1
|
Yu W, Zhang Q, Ali M, Chen B, Sun Q, Wang D. ACTL8 Promotes the Progression of Gastric Cancer Through PI3K/AKT/mTOR Signaling Pathway. Dig Dis Sci 2024; 69:3786-3798. [PMID: 39322809 PMCID: PMC11489201 DOI: 10.1007/s10620-024-08649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Actin-like protein 8 (ACTL8) significantly correlates with tumor growth and prognosis across various cancer types. Nevertheless, the potential relationship between ACTL8 and gastric cancer (GC) remains uncertain. OBJECTIVE This study aimed to elucidate the role of ACTL8 in human GC cells and to explore its mechanism. METHODS Bioinformatics analysis tools, such as GEPIA2, Kaplan-Meier, and STRING, were utilized for a comprehensive investigation of the characteristics and functional roles of ACTL8 in GC, including differential expression, prognostic value, and related signaling pathways. Subsequently, gene expression analyses, cell function assays, and signaling pathway experiments were conducted to verify key findings. RESULTS Bioinformatics analysis showed that ACTL8 was significantly elevated in GC and closely associated with poor prognosis. Gene expression experiments confirmed the bioinformatics results. Furthermore, ACTL8 knockdown markedly reduced GC cell proliferation and inhibited migration and invasion. Mechanistically, a significant increase in the phosphorylation levels of signaling proteins was observed in GC cells following ACTL8 overexpression, and PI3K/Akt/mTOR pathway inhibitors could reverse this effect. CONCLUSION ACTL8 expression is significantly upregulated in GC cells and is closely correlated with poor patient prognosis. Further mechanistic studies revealed that ACTL8 may promote GC cell migration and proliferation through activation of the PI3K/Akt/mTOR signaling pathway. Consequently, ACTL8 emerges as a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Wenhao Yu
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Qi Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Muhammad Ali
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Bangquan Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Qiannan Sun
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Daorong Wang
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China.
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China.
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China.
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
2
|
Xiao J, Huang F, Li L, Zhang L, Xie L, Liu B. Expression of four cancer-testis antigens in TNBC indicating potential universal immunotherapeutic targets. J Cancer Res Clin Oncol 2023; 149:15003-15011. [PMID: 37610673 PMCID: PMC10602960 DOI: 10.1007/s00432-023-05274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Immunotherapy is an attractive treatment for breast cancer. Cancer-testis antigens (CTAs) are potential targets for immunotherapy for their restricted expression. Here, we investigate the expression of CTAs in breast cancer and their value for prognosis. So as to hunt for a potential panel of CTAs for universal immunotherapeutic targets. MATERIAL AND METHODS A total of 137 breast cancer tissue specimens including 51 triple-negative breast cancer (TNBC) were assessed for MAGE-A4, MAGEA1, NY-ESO-1, KK-LC-1 and PRAME expression by immunohistochemistry. The expression of PD-L1 and TILs was also calculated and correlated with the five CTAs. Clinical data were collected to evaluate the CTA's value for prognosis. Data from the K-M plotter were used as a validation cohort. RESULTS The expression of MAGE-A4, NY-ESO-1 and KK-LC-1 in TNBC was significantly higher than in non-TNBC (P = 0.012, P = 0.005, P < 0.001 respectively). 76.47% of TNBC expressed at least one of the five CTAs. Patients with positive expression of either MAGE-A4 or PRAME had a significantly extended disease-free survival (DFS). Data from the Kaplan-Meier plotter confirm our findings. CONCLUSIONS MAGE-A4, NY-ESO-1, PRAME and KK-LC-1 are overexpressed in breast cancer, especially in TNBC. Positive expression of MAGE-A4 or PARME may be associated with prolonged DFS. A panel of CTAs is attractive universal targets for immunotherapy.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fengli Huang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Lianru Zhang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li Xie
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Peptide-Based Vaccines in Clinical Phases and New Potential Therapeutic Targets as a New Approach for Breast Cancer: A Review. Vaccines (Basel) 2022; 10:vaccines10081249. [PMID: 36016136 PMCID: PMC9416350 DOI: 10.3390/vaccines10081249] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer is the leading cause of death in women from 20 to 59 years old. The conventional treatment includes surgery, chemotherapy, hormonal therapy, and immunotherapy. This immunotherapy is based on administering monoclonal therapeutic antibodies (passive) or vaccines (active) with therapeutic purposes. Several types of vaccines could be used as potential treatments for cancer, including whole-cell, DNA, RNA, and peptide-based vaccines. Peptides used to develop vaccines are derived from tumor-associated antigens or tumor-specific antigens, such as HER-2, MUC1, ErbB2, CEA, FRα, MAGE A1, A3, and A10, NY-ESO-1, among others. Peptide-based vaccines provide some advantages, such as low cost, purity of the antigen, and the induction of humoral and cellular immune response. In this review, we explore the different types of vaccines against breast cancer with a specific focus on the description of peptide-based vaccines, their composition, immune response induction, and the description of new potential therapeutic targets.
Collapse
|
4
|
Zhang L, Zhou X, Sha H, Xie L, Liu B. Recent Progress on Therapeutic Vaccines for Breast Cancer. Front Oncol 2022; 12:905832. [PMID: 35734599 PMCID: PMC9207208 DOI: 10.3389/fonc.2022.905832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer remains the most frequently diagnosed malignancy worldwide. Advanced breast cancer is still an incurable disease mainly because of its heterogeneity and limited immunogenicity. The great success of cancer immunotherapy is paving the way for a new era in cancer treatment, and therapeutic cancer vaccination is an area of interest. Vaccine targets include tumor-associated antigens and tumor-specific antigens. Immune responses differ in different vaccine delivery platforms. Next-generation sequencing technologies and computational analysis have recently made personalized vaccination possible. However, only a few cases benefiting from neoantigen-based treatment have been reported in breast cancer, and more attention has been given to overexpressed antigen-based treatment, especially human epidermal growth factor 2-derived peptide vaccines. Here, we discuss recent advancements in therapeutic vaccines for breast cancer and highlight near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Lianru Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xipeng Zhou
- Department of oncology, Yizheng People's Hospital, Yangzhou, China
| | - Huizi Sha
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Li Xie
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Poojary M, Jishnu PV, Kabekkodu SP. Prognostic Value of Melanoma-Associated Antigen-A (MAGE-A) Gene Expression in Various Human Cancers: A Systematic Review and Meta-analysis of 7428 Patients and 44 Studies. Mol Diagn Ther 2021; 24:537-555. [PMID: 32548799 PMCID: PMC7497308 DOI: 10.1007/s40291-020-00476-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Members of the melanoma-associated antigen-A (MAGE-A) subfamily are overexpressed in many cancers and can drive cancer progression, metastasis, and therapeutic recurrence. Objective This study is the first comprehensive meta-analysis evaluating the prognostic utility of MAGE-A members in different cancers. Methods A systematic literature search was conducted in PubMed, Google Scholar, Science Direct, and Web of Science. The pooled hazard ratios with 95% confidence intervals were estimated to evaluate the prognostic significance of MAGE-A expression in various cancers. Results In total, 44 eligible studies consisting of 7428 patients from 11 countries were analysed. Univariate and multivariate analysis for overall survival, progression-free survival, and disease-free survival showed a significant association between high MAGE-A expression and various cancers (P < 0.00001). Additionally, subgroup analysis demonstrated that high MAGE-A expression was significantly associated with poor prognosis for lung, gastrointestinal, breast, and ovarian cancer in both univariate and multivariate analysis for overall survival. Conclusion Overexpression of MAGE-A subfamily members is linked to poor prognosis in multiple cancers. Therefore, it could serve as a potential prognostic marker of poor prognosis in cancers. Electronic supplementary material The online version of this article (10.1007/s40291-020-00476-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manish Poojary
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Shklovskaya E, Rizos H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int J Mol Sci 2021; 22:ijms22136741. [PMID: 34201655 PMCID: PMC8268865 DOI: 10.3390/ijms22136741] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
It is now well accepted that the immune system can control cancer growth. However, tumors escape immune-mediated control through multiple mechanisms and the downregulation or loss of major histocompatibility class (MHC)-I molecules is a common immune escape mechanism in many cancers. MHC-I molecules present antigenic peptides to cytotoxic T cells, and MHC-I loss can render tumor cells invisible to the immune system. In this review, we examine the dysregulation of MHC-I expression in cancer, explore the nature of MHC-I-bound antigenic peptides recognized by immune cells, and discuss therapeutic strategies that can be used to overcome MHC-I deficiency in solid tumors, with a focus on the role of natural killer (NK) cells and CD4 T cells.
