury in such patients. Here, we aimed to discuss the rationale for the use of an emerging spectrum of blood biomarkers to guide future diagnostic strategies to mitigate brain injury-associated morbidity and mortality risks in COVID-19 patients, their use in clinical practice, and prediction of neurological outcomes.
Collapse
Affiliation(s)
- Mayank Tyagi
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Indu Kapoor
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Charu Mahajan
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Nidhi Gupta
- Department of Neuroanesthesia, Indraprastha Apollo Hospital, New Delhi, India
| | - Hemanshu Prabhakar
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Improper Proteostasis: Can It Serve as Biomarkers for Neurodegenerative Diseases? Mol Neurobiol 2022; 59:3382-3401. [PMID: 35305242 DOI: 10.1007/s12035-022-02775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/19/2022] [Indexed: 10/18/2022]
Abstract
Cells synthesize new proteins after multiple molecular decisions. Damage of existing proteins, accumulation of abnormal proteins, and basic requirement of new proteins trigger protein quality control (PQC)-based alternative strategies to cope against proteostasis imbalance. Accumulation of misfolded proteins is linked with various neurodegenerative disorders. However, how deregulated components of this quality control system and their lack of general mechanism-based long-term changes can serve as biomarkers for neurodegeneration remains largely unexplored. Here, our article summarizes the chief findings, which may facilitate the search of novel and relevant proteostasis mechanism-based biomarkers associated with neuronal disorders. Understanding the abnormalities of PQC coupled molecules as possible biomarkers can help to determine neuronal fate and their contribution to the aetiology of several nervous system disorders.
Collapse
|
12
|
Wang KK, Munoz Pareja JC, Mondello S, Diaz-Arrastia R, Wellington C, Kenney K, Puccio AM, Hutchison J, McKinnon N, Okonkwo DO, Yang Z, Kobeissy F, Tyndall JA, Büki A, Czeiter E, Pareja Zabala MC, Gandham N, Berman R. Blood-based traumatic brain injury biomarkers - Clinical utilities and regulatory pathways in the United States, Europe and Canada. Expert Rev Mol Diagn 2021; 21:1303-1321. [PMID: 34783274 DOI: 10.1080/14737159.2021.2005583] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major global health issue, resulting in debilitating consequences to families, communities, and health-care systems. Prior research has found that biomarkers aid in the pathophysiological characterization and diagnosis of TBI. Significantly, the FDA has recently cleared both a bench-top assay and a rapid point-of-care assays of tandem biomarker (UCH-L1/GFAP)-based blood test to aid in the diagnosis mTBI patients. With the global necessity of TBI biomarkers research, several major consortium multicenter observational studies with biosample collection and biomarker analysis have been created in the USA, Europe, and Canada. As each geographical region regulates its data and findings, the International Initiative for Traumatic Brain Injury Research (InTBIR) was formed to facilitate data integration and dissemination across these consortia. AREAS COVERED This paper covers heavily investigated TBI biomarkers and emerging non-protein markers. Finally, we analyze the regulatory pathways for converting promising TBI biomarkers into approved in-vitro diagnostic tests in the United States, European Union, and Canada. EXPERT OPINION TBI biomarker research has significantly advanced in the last decade. The recent approval of an iSTAT point of care test to detect mild TBI has paved the way for future biomarker clearance and appropriate clinical use across the globe.
Collapse
Affiliation(s)
- Kevin K Wang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Jennifer C Munoz Pareja
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cheryl Wellington
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Kimbra Kenney
- Department of Neurology, Uniformed Service University, Bethesda, Maryland, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie Hutchison
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nicole McKinnon
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - J Adrian Tyndall
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Endre Czeiter
- Department of Neurosurgery, Pecs University, Pecs, Hungary
| | | | - Nithya Gandham
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rebecca Berman
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | | |
Collapse
|
13
|
Liu Y, Wu Y, Liu B, Zhang Y, San D, Chen Y, Zhou Y, Yu L, Zeng H, Zhou Y, Zhou F, Yang H, Yin L, Huang Y. Biomarkers and Immune Repertoire Metrics Identified by Peripheral Blood Transcriptomic Sequencing Reveal the Pathogenesis of COVID-19. Front Immunol 2021; 12:677025. [PMID: 34504487 PMCID: PMC8421539 DOI: 10.3389/fimmu.2021.677025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global crisis; however, our current understanding of the host immune response to SARS-CoV-2 infection remains limited. Herein, we performed RNA sequencing using peripheral blood from acute and convalescent patients and interrogated the dynamic changes of adaptive immune response to SARS-CoV-2 infection over time. Our results revealed numerous alterations in these cohorts in terms of gene expression profiles and the features of immune repertoire. Moreover, a machine learning method was developed and resulted in the identification of five independent biomarkers and a collection of biomarkers that could accurately differentiate and predict the development of COVID-19. Interestingly, the increased expression of one of these biomarkers, UCHL1, a molecule related to nervous system damage, was associated with the clustering of severe symptoms. Importantly, analyses on immune repertoire metrics revealed the distinct kinetics of T-cell and B-cell responses to SARS-CoV-2 infection, with B-cell response plateaued in the acute phase and declined thereafter, whereas T-cell response can be maintained for up to 6 months post-infection onset and T-cell clonality was positively correlated with the serum level of anti-SARS-CoV-2 IgG. Together, the significantly altered genes or biomarkers, as well as the abnormally high levels of B-cell response in acute infection, may contribute to the pathogenesis of COVID-19 through mediating inflammation and immune responses, whereas prolonged T-cell response in the convalescents might help these patients in preventing reinfection. Thus, our findings could provide insight into the underlying molecular mechanism of host immune response to COVID-19 and facilitate the development of novel therapeutic strategies and effective vaccines.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yankang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bing Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Youpeng Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan San
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Long Yu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haihong Zeng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuxiang Zhou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Heng Yang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yafei Huang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Pitkänen A, Paananen T, Kyyriäinen J, Das Gupta S, Heiskanen M, Vuokila N, Bañuelos-Cabrera I, Lapinlampi N, Kajevu N, Andrade P, Ciszek R, Lara-Valderrábano L, Ekolle Ndode-Ekane X, Puhakka N. Biomarkers for posttraumatic epilepsy. Epilepsy Behav 2021; 121:107080. [PMID: 32317161 DOI: 10.1016/j.yebeh.2020.107080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
A biomarker is a characteristic that can be objectively measured as an indicator of normal biologic processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Biomarker modalities include molecular, histologic, radiographic, or physiologic characteristics. To improve the understanding and use of biomarker terminology in biomedical research, clinical practice, and medical product development, the Food and Drug Administration (FDA)-National Institutes of Health (NIH) Joint Leadership Council developed the BEST Resource (Biomarkers, EndpointS, and other Tools). The seven BEST biomarker categories include the following: (a) susceptibility/risk biomarkers, (b) diagnostic biomarkers, (c) monitoring biomarkers, (d) prognostic biomarkers, (e) predictive biomarkers, (f) pharmacodynamic/response biomarkers, and (g) safety biomarkers. We hypothesize some potential overlap between the reported biomarkers of traumatic brain injury (TBI), epilepsy, and posttraumatic epilepsy (PTE). Here, we tested this hypothesis by reviewing studies focusing on biomarker discovery for posttraumatic epileptogenesis and epilepsy. The biomarker modalities reviewed here include plasma/serum and cerebrospinal fluid molecular biomarkers, imaging biomarkers, and electrophysiologic biomarkers. Most of the reported biomarkers have an area under the receiver operating characteristic curve greater than 0.800, suggesting both high sensitivity and high specificity. Our results revealed little overlap in the biomarker candidates between TBI, epilepsy, and PTE. In addition to using single parameters as biomarkers, machine learning approaches have highlighted the potential for utilizing patterns of markers as biomarkers. Although published data suggest the possibility of identifying biomarkers for PTE, we are still in the early phase of the development curve. Many of the seven biomarker categories lack PTE-related biomarkers. Thus, further exploration using proper, statistically powered, and standardized study designs with validation cohorts, and by developing and applying novel analytical methods, is needed for PTE biomarker discovery.
