1
|
Scotton E, Ziani PR, Wilges RLB, da Rosa Correa PH, Giordano LA, Goularte JF, Schons T, Almeida FB, Stein DJ, de Castro JM, de Bastiani MA, de Oliveira Soares EG, Paixão DB, da Silva CDG, Schneider PH, Colombo R, Rosa AR. Molecular signature underlying (R)-ketamine rapid antidepressant response on anhedonic-like behavior induced by sustained exposure to stress. Pharmacol Biochem Behav 2024; 245:173882. [PMID: 39488299 DOI: 10.1016/j.pbb.2024.173882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024]
Abstract
Anhedonia induced by sustained stress exposure is a hallmark symptom of major depressive disorder (MDD) and in rodents, it can be accessed through the sucrose preference test (SPT). (R)-ketamine is a fast-acting antidepressant with less detrimental side effects and abuse liability compared to racemic ketamine. The present study combined high-throughput proteomics and network analysis to identify molecular mechanisms involved in chronic variable stress (CVS)-induced anhedonia and promising targets underlying (R)-ketamine rapid antidepressant response. Male Wistar rats were subjected to CVS for five weeks. Based on the SPT, animals were clustered into resilient or anhedonic-like (ANH) groups. ANH rats received a single dose of saline or (R)-ketamine (20 mg/kg, i.p.), which was proceeded by treatment response evaluation. After prefrontal cortex collection, proteomic analysis was performed to uncover the differentially expressed proteins (DEPs) related to both anhedonic-like behavior and pharmacological response. The behavioral assessment showed that the ANH animals had a significant decrease in SPT, and that (R)-ketamine responders showed a reversal of anhedonic-like behavior. On a molecular level, anhedonia-like behavior was associated with the downregulation of Neuronal Pentraxin Receptor (Nptxr) and Galectin-1 (Gal-1). These data reinforce a disruption in the inflammatory response, neurotransmitter receptor activity, and glutamatergic synapses in chronic stress-induced anhedonia. (R)-ketamine response-associated DEPs included novel potential targets involved in the modulation of oxidative stress, energetic metabolism, synaptogenesis, dendritic arborization, neuroinflammation, gene expression, and telomere length, converging to biological themes extensively documented in MDD physiopathology. Our data provide valuable insights into the molecular mechanisms underlying the response to (R)-ketamine and highlight these pathways as potential therapeutic targets for anhedonia. By addressing proteins involved in oxidative stress, energy metabolism, synaptogenesis, dendritic arborization, neuroinflammation, gene expression, and telomere length, we can target multiple key factors involved in the pathophysiology of MDD. Modulating these proteins could open avenues for novel therapeutic strategies and deepen our understanding of anhedonia, offering hope for improved outcomes in individuals facing this challenging condition. However, additional studies will be essential to validate these findings and further explore their therapeutic implications.
Collapse
Affiliation(s)
- Ellen Scotton
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Paola Rampelotto Ziani
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Renata Luiza Boff Wilges
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Pedro Henrique da Rosa Correa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Lucas Azambuja Giordano
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jéferson Ferraz Goularte
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Tainá Schons
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Felipe Borges Almeida
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Dirson João Stein
- Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Josimar Macedo de Castro
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; School of Medicine and Post-Graduate Program in Medical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Marco Antônio de Bastiani
- Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Douglas Bernardo Paixão
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caren Daniele Galeano da Silva
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paulo Henrique Schneider
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafael Colombo
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil..
| | - Adriane R Rosa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Castro-Martínez JA, Vargas E, Díaz-Beltrán L, Esteban FJ. Enhancing Transcriptomic Insights into Neurological Disorders Through the Comparative Analysis of Shapley Values. Curr Issues Mol Biol 2024; 46:13583-13606. [PMID: 39727940 PMCID: PMC11726880 DOI: 10.3390/cimb46120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Neurological disorders such as Autism Spectrum Disorder (ASD), Schizophrenia (SCH), Bipolar Disorder (BD), and Major Depressive Disorder (MDD) affect millions of people worldwide, yet their molecular mechanisms remain poorly understood. This study describes the application of the Comparative Analysis of Shapley values (CASh) to transcriptomic data from nine datasets associated with these complex disorders, demonstrating its effectiveness in identifying differentially expressed genes (DEGs). CASh, which combines Game Theory with Bootstrap resampling, offers a robust alternative to traditional statistical methods by assessing the contribution of each gene in the broader context of the complete dataset. Unlike conventional approaches, CASh is highly effective at detecting subtle but meaningful molecular patterns that are often missed. These findings highlight the potential of CASh to enhance the precision of transcriptomic analysis, providing a deeper understanding of the molecular mechanisms underlying these disorders and establishing a solid basis to improve diagnostic techniques and developing more targeted therapeutic interventions.