Collapse
|
7
|
Jia L, Ling Y, Li K, Zhang L, Wang Y, Kang H. A 10-Gene Signature for Predicting the Response to Neoadjuvant Trastuzumab Therapy in HER2-Positive Breast Cancer. Clin Breast Cancer 2021; 21:e654-e664. [PMID: 34052107 DOI: 10.1016/j.clbc.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Dual-target therapy may increase the incidence of adverse events and cause economic burden to patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer. It is necessary to identify the patients who could benefit greatly from a single-target neoadjuvant therapy in order to avoid overtreatment of patients. PATIENTS AND METHODS The baseline transcriptome data and clinical characteristics of patients with HER2-positive breast cancer who received neoadjuvant trastuzumab therapy were obtained from the Gene Expression Omnibus database. Least absolute shrinkage and selection operator (LASSO) regression analyses were used to construct the predictive model for pathologic complete response (pCR). RESULTS A 10-gene signature model for predicting pCR rate after neoadjuvant trastuzumab therapy was constructed by LASSO regression. The areas under the receiver operating characteristics (ROC) curves in the training set and validation set were 0.896 (95% confidence interval [CI], 0.8165-0.9758) and 0.775 (95% CI, 0.5402-1), respectively. The result of logistic regression analysis showed that the risk score calculated by the 10-gene signature model was a potential predictor for pCR. Among the 10-gene signature, TFAP2B, SUSD2, AQP3, MUCL1, and ANKRD30A were found to be predictors for worse relapse-free survival (RFS) in patients with HER2-positive breast cancer, whereas MGP, YIF1B, ANKRD36BP2, and FBXO6 were found to be predictors for favorable RFS. CONCLUSION A novel 10-gene signature that could predict the response of neoadjuvant anti-HER2 therapy in patients with HER2-positive breast cancer was developed, and the risk score of the 10-gene signature could be calculated to guide the selection of anti-HER2 therapy regimens.
Collapse
Affiliation(s)
- Luyao Jia
- Center for Thyroid and Breast Surgery, Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuwei Ling
- Center for Thyroid and Breast Surgery, Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kaifu Li
- Center for Thyroid and Breast Surgery, Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lina Zhang
- Center for Thyroid and Breast Surgery, Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yajun Wang
- Center for Thyroid and Breast Surgery, Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hua Kang
- Center for Thyroid and Breast Surgery, Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Fan S, Yan S, Yang Y, Shang J, Hao M. Actin-Like Protein 8 Promotes the Progression of Triple-Negative Breast Cancer via Activating PI3K/AKT/mTOR Pathway. Onco Targets Ther 2021; 14:2463-2473. [PMID: 33883901 PMCID: PMC8053609 DOI: 10.2147/ott.s291403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Objective The purpose of this study was to investigate the function of actin-like protein 8 (ACTL8) on triple-negative breast cancer (TNBC) and its potential mechanisms. Methods In our study, ACTL8 expression and the prognostic values of ACTL8 were evaluated via the dataset from the Cancer Genome Atlas (TCGA). At the same time, the expression of ACTL8 in TNBC cells was measured by Western blot and qRT-PCR. Then, the effects of ACTL8 on the growth and metastasis of TNBC were investigated by using 5-ethynyl-20-deoxyuridine (EdU), colony formation, flow cytometry, wound healing and transwell assays. Mechanistically, Western blot was performed to confirm the interaction between ACTL8 and phosphatidylinositol 3′-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway in TNBC. Results ACTL8 expression was upregulated in TNBC and associated with the poor prognosis of TNBC. Silencing ACTL8 suppressed the proliferation, migration and invasion, also promoted the apoptosis in MDA-MB-231 and BT-549 cells. Moreover, we found that silencing ACTL8 could inhibit the activation of PI3K/AKT/mTOR signaling pathway in MDA-MB-231 and BT-549 cells. Meanwhile, the impact of silencing ACTL8 on the proliferation, apoptosis, migration and invasion was enhanced by PI3K/AKT/mTOR pathway inhibitor (Wortmannin) and reversed by PI3K/AKT/mTOR pathway activator (740Y-P). Conclusion Our data demonstrated that ACTL8 may facilitate the proliferation, migration and invasion, while inhibiting apoptosis through activating PI3K/Akt/mTOR signaling pathway in TNBC.
Collapse
Affiliation(s)
- Shaoxia Fan
- Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong, 257091, People's Republic of China
| | - Shen Yan
- Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong, 257091, People's Republic of China
| | - Yang Yang
- Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong, 257091, People's Republic of China
| | - Jian Shang
- Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong, 257091, People's Republic of China
| | - Min Hao
- Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong, 257091, People's Republic of China
| |
Collapse
|
9
|
Gruener RF, Ling A, Chang YF, Morrison G, Geeleher P, Greene GL, Huang RS. Facilitating Drug Discovery in Breast Cancer by Virtually Screening Patients Using In Vitro Drug Response Modeling. Cancers (Basel) 2021; 13:885. [PMID: 33672646 PMCID: PMC7924213 DOI: 10.3390/cancers13040885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 01/20/2023] Open
Abstract
(1) Background: Drug imputation methods often aim to translate in vitro drug response to in vivo drug efficacy predictions. While commonly used in retrospective analyses, our aim is to investigate the use of drug prediction methods for the generation of novel drug discovery hypotheses. Triple-negative breast cancer (TNBC) is a severe clinical challenge in need of new therapies. (2) Methods: We used an established machine learning approach to build models of drug response based on cell line transcriptome data, which we then applied to patient tumor data to obtain predicted sensitivity scores for hundreds of drugs in over 1000 breast cancer patients. We then examined the relationships between predicted drug response and patient clinical features. (3) Results: Our analysis recapitulated several suspected vulnerabilities in TNBC and identified a number of compounds-of-interest. AZD-1775, a Wee1 inhibitor, was predicted to have preferential activity in TNBC (p < 2.2 × 10-16) and its efficacy was highly associated with TP53 mutations (p = 1.2 × 10-46). We validated these findings using independent cell line screening data and pathway analysis. Additionally, co-administration of AZD-1775 with standard-of-care paclitaxel was able to inhibit tumor growth (p < 0.05) and increase survival (p < 0.01) in a xenograft mouse model of TNBC. (4) Conclusions: Overall, this study provides a framework to turn any cancer transcriptomic dataset into a dataset for drug discovery. Using this framework, one can quickly generate meaningful drug discovery hypotheses for a cancer population of interest.
Collapse
Affiliation(s)
- Robert F. Gruener
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.F.G.); (Y.-F.C.); (G.L.G.)
| | - Alexander Ling
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ya-Fang Chang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.F.G.); (Y.-F.C.); (G.L.G.)
| | - Gladys Morrison
- Committee for Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA;
| | - Paul Geeleher
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.F.G.); (Y.-F.C.); (G.L.G.)
| | - R. Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
10
|
Chen C, Yang L, Rivandi M, Franken A, Fehm T, Neubauer H. Bioinformatic Identification of a Breast-Specific Transcript Profile. Proteomics Clin Appl 2020; 14:e2000007. [PMID: 32558282 DOI: 10.1002/prca.202000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/23/2020] [Indexed: 11/10/2022]
Abstract
PURPOSE To identify a breast-specific transcript profile for the first time, and present an updated bioinformatics strategy for searching tissue-specific transcripts and predicting their significance in cancer. EXPERIMENTAL DESIGN The RNA-seq data of 49 311 transcripts in 88 human tissues from the GTEx, the Illumina Body Map, and the RIKEN FANTOM5 project are integrated to screen breast-specific transcripts. Gene Expression Profiling Interactive Analysis, TGCA, and Kaplan-Meier Plotter are used to examine their expression in cancer tissues and values for prognosis prediction. RESULTS Only 96 transcripts in human genome are breast-specific for women. Among them, ankyrin repeat domain 30A (ANKRD30A) and long intergenic non-protein coding RNA 993 (LINC00993) are further analyzed. The two transcripts are also breast-specific in 33 types of common female cancer and are often dysregulated in breast cancer tissues. Their expression is higher in the luminal breast cancer while significantly downregulated in triple-negative breast cancer. Moreover, the high expression levels of ANKRD30A and LINC0993 in breast cancer tissues indicate a better prognosis of patients with breast cancer. CONCLUSIONS AND CLINICAL RELEVANCE Breast-specific transcripts in human genome are rare and poorly understood currently. The data indicate that these breast-specific biomarkers are promising candidates for screening early cancer, assessing treatment response, monitoring recurrence, identifying metastatic tumor origin, and serving as potential targets for immunotherapy.