Collapse
Affiliation(s)
- Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Tomi Paananen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Jenni Kyyriäinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Shalini Das Gupta
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Mette Heiskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Vuokila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Ivette Bañuelos-Cabrera
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Lapinlampi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Natallie Kajevu
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Leonardo Lara-Valderrábano
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Xavier Ekolle Ndode-Ekane
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
15
|
Elhady M, Youness ER, AbuShady MM, Nassar MS, Elaziz AA, Masoud MM, Foudaa FK, Elhamed WAA. Circulating glial fibrillary acidic protein and ubiquitin carboxy-terminal hydrolase-L1 as markers of neuronal damage in children with epileptic seizures. Childs Nerv Syst 2021; 37:879-884. [PMID: 33044615 DOI: 10.1007/s00381-020-04920-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epilepsy is a common neurological disease that has a negative impact on physical, social, and cognitive function. Seizure-induced neuronal injury is one of the suggested mechanisms of epilepsy complications. We aimed to evaluate the circulating level of glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) as markers of neuronal damage in children with epilepsy and its relation to epilepsy characteristics. STUDY DESIGN METHODS: This case control study included 30 children with epilepsy and 30 healthy children as a control group. Seizure severity was determined based on Chalfont score. Serum level of GFAP and UCH-L1were measured, and their associations with epilepsy characteristics were investigated. RESULTS Circulating levels of GFAP and UCH-L1 were significantly higher in children with epilepsy than in controls (17.440 ± 6.74 and 5.700 ± 1.64 vs 7.06 ± 3.30 and 1.81 ± 0.23, respectively) especially in those with generalized and active seizures. GFAP and UCH-L1 were significantly correlated to the severity of seizures in the previous 6 months. Elevated GFAP level was a predictor for active seizures (OR 1.841, 95%CI 1.043-3.250, P = 0.035). CONCLUSION Circulating GFAP and UCH-L1 expression is increased in children with epilepsy especially those with active seizures. SIGNIFICANCE GFAP and UCH-L 1may serve as peripheral biomarkers for neuronal damage in children with epilepsy that can be used to monitor disease progression and severity for early identification of those with drug-resistant epilepsy and those who are in need for epilepsy surgery.
Collapse
Affiliation(s)
- Marwa Elhady
- Pediatric Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, 11735, Egypt.
| | - Eman R Youness
- Medical Biochemistry Department, National Research Centre, Cairo, Egypt
| | | | - Maysa S Nassar
- Child Health Department, National Research Centre, Cairo, Egypt
| | - Ali Abd Elaziz
- Child Health Department, National Research Centre, Cairo, Egypt
| | - Mahmoud M Masoud
- Medical Biochemistry Department, National Research Centre, Cairo, Egypt
| | - Fayez K Foudaa
- Medical Biochemistry Department, National Research Centre, Cairo, Egypt
| | | |
Collapse
|
16
|
DeKosky ST, Kochanek PM, Valadka AB, Clark RS, Chou SHY, Au AK, Horvat C, Jha RM, Mannix R, Wisniewski SR, Wintermark M, Rowell SE, Welch RD, Lewis L, House S, Tanzi RE, Smith DR, Vittor AY, Denslow ND, Davis MD, Glushakova OY, Hayes RL. Blood Biomarkers for Detection of Brain Injury in COVID-19 Patients. J Neurotrauma 2021; 38:1-43. [PMID: 33115334 PMCID: PMC7757533 DOI: 10.1089/neu.2020.7332] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus attacks multiple organs of coronavirus disease 2019 (COVID-19) patients, including the brain. There are worldwide descriptions of neurological deficits in COVID-19 patients. Central nervous system (CNS) symptoms can be present early in the course of the disease. As many as 55% of hospitalized COVID-19 patients have been reported to have neurological disturbances three months after infection by SARS-CoV-2. The mutability of the SARS-COV-2 virus and its potential to directly affect the CNS highlight the urgency of developing technology to diagnose, manage, and treat brain injury in COVID-19 patients. The pathobiology of CNS infection by SARS-CoV-2 and the associated neurological sequelae of this infection remain poorly understood. In this review, we outline the rationale for the use of blood biomarkers (BBs) for diagnosis of brain injury in COVID-19 patients, the research needed to incorporate their use into clinical practice, and the improvements in patient management and outcomes that can result. BBs of brain injury could potentially provide tools for detection of brain injury in COVID-19 patients. Elevations of BBs have been reported in cerebrospinal fluid (CSF) and blood of COVID-19 patients. BB proteins have been analyzed in CSF to detect CNS involvement in patients with infectious diseases, including human immunodeficiency virus and tuberculous meningitis. BBs are approved by the U.S. Food and Drug Administration for diagnosis of mild versus moderate traumatic brain injury and have identified brain injury after stroke, cardiac arrest, hypoxia, and epilepsy. BBs, integrated with other diagnostic tools, could enhance understanding of viral mechanisms of brain injury, predict severity of neurological deficits, guide triage of patients and assignment to appropriate medical pathways, and assess efficacy of therapeutic interventions in COVID-19 patients.
Collapse
Affiliation(s)
- Steven T. DeKosky
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Department of Anesthesiology, Pediatrics, Bioengineering, and Clinical and Translational Science, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert S.B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry H.-Y. Chou
- Department of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher Horvat
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Division of Pediatric Critical Care, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebekah Mannix
- Department of Pediatrics and Emergency Medicine, Harvard Medical School, Department of Medicine, Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Max Wintermark
- Department of Neuroradiology, Stanford University, Stanford, California, USA
| | - Susan E. Rowell
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert D. Welch
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit Receiving Hospital/University Health Center, Detroit, Michigan, USA
| | - Lawrence Lewis
- Department of Emergency Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stacey House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, McCance Center for Brain Health, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Department of Neurology (Research), Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Darci R. Smith
- Immunodiagnostics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, Maryland, USA
| | - Amy Y. Vittor
- Division of Infectious Disease and Global Medicine, University of Florida, Emerging Pathogens Institute, Gainesville, Florida, USA
| | - Nancy D. Denslow
- Departments of Physiological Sciences and Biochemistry and Molecular Biology, University of Florida, Center for Environmental and Human Toxicology, Gainesville, Florida
| | - Michael D. Davis
- Department of Pediatrics, Wells Center for Pediatric Research/Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children at Indiana University, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
17
|
Chmielewska N, Maciejak P, Osuch B, Kursa MB, Szyndler J. Pro-inflammatory cytokines, but not brain- and extracellular matrix-derived proteins, are increased in the plasma following electrically induced kindling of seizures. Pharmacol Rep 2020; 73:506-515. [PMID: 33377994 PMCID: PMC7994222 DOI: 10.1007/s43440-020-00208-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/13/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Background The aim of the study was to evaluate the brain-derived proteins, extracellular matrix-derived protein and cytokines as potential peripheral biomarkers of different susceptibility to seizure development in an animal model of epilepsy evoked by chronic focal electrical stimulation of the brain. Methods The plasma levels of IL-1β (interleukin 1β), IL-6 (interleukin 6), UCH-L1 (ubiquitin C-terminal hydrolase 1), MMP-9 (matrix metalloproteinase 9), and GFAP (glial fibrillary acidic protein) were assessed. The peripheral concentrations of the selected proteins were analyzed according to the status of kindling and seizure severity parameters. In our study, increased concentrations of plasma IL-1β and IL-6 were observed in rats subjected to hippocampal kindling compared to sham-operated rats. Results Animals that developed tonic–clonic seizures after the last stimulation had higher plasma concentrations of IL-1β and IL-6 than sham-operated rats and rats that did not develop seizure. Elevated levels of IL-1β and IL-6 were observed in rats that presented more severe seizures after the last five stimulations compared to sham-operated animals. A correlation between plasma IL-1β and IL-6 concentrations was also found. On the other hand, the plasma levels of the brain-derived proteins UCH-L1, MMP-9, and GFAP were unaffected by kindling status and seizure severity parameters. Conclusions The plasma concentrations of IL-1β and IL-6 may have potential utility as peripheral biomarkers of immune system activation in the course of epilepsy and translational potential for future clinical use. Surprisingly, markers of cell and nerve ending damage (GFAP, UCH-L1 and MMP-9) may have limited utility.
Collapse
Affiliation(s)
- Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957, Warsaw, Poland.
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957, Warsaw, Poland
| | - Bartosz Osuch
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957, Warsaw, Poland
| | - Miron B Kursa
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego Street 5A, 02-106, Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha Street 1B, 02-097, Warsaw, Poland
| |
Collapse
|
18
|
Nass RD, Akgün K, Elger C, Reichmann H, Wagner M, Surges R, Ziemssen T. Serum biomarkers of cerebral cellular stress after self-limiting tonic clonic seizures: An exploratory study. Seizure 2020; 85:1-5. [PMID: 33360039 DOI: 10.1016/j.seizure.2020.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/02/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE It has been debated for decades whether single, self-limited seizures damage cerebral cells. Meanwhile, very sensitive measurements of biomarkers have become available, i.e. tau, neurofilament protein light (NFL), glial fibrillary acidic protein (GFAP) and ubiquitin carboxyterminate hydrolase L1 (UCHL-1), which we explored in this study. METHODS Adult patients of the epilepsy monitoring unit were admitted to the study after written consent. Blood samples were drawn at baseline, immediately after a TCS and after two, six and 24 h. The markers were measured from frozen samples with a single-molecule array (SIMOA). RESULTS 20 patients and 20 seizures were included. All markers showed subtle but significant postictal increases and returned to normal within the next few hours (p < 0.05). An increase of at least 100 % from baseline was noted in 30 % of patients for tau, 25 % for UCHL-1 and 15 % for GFAP, while NFL levels never increased above 100 %. Lactate was slightly correlated with the tau increase (r = 0.47, p = 0.037), leukocytes were correlated with postictal changes of GFAP (r = 0.68 p = 0.001). CONCLUSION Our data supports the assumption that significant cerebral stress occurs in some but not all self-limited TCS. The postictal inflammatory response in particular seems to play an important role.