Collapse
Affiliation(s)
- José A. Castro-Martínez
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| | - Eva Vargas
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| | - Leticia Díaz-Beltrán
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
- Clinical Research Unit, Department of Medical Oncology, University Hospital of Jaén, 23007 Jaén, Spain
| | - Francisco J. Esteban
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| |
Collapse
|
3
|
Osetrova M, Zavolskova M, Mazin P, Stekolschikova E, Vladimirov G, Efimova O, Morozova A, Zorkina Y, Andreyuk D, Kostyuk G, Nikolaev E, Khaitovich P. Mass Spectrometry Imaging of Two Neocortical Areas Reveals the Histological Selectivity of Schizophrenia-Associated Lipid Alterations. CONSORTIUM PSYCHIATRICUM 2024; 5:4-16. [PMID: 39526011 PMCID: PMC11542914 DOI: 10.17816/cp15488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Schizophrenia is a psychiatric disorder known to affect brain structure and functionality. Structural changes in the brain at the level of gross anatomical structures have been fairly well studied, while microstructural changes, especially those associated with changes in the molecular composition of the brain, are still being investigated. Of special interest are lipids and metabolites, for which some previous studies have shown association with schizophrenia. AIM To utilize a spatially resolved analysis of the brain lipidome composition to investigate the degree and nature of schizophrenia-associated lipidome alterations in the gray and white matter structures of two neocortical regions - the dorsolateral prefrontal cortex (Brodmann area 9, BA9) and the posterior part of the superior temporal gyrus (Brodmann area 22, posterior part, BA22p), as well compare the distribution of the changes between the two regions and tissue types. METHODS We employed Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging (MALDI-MSI), supplemented by a statistical analysis, to examine the lipid composition of brain sections. A total of 24 neocortical sections from schizophrenia patients (n=2) and a healthy control group (n=2), representing the two aforementioned neocortical areas, were studied, yielding data for 131 lipid compounds measured across more than a million MALDI-MSI pixels. RESULTS Our findings revealed an uneven distribution of schizophrenia-related lipid alterations across the two neocortical regions. The BA22p showed double the differences in its subcortical white matter structures compared to BA9, while less bias was detected in the gray matter layers. While the schizophrenia-associated lipid differences generally showed good agreement between brain regions at the lipid class level for both gray and white matter, there were consistently more discrepancies for white matter structures. CONCLUSION Our study found a consistent yet differential association of schizophrenia with the brain lipidome composition of distinct neocortical areas, particularly subcortical white matter. These findings highlight the need for broader brain coverage in future schizophrenia research and underscore the potential of spatially resolved molecular analysis methods in identifying structure-specific effects.
Collapse
|
4
|
Shi L, Zhang P, Liu Q, Liu C, Cheng L, Yu B, Chen H. Genome-Wide Analysis of Genetic Diversity and Selection Signatures in Zaobei Beef Cattle. Animals (Basel) 2024; 14:2447. [PMID: 39199980 PMCID: PMC11350888 DOI: 10.3390/ani14162447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
This investigation provides a comprehensive analysis of genomic diversity and selection signatures in Zaobei beef cattle, an indigenous breed known for its adaptation to hot and humid climates and superior meat quality. Whole-genome resequencing was conducted on 23 Zaobei cattle, compared with 46 Simmental cattle to highlight genetic distinctions. Population structure analysis confirmed the genetic uniqueness of Zaobei cattle. Using methods such as DASDC v1.01, XPEHH, and θπ ratio, we identified 230, 232, and 221 genes through DASDC, including hard sweeps, soft sweeps, and linkage sweeps, respectively. Coincidentally, 109 genes were identified when using XPEHH and θπ ratio methods. Together, these analyses revealed eight positive selection genes (ARHGAP15, ZNF618, USH2A, PDZRN4, SPATA6, ROR2, KCNIP3, and VWA3B), which are linked to critical traits such as heat stress adaptation, fertility, and meat quality. Moreover, functional enrichment analyses showed pathways related to autophagy, immune response, energy metabolism, and muscle development. The comprehensive genomic insights gained from this study provide valuable knowledge for breeding programs aimed at enhancing the beneficial traits in Zaobei cattle.