Collapse
Affiliation(s)
- Chen Chen
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, 40225, Germany.,Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, China
| | - Liwen Yang
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, 40225, Germany
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, 40225, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, 40225, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, 40225, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, 40225, Germany
| |
Collapse
|
11
|
Raza A, Merhi M, Inchakalody VP, Krishnankutty R, Relecom A, Uddin S, Dermime S. Unleashing the immune response to NY-ESO-1 cancer testis antigen as a potential target for cancer immunotherapy. J Transl Med 2020; 18:140. [PMID: 32220256 PMCID: PMC7102435 DOI: 10.1186/s12967-020-02306-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Cancer Immunotherapy has recently emerged as a promising and effective modality to treat different malignancies. Antigenic profiling of cancer tissues and determination of any pre-existing immune responses to cancer antigens may help predict responses to immune intervention in cancer. NY-ESO-1, a cancer testis antigen is the most immunogenic antigen to date. The promise of NY-ESO-1 as a candidate for specific immune recognition of cancer comes from its restricted expression in normal adult tissue but frequent occurrence in multiple tumors including melanoma and carcinomas of lung, esophageal, liver, gastric, prostrate, ovarian, and bladder. MAIN BODY This review summarizes current knowledge of NY-ESO-1 as efficient biomarker and target of immunotherapy. It also addresses limitations and challenges preventing a robust immune response to NY-ESO-1 expressing cancers, and describes pre-clinical and clinical observations relevant to NY-ESO-1 immunity, holding potential therapeutic relevance for cancer treatment. CONCLUSION NY-ESO-1 induces strong immune responses in cancer patients but has limited objective clinical responses to NY-ESO-1 expressing tumors due to effect of competitive negative signaling from immune-checkpoints and immune-suppressive tumor microenvironment. We propose that combination therapy to increase the efficacy of NY-ESO-1 specific immunotherapeutic interventions should be explored to unleash the immune response against NY-ESO-1 expressing tumors.
Collapse
Affiliation(s)
- Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,Translational Cancer Research Facility and Clinical Trial Unit, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,Translational Cancer Research Facility and Clinical Trial Unit, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,Translational Cancer Research Facility and Clinical Trial Unit, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Allan Relecom
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar. .,Translational Cancer Research Facility and Clinical Trial Unit, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar. .,Hamad Medical Corporation, iTRI, Hamad Medical City (Building 320, Office 3-6-5), Po Box 3050, Doha, Qatar.
| |
Collapse
|
12
|
Ma S, Wang X, Zhang Z, Liu D. Actin-like protein 8 promotes cell proliferation, colony-formation, proangiogenesis, migration and invasion in lung adenocarcinoma cells. Thorac Cancer 2020; 11:526-536. [PMID: 31962007 PMCID: PMC7049497 DOI: 10.1111/1759-7714.13247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Background Non‐small cell lung cancer (NSCLC) is the leading cause of cancer‐associated mortality worldwide of which lung adenocarcinoma (LUAD) is the most common. The identification of oncogenes and effective drug targets is the key to individualized LUAD treatment. Actin‐like protein 8 (ACTL8), a member of the cancer/testis antigen family, is associated with tumor growth and patient prognosis in various types of cancer. However, whether ACTL8 is involved in the development of LUAD remains unknown. The aim of the present study was to demonstrate the role of ACTL8 in human LUAD cells. Methods The expression of ACTL8 in LUAD tissues and cell lines was assessed using immunohistochemistry and western blotting. Additionally, plasmids expressing ACTL8‐specific short hairpin RNAs were used to generate lentiviruses which were subsequently used to infect A549 and NCI‐H1975 human LUAD cells. Cell proliferation, migration, invasion and apoptosis, as well as cell cycle progression and the expression of protein markers of epithelial to mesenchymal transition were investigated. A549 cell tumor growth in nude mice was also examined. Results The results showed that ACTL8 was highly expressed in A549 and NCI‐H1975 LUAD cell lines. Additionally, ACTL8‐knockdown inhibited proliferation, colony formation, cell cycle progression, migration and invasion, and increased apoptosis in both cell lines. Furthermore, in vivo experiments in nude mice revealed that ACTL8‐knockdown inhibited A549 cell tumor growth. Conclusion These results suggest that ACTL8 serves an oncogenic role in human LUAD cells, and that ACTL8 may represent a potential therapeutic target for LUAD. Key points Our results suggest that ACTL8 serves an oncogenic role in human LUAD cells, and that ACTL8 may represent a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Shanwu Ma
- Department of Thoracic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiaowei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Zhenrong Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Deruo Liu
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
13
|
Li M, Chen Y, Yao J, Lu S, Guan Y, Xu Y, Liu Q, Sun S, Mi Q, Mei J, Li X, Miao M, Zhao S, Zhu Z. Genome-Wide Association Study of Smoking Behavior Traits in a Chinese Han Population. Front Psychiatry 2020; 11:564239. [PMID: 33033484 PMCID: PMC7509597 DOI: 10.3389/fpsyt.2020.564239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/17/2020] [Indexed: 01/12/2023] Open
Abstract
Tobacco use is one of the leading causes of preventable disease worldwide. Genetic studies have elucidated numerous smoking-associated risk loci in American and European populations. However, genetic determinants for cigarette smoking in Chinese populations are under investigated. In this study, a whole-genome sequencing (WGS)-based genome-wide association study (GWAS) was performed in a Chinese Han population comprising 620 smokers and 564 nonsmokers. Thirteen single-nucleotide polymorphisms (SNPs) of the raftlin lipid linker 1 (RFTN1) gene achieved genome-wide significance levels (P < 5 x 10-8) for smoking initiation. The rs139753473 from RFTN1 and six other suggestively significant loci from CUB and sushi multiple domains 1 (CSMD1) gene were also associated with cigarettes per day (CPD) in an independent Chinese sample consisting of 1,329 subjects (805 smokers and 524 nonsmokers). When treating males separately, associations between smoking initiation and PCAT5/ANKRD30A, two genes involved in cancer development, were identified and replicated. Within RFTN1, two haplotypes (i.e., C-A-C-G and A-G-T-C) formed by rs796812630-rs796584733-rs796349027-rs879511366 and three haplotypes (i.e., T-T-C-C-C, T-T-A-T-T, and C-A-A-T-T) formed by rs879401109-rs879453873-rs75180423-rs541378415-rs796757175 were strongly associated with smoking initiation. In addition, we also revealed two haplotypes (i.e., C-A-G-G and T-C-T-T derived from rs4875371-rs4875372-rs17070935-rs11991366) in the CSMD1 gene showing a significant association with smoking initiation. Further bioinformatics functional assessment suggested that RFTN1 may participate in smoking behavior through modulating immune responses or interactions with the glucocorticoid receptor alpha and the androgen receptor. Together, our results may help understand the mechanisms underlying smoking behavior in the Chinese Han population.