Collapse
Affiliation(s)
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Dresden, Germany
| | - Christian Elger
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Heinz Reichmann
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Dresden, Germany
| | - Marcus Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Dresden, Germany
| |
Collapse
|
19
|
Simani L, Sadeghi M, Ryan F, Dehghani M, Niknazar S. Elevated Blood-Based Brain Biomarker Levels in Patients with Epileptic Seizures: A Systematic Review and Meta-analysis. ACS Chem Neurosci 2020; 11:4048-4059. [PMID: 33147022 DOI: 10.1021/acschemneuro.0c00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recently, growing attention has been paid to the changes of brain biomarkers following the epilepsy. However, establishing specific epilepsy-related biomarkers has been impeded due to contradictory findings. This study systematically reviewed the evidence on brain biomarkers in epilepsy and determined reliable biomarkers in epileptic patients. A comprehensive systematic search of online databases was performed to find eligible studies up to August 2019. The quality of studies methodologically was assessed using the Newcastle-Ottawa Scale score. Among the several biomarkers, S100 calcium binding protein B (S100B) and neuron specific enolase (NSE) have been qualified for meta-analysis of the association between epilepsy and the brain biomarkers. Inverse-variance weights method was used to calculate pooled standardized mean difference (SMD) estimate with 95% CI, and random effects meta-analysis was conducted taking into account conceptual heterogeneity. Sensitivity analysis and publication bias assessment was performed using Stata. Of 29 studies that were qualified for further analysis, only 22 studies were eligible to quantify by meta-analysis. Significant increase of serum S100B levels (SMD = 0.80; 95% CI 0.18 to 1.42) but not NSE (SMD = 0.45; 95% CI -0.09 to 1.00) has been found in epileptic patients compared with healthy controls. Subgroup meta-analysis by age demonstrated that S100B could be found in pediatric (SMD = 1.15; 95% CI 0.03 to 2.27) not adult patients (SMD = 0.43; 95% CI -0.12 to 0.98). Findings of this meta-analysis indicate that serum level of S100B is significantly increased in epileptic patients, suggesting the elevation and release of the brain biomarkers from brain to blood following epileptic seizures.
Collapse
Affiliation(s)
- Leila Simani
- Skull base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Masoumeh Sadeghi
- Department of Epidemiology, Faculty of Health, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, 1650 Cedar Ave., Montreal, Quebec H3A 1A1, Canada
| | - Mohsen Dehghani
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| |
Collapse
|
20
|
Robert J, Weilinger NL, Cao LP, Cataldi S, Button EB, Stukas S, Martin EM, Seibler P, Gilmour M, Caffrey TM, Rowe EM, Fan J, MacVicar B, Farrer MJ, Wellington CL. An in vitro bioengineered model of the human arterial neurovascular unit to study neurodegenerative diseases. Mol Neurodegener 2020; 15:70. [PMID: 33213497 PMCID: PMC7678181 DOI: 10.1186/s13024-020-00418-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The neurovascular unit (NVU) - the interaction between the neurons and the cerebrovasculature - is increasingly important to interrogate through human-based experimental models. Although advanced models of cerebral capillaries have been developed in the last decade, there is currently no in vitro 3-dimensional (3D) perfusible model of the human cortical arterial NVU. METHOD We used a tissue-engineering technique to develop a scaffold-directed, perfusible, 3D human NVU that is cultured in native-like flow conditions that mimics the anatomy and physiology of cortical penetrating arteries. RESULTS This system, composed of primary human vascular cells (endothelial cells, smooth muscle cells and astrocytes) and induced pluripotent stem cell (iPSC) derived neurons, demonstrates a physiological multilayer organization of the involved cell types. It reproduces key characteristics of cortical neurons and astrocytes and enables formation of a selective and functional endothelial barrier. We provide proof-of-principle data showing that this in vitro human arterial NVU may be suitable to study neurovascular components of neurodegenerative diseases such as Alzheimer's disease (AD), as endogenously produced phosphorylated tau and beta-amyloid accumulate in the model over time. Finally, neuronal and glial fluid biomarkers relevant to neurodegenerative diseases are measurable in our arterial NVU model. CONCLUSION This model is a suitable research tool to investigate arterial NVU functions in healthy and disease states. Further, the design of the platform allows culture under native-like flow conditions for extended periods of time and yields sufficient tissue and media for downstream immunohistochemistry and biochemistry analyses.
Collapse
Affiliation(s)
- Jerome Robert
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
- Institute of Clinical Chemistry, University hospital Zurich, 8000 Zurich, Wagistrasse 14, CH-8952 Schlieren, Switzerland
| | - Nicholas L. Weilinger
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Li-Ping Cao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
| | - Stefano Cataldi
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
| | - Emily B. Button
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Emma M. Martin
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Philip Seibler
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Megan Gilmour
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Tara M. Caffrey
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Brian MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Matthew J. Farrer
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Laboratory for Neurogenetics & Neuroscience, McKnight and Fixel Institutes, University of Florida, Gainesville, 32610 USA
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia V5Z 1M9 Canada
| |
Collapse
|
21
|
Tan Z, Jiang J, Tian F, Peng J, Yang Z, Li S, Long X. Serum Visinin-Like Protein 1 Is a Better Biomarker Than Neuron-Specific Enolase for Seizure-Induced Neuronal Injury: A Prospective and Observational Study. Front Neurol 2020; 11:567587. [PMID: 33071949 PMCID: PMC7544981 DOI: 10.3389/fneur.2020.567587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Visinin-like protein 1 (VILIP-1) is an established biomarker of neuronal injury. The levels of serum VILIP-1, neuron-specific enolase (NSE) and caveolin-1 (CAV-1) were measured to investigate potential of VILIP-1 as a biomarker for seizure-induced neuronal injury, and the correlation of VILIP-1 with severity of epilepsy and blood-brain barrier dysfunction were investigated. Materials and Methods: Patient with epilepsy from 14 to 70 years of age and age-, sex-matched healthy subjects were involved in this study. All blood sample of patients were collected within 3–72 h after the seizure. The severity of epilepsy and levels of serum VILIP-1, NSE and CAV-1 were measured. Accuracy of VILIP-1 and NSE was obtained from receiver operating curve analyses. Associations between VILIP-1 and severity of epilepsy, VILIP-1 and CAV-1 were investigated. Results: A total of 58 patients and 29 healthy control subjects were included in our study. The levels of serum VILIP-1, NSE, and CAV-1 in the patient group were significantly higher than those in the control group. VILIP-1 has higher and significant accuracy for assessing seizure-induced neuronal injury compared with NSE. VILIP-1 levels were positively associated with severity of epilepsy and CAV-1 in patients with epilepsy. Conclusions: VILIP-1 may be a better serum biomarker than NSE for assessing seizure-induced neuronal injury and even brain injury caused by various pathological condition. Further studies are required to explore the clinical contribution of VILIP-1 in diagnosis, treatment strategies and outcome assessments of epilepsy.
Collapse
Affiliation(s)
- Zheren Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianlin Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinxin Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuyu Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Mondello S, Salama MM, Mohamed WMY, Kobeissy FH. Editorial: Biomarkers in Neurology. Front Neurol 2020; 11:190. [PMID: 32256443 PMCID: PMC7093560 DOI: 10.3389/fneur.2020.00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mohamed Mosaad Salama
- Institute of Global Health and Human Ecology, American University in Cairo, Cairo, Egypt
| | - Wael M Y Mohamed
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Al Minufya, Egypt.,Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University, Kuantan, Malaysia
| | - Firas H Kobeissy
- Department of Emergency Medicine, University of Florida, Gainesville, FL, United States.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
23
|
Khetani S, Kollath VO, Eastick E, Debert C, Sen A, Karan K, Sanati-Nezhad A. Single-step functionalization of poly-catecholamine nanofilms for ultra-sensitive immunosensing of ubiquitin carboxyl terminal hydrolase-L1 (UCHL-1) in spinal cord injury. Biosens Bioelectron 2019; 145:111715. [DOI: 10.1016/j.bios.2019.111715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
|
24
|
Cameron S, Gillio-Meina C, Ranger A, Choong K, Fraser DD. Collection and Analyses of Cerebrospinal Fluid for Pediatric Translational Research. Pediatr Neurol 2019; 98:3-17. [PMID: 31280949 DOI: 10.1016/j.pediatrneurol.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022]
Abstract
Cerebrospinal fluid sample collection and analysis is imperative to better elucidate central nervous system injury and disease in children. Sample collection methods are varied and carry with them certain ethical and biologic considerations, complications, and contraindications. Establishing best practices for sample collection, processing, storage, and transport will ensure optimal sample quality. Cerebrospinal fluid samples can be affected by a number of factors including subject age, sampling method, sampling location, volume extracted, fraction, blood contamination, storage methods, and freeze-thaw cycles. Indicators of sample quality can be assessed by matrix-associated laser desorption/ionization time-of-flight mass spectrometry and include cystatin C fragments, oxidized proteins, prostaglandin D synthase, and evidence of blood contamination. Precise documentation of sample collection processes and the establishment of meticulous handling procedures are essential for the creation of clinically relevant biospecimen repositories. In this review we discuss the ethical considerations and best practices for cerebrospinal fluid collection, as well as the influence of preanalytical factors on cerebrospinal fluid analyses. Cerebrospinal fluid biomarkers in highly researched pediatric diseases or disorders are discussed.