Collapse
Affiliation(s)
- Liangyu Shi
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Pu Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Qing Liu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Chenhui Liu
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China; (C.L.); (L.C.)
| | - Lei Cheng
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China; (C.L.); (L.C.)
| | - Bo Yu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| |
Collapse
|
5
|
Brandão-Teles C, Antunes ASLM, de Moraes Vrechi TA, Martins-de-Souza D. The Roles of hnRNP Family in the Brain and Brain-Related Disorders. Mol Neurobiol 2024; 61:3578-3595. [PMID: 37999871 DOI: 10.1007/s12035-023-03747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to a complex family of RNA-binding proteins that are essential to control alternative splicing, mRNA trafficking, synaptic plasticity, stress granule formation, cell cycle regulation, and axonal transport. Over the past decade, hnRNPs have been associated with different brain disorders such as Alzheimer's disease, multiple sclerosis, and schizophrenia. Given their essential role in maintaining cell function and integrity, it is not surprising that dysregulated hnRNP levels lead to neurological implications. This review aims to explore the primary functions of hnRNPs in neurons, oligodendrocytes, microglia, and astrocytes, and their roles in brain disorders. We also discuss proteomics and other technologies and their potential for studying and evaluating hnRNPs in brain disorders, including the discovery of new therapeutic targets and possible pharmacological interventions.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - André S L M Antunes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil.
| |
Collapse
|
6
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
7
|
Khan A, Zahid S, Hasan B, Asif AR, Ahmed N. Mass Spectrometry based identification of site-specific proteomic alterations and potential pathways underlying the pathophysiology of schizophrenia. Mol Biol Rep 2023; 50:4931-4943. [PMID: 37076706 DOI: 10.1007/s11033-023-08431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Schizophrenia (SZ) is a complex multifactorial disorder that affects 1% of the population worldwide with no available effective treatment. Although proteomic alterations are reported in SZ however proteomic expression aberrations among different brain regions are not fully determined. Therefore, the present study aimed spatial differential protein expression profiling of three distinct regions of SZ brain and identification of associated affected biological pathways in SZ progression. METHODS AND RESULTS Comparative protein expression profiling of three distinct autopsied human brain regions (i.e., substantia nigra, hippocampus and prefrontal cortex) of SZ was performed with respective healthy controls. Using two-dimensional electrophoresis (2DE)-based nano liquid chromatography tandem mass spectrometry (Nano-LC MS /MS) analysis, 1443 proteins were identified out of which 58 connote to be significantly dysregulated, representing 26 of substantia nigra,14 of hippocampus and 18 of prefrontal cortex. The 58 differentially expressed proteins were further analyzed using Ingenuity pathway analysis (IPA). The IPA analysis provided protein-protein interaction networks of several proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kb), extracellular signal regulated kinases 1/2 (ERK1/2), alpha serine / Threonine-protein kinase (AKT1), cellular tumor antigen p53 (TP53) and amyloid precursor protein (APP), holding prime positions in networks and interacts with most of the identified proteins and their closely interacting partners. CONCLUSION These findings provide conceptual insights of novel SZ related pathways and the cross talk of co and contra regulated proteins. This spatial proteomic analysis will further broaden the conceptual framework for schizophrenia research in future.