Collapse
Affiliation(s)
- Meng Li
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Ying Chen
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Jianhua Yao
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Sheming Lu
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Ying Guan
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Yuqiong Xu
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Qiang Liu
- Hangzhou Global Biotechnology and Bioinformatics Co. Ltd, Hangzhou, China
| | - Silong Sun
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Qili Mi
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Junpu Mei
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Xuemei Li
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Mingming Miao
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Shancen Zhao
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| | - Zhouhai Zhu
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Science, Kunming, China
| |
Collapse
|
14
|
Samuel SM, Varghese E, Kubatka P, Triggle CR, Büsselberg D. Metformin: The Answer to Cancer in a Flower? Current Knowledge and Future Prospects of Metformin as an Anti-Cancer Agent in Breast Cancer. Biomolecules 2019; 9:E846. [PMID: 31835318 PMCID: PMC6995629 DOI: 10.3390/biom9120846] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/25/2022] Open
Abstract
Interest has grown in studying the possible use of well-known anti-diabetic drugs as anti-cancer agents individually or in combination with, frequently used, chemotherapeutic agents and/or radiation, owing to the fact that diabetes heightens the risk, incidence, and rapid progression of cancers, including breast cancer, in an individual. In this regard, metformin (1, 1-dimethylbiguanide), well known as 'Glucophage' among diabetics, was reported to be cancer preventive while also being a potent anti-proliferative and anti-cancer agent. While meta-analysis studies reported a lower risk and incidence of breast cancer among diabetic individuals on a metformin treatment regimen, several in vitro, pre-clinical, and clinical studies reported the efficacy of using metformin individually as an anti-cancer/anti-tumor agent or in combination with chemotherapeutic drugs or radiation in the treatment of different forms of breast cancer. However, unanswered questions remain with regards to areas such as cancer treatment specific therapeutic dosing of metformin, specificity to cancer cells at high concentrations, resistance to metformin therapy, efficacy of combinatory therapeutic approaches, post-therapeutic relapse of the disease, and efficacy in cancer prevention in non-diabetic individuals. In the current article, we discuss the biology of metformin and its molecular mechanism of action, the existing cellular, pre-clinical, and clinical studies that have tested the anti-tumor potential of metformin as a potential anti-cancer/anti-tumor agent in breast cancer therapy, and outline the future prospects and directions for a better understanding and re-purposing of metformin as an anti-cancer drug in the treatment of breast cancer.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
15
|
Wang H, Chen D, Wang R, Quan W, Xia D, Mei J, Xu J, Liu C. NY-ESO-1 expression in solid tumors predicts prognosis: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e17990. [PMID: 31770209 PMCID: PMC6890322 DOI: 10.1097/md.0000000000017990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND New York esophageal squamous cell carcinoma 1 (NY-ESO-1) is a member of the cancer testis antigen family. NY-ESO-1 has documented potential as an effective target for cancer immunotherapy. The prognostic value of NY-ESO-1 expression in solid tumors, however, remains controversial because of inconclusive data. METHODS For this analysis, the Medline, Embase, and Cochrane Library databases were searched up to February 2018 for studies investigating NY-ESO-1 expression in solid tumors and overall survival (OS), progression-free survival (PFS), or disease-free survival (DFS). Hazard ratios (HRs) with 95% confidence intervals (CIs) were extracted from each study. Pooled HRs and CIs were calculated using the Mantel-Haenszel fixed effects or random effects model. RESULTS A total of 23 studies were included in the analysis. The combined HR (95% CI) estimates for OS, PFS, and DFS were 1.41 (95% CI: 1.24-1.61; I = 0%), 1.62 (95% CI: 1.42-1.84; I = 17%), and 0.95 (95% CI: 0.56-1.59; I = 57%), respectively. CONCLUSIONS NY-ESO-1 expression in solid tumors is associated with worse OS and PFS. Studies are still needed to provide more evidence.
Collapse
Affiliation(s)
- Huiyu Wang
- Department of Oncology, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi
| | - Datian Chen
- Department of Oncology, Haimen People's Hospital, Haimen
| | - Runjie Wang
- Department of Oncology, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi
| | | | - Dandan Xia
- Department of Oncology, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi
| | - Jie Mei
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junying Xu
- Department of Oncology, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi
| | - Chaoying Liu
- Department of Oncology, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi
| |
Collapse
|
16
|
Li F, Zhao F, Li M, Pan M, Shi F, Xu H, Zheng D, Wang L, Dou J. Decreasing New York esophageal squamous cell carcinoma 1 expression inhibits multiple myeloma growth and osteolytic lesions. J Cell Physiol 2019; 235:2183-2194. [PMID: 31489631 DOI: 10.1002/jcp.29128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Fei Li
- Department of Pathogenic Biology and Immunology, School of Medicine Southeast University Nanjing China
- Changzhou Blood Center Changzhou China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine Southeast University Nanjing China
| | - Miao Li
- Department of Pathogenic Biology and Immunology, School of Medicine Southeast University Nanjing China
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, School of Medicine Southeast University Nanjing China
- Jiangsu Province Hospital The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital, School of Medicine Southeast University Nanjing China
| | - Hui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine Southeast University Nanjing China
| | - Danfeng Zheng
- Department of Pathogenic Biology and Immunology, School of Medicine Southeast University Nanjing China
| | - Ling Wang
- Department of Pathogenic Biology and Immunology, School of Medicine Southeast University Nanjing China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine Southeast University Nanjing China
| |
Collapse
|
17
|
Kakimoto T, Matsumine A, Kageyama S, Asanuma K, Matsubara T, Nakamura T, Iino T, Ikeda H, Shiku H, Sudo A. Immunohistochemical expression and clinicopathological assessment of the cancer testis antigens NY-ESO-1 and MAGE-A4 in high-grade soft-tissue sarcoma. Oncol Lett 2019; 17:3937-3943. [PMID: 30881511 DOI: 10.3892/ol.2019.10044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to explore the expression of the cancer testis antigens New York-esophageal squamous cell carcinoma (NY-ESO)-1 and melanoma-associated antigen (MAGE)-A4 in high-grade soft-tissue sarcoma and to evaluate their association with the standard clinical-pathological features of surgically treated high-grade sarcoma patients. The study included 82 patients, and NY-ESO-1 and MAGE-A4 antigen expression was analyzed immunohistochemically. The results revealed NY-ESO-1- and MAGE-A4-positive staining in 58.8 and 52.9% of synovial sarcomas, and 55.6 and 0% of myxoid liposarcomas, respectively. In patients with synovial sarcoma, NY-ESO-1 and MAGE-A4 were expressed in 7 patients, only NY-ESO-1 was expressed in 3 patients, and only MAGE-A4 was expressed in 2 patients. Univariate analysis indicated that a significantly higher MAGE-A4 expression was observed in younger patients (P<0.001) and those with synovial sarcoma (P<0.001). Multivariate analysis indicated that significantly higher NY-ESO-1 expression was observed in patients with synovial sarcoma (P<0.01) and myxoid liposarcoma (P<0.01), and significantly higher MAGE-A4 expression was observed in patients with synovial sarcoma (P<0.01). In high-grade sarcomas, the 2- and 5-year overall survival rates based on Kaplan-Meier estimates were 100 and 81.3% in the NY-ESO-1-positive group, and 69.7 and 53.0% in the NY-ESO-1-negative group, respectively (P=0.049). It was also demonstrated that either NY-ESO-1 or MAGE-A4 was positive in 70.6% of synovial sarcomas. These results indicate that NY-ESO-1 and MAGE-A4 may be useful for the diagnosis of synovial sarcoma. The independent expression of NY-ESO-1 and MAGE-A4, which may help expand the pool of candidates for molecular-targeted immunotherapy, will be beneficial for synovial sarcoma patients.
Collapse
Affiliation(s)
- Takuya Kakimoto
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Akihiko Matsumine
- Department of Orthopedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shinichi Kageyama
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Kunihiro Asanuma
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Takao Matsubara
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Tomoki Nakamura
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Takahiro Iino
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| |
Collapse
|
18
|
Li B, Zhu J, Meng L. High expression of ACTL8 is poor prognosis and accelerates cell progression in head and neck squamous cell carcinoma. Mol Med Rep 2018; 19:877-884. [PMID: 30535476 PMCID: PMC6323208 DOI: 10.3892/mmr.2018.9716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022] Open
Abstract
Actin‑like protein 8 (ACTL8) is a member of the cancer‑testis antigens (CTA) family, which is mainly localized in the cytoplasm and generally expressed in the testis. The association between ACTL8 and various types of cancer, including glioblastoma and breast cancer, has previously been demonstrated. However, whether ACTL8 is involved in the development of head and neck squamous cell carcinoma (HNSCC) remains unknown. In the present study, the expression of ACTL8 in patients with HNSCC was analyzed in The Cancer Genome Atlas (TCGA) dataset, clinical tissues and cell lines. Correlations between the expression levels of ACTL8 and HNSCC clinical outcomes were analyzed with the Kaplan‑Meier method and the Cox proportional hazards model. Cell Counting Kit‑8, plate colony formation and Transwell assays were used to assess the effects of ACTL8 interference on the proliferation, migration and invasion of HNSCC PCI‑13 cells. Reverse transcription‑quantitative polymerase chain reaction and western blotting were used to evaluate the expression levels of ACTL8 in PCI‑13 cells. Furthermore, alterations in the expression levels of key proteins in the phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K)/RAC‑α protein kinase B (AKT) signaling pathway were determined by western blotting. Increased expression of ACTL8 in HNSCC was observed in TCGA dataset, cancerous tissue samples and HNSCC cell line. Cox regression analysis indicated that ACTL8 expression could be regarded as an independent prognostic factor for HNSCC, since increased expression of ACTL8 was associated with a poor prognosis. Knocking down ACTL8 markedly inhibited the proliferation, invasion and migration of PCI‑13 cells. Additionally, activation of the PI3K/AKT signaling pathway was suppressed by reduced expression levels of certain key proteins in this pathway. The present data indicate that ACTL8 serves a role in the progression and clinical prognosis of HNSCC. Therefore, ACTL8 may be a potential prognostic marker and novel therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Bo Li
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Jie Zhu
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Lei Meng
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
19
|
Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treat Rev 2018; 70:98-111. [PMID: 30130687 DOI: 10.1016/j.ctrv.2018.08.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus is one of the most common chronic disease worldwide and affects all cross-sections of the society including children, women, youth and adults. Scientific evidence has linked diabetes to higher incidence, accelerated progression and increased aggressiveness of different cancers. Among the different forms of cancer, research has reinforced a link between diabetes and the risk of breast cancer. Some studies have specifically linked diabetes to the highly aggressive, triple negative breast cancers (TNBCs) which do not respond to conventional hormonal/HER2 targeted interventions, have chances of early recurrence, metastasize, tend to be more invasive in nature and develop drug resistance. Commonly used anti-diabetic drugs, such as metformin, have recently gained importance in the treatment of breast cancer due to their proposed anti-cancer properties. Here we discuss the link between diabetes and breast cancer, the metabolic disturbances in diabetes that support the development of breast cancer, the challenges involved and future perspective and directions. We link the three main metabolic disturbances (dyslipidemia, hyperinsulinemia and hyperglycemia) that occur in diabetes to potential aberrant molecular pathways that may lead to the development of an oncogenic phenotype of the breast tissue, thereby leading to acceleration of cell growth, proliferation, migration, inflammation, angiogenesis, EMT and metastasis and inhibition of apoptosis in breast cancer cells. Furthermore, managing diabetes and treating cancer using a combination of anti-diabetic and classical anti-cancer drugs should prove to be more efficient in the treatment diabetes associated cancers.