Collapse
Affiliation(s)
| | | | - Adrianna Ranger
- Pediatrics, Western University, London, Ontario, Canada; Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Karen Choong
- Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Douglas D Fraser
- Pediatrics, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Clinical Neurological Sciences, Western University, London, Ontario, Canada; Physiology and Pharmacology, Western University, London, Ontario, Canada; Translational Research Centre, London, Ontario, Canada.
| |
Collapse
|
25
|
Chmielewska N, Maciejak P, Turzyńska D, Sobolewska A, Wisłowska-Stanek A, Kołosowska K, Płaźnik A, Szyndler J. The role of UCH-L1, MMP-9, and GFAP as peripheral markers of different susceptibility to seizure development in a preclinical model of epilepsy. J Neuroimmunol 2019; 332:57-63. [PMID: 30952062 DOI: 10.1016/j.jneuroim.2019.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/06/2019] [Accepted: 03/28/2019] [Indexed: 01/03/2023]
Abstract
In our study, we assessed the potency of the brain-derived proteins ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), matrix metalloproteinase 9 (MMP-9), glial fibrillary acidic protein (GFAP) and the immune activation indicators interleukin 1β (IL-1β) and interleukin 6 (IL-6) as peripheral biomarkers of different susceptibilities to kindling in a preclinical model. We observed increased plasma UCH-L1 levels in kindled vs. control animals. Furthermore, MMP-9 and IL-1β concentrations were the lowest in rats resistant to kindling. In summary, UCH-L1 is an indicator of neuronal loss and BBB disruption after seizure. MMP-9 and IL-1β may indicate resistance to kindling. UCH-L1, MMP-9 and IL-1β may have utility as peripheral biomarkers with translational potency in the clinic.
Collapse
Affiliation(s)
- Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland.
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
26
|
Kerr N, Lee SW, Perez-Barcena J, Crespi C, Ibañez J, Bullock MR, Dietrich WD, Keane RW, de Rivero Vaccari JP. Inflammasome proteins as biomarkers of traumatic brain injury. PLoS One 2018; 13:e0210128. [PMID: 30596792 PMCID: PMC6312377 DOI: 10.1371/journal.pone.0210128] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The inflammasome plays an important role in the inflammatory innate immune response after central nervous system (CNS) injury. Inhibition of the inflammasome after traumatic brain injury (TBI) results in improved outcomes by lowering the levels of caspase-1 and interleukin (IL)-1b. We have previously shown that inflammasome proteins are elevated in the cerebrospinal fluid (CSF) of patients with TBI and that higher levels of these proteins were consistent with poorer outcomes after TBI when compared to patients that presented these inflammasome proteins at lower levels. METHODS AND FINDINGS Here we extend our work by analyzing serum from 21 TBI patients and CSF from 18 TBI patients compared to 120 serum samples and 30 CSF samples from no-TBI donor controls for the expression of caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), interleukin(IL)-1b and IL-18. Analysis was carried out using the Ella Simple Plex system (Protein Simple) to determine the sensitivity and specificity of inflammasome proteins as biomarkers of TBI. Receiver operator characteristic (ROC) curves, confidence intervals and likelihood ratios for each biomarker was determined. ROC curves, confidence intervals, sensitivity and specificity for each biomarker examined revealed that caspase-1 (0.93 area under the curve (AUC)) and ASC (0.90 AUC) in serum and ASC (1.0 AUC) and IL-18 (0.84 AUC) in CSF are promising biomarkers of TBI pathology. Importantly, higher protein levels (above 547.6 pg/ml) of ASC (0.91 AUC) were consistent with poorer outcomes after TBI as determined by the Glasgow Outcome Scale-Extended (GOSE). CONCLUSION These findings indicate that inflammasome proteins are excellent diagnostic and predictive biomarkers of TBI.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami FL, United States of America
| | - Stephanie W Lee
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami FL, United States of America
| | - Jon Perez-Barcena
- Intensive Care Department, Son Espases Hospital, Palma de Mallorca, Spain
| | - Catalina Crespi
- Fundacio Institut d'Investigacio Sanitaria Illes Balears (IdISBa), Son Espases Hospital, Palma de Mallorca, Spain
| | - Javier Ibañez
- Department of Neurological Surgery, Son Espases Hospital, Palma de Mallorca, Spain
| | - M Ross Bullock
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.,Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - W Dalton Dietrich
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.,Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Robert W Keane
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami FL, United States of America
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.,Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
27
|
Asadollahi M, Simani L. The diagnostic value of serum UCHL-1 and S100-B levels in differentiate epileptic seizures from psychogenic attacks. Brain Res 2018; 1704:11-15. [PMID: 30253122 DOI: 10.1016/j.brainres.2018.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess the value of postictal serum Ubiquitin C-terminal hydrolase (UCHL-1), a neuronal biomarker, and S100-B, a glial biomarker, levels, in differentiate epileptic seizures (ES) form psychogenic attacks. METHODS In this analytical cross-sectional study, serum UCHL-1 and S100-B levels were measured within six hours of occurring seizure, in 43 patients with ES, 20 patients with psychogenic non-epileptic seizures (PNES) and 19 healthy individuals by electrochemiluminescence immunoassay. RESULTS Both serum UCHL-1 and S100-B levels were significantly higher in patients with ES than PNES (P < 0.05) and controls (P < 0.01). PNES patients had significantly higher serum S100-B levels compared to controls (P < 0.01). There was a significant correlation between the serum UCHL-1 and S100-B levels in patients with ES (r = 0.46, P = 0.002). CONCLUSIONS Our study showed that serum UCHL-1 level could be potentially used in differentiate ES from PNES (sensitivity 72%, specificity 59%). Serum S100-B level had lower value compared to UCHL-1 (AUC 0.68 for UCHL-1 v/s 0.59 for S100B). Post-seizure serum UCHL-1 and S100-B levels could be used in future studies to better understand the underlying mechanism of seizures and may offer as an adjunctive diagnostic test in differentiate ES from PNES.
Collapse
Affiliation(s)
- Marjan Asadollahi
- Department of Epilepsy, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Simani
- Skull Base Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Brain Mapping Research Center, Shaheed Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Looney AM, O'Sullivan MP, Ahearne CE, Finder M, Felderhoff-Mueser U, Boylan GB, Hallberg B, Murray DM. Altered Expression of Umbilical Cord Blood Levels of miR-181b and Its Downstream Target mUCH-L1 in Infants with Moderate and Severe Neonatal Hypoxic-Ischaemic Encephalopathy. Mol Neurobiol 2018; 56:3657-3663. [PMID: 30178296 DOI: 10.1007/s12035-018-1321-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/15/2018] [Indexed: 01/22/2023]
Abstract
Hypoxic-ischaemic encephalopathy (HIE) remains one of the leading causes of neurological disability worldwide. No blood biomarker capable of early detection and classification of injury severity in HIE has been identified. This study aimed to investigate the potential of miRNA-181b (miR-181b) and its downstream target, ubiquitin C-terminal hydrolase-L1 (UCH-L1), to predict the severity of HIE. Full-term infants with perinatal asphyxia were recruited at birth and observed for the development of HIE, along with healthy controls. Levels of miR-181b and messenger UCH-L1 (mUCH-L1) in umbilical cord blood were determined using qRT-PCR. In total, 131 infants; 40 control, 50 perinatal asphyxia without HIE (PA) and 41 HIE, recruited across two separate cohorts (discovery and validation) were included in this study. Significant and consistent downregulation of miR-181b was observed in infants with moderate/severe HIE compared to all other groups in both cohorts: discovery 0.25 (0.16-0.32) vs 0.61 (0.26-1.39), p = 0.027 and validation 0.33 (0.15-1.78) vs 1.2 (0.071-2.09), p = 0.035. mUCH-L1 showed increased expression in infants with HIE in both cohorts. The expression ratio of miR-181b to mUCH-L1 was reduced in those infants with moderate/severe HIE in both cohorts: discovery cohort 0.23 (0.06-0.44) vs 1.59 (0.46-2.54), p = 0.01 and validation cohort 0.41 (0.10-0.81) vs 1.38 (0.59-2.56) in all other infants, p = 0.009. We have validated consistent patterns of altered expression in miR-181b/mUCH-L1 in moderate/severe neonatal HIE which may have the potential to guide therapeutic intervention in HIE.