Collapse
Affiliation(s)
- Ayesha Khan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Saadia Zahid
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Beena Hasan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Abdul R Asif
- Institute of Clinical Chemistry, University Medical Center, Robert-Koch-Str. 40, 37075, Göttingen, Göttingen, Germany
| | - Nikhat Ahmed
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
8
|
Zhu Y, Owens SJ, Murphy CE, Ajulu K, Rothmond D, Purves-Tyson T, Middleton F, Webster MJ, Weickert CS. Inflammation-related transcripts define "high" and "low" subgroups of individuals with schizophrenia and bipolar disorder in the midbrain. Brain Behav Immun 2022; 105:149-159. [PMID: 35764269 DOI: 10.1016/j.bbi.2022.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 01/08/2023] Open
Abstract
Dopamine dysregulation in schizophrenia may be associated with midbrain inflammation. Previously, we found elevated levels of pro-inflammatory cytokine mRNAs in the post-mortem midbrain of people with schizophrenia (46%) but not from unaffected controls (0%) using a brain cohort from Sydney, Australia. Here, we measured cytokine mRNAs and proteins in the midbrain in the Stanley Medical Research Institute (SMRI) array cohort (N = 105). We tested if the proportions of individuals with schizophrenia and with high inflammation can be replicated, and if individuals with bipolar disorder with elevated midbrain cytokines can be identified. mRNA levels of 7 immune transcripts from post-mortem midbrain tissue were measured via RT-PCR and two-step recursive clustering analysis was performed using 4 immune transcripts to define "high and low" inflammatory subgroups. The clustering predictors used were identical to our earlier midbrain study, and included: IL1B, IL6, TNF, and SERPINA3 mRNA levels. 46% of schizophrenia cases (16/35 SCZ), 6% of controls (2/33 CTRL), and 29% of bipolar disorder cases (10/35 BPD) were identified as belonging to the high inflammation (HI) subgroups [χ2 (2) = 13.54, p < 0.001]. When comparing inflammatory subgroups, all four mRNAs were significantly increased in SCZ-HI and BPD-HI compared to low inflammation controls (CTRL-LI) (p < 0.05). Additionally, protein levels of IL-1β, IL-6, and IL-18 were elevated in SCZ-HI and BPD-HI compared to all other low inflammatory subgroups (all p < 0.05). Surprisingly, TNF-α protein levels were unchanged according to subgroups. In conclusion, we determined that almost half of the individuals with schizophrenia were defined as having high inflammation in the midbrain, replicating our previous findings. Further, we detected close to one-third of those with bipolar disorder to be classified as having high inflammation. Elevations in some pro-inflammatory cytokine mRNAs (IL-1β and IL-6) were also found at the protein level, whereas TNF mRNA and protein levels were not concordant.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Samantha J Owens
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Caitlin E Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Kachikwulu Ajulu
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Debora Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Tertia Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Frank Middleton
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA; Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
9
|
Smith BJ, Brandão-Teles C, Zuccoli GS, Reis-de-Oliveira G, Fioramonte M, Saia-Cereda VM, Martins-de-Souza D. Protein Succinylation and Malonylation as Potential Biomarkers in Schizophrenia. J Pers Med 2022; 12:jpm12091408. [PMID: 36143193 PMCID: PMC9500613 DOI: 10.3390/jpm12091408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Two protein post-translational modifications, lysine succinylation and malonylation, are implicated in protein regulation, glycolysis, and energy metabolism. The precursors of these modifications, succinyl-CoA and malonyl-CoA, are key players in central metabolic processes. Both modification profiles have been proven to be responsive to metabolic stimuli, such as hypoxia. As mitochondrial dysfunction and metabolic dysregulation are implicated in schizophrenia and other psychiatric illnesses, these modification profiles have the potential to reveal yet another layer of protein regulation and can furthermore represent targets for biomarkers that are indicative of disease as well as its progression and treatment. In this work, data from shotgun mass spectrometry-based quantitative proteomics were compiled and analyzed to probe the succinylome and malonylome of postmortem brain tissue from patients with schizophrenia against controls and the human oligodendrocyte precursor cell line MO3.13 with the dizocilpine chemical model for schizophrenia, three antipsychotics, and co-treatments. Several changes in the succinylome and malonylome were seen in these comparisons, revealing these modifications to be a largely under-studied yet important form of protein regulation with broad potential applications.
Collapse
Affiliation(s)
- Bradley Joseph Smith
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
- Correspondence: (B.J.S.); (D.M.-d.-S.); Tel.: +55-(19)-3521-6129 (D.M.-d.-S.)