Collapse
|
20
|
Mahmoud AM. Cancer testis antigens as immunogenic and oncogenic targets in breast cancer. Immunotherapy 2018; 10:769-778. [PMID: 29926750 PMCID: PMC6462849 DOI: 10.2217/imt-2017-0179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/16/2018] [Indexed: 01/07/2023] Open
Abstract
Breast cancer cells frequently express tumor-associated antigens that can elicit immune responses to eradicate cancer. Cancer-testis antigens (CTAs) are a group of tumor-associated antigens that might serve as ideal targets for cancer immunotherapy because of their cancer-restricted expression and robust immunogenicity. Previous clinical studies reported that CTAs are associated with negative hormonal status, aggressive tumor behavior and poor survival. Furthermore, experimental studies have shown the ability of CTAs to induce both cellular and humoral immune responses. They also demonstrated the implication of CTAs in promoting cancer cell growth, inhibiting apoptosis and inducing cancer cell invasion and migration. In the current review, we attempt to address the immunogenic and oncogenic potential of CTAs and their current utilization in therapeutic interventions for breast cancer.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71111, Egypt
| |
Collapse
|
21
|
Rodríguez Bautista R, Ortega Gómez A, Hidalgo Miranda A, Zentella Dehesa A, Villarreal-Garza C, Ávila-Moreno F, Arrieta O. Long non-coding RNAs: implications in targeted diagnoses, prognosis, and improved therapeutic strategies in human non- and triple-negative breast cancer. Clin Epigenetics 2018; 10:88. [PMID: 29983835 PMCID: PMC6020372 DOI: 10.1186/s13148-018-0514-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has been clinically difficult to manage because of tumor aggressiveness, cellular and histological heterogeneity, and molecular mechanisms’ complexity. All this in turn leads us to evaluate that tumor biological behavior is not yet fully understood. Additionally, the heterogeneity of tumor cells represents a great biomedicine challenge in terms of the complex molecular—genetical-transcriptional and epigenetical—mechanisms, which have not been fully elucidated on human solid tumors. Recently, human breast cancer, but specifically TNBC is under basic and clinical-oncology research in the discovery of new molecular biomarkers and/or therapeutic targets to improve treatment responses, as well as for seeking algorithms for patient stratification, seeking a positive impact in clinical-oncology outcomes and life quality on breast cancer patients. In this sense, important knowledge is emerging regarding several cancer molecular aberrations, including higher genetic mutational rates, LOH, CNV, chromosomal, and epigenetic alterations, as well as transcriptome aberrations in terms of the total gene-coding ribonucleic acids (RNAs), known as mRNAs, as well as non-coding RNA (ncRNA) sequences. In this regard, novel investigation fields have included microRNAs (miRNAs), as well as long ncRNAs (lncRNAs), which have been importantly related and are likely involved in the induction, promotion, progression, and/or clinical therapeutic response trackers of TNBC. Based on this, in general terms according with the five functional archetype classification, the lncRNAs may be involved in the regulation of several molecular mechanisms which include genetic expression, epigenetic, transcriptional, and/or post-transcriptional mechanisms, which are nowadays not totally understood. Here, we have reviewed the main dis-regulated and functionally non- and well-characterized lncRNAs and their likely involvement, from a molecular enrichment and mechanistic point of view, as tumor biomarkers for breast cancer and its specific histological subtype, TNBC. In reference to the abovementioned, it has been described that some lncRNA expression profiles correspond or are associated with the TNBC histological subtype, potentially granting their use for TNBC malignant progression, diagnosis, tumor clinical stage, and likely therapy. Based on this, lncRNAs have been proposed as potential biomarkers which might represent potential predictive tools in the differentiated breast carcinomas versus TNBC malignant disease. Finally, elucidation of the specific or multi-functional archetypal of lncRNAs in breast cancer and TNBC could be fundamental, as these molecular intermediary-regulator “lncRNAs” are widely involved in the genome expression, epigenome regulation, and transcriptional and post-transcriptional tumor biology, which in turn will probably represent a new prospect in clinical and/or therapeutic molecular targets for the oncological management of breast carcinomas in general and also for TNBC patients.
Collapse
Affiliation(s)
- Rubén Rodríguez Bautista
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), San Fernando #22, Section XVI, Tlalpan, 14080, Mexico City, Mexico.,Biomedical Science Doctorate Program, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alette Ortega Gómez
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), San Fernando #22, Section XVI, Tlalpan, 14080, Mexico City, Mexico.
| | | | - Alejandro Zentella Dehesa
- Biochemistry Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico D.F, Mexico
| | | | - Federico Ávila-Moreno
- Lung Diseases And Cancer Epigenomics Laboratory, Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES) Iztacala, National University Autonomous of México (UNAM), Mexico City, Mexico.,Research Unit, National Institute of Respiratory Diseases (INER) "Ismael Cosío Villegas", Mexico City, Mexico
| | - Oscar Arrieta
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), San Fernando #22, Section XVI, Tlalpan, 14080, Mexico City, Mexico
| |
Collapse
|
22
|
Zombori T, Cserni G. Immunohistochemical Analysis of the Expression of Breast Markers in Basal-like Breast Carcinomas Defined as Triple Negative Cancers Expressing Keratin 5. Pathol Oncol Res 2018; 24:259-267. [PMID: 28470571 DOI: 10.1007/s12253-017-0246-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/27/2017] [Indexed: 12/24/2022]
Abstract
Estrogen and progesterone receptors are possible markers for suggesting a mammary origin of metastatic carcinoma, but are useless in cases of triple negative breast cancers (TNBC). Five other potential markers of breast origin were investigated on tissue microarrays in a series of TNBCs showing keratin 5 expression, consistent with a basal-like phenotype. GATA-3 staining was observed in 82 of 115 triple negative cases (71.3%) including 23 cases with >5% staining. Mammaglobin staining was detected in 30 cases (26.0%) including 12 with >5% staining. GCDFP-15 was seen in 23 cases (20.0%) including 9 with >5% staining. NY-BR-1 positivity was present in 7 cases (6.0%) including 3 patients with >5% staining. BCA-225 staining was observed in 74 cases (64.3%); however this latter marker lacks also specificity owing to the reported widespread staining in other malignancies. GATA-3, mammaglobin and GCDFP-15 coexpression was seen in one case (0.9%), whereas GATA-3 and mammaglobin or mammaglobin and GCDFP-15 coexpression was present in 2 and 2 cases (1.7%), respectively. Using at least 5% staining as cut-off, the expression of any of the last 4 markers was 34.7%. The expression of GATA-3, mammaglobin, GCDFP-15 and NY-BR-1 is lower in TNBC-s than in breast carcinomas in general, and this may be even lower in basal-like carcinomas. Although these markers are not fully specific, by using them, a subset of basal-like TNBC-s can be identified as of mammary origin. However, a substantial proportion will not show any staining with any of these markers.