Collapse
Affiliation(s)
- A M Looney
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,INFANT Centre, University College Cork, Cork, Ireland
| | - M P O'Sullivan
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,INFANT Centre, University College Cork, Cork, Ireland
| | - C E Ahearne
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,INFANT Centre, University College Cork, Cork, Ireland
| | - M Finder
- Pediatric Department, CLINTEC, Karolinska Institutet and Neonatal Department, Karolinska University Hospital, Stockholm, Sweden
| | - U Felderhoff-Mueser
- Department of Pediatrics/Neonatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - G B Boylan
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,INFANT Centre, University College Cork, Cork, Ireland
| | - B Hallberg
- Pediatric Department, CLINTEC, Karolinska Institutet and Neonatal Department, Karolinska University Hospital, Stockholm, Sweden
| | - Deirdre M Murray
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland. .,INFANT Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Wen Y, Wu Q, Shi Q, Xie Y, Dan W, Chen Y, Ma L. UCH-L1 inhibition aggravates mossy fiber sprouting in the pentylenetetrazole kindling model. Biochem Biophys Res Commun 2018; 503:2312-2318. [PMID: 29964011 DOI: 10.1016/j.bbrc.2018.06.154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Mossy fiber sprouting (MFS) is a pathological phenomenon that is commonly observed in epilepsy, and plentiful data reveal that abnormal phosphorylated modification of tau protein plays a critical role in MSF by the regulation of microtubule dynamics and axonal transport. Ubiquitin C-terminal hydrolase L1 (UCH-L1), a proteasomal deubiquitinating enzyme, has been proved to be associated with tau aggregation through mediating degradation of ubiquitinated and hyperphosphorylated tau. Thus, this study aimed to determine the expression of UCH-L1 in the rat hippocampus during the pentylenetetrazole (PTZ)-induced process and to demonstrate the possible correlation with MFS in epileptogenesis. Seizures were established by intraperitoneal injection of PTZ and LDN-57444 was used to inhibit the hydrolase activity of UCH-L1. We used western blot, immunofluorescence, immunoprecipitation, and timm staining to detect phosphorylated modification of tau and MSF. The results presented that LDN-57444 induced the deteriorated severity of seizures, increased phosphorylation of tau and increased distribution of Timm granules in both the supragranular region of the dentate gyrus (DG) and the stratum pyramidale of CA3 subfield. Our results suggest that UCH-L1 may be associated with hippocampal MSF followed the epileptogenesis through mediating phosphorylation of tau. UCH-L1 may be a potential and novel therapeutic target to limit epileptogenesis.
Collapse
Affiliation(s)
- Yuetao Wen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Number 1, Youyi Road. Yuzhong District, 400042, Chongqing, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing Three Gorges Central Hospital, Number 165, Xincheng Road, Wanzhou District, 404000, Chongqing, China
| | - Quanhong Shi
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Number 1, Youyi Road. Yuzhong District, 400042, Chongqing, China
| | - Yanfeng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Number 1, Youyi Road. Yuzhong District, 400042, Chongqing, China
| | - Wei Dan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Number 1, Youyi Road. Yuzhong District, 400042, Chongqing, China
| | - YangMei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Number 76, Linjiang Road, Yuzhong District, 400010, Chongqing, China
| | - Limin Ma
- Department of Neurology, Chongqing Three Gorges Central Hospital, Number 165, Xincheng Road, Wanzhou District, 404000, Chongqing, China.
| |
Collapse
|
30
|
Chmielewska N, Szyndler J, Makowska K, Wojtyna D, Maciejak P, Płaźnik A. Looking for novel, brain-derived, peripheral biomarkers of neurological disorders. Neurol Neurochir Pol 2018; 52:318-325. [PMID: 29478670 DOI: 10.1016/j.pjnns.2018.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 11/29/2022]
Abstract
The role of blood brain barrier (BBB) is to preserve a precisely regulated environment for proper neuronal signaling. In many of the central nervous system (CNS) pathologies, the function of BBB is altered. Thus, there is a necessity to evaluate a fast, noninvasive and reliable method for monitoring of BBB condition. It seems that revealing the peripheral diagnostic biomarker whose release pattern (concentration, dynamics) will be correlated with clinical symptoms of neurological disorders offers significant hope. It could help with faster diagnosis and efficient treatment monitoring. In this review we summarize the recent data concerning exploration of potential new serum biomarkers appearing in the peripheral circulation following BBB disintegration, with an emphasis on epilepsy, traumatic brain injury (TBI) and stroke. We consider the application of well-known proteins (S100β and GFAP) as serum indicators in the light of recently obtained results. Furthermore, the utility of molecules like MMP-9, UCHL-1, neurofilaments, BDNF, and miRNA, which are newly recognized as a potential serum biomarkers, will also be discussed.
Collapse
Affiliation(s)
- Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, Warsaw 02-957, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
| | - Karolina Makowska
- Student of Second Faculty of Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-097 Warsaw, Poland
| | - Dawid Wojtyna
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, Warsaw 02-957, Poland
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, Warsaw 02-957, Poland; Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, Warsaw 02-957, Poland; Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
31
|
Cerebrospinal fluid and brain extracellular fluid in severe brain trauma. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:237-258. [DOI: 10.1016/b978-0-12-804279-3.00014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Shahjouei S, Sadeghi-Naini M, Yang Z, Kobeissy F, Rathore D, Shokraneh F, Blackburn S, Manley GT, Wang KK. The diagnostic values of UCH-L1 in traumatic brain injury: A meta-analysis. Brain Inj 2017; 32:1-17. [DOI: 10.1080/02699052.2017.1382717] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shima Shahjouei
- Department of Neurosurgery, Children’s Hospital Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sadeghi-Naini
- Department of Neurosurgery, Imam Hossein hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- American University of Beirut, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Disa Rathore
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Farhad Shokraneh
- Research Center for Modeling in Health, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Cochrane Schizophrenia Group, The Institute of Mental Health, A Partnership Between the University of Nottingham and Nottinghamshire Healthcare NHS Trust, Nottingham, UK
| | - Spiros Blackburn
- University of Texas, Health Sciences Center, Houston, Texas, USA
| | - Geoff T Manley
- Department of Neurological surgery, San Francisco General Hospital, University of California, San Francisco, USA
| | - Kevin K.W. Wang
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
33
|
Çetin İ, Tezdiğ İ, Tarakçioğlu MC, Kadak MT, Demirel ÖF, Özer ÖF, Erdoğan F, Doğangün B. Do Low Serum UCH-L1 and TDP-43 Levels Indicate Disturbed Ubiquitin-Proteosome System in Autism Spectrum Disorder? ACTA ACUST UNITED AC 2017; 54:267-271. [PMID: 29033641 DOI: 10.5152/npa.2017.14873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The mechanism of ubiquitination-related abnormalities causing neural development problems is still unclear. We examined the association between autism and serum transactive response DNA-binding protein-43 (TDP-43) and ubiquitin c-terminal hydrolase-L1 (UCH-L1) levels, both of which are members of the ubiquitin-proteosome system. METHODS We measured serum levels of TDP-43 and UCH-L1 in 24 children with autism and 24 healthy children. Childhood Autism Rating Scale (CARS) was used to assess symptom severity at admission. RESULTS The mean serum TDP-43 and UCH-L1 levels in children with autism spectrum disorder (ASD) were found to decrease compared to healthy controls (p<0.001, 506.21±780.97 ng/L and 1245.80±996.76 ng/L, respectively; 3.08±5.44 ng/mL and 8.64±6.67 ng/mL, respectively). A positive correlation between serum TDP-43 levels and UCH-L1 levels was found in the ASD group (r=0.947, n=24, p<0.001). The CARS score of children with ASD was 48.91 points (standard deviation [SD]: 5.82). CONCLUSION Low serum levels of UCH-L1 and TDP-43 may reflect disturbed ubiquitination in autism.
Collapse
Affiliation(s)
- İhsan Çetin
- Department of Nutrition and Dietetics, Batman University School of Health, Batman, Turkey
| | - İhsan Tezdiğ
- Department of Chemistry, Batman University Institute of Science, Batman, Turkey
| | - Mahmut Cem Tarakçioğlu
- Department of Child and Adolescent Psychiatry, Kanuni Sultan Süleyman Training and Research Hospital, İstanbul, Turkey
| | - Muhammed Tayyib Kadak
- Department of Child and Adolescent Psychiatry, İstanbul University Cerrahpaşa School of Medicine, İstanbul, Turkey
| | - Ömer Faruk Demirel
- Department of Psychiatry, İstanbul University Cerrahpaşa School of Medicine, İstanbul, Turkey
| | - Ömer Faruk Özer
- Department of Biochemistry, Bezmialem Vakif University School of Medicine, İstanbul, Turkey
| | - Fırat Erdoğan
- Department of Pediatrics, Medipol University School of Medicine, İstanbul, Turkey
| | - Burak Doğangün
- Department of Child and Adolescent Psychiatry, İstanbul University Cerrahpaşa School of Medicine, İstanbul, Turkey
| |
Collapse
|
34
|
Demirel ÖF, Cetin İ, Turan Ş, Sağlam T, Yıldız N, Duran A. Decreased Expression of α-Synuclein, Nogo-A and UCH-L1 in Patients with Schizophrenia: A Preliminary Serum Study. Psychiatry Investig 2017; 14:344-349. [PMID: 28539953 PMCID: PMC5440437 DOI: 10.4306/pi.2017.14.3.344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/15/2016] [Accepted: 07/03/2016] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE α-synuclein, Nogo-A and Ubiquitin C-terminal hydrolase L1 (UCH-L1) have neuromodulatory roles for human brain. Therefore, abnormalities of these molecules are associated with neuropsychiatric disorders. Although some serum studies in the other disorders have been made, serum study of α-synuclein, Nogo-A and UCH-L1 is not present in patients with schizophrenia and healthy controls. Therefore, our aim was to compare serum levels of α-synuclein, Nogo-A and UCH-L1 of the patients with schizophrenia and healthy controls. METHODS Forty-four patients with schizophrenia who is followed by psychotic disorders unit, and 40 healthy control were included in this study. Socio-demographic form and Positive and Negative Syndrome Scale (PANSS) was applied to patients, and sociodemographic form was applied to control group. Fasting bloods were collected and the serum levels of α-synuclein, Nogo-A and UCH-L1 were measured by ELISA method. RESULTS Serum α-synuclein [patient: 12.73 (5.18-31.84) ng/mL; control: 41.77 (15.12-66.98) ng/mL], Nogo-A [patient: 33.58 (3.09-77.26) ng/mL; control: 286.05 (136.56-346.82) ng/mL] and UCH-L1 [patient: 5.26 (1.64-10.87) ng/mL; control: 20.48 (11.01-20.81) ng/mL] levels of the patients with schizophrenia were significianly lower than healthy controls (p<0.001). CONCLUSION Our study results added new evidence for explaining the etiopathogenesis of schizophrenia on the basis of neurochemical markers.