Collapse
Affiliation(s)
- Tamás Zombori
- Department of Pathology, University of Szeged, Faculty of Medicine, Állomás u. 1, Szeged, 6725, Hungary.
| | - Gábor Cserni
- Department of Pathology, University of Szeged, Faculty of Medicine, Állomás u. 1, Szeged, 6725, Hungary
- Department of Pathology, Bács-Kiskun County Teaching Hospital, Kecskemét, Hungary
| |
Collapse
|
23
|
Adeola HA, Smith M, Kaestner L, Blackburn JM, Zerbini LF. Novel potential serological prostate cancer biomarkers using CT100+ cancer antigen microarray platform in a multi-cultural South African cohort. Oncotarget 2017; 7:13945-64. [PMID: 26885621 PMCID: PMC4924690 DOI: 10.18632/oncotarget.7359] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 01/29/2016] [Indexed: 12/17/2022] Open
Abstract
There is a growing need for high throughput diagnostic tools for early diagnosis and treatment monitoring of prostate cancer (PCa) in Africa. The role of cancer-testis antigens (CTAs) in PCa in men of African descent is poorly researched. Hence, we aimed to elucidate the role of 123 Tumour Associated Antigens (TAAs) using antigen microarray platform in blood samples (N = 67) from a South African PCa, Benign prostatic hyperplasia (BPH) and disease control (DC) cohort. Linear (fold-over-cutoff) and differential expression quantitation of autoantibody signal intensities were performed. Molecular signatures of candidate PCa antigen biomarkers were identified and analyzed for ethnic group variation. Potential cancer diagnostic and immunotherapeutic inferences were drawn. We identified a total of 41 potential diagnostic/therapeutic antigen biomarkers for PCa. By linear quantitation, four antigens, GAGE1, ROPN1, SPANXA1 and PRKCZ were found to have higher autoantibody titres in PCa serum as compared with BPH where MAGEB1 and PRKCZ were highly expressed. Also, p53 S15A and p53 S46A were found highly expressed in the disease control group. Statistical analysis by differential expression revealed twenty-four antigens as upregulated in PCa samples, while 11 were downregulated in comparison to BPH and DC (FDR = 0.01). FGFR2, COL6A1and CALM1 were verifiable biomarkers of PCa analysis using urinary shotgun proteomics. Functional pathway annotation of identified biomarkers revealed similar enrichment both at genomic and proteomic level and ethnic variations were observed. Cancer antigen arrays are emerging useful in potential diagnostic and immunotherapeutic antigen biomarker discovery.
Collapse
Affiliation(s)
- Henry A Adeola
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Muneerah Smith
- Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lisa Kaestner
- Urology Department, Grootes Schuur Hospital, Cape Town, South Africa
| | - Jonathan M Blackburn
- Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
24
|
Hammerl D, Smid M, Timmermans AM, Sleijfer S, Martens JWM, Debets R. Breast cancer genomics and immuno-oncological markers to guide immune therapies. Semin Cancer Biol 2017; 52:178-188. [PMID: 29104025 DOI: 10.1016/j.semcancer.2017.11.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/28/2022]
Abstract
There is an increasing awareness of the importance of tumor - immune cell interactions to the evolution and therapy responses of breast cancer (BC). Not surprisingly, numerous studies are currently assessing the clinical value of immune modulation for BC patients. However, till now durable clinical responses are only rarely observed. It is important to realize that BC is a heterogeneous disease comprising several histological and molecular subtypes, which cannot be expected to be equally immunogenic and therefore not equally sensitive to single immune therapies. Here we review the characteristics of infiltrating leukocytes in healthy and malignant breast tissue, the prognostic and predictive values of immune cell subsets across different BC subtypes and the various existing immune evasive mechanisms. Furthermore, we describe the presence of certain groups of antigens as putative targets for treatment, evaluate the outcomes of current clinical immunotherapy trials, and finally, we propose a strategy to better implement immuno-oncological markers to guide future immune therapies in BC.
Collapse
Affiliation(s)
- D Hammerl
- Department of Medical Oncology, Erasmus MC - Cancer Institute, Rotterdam, the Netherlands
| | - M Smid
- Department of Medical Oncology, Erasmus MC - Cancer Institute, Rotterdam, the Netherlands
| | - A M Timmermans
- Department of Medical Oncology, Erasmus MC - Cancer Institute, Rotterdam, the Netherlands
| | - S Sleijfer
- Department of Medical Oncology, Erasmus MC - Cancer Institute, Rotterdam, the Netherlands
| | - J W M Martens
- Department of Medical Oncology, Erasmus MC - Cancer Institute, Rotterdam, the Netherlands
| | - R Debets
- Department of Medical Oncology, Erasmus MC - Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
25
|
Voels B, Wang L, Sens DA, Garrett SH, Zhang K, Somji S. The unique C- and N-terminal sequences of Metallothionein isoform 3 mediate growth inhibition and Vectorial active transport in MCF-7 cells. BMC Cancer 2017; 17:369. [PMID: 28545470 PMCID: PMC5445401 DOI: 10.1186/s12885-017-3355-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/15/2017] [Indexed: 12/28/2022] Open
Abstract
Background The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. Methods MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. Results The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell’s ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Conclusions Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3355-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brent Voels
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA.,Departments of Science, Cankdeska Cikana Community College, 214 1st Avenue, Fort Totten, ND, 58335, USA
| | - Liping Wang
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA.,Present address: Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huangzhong University of Science and Techology, Wuhan, 430030, People's Republic of China
| | - Donald A Sens
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA
| | - Scott H Garrett
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA
| | - Ke Zhang
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA
| | - Seema Somji
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA.
| |
Collapse
|
26
|
Lee AK, Potts PR. A Comprehensive Guide to the MAGE Family of Ubiquitin Ligases. J Mol Biol 2017; 429:1114-1142. [PMID: 28300603 DOI: 10.1016/j.jmb.2017.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022]
Abstract
Melanoma antigen (MAGE) genes are conserved in all eukaryotes and encode for proteins sharing a common MAGE homology domain. Although only a single MAGE gene exists in lower eukaryotes, the MAGE family rapidly expanded in eutherians and consists of more than 50 highly conserved genes in humans. A subset of MAGEs initially garnered interest as cancer biomarkers and immunotherapeutic targets due to their antigenic properties and unique expression pattern that is primary restricted to germ cells and aberrantly reactivated in various cancers. However, further investigation revealed that MAGEs not only drive tumorigenesis but also regulate pathways essential for diverse cellular and developmental processes. Therefore, MAGEs are implicated in a broad range of diseases including neurodevelopmental, renal, and lung disorders, and cancer. Recent biochemical and biophysical studies indicate that MAGEs assemble with E3 RING ubiquitin ligases to form MAGE-RING ligases (MRLs) and act as regulators of ubiquitination by modulating ligase activity, substrate specification, and subcellular localization. Here, we present a comprehensive guide to MAGEs highlighting the molecular mechanisms of MRLs and their physiological roles in germ cell and neural development, oncogenic functions in cancer, and potential as therapeutic targets in disease.
Collapse
Affiliation(s)
- Anna K Lee
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
27
|
Li Y, Li J, Wang Y, Zhang Y, Chu J, Sun C, Fu Z, Huang Y, Zhang H, Yuan H, Yin Y. Roles of cancer/testis antigens (CTAs) in breast cancer. Cancer Lett 2017; 399:64-73. [PMID: 28274891 DOI: 10.1016/j.canlet.2017.02.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer diagnosed and is the second leading cause of cancer death among women in the US. For breast cancer, early diagnosis and efficient therapy remains a significant clinical challenge. Therefore, it is necessary to identify novel tumor associated molecules to target for biomarker development and immunotherapy. In this regard, cancer testis antigens (CTAs) have emerged as a potential clinical biomarker targeting immunotherapy for various malignancies due to the nature of its characteristics. CTAs are a group of tumor associated antigens (TAAs) that display normal expression in immune-privileged organs, but display aberrant expression in several types of cancers, particularly in advanced cancers. Investigation of CTAs for the clinical management of breast malignancies indicates that these TAAs have potential roles as novel biomarkers, with increased specificity and sensitivity compared to those currently used in the clinic. Moreover, TAAs could be therapeutic targets for cancer immunotherapy. This review is an attempt to address the promising CTAs in breast cancer and their possible clinical implications as biomarkers and immunotherapeutic targets with particular focus on challenges and future interventions.
Collapse
Affiliation(s)
- Yongfei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Yifan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Yanhong Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China; Nanjing Maternity and Child Health Medical Institute, Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing 210004, China
| | - Yi Huang
- Department of Pharmacology and Chemical Biology, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hansheng Zhang
- School of Public Health, University of Maryland, College Park, MD 20742, USA
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China.
| |
Collapse
|
28
|
Mori M, Funakoshi T, Kameyama K, Kawakami Y, Sato E, Nakayama E, Amagai M, Tanese K. Lack of XAGE-1b and NY-ESO-1 in metastatic lymph nodes may predict the potential survival of stage III melanoma patients. J Dermatol 2017; 44:671-680. [PMID: 28105694 DOI: 10.1111/1346-8138.13730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
The cancer-testis antigens (CTA) are a large family of tumor-associated antigens expressed by a variety of cancer cells and primitive germ cells of the adult testis and placenta. These tumor-restricted expressing patterns suggest that CTA would be ideal targets for tumor-specific immunotherapy. XAGE-1 is a CTA that was originally identified by computer-based screening, and four transcription variants, XAGE-1a, -1b, -1c and -1d, have been characterized to date. Although the presence of XAGE-1 transcripts has been reported in various cancers, the expression of XAGE-1b in melanoma has not been fully characterized. In this study, we performed immunohistochemical staining of XAGE-1b together with NY-ESO-1, a well-known CTA, in 113 melanoma samples obtained from 84 patients and evaluated their expression in tumor cells. The effects of expression on tumor progression and patient prognosis were analyzed. Both XAGE-1b and NY-ESO-1 were expressed at high levels in lymph node metastasis and skin metastasis samples compared with the primary site (P < 0.01 in XAGE-1b and P < 0.05 in NY-ESO-1). In a subgroup analysis of 22 patients with stage III lymph node metastasis, overall survival was significantly higher in the XAGE-1b and NY-ESO-1 double-negative group than in the other groups (P < 0.05). These results suggest that lack of XAGE-1b and NY-ESO-1 expression could have a positive influence on clinical outcome in patients with melanoma.
Collapse
Affiliation(s)
- Mariko Mori
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Kaori Kameyama
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Eiichi Sato
- Department of Pathology, Institute of Medical Science (Medical Research Center), Tokyo Medical University, Tokyo, Japan
| | - Eiichi Nakayama
- Faculty of Health and Welfare, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keiji Tanese
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
30
|
LEM domain containing 1 promotes oral squamous cell carcinoma invasion and endothelial transmigration. Br J Cancer 2016; 115:52-8. [PMID: 27280633 PMCID: PMC4931378 DOI: 10.1038/bjc.2016.167] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 01/28/2023] Open
Abstract
Background: Oral squamous cell carcinomas have high potential for locoregional invasion and nodal metastasis. Thus, early detection and elucidation of detailed molecular mechanisms of OSCCs are important. Roles of LEM domain containing 1 (LEMD1), a novel cancer–testis antigen, in OSCCs are unclear. Methods: We performed immunohistochemical analysis of LEMD1 in 289 OSCC patients and examined functions of LEMD1 in these carcinomas. Results: Immunohistochemical analysis showed that 101 patients were positive for LEMD1. LEM domain containing 1 expression levels in OSCCs significantly correlated with tumour progression (T factor and clinical stage), nodal metastasis, and poor prognosis. LEM domain containing 1 expression was an independent predictor of disease-free survival in OSCC patients. In OSCCs, LEMD1 knockdown suppressed cancer cell invasion. Moreover, downregulation of LEMD1 expression inhibited adhesion and transmigration of OSCCs and vascular or lymphatic vascular endothelial cells. Conclusions: Our findings suggest that LEMD1 is a novel tumour progressive factor and may be a useful diagnostic and therapeutic target in OSCCs.
Collapse
|
31
|
Chen C, Li Z, Yang Y, Xiang T, Song W, Liu S. Microarray expression profiling of dysregulated long non-coding RNAs in triple-negative breast cancer. Cancer Biol Ther 2016; 16:856-65. [PMID: 25996380 DOI: 10.1080/15384047.2015.1040957] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents a collection of malignant breast tumors that are often aggressive and have an increased risk of metastasis and relapse. Long non-coding RNAs are generally defined as RNA transcripts measuring 200 nucleotides or longer that do not encode for any protein. During the past decade, increasing evidence has shown that lncRNAs play important roles in oncogenesis and tumor suppression; however, the roles of lncRNAs in TNBC are poorly understood. To address this issue, we used Agilent human lncRNA microarray chips and bioinformatics tools, including Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), to assess lncRNA expression in 3 pairs of TNBC tissues. A dysregulated lncRNA expression profile was identified by microarray and verified by qRT-PCR in 48 pairs of breast cancer subtype tissues. Metastasis is the major cause of cancer-related deaths, including those in TNBC, and the presence of dormant residual disseminated tumor cells (DTC) may be a key factor leading to metastasis. ANKRD30A, a potential target for breast cancer immunotherapy, is currently one of the most used DTC markers. Notably, we found the expression levels of the novel intergenic lncRNA LINC00993 to be associated with the expression levels of ANKRD30A. Furthermore, our qRT-PCR data indicated that the expression of LINC00993 was also associated with the expression of the estrogen receptor. In conclusion, our study identified a set of lncRNAs that were consistently aberrantly expressed in TNBC, and these dysregulated lncRNAs may be involved in the development and/or progression of TNBC.
Collapse
Affiliation(s)
- Chen Chen
- a Department of Surgery ; The First Affiliated Hospital of Chongqing Medical University ; Chongqing , China
| | | | | | | | | | | |
Collapse
|
32
|
Esfandiary A, Ghafouri-Fard S. New York esophageal squamous cell carcinoma-1 and cancer immunotherapy. Immunotherapy 2016; 7:411-39. [PMID: 25917631 DOI: 10.2217/imt.15.3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New York esophageal squamous cell carcinoma 1 (NY-ESO-1) is a known cancer testis gene with exceptional immunogenicity and prevalent expression in many cancer types. These characteristics have made it an appropriate vaccine candidate with the potential application against various malignancies. This article reviews recent knowledge about the NY-ESO-1 biology, function, immunogenicity and expression in cancers as well as and the results of clinical trials with this antigen.
Collapse
Affiliation(s)
- Ali Esfandiary
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | | |
Collapse
|
33
|
Abstract
Decades of research are now leading to therapeutics that target the molecular mechanisms of the cancer-specific immune response. These therapeutics include tumor antigen vaccines, dendritic cell activators, adjuvants that activate innate immunity, adoptive cellular therapy, and checkpoint blockade. The advances in targeted immunotherapy have led to clinical advances in the treatment of solid tumors such as melanoma, prostate cancer, lung cancer, and hematologic malignancies. Preclinical and translational studies suggest that patients with breast cancer may also benefit from augmenting effective immune responses. These results have led to early-phase clinical trials of tumor antigen vaccines, adjuvants, and combinations of checkpoint inhibitor blockade to boost breast cancer-specific immunity in patients. This review focuses on the current and emerging development of cancer immunotherapy for breast cancer.
Collapse
|
34
|
Milioli HH, Vimieiro R, Riveros C, Tishchenko I, Berretta R, Moscato P. The Discovery of Novel Biomarkers Improves Breast Cancer Intrinsic Subtype Prediction and Reconciles the Labels in the METABRIC Data Set. PLoS One 2015; 10:e0129711. [PMID: 26132585 PMCID: PMC4488510 DOI: 10.1371/journal.pone.0129711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prediction of breast cancer intrinsic subtypes has been introduced as a valuable strategy to determine patient diagnosis and prognosis, and therapy response. The PAM50 method, based on the expression levels of 50 genes, uses a single sample predictor model to assign subtype labels to samples. Intrinsic errors reported within this assay demonstrate the challenge of identifying and understanding the breast cancer groups. In this study, we aim to: a) identify novel biomarkers for subtype individuation by exploring the competence of a newly proposed method named CM1 score, and b) apply an ensemble learning, as opposed to the use of a single classifier, for sample subtype assignment. The overarching objective is to improve class prediction. METHODS AND FINDINGS The microarray transcriptome data sets used in this study are: the METABRIC breast cancer data recorded for over 2000 patients, and the public integrated source from ROCK database with 1570 samples. We first computed the CM1 score to identify the probes with highly discriminative patterns of expression across samples of each intrinsic subtype. We further assessed the ability of 42 selected probes on assigning correct subtype labels using 24 different classifiers from the Weka software suite. For comparison, the same method was applied on the list of 50 genes from the PAM50 method. CONCLUSIONS The CM1 score portrayed 30 novel biomarkers for predicting breast cancer subtypes, with the confirmation of the role of 12 well-established genes. Intrinsic subtypes assigned using the CM1 list and the ensemble of classifiers are more consistent and homogeneous than the original PAM50 labels. The new subtypes show accurate distributions of current clinical markers ER, PR and HER2, and survival curves in the METABRIC and ROCK data sets. Remarkably, the paradoxical attribution of the original labels reinforces the limitations of employing a single sample classifiers to predict breast cancer intrinsic subtypes.