Collapse
Affiliation(s)
- Ömer Faruk Demirel
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - İhsan Cetin
- Department of Nutrition and Dietetics, Health High School, Batman University, Batman, Turkey
| | - Şenol Turan
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tarık Sağlam
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nazım Yıldız
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Alaattin Duran
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
35
|
Wang KK, Yang Z, Sarkis G, Torres I, Raghavan V. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a therapeutic and diagnostic target in neurodegeneration, neurotrauma and neuro-injuries. Expert Opin Ther Targets 2017; 21:627-638. [DOI: 10.1080/14728222.2017.1321635] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Reynolds JP, Jimenez-Mateos EM, Cao L, Bian F, Alves M, Miller-Delaney SF, Zhou A, Henshall DC. Proteomic Analysis After Status Epilepticus Identifies UCHL1 as Protective Against Hippocampal Injury. Neurochem Res 2017; 42:2033-2054. [PMID: 28397067 DOI: 10.1007/s11064-017-2260-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/27/2022]
Abstract
Brief, non-harmful seizures (preconditioning) can temporarily protect the brain against prolonged, otherwise injurious seizures. Following focal-onset status epilepticus (SE) in preconditioned (tolerance) and sham-preconditioned (injury) mice, we screened for protein changes using a proteomic approach and identified several putative candidates of epileptic tolerance. Among SE-induced changes to both proteomic screens, proteins clustered in key regulatory pathways, including protein trafficking and cytoskeletal regulation. Downregulation of one such protein, ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), was unique to injury and not evident in tolerance. UCHL1 inhibition decreased hippocampal ubiquitin, disrupted UPS function, interfered with seizure termination and exacerbated seizure-induced cell death. Though UCHL1 transcription was maintained after SE, we observed downregulation of the pro-translational antisense Uchl1 (AsUchl1) and confirmed that both AsUchl1 and rapamycin can increase UCHL1 expression in vivo. These data indicate that the post-transcriptional loss of UCHL1 following SE is deleterious to neuronal survival and may contribute to hyperexcitability, and are suggestive of a novel modality of rapamycin therapy.
Collapse
Affiliation(s)
- James P Reynolds
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Li Cao
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Fang Bian
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Suzanne F Miller-Delaney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - An Zhou
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
37
|
Posti JP, Hossain I, Takala RSK, Liedes H, Newcombe V, Outtrim J, Katila AJ, Frantzén J, Ala-Seppälä H, Coles JP, Kyllönen A, Maanpää HR, Tallus J, Hutchinson PJ, van Gils M, Menon DK, Tenovuo O. Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 Are Not Specific Biomarkers for Mild CT-Negative Traumatic Brain Injury. J Neurotrauma 2017; 34:1427-1438. [PMID: 27841729 DOI: 10.1089/neu.2016.4442] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) have been studied as potential biomarkers of mild traumatic brain injury (mTBI). We report the levels of GFAP and UCH-L1 in patients with acute orthopedic injuries without central nervous system involvement, and relate them to the type of extracranial injury, head magnetic resonance imaging (MRI) findings, and levels of GFAP and UCH-L1 in patients with CT-negative mTBI. Serum UCH-L1 and GFAP were longitudinally measured from 73 patients with acute orthopedic injury on arrival and on days 1, 2, 3, 7 after admission, and on the follow-up visit 3-10 months after the injury. The injury types were recorded, and 71% patients underwent also head MRI. The results were compared with those found in patients with CT-negative mTBI (n = 93). The levels of GFAP were higher in patients with acute orthopedic trauma than in patients with CT-negative mTBI (p = 0.026) on arrival; however, no differences were found on the following days. The levels of UCH-L1 were not significantly different between these two groups at any measured point of time. Levels of GFAP and UCH-L1 were not able to distinguish patients with CT-negative mTBI from patients with orthopedic trauma. Patients with orthopedic trauma and high levels of UCH-L1 or GFAP values may be falsely diagnosed as having a concomitant mTBI, predisposing them to unwarranted diagnostics and unnecessary brain imaging. This casts a significant doubt on the diagnostic value of GFAP and UCH-L1 in cases with mTBI.
Collapse
Affiliation(s)
- Jussi P Posti
- 1 Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital , Turku, Finland
- 2 Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital , Turku, Finland
- 3 Department of Neurology, University of Turku , Turku, Finland
| | | | - Riikka S K Takala
- 4 Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku , Turku, Finland
| | - Hilkka Liedes
- 5 Systems Medicine, VTT Technical Research Centre of Finland Ltd , Tampere, Finland
| | - Virginia Newcombe
- 6 Division of Anaesthesia, Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Joanne Outtrim
- 6 Division of Anaesthesia, Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Ari J Katila
- 4 Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku , Turku, Finland
| | - Janek Frantzén
- 1 Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital , Turku, Finland
- 2 Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital , Turku, Finland
| | | | - Jonathan P Coles
- 7 Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Anna Kyllönen
- 3 Department of Neurology, University of Turku , Turku, Finland
| | | | - Jussi Tallus
- 3 Department of Neurology, University of Turku , Turku, Finland
| | - Peter J Hutchinson
- 7 Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mark van Gils
- 5 Systems Medicine, VTT Technical Research Centre of Finland Ltd , Tampere, Finland
| | - David K Menon
- 6 Division of Anaesthesia, Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Olli Tenovuo
- 2 Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital , Turku, Finland
- 3 Department of Neurology, University of Turku , Turku, Finland
| |
Collapse
|
38
|
Dambinova SA, Maroon JC, Sufrinko AM, Mullins JD, Alexandrova EV, Potapov AA. Functional, Structural, and Neurotoxicity Biomarkers in Integrative Assessment of Concussions. Front Neurol 2016; 7:172. [PMID: 27761129 PMCID: PMC5050199 DOI: 10.3389/fneur.2016.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/21/2016] [Indexed: 12/20/2022] Open
Abstract
Concussion is a complex, heterogeneous process affecting the brain. Accurate assessment and diagnosis and appropriate management of concussion are essential to ensure that athletes do not prematurely return to play or others to work or active military duty, risking re-injury. To date, clinical diagnosis relies primarily on evaluating subjects for functional impairment using instruments that include neurocognitive testing, subjective symptom report, and neurobehavioral assessments, such as balance and vestibular-ocular reflex testing. Structural biomarkers, defined as advanced neuroimaging techniques and biomarkers assessing neurotoxicity and immunoexcitotoxicity, may complement the use of functional biomarkers. We hypothesize that neurotoxicity AMPA, NMDA, and kainite receptor biomarkers might be utilized as a part of comprehensive approach to concussion evaluations, with the goal of increasing diagnostic accuracy and facilitating treatment planning and prognostic assessment.
Collapse
Affiliation(s)
| | - Joseph C. Maroon
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Abstract
There are numerous biomarkers of central and peripheral nervous system damage described in human and veterinary medicine. Many of these are already used as tools in the diagnosis of human neurological disorders, and many are investigated in regard to their use in small and large animal veterinary medicine. The following review presents the current knowledge about the application of cell-type (glial fibrillary acidic protein, neurofilament subunit NF-H, myelin basic protein) and central nervous system specific proteins (S100B, neuron specific enolase, tau protein, alpha II spectrin, ubiquitin carboxy-terminal hydrolase L1, creatine kinase BB) present in the cerebrospinal fluid and/or serum of animals in the diagnosis of central or peripheral nervous system damage in veterinary medicine.
Collapse
Affiliation(s)
- Marta Płonek
- Department of Internal Diseases with Clinic for Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw
| | - Marcin Wrzosek
- Department of Internal Diseases with Clinic for Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw
| | - Józef Nicpoń
- Department of Internal Diseases with Clinic for Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw
- Centre for Experimental Diagnostics and Biomedical Innovations, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw
| |
Collapse
|
40
|
Abstract
Biomarkers are key tools and can provide crucial information on the complex cascade of events and molecular mechanisms underlying traumatic brain injury (TBI) pathophysiology. Obtaining a profile of distinct classes of biomarkers reflecting core pathologic mechanisms could enable us to identify and characterize the initial injury and the secondary pathologic cascades. Thus, they represent a logical adjunct to improve diagnosis, track progression and activity, guide molecularly targeted therapy, and monitor therapeutic response in TBI. Accordingly, great effort has been put into the identification of novel biomarkers in the past 25 years. However, the role of brain injury markers in clinical practice has been long debated, due to inconsistent regulatory standards and lack of reliable evidence of analytical validity and clinical utility. We present a comprehensive overview of the markers currently available while characterizing their potential role and applications in diagnosis, monitoring, drug discovery, and clinical trials in TBI. In reviewing these concepts, we discuss the recent inclusion of brain damage biomarkers in the diagnostic guidelines and provide perspectives on the validation of such markers for their use in the clinic.
Collapse
|
41
|
Glushakova OY, Glushakov AV, Hayes RL. Finding effective biomarkers for pediatric traumatic brain injury. Brain Circ 2016; 2:129-132. [PMID: 30276288 PMCID: PMC6126274 DOI: 10.4103/2394-8108.192518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022] Open
Abstract
As traumatic brain injury (TBI) continues to affect children and young adults worldwide, research on reliable biomarkers grows as a possible aid in determining the severity of injury. However, many studies have revealed that diverse biomarkers such as S100B and myelin basic protein (MBP) have many limitations, such as their elevated normative concentrations in young children. Therefore, the results of these studies have yet to be translated to clinical applications. However, despite the setbacks of research into S100B and MBP, investigators continue to research viable biomarkers, notably glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1), as possible aids in medical decision making. Studies have revealed that GFAP and UCH-L1 actually are better predictors of injury progression than the before-mentioned biomarkers S100B and MBP. In addition, UCH-L1 has demonstrated an ability to detect injury while CT is negative, suggesting an ability to detect acute intracranial lesions. Here, we evaluate research testing levels of GFAP and UCH-L1 on children diagnosed with TBI and compare our results to those of other tested biomarkers. In a recent study done by Hayes et al., GFAP and UCH-L1 demonstrated the potential to recognize children with the possibility of poor outcome, allowing for more specialized treatments with clinical and laboratory applications. Although studies on GFAP and UCH-L1 have for the most part warranted positive results, further studies will be needed to confirm their role as reliable markers for pediatric TBI.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Ronald L Hayes
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA.,Banyan Biomarkers, Inc., Alachua, FL, USA
| |
Collapse
|
42
|
Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein after Pediatric Traumatic Brain Injury. Sci Rep 2016; 6:28203. [PMID: 27319802 PMCID: PMC4913316 DOI: 10.1038/srep28203] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/31/2016] [Indexed: 02/05/2023] Open
Abstract
Objective reliable markers to assess traumatic brain injury (TBI) and predict outcome soon after injury are a highly needed tool for optimizing management of pediatric TBI. We assessed serum concentrations of Glial Fibrillary Acidic Protein (GFAP) and Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in a cohort of 45 children with clinical diagnosis of TBI (Glasgow Coma Scale [GCS] 3–15) and 40 healthy subjects, evaluated their associations with clinical characteristics and outcomes, and compared their performance to previously published data on two well-studied blood biomarkers, S100B and MBP. We observed higher serum levels of GFAP and UCH-L1 in brain-injured children compared with controls and also demonstrated a step-wise increase of biomarker concentrations over the continuum of severity from mild to severe TBI. Furthermore, while we found that only the neuronal biomarker UCH-L1 holds potential to detect acute intracranial lesions as assessed by computed tomography (CT), both markers were substantially increased in TBI patients even with a normal CT suggesting the presence of undetected microstructural injuries. Serum UCH-L1 and GFAP concentrations also strongly predicted poor outcome and performed better than S100B and MBP. Our results point to a role of GFAP and UCH-L1 as candidate biomarkers for pediatric TBI. Further studies are warranted.
Collapse
|
43
|
Abstract
Years of research in the field of neurotrauma have led to the concept of applying systems biology as a tool for biomarker discovery in traumatic brain injury (TBI). Biomarkers may lead to understanding mechanisms of injury and recovery in TBI and can be potential targets for wound healing, recovery, and increased survival with enhanced quality of life. The literature available on neurotrauma studies from both animal and clinical studies has provided rich insight on the molecular pathways and complex networks of TBI, elucidating the proteomics of this disease for the discovery of biomarkers. With such a plethora of information available, the data from the studies require databases with tools to analyze and infer new patterns and associations. The role of different systems biology tools and their use in biomarker discovery in TBI are discussed in this chapter.
Collapse
|
44
|
Kiiski H, Tenhunen J, Ala-Peijari M, Huhtala H, Hämäläinen M, Långsjö J, Moilanen E, Narkilahti S, Öhman J, Peltola J. Increased plasma UCH-L1 after aneurysmal subarachnoid hemorrhage is associated with unfavorable neurological outcome. J Neurol Sci 2015; 361:144-9. [PMID: 26810533 DOI: 10.1016/j.jns.2015.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH) is a common cause of long-term disability and death. After primary hemorrhage, secondary brain injury is the main cause of mortality and morbidity. Despite extensive research, reliable prognostic biomarkers are lacking. We measured ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) levels in aSAH patients to evaluate its prognostic potential. This is the first time that plasma UCH-L1 has been studied as a potential prognostic biomarker in patients with aSAH. METHODS In this prospective population-based study, UCH-L1 levels were measured in aSAH patients (n=47) for up to five days. UCH-L1 was measured at 0, 12 and 24h after the admission to the intensive care unit (ICU) and daily thereafter until the patient was transferred from the ICU. Only patients whose UCH-L1 was measured within 24h from aSAH were included in the study. The patients' neurological outcome was evaluated with the modified Rankin Scale (mRS) at six months after aSAH. RESULTS UCH-L1 levels during the first 24h after aSAH were not significantly different between the groups with favorable (mRS 0-2) and unfavorable (mRS 3-6) neurological outcome. In 22 patients, UCH-L1 levels were obtained for up to five days. In this subgroup, UCH-L1 measured at day five showed significant elevation from baseline levels in patients with unfavorable outcome (p=0.026). Elevated UCH-L1 levels at day five were higher in patients with unfavorable outcome than in patients with favorable outcome (p=0.001). CONCLUSIONS Elevated UCH-L1 levels during the five-day follow-up were associated with unfavorable neurological outcome. Repetitive measurements of UCH-L1 concentrations with an emphasis on change relative to the individual baseline could be the optimal approach for future clinical studies.
Collapse
Affiliation(s)
- Heikki Kiiski
- Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland; NeuroGroup, BioMediTech, University of Tampere, Tampere, Finland.
| | - Jyrki Tenhunen
- Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland; Department of Surgical Sciences, Division of Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Marika Ala-Peijari
- Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- School of Health Sciences, University of Tampere, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine, Tampere University Hospital, Tampere, Finland
| | - Jaakko Långsjö
- Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine, Tampere University Hospital, Tampere, Finland
| | | | - Juha Öhman
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Jukka Peltola
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
45
|
Looney AM, Ahearne C, Boylan GB, Murray DM. Glial Fibrillary Acidic Protein Is Not an Early Marker of Injury in Perinatal Asphyxia and Hypoxic-Ischemic Encephalopathy. Front Neurol 2015; 6:264. [PMID: 26733938 PMCID: PMC4685091 DOI: 10.3389/fneur.2015.00264] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022] Open
Abstract
Brain-specific glial fibrillary acidic protein (GFAP) has been suggested as a potential biomarker for hypoxic ischemic encephalopathy (HIE) in newborns (1, 2). Previous studies have shown increased levels in post-natal blood samples. However, its ability to guide therapeutic intervention in HIE is unknown. Therapeutic hypothermia for HIE must be initiated within 6 h of birth, therefore a clinically useful marker of injury would have to be available immediately following delivery. The goal of our study was to examine the ability of GFAP to predict grade of encephalopathy and neurological outcome when measured in umbilical cord blood (UCB). Infants with suspected perinatal asphyxia (PA) and HIE were enrolled in a single, tertiary maternity hospital, where UCB was drawn, processed, and bio-banked at birth. Expression levels of GFAP were measured by ELISA. In total, 169 infants (83 controls, 56 PA, 30 HIE) were included in the study. GFAP levels were not increased in UCB of case infants (PA/HIE) when compared to healthy controls or when divided into specific grades of HIE. Additionally, no correlation was found between UCB levels of GFAP and outcome at 36 months.