Collapse
Affiliation(s)
- Heloisa Helena Milioli
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Renato Vimieiro
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Carlos Riveros
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Inna Tishchenko
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Regina Berretta
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Pablo Moscato
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
35
|
Liu H. Application of immunohistochemistry in breast pathology: a review and update. Arch Pathol Lab Med 2015; 138:1629-42. [PMID: 25427042 DOI: 10.5858/arpa.2014-0094-ra] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Immunohistochemistry is a valuable tool in routine breast pathology, used for both diagnostic and prognostic parameters. The diagnostic immunomarkers are the scope of this review. Most breast lesions can be diagnosed on routine hematoxylin-eosin sections; however, in several scenarios, such as morphologically equivocal cases or metastatic tumors of unknown primary, the appropriate application of immunohistochemistry adds true value in reaching an accurate diagnosis. OBJECTIVE To evaluate the diagnostic utility of the most commonly studied immunomarkers in the field of breast pathology by review of the literature, using the database of indexed articles in PubMed (US National Library of Medicine, Bethesda, Maryland) from 1976 to 2013. DATA SOURCES Literature review, and author's research data and personal practice experience. CONCLUSIONS The appropriate use of immunohistochemistry by applying a panel of immunomarkers and using a standardized technical and interpretational method will complement the morphologic assessment and aid in the accurate classification of difficult breast lesions and the identification of metastasis from a breast primary.
Collapse
Affiliation(s)
- Haiyan Liu
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| |
Collapse
|
36
|
Lin F, Liu H. Immunohistochemistry in undifferentiated neoplasm/tumor of uncertain origin. Arch Pathol Lab Med 2015; 138:1583-610. [PMID: 25427040 DOI: 10.5858/arpa.2014-0061-ra] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Immunohistochemistry has become an indispensable ancillary study in the identification and classification of undifferentiated neoplasms/tumors of uncertain origin. The diagnostic accuracy has significantly improved because of the continuous discoveries of tissue-specific biomarkers and the development of effective immunohistochemical panels. OBJECTIVES To identify and classify undifferentiated neoplasms/tumors of uncertain origin by immunohistochemistry. DATA SOURCES Literature review and authors' research data and personal practice experience were used. CONCLUSIONS To better guide therapeutic decisions and predict prognostic outcomes, it is crucial to differentiate the specific lineage of an undifferentiated neoplasm. Application of appropriate immunohistochemical panels enables the accurate classification of most undifferentiated neoplasms. Knowing the utilities and pitfalls of each tissue-specific biomarker is essential for avoiding potential diagnostic errors because an absolutely tissue-specific biomarker is exceptionally rare. We review frequently used tissue-specific biomarkers, provide effective panels, and recommend diagnostic algorithms as a standard approach to undifferentiated neoplasms.
Collapse
Affiliation(s)
- Fan Lin
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | | |
Collapse
|
37
|
Page DB, Naidoo J, McArthur HL. Emerging immunotherapy strategies in breast cancer. Immunotherapy 2014; 6:195-209. [PMID: 24491092 DOI: 10.2217/imt.13.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although immunogenicity is typically associated with renal cell carcinomas and melanoma, there are several compelling reasons why immune-based therapies should be explored in breast cancer. First, breast cancers express multiple putative tumor-associated antigens, such as HER-2 and MUC-1, which have been the successful focus of vaccine development over the past decade, translating into tumor-specific immune responses and, in some cases, clinical benefit. Second, passive immune strategies with anti-HER-2 antibodies, such as trastuzumab and pertuzumab, have led to survival benefits in breast cancer. Finally, the successes observed with novel immunotherapeutic strategies, such as immune checkpoint blockade and adoptive T-cell therapies in other malignancies, combined with a growing body of literature that supports an interplay between solid tumors and the immune system, indicate that these strategies have the potential to revolutionize the treatment of breast cancer.
Collapse
Affiliation(s)
- David B Page
- Memorial Sloan-Kettering Cancer Center, Department of Medicine, 300 East 66th Street, New York, NY 10065, NY, USA
| | | | | |
Collapse
|
38
|
Ghafouri-Fard S, Shamsi R, Seifi-Alan M, Javaheri M, Tabarestani S. Cancer-testis genes as candidates for immunotherapy in breast cancer. Immunotherapy 2014; 6:165-79. [PMID: 24491090 DOI: 10.2217/imt.13.165] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer-testis (CT) antigens are tumor-associated antigens attracting immunologists for their possible application in the immunotherapy of cancer. Several clinical trials have assessed their therapeutic potentials in cancer patients. Breast cancers, especially triple-negative cancers are among those with significant expression of CT genes. Identification of CT genes with high expression in cancer patients is the prerequisite for any immunotherapeutic approach. CT genes have gained attention not only for immunotherapy of cancer patients, but also for immunoprevention in high-risk individuals. Many CT genes have proved to be immunogenic in breast cancer patients suggesting the basis for the development of polyvalent vaccines.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | | | | | | | | |
Collapse
|
39
|
Liu H, Shi J, Prichard JW, Gong Y, Lin F. Immunohistochemical evaluation of GATA-3 expression in ER-negative breast carcinomas. Am J Clin Pathol 2014; 141:648-55. [PMID: 24713735 DOI: 10.1309/ajcp0q9uqteeslhn] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Estrogen receptor (ER), gross cystic disease fluid protein 15 (GCDFP-15), and mammaglobin (MGB) are commonly used breast-specific immunomarkers; however, about half of metastatic breast carcinomas are negative for all three. GATA-binding protein 3 (GATA-3) has emerged recently as a sensitive and relatively specific immunomarker for breast and urothelial carcinomas, but the data documenting its expression in ER-negative breast carcinomas are limited; this often poses a dilemma in the setting of metastases. The purpose of this study is to investigate expression of GATA-3 in ER-negative breast carcinomas. METHODS Immunohistochemical evaluation of GATA-3, GCDFP-15, and MGB on 96 ER-negative breast carcinomas was performed. RESULTS Overall, 69% (66/96), 15% (14/96), and 35% (34/96) of ER-negative breast carcinomas expressed GATA-3, GCDFP-15, and MGB, respectively. CONCLUSIONS Our data suggest that GATA-3 is, so far, the best breast-specific immunomarker, especially when encountering ER-negative metastatic breast carcinomas. GATA-3 should be included in the panel of immunomarkers in the workup of tumors of unknown primary.
Collapse
Affiliation(s)
| | | | | | - Yun Gong
- The University of Texas M.D. Anderson Cancer Center, Houston
| | - Fan Lin
- Geisinger Medical Center, Danville, PA
| |
Collapse
|
40
|
Laban S, Atanackovic D, Luetkens T, Knecht R, Busch CJ, Freytag M, Spagnoli G, Ritter G, Hoffmann TK, Knuth A, Sauter G, Wilczak W, Blessmann M, Borgmann K, Muenscher A, Clauditz TS. Simultaneous cytoplasmic and nuclear protein expression of melanoma antigen-A family and NY-ESO-1 cancer-testis antigens represents an independent marker for poor survival in head and neck cancer. Int J Cancer 2014; 135:1142-52. [PMID: 24482145 DOI: 10.1002/ijc.28752] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 02/01/2023]
Abstract
The prognosis of head and neck squamous cell carcinoma (HNSCC) patients remains poor. The identification of high-risk subgroups is needed for the development of custom-tailored therapies. The expression of cancer-testis antigens (CTAs) has been linked to a worse prognosis in other cancer types; however, their prognostic value in HNSCC is unclear because only few patients have been examined and data on CTA protein expression are sparse. A tissue microarray consisting of tumor samples from 453 HNSCC patients was evaluated for the expression of CTA proteins using immunohistochemistry. Frequency of expression and the subcellular expression pattern (nuclear, cytoplasmic, or both) was recorded. Protein expression of melanoma antigen (MAGE)-A family CTA, MAGE-C family CTA and NY-ESO-1 was found in approximately 30, 7 and 4% of tumors, respectively. The subcellular expression pattern in particular had a marked impact on the patients' prognosis. Median overall survival (OS) of patients with (i) simultaneous cytoplasmic and nuclear expression compared to (ii) either cytoplasmic or nuclear expression and (iii) negative patients was 23.0 versus 109.0 versus 102.5 months, for pan-MAGE (p < 0.0001), 46.6 versus 50.0 versus 109.0 for MAGE-A3/A4 (p = 0.0074) and 13.3 versus 50.0 versus 100.2 months for NY-ESO-1 (p = 0.0019). By multivariate analysis, these factors were confirmed as independent markers for poor survival. HNSCC patients showing protein expression of MAGE-A family members or NY-ESO-1 represent a subgroup with an extraordinarily poor survival. The development of immunotherapeutic strategies targeting these CTA may, therefore, be a promising approach to improve the outcome of HNSCC patients.
Collapse
Affiliation(s)
- Simon Laban
- Department of Otorhinolaryngology and Head and Neck Surgery, Head and Neck Cancer Center of the University Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|