Collapse
Affiliation(s)
- Ann-Marie Looney
- Neonatal Brain Research Group, Department of Paediatrics and Child Health, Irish Centre for Fetal and Neonatal Translational Research, Cork University Maternity Hospital , Cork , Ireland
| | - Caroline Ahearne
- Neonatal Brain Research Group, Department of Paediatrics and Child Health, Irish Centre for Fetal and Neonatal Translational Research, Cork University Maternity Hospital , Cork , Ireland
| | - Geraldine B Boylan
- Neonatal Brain Research Group, Department of Paediatrics and Child Health, Irish Centre for Fetal and Neonatal Translational Research, Cork University Maternity Hospital , Cork , Ireland
| | - Deirdre M Murray
- Neonatal Brain Research Group, Department of Paediatrics and Child Health, Irish Centre for Fetal and Neonatal Translational Research, Cork University Maternity Hospital , Cork , Ireland
| |
Collapse
|
46
|
Serum ubiquitin C-terminal hydrolase L1 as a biomarker for traumatic brain injury: a systematic review and meta-analysis. Am J Emerg Med 2015; 33:1191-6. [PMID: 26087705 DOI: 10.1016/j.ajem.2015.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Serum ubiquitin C-terminal hydrolase L1 (UCH-L1) has been proposed as a biomarker of traumatic brain injury (TBI). However, previous studies on levels of UCH-L1 in serum remain inconsistent. This systematic review and meta-analysis were conducted on observational studies that reported the association between serum UCH-L1 levels and TBI. METHODS Studies were identified by searching PubMed and ISI Web of Science up to February 2015. For the continuous outcomes, we calculated the weighted mean difference and 95% confidence interval. The statistical analysis was performed by RevMan 5.1 and Stata 12 software. Only case-control studies were included if they had data on serum UCH-L1 levels in TBI patients and healthy controls. Funnel plot and Egger's regression test were applied to assess the potential publication bias. RESULTS Of the 145 selected studies, 11 observational studies (including 9 case-control and 2 case-crossover studies) met the selection criteria, containing a total of 1138 TBI cases and 1373 controls. Finally, 5 case-control studies (including 673 TBI and 1004 controls) were eligible for the present meta-analysis. The results of our study showed that there was a significant increase in serum UCH-L1 levels in patients with TBI compared to controls (weighted mean difference, 0.96; 95% confidence interval, 0.31-1.61; P = .004). CONCLUSION In conclusion, TBI cases had higher serum UCH-L1 concentrations than matched controls. This reinforces the conceptualization of UCH-L1 as a potential biomarker of TBI.
Collapse
|
47
|
Association of ubiquitin carboxy-terminal hydrolase-L1 in cerebrospinal fluid with clinical severity in a cohort of patients with Guillain-Barré syndrome. Neurol Sci 2015; 36:921-6. [PMID: 25739945 DOI: 10.1007/s10072-015-2137-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/26/2015] [Indexed: 01/28/2023]
Abstract
Guillain-Barré syndrome (GBS) is an acute immune-mediated polyneuropathy. Although its pathogenic mechanism has been revealed and various therapeutic trials have been performed, a proportion of patients experience the severe sequelae associated with GBS. In this paper, we investigated whether the amount of the neuron-specific protein, ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), in the cerebrospinal fluid of patients with GBS was correlated with the clinical course of the disease. UCH-L1 protein levels were greater in patients with GBS than in controls. The patients with GBS whose UCH-L1 protein levels were higher than those of the controls presented with more severe symptoms at peak. UCH-L1 protein levels tended to become elevated as the total protein levels were increased; however, elevated UCH-L1 without an increase in total protein might be correlated with severe disease course (bedridden or ventilator supported). These results suggest that UCH-L1 could be a biomarker associated with the severity of the disease at the acute phase of GBS.
Collapse
|
48
|
Zhang YP, Zhu YB, Duan DD, Fan XM, He Y, Su JW, Liu YL. Serum UCH-L1 as a Novel Biomarker to Predict Neuronal Apoptosis Following Deep Hypothermic Circulatory Arrest. Int J Med Sci 2015; 12:576-82. [PMID: 26180514 PMCID: PMC4502062 DOI: 10.7150/ijms.12111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Deep hypothermic circulatory arrest (DHCA) has been used in cardiac surgery involving infant complex congenital heart disease and aortic dissection. DHCA carries a risk of neuronal apoptotic death in brain. Serum ubiquitin C-terminal hydrolase L1 (UCH-L1) level is elevated in a number of neurological diseases involving neuron injury and death. We studied the hypothesis that UCH-L1 may be a potential biomarker for DHCA-induced ischemic neuronal apoptosis. METHODS Anesthetized piglets were used to perform cardiopulmonary bypass (CPB). DHCA was induced for 1 hour followed by CPB rewarming. Blood samples were collected and serum UCH-L1 levels were measured. Neuron apoptosis and Bax and Bcl-2 proteins in hippocampus were examined. The relationship between neuron apoptosis and UCH-L1 level was determined by receiver operating characteristics (ROC) curves and correlation analysis. RESULTS DHCA resulted in marked neuronal apoptosis, significant increase in Bax:Bcl-2 ratio in hippocampus and UCH-L1 level elevations in serum (all P<0.05). Positive correlation was obtained between serum UCH-L1 level and the severity of neuron apoptosis (r= 0.78, P<0.01). By ROC, the area under the curve were 0.88 (95% CI: 0.74-0.99; P<0.01), 0.81 (95% CI: 0.81-0.96; P<0.05), 0.71 (95% CI: 0.47-0.92; P=0.11) for UCH-L1, Bax/Bcl-2 ratio and Bax, respectively. Using a cut-off point of 0.25, the UCH-L1 predicted neuronal apoptosis with a sensitivity of 85% and specificity of 57%. CONCLUSION Serum UCH-L1, as an easy and quick measurable biomarker, can predict neural apoptosis induced by DHCA. The elevation in UCH-L1 concentration is consistent with the severity of neural apoptosis following DHCA.
Collapse
Affiliation(s)
- Ya-Ping Zhang
- 1. Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China 100029
| | - Yao-Bin Zhu
- 1. Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China 100029
| | - Dayue Darrel Duan
- 2. Laboratory of Cardiovascular Phenomics, the Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA 89557
| | - Xiang-Ming Fan
- 1. Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China 100029
| | - Yan He
- 1. Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China 100029
| | - Jun-Wu Su
- 1. Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China 100029
| | - Ying-Long Liu
- 1. Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China 100029
| |
Collapse
|
49
|
Development of surface plasmon resonance imaging biosensors for detection of ubiquitin carboxyl-terminal hydrolase L1. Anal Biochem 2015; 469:4-11. [DOI: 10.1016/j.ab.2014.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 11/22/2022]
|
50
|
Douglas-Escobar MV, Heaton SC, Bennett J, Young LJ, Glushakova O, Xu X, Barbeau DY, Rossignol C, Miller C, Old Crow AM, Hayes RL, Weiss MD. UCH-L1 and GFAP Serum Levels in Neonates with Hypoxic-Ischemic Encephalopathy: A Single Center Pilot Study. Front Neurol 2014; 5:273. [PMID: 25566179 PMCID: PMC4271579 DOI: 10.3389/fneur.2014.00273] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/03/2014] [Indexed: 01/10/2023] Open
Abstract
Objective: We examined two potential biomarkers of brain damage in hypoxic–ischemic encephalopathy (HIE) neonates: glial fibrillary acidic protein (GFAP; a marker of gliosis) and ubiquitin C-terminal hydrolase L1 (UCH-L1; a marker of neuronal injury). We hypothesized that the biomarkers would be measurable in cord blood of healthy neonates and could serve as a normative reference for brain injury in HIE infants. We further hypothesized that higher levels would be detected in serum samples of HIE neonates and would correlate with brain damage on magnetic resonance imaging (MRI) and later developmental outcomes.? Study Design: Serum UCH-L1 and GFAP concentrations from HIE neonates (n = 16) were compared to controls (n = 11). The relationship between biomarker concentrations of HIE neonates and brain damage (MRI) and developmental outcomes (Bayley-III) was examined using Pearson correlation coefficients and a mixed model design. Result: Both biomarkers were detectable in cord blood from control subjects. UCH-L1 concentrations were higher in HIE neonates (p < 0.001), and associated with cortical injury (p < 0.055) and later motor and cognitive developmental outcomes (p < 0.05). The temporal change in GFAP concentrations during (from birth to 96 h of age) predicted motor developmental outcomes (p < 0.05) and injury to the basal ganglia and white matter. Conclusion: Ubiquitin C-terminal hydrolase L1 and GFAP should be explored further as promising serum biomarkers of brain damage and later neurodevelopmental outcomes in neonates with HIE.
Collapse
Affiliation(s)
- Martha V Douglas-Escobar
- Department of Pediatrics, University of Florida , Gainesville, FL , USA ; Department of Pediatrics, University of California San Francisco , San Francisco, CA , USA
| | - Shelley C Heaton
- Department of Clinical and Health Psychology, University of Florida , Gainesville, FL , USA
| | - Jeffrey Bennett
- Department of Radiology, University of Florida , Gainesville, FL , USA
| | - Linda J Young
- Department of Statistics, University of Florida , Gainesville, FL , USA
| | | | - Xiaohui Xu
- Department of Biostatistics, University of Florida , Gainesville, FL , USA
| | | | - Candice Rossignol
- Department of Pediatrics, University of Florida , Gainesville, FL , USA
| | - Cindy Miller
- Department of Pediatrics, University of Florida , Gainesville, FL , USA
| | - Alissa M Old Crow
- Department of Radiology, University of Florida , Gainesville, FL , USA
| | | | - Michael D Weiss
- Department of Pediatrics, University of Florida , Gainesville, FL , USA
| |
Collapse
|