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Giuliana S. Zuccoli
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Mariana Fioramonte
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Verônica M. Saia-Cereda
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-000, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, Brazil
- D’Or Institute for Research and Education (IDOR), São Paulo 04501-000, Brazil
- Correspondence: (B.J.S.); (D.M.-d.-S.); Tel.: +55-(19)-3521-6129 (D.M.-d.-S.)
| |
Collapse
|
10
|
Wang S, Yang C, Pan C, Feng X, Lei Z, Huang J, Wei X, Li F, Ma Y. Identification of key genes and functional enrichment pathways involved in fat deposition in Xinyang buffalo by WGCNA. Gene X 2022; 818:146225. [PMID: 35063576 DOI: 10.1016/j.gene.2022.146225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/06/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023] Open
Abstract
The Xinyang buffalo is a valuable and endangered domestic heritage resource in the Dabie Mountain region in China. With the increasing mechanization of agriculture, the Xinyang buffalo, mainly used for labor, faces unprecedented challenges. One of the feasible approaches to conserve and expand the species is to transfer Xinyang buffalo from service-use to meat-use, but the main hindrance to this transformation is the inferior meat quality of Xinyang buffalo, which is not popular with consumers. Based on the above, this study was conducted to evaluate the growth performance (n = 120) and slaughter performance (n = 3) of Xinyang buffalo and to measure the amino acid levels of the eye muscle (EM), and assess the meat quality. Later, transcriptome sequencing was performed on the subcutaneous fat of the back at six (n = 3) and 30 months of age (n = 3), together with the excavation of candidate genes associated with fat deposition using the weighted co-expression network analysis (WGCNA) method. The results showed that the slaughter rate of Xinyang buffalo was 43.09%, net meat percentage was 33.04%, the ocular area was 59.16 ± 7.58, the backfat thickness was 1.03 ± 0.16, and meat bone ratio was 3.29. The total amino acid contents were 0.63 g per gram of beef, which contained 0.05 g of essential amino acids, and the three most abundant amino acids were Ser (447.17 mg/g), Asp (29.8 mg/g), and Pro (27.24 mg/g). The WGCNA results showed that six phenotypes measured were significantly correlated with the turquoise module (r > 0.97, P < 0.001), and the genes in these modules were significantly enriched in the pathways related to substance metabolism and energy metabolisms, such as metabolic pathways, citrate cycle, and fatty acid metabolism. Meanwhile, six key candidate genes (FH, MECR, GPI, PANK3, ATP6V1A, PHYH) were identified, which were associated with growth and development, fat deposition, and intra-muscular amino acid levels (P < 0.05). In short, this study provides another feasible way to preserve buffalo and enriches the theory of its molecular genetic breeding.
Collapse
Affiliation(s)
- Shuzhe Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China; College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Chaoyun Yang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Cuili Pan
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xue Feng
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhaoxiong Lei
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Jieping Huang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuefeng Wei
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China; College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Fen Li
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yun Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China.
| |
Collapse
|
11
|
Biswas K, Alexander K, Francis MM. Reactive Oxygen Species: Angels and Demons in the Life of a Neuron. NEUROSCI 2022; 3:130-145. [PMID: 39484669 PMCID: PMC11523706 DOI: 10.3390/neurosci3010011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 11/03/2024] Open
Abstract
Reactive oxygen species (ROS) have emerged as regulators of key processes supporting neuronal growth, function, and plasticity across lifespan. At normal physiological levels, ROS perform important roles as secondary messengers in diverse molecular processes such as regulating neuronal differentiation, polarization, synapse maturation, and neurotransmission. In contrast, high levels of ROS are toxic and can ultimately lead to cell death. Excitable cells, such as neurons, often require high levels of metabolic activity to perform their functions. As a consequence, these cells are more likely to produce high levels of ROS, potentially enhancing their susceptibility to oxidative damage. In addition, because neurons are generally post-mitotic, they may be subject to accumulating oxidative damage. Thus, maintaining tight control over ROS concentration in the nervous system is essential for proper neuronal development and function. We are developing a more complete understanding of the cellular and molecular mechanisms for control of ROS in these processes. This review focuses on ROS regulation of the developmental and functional properties of neurons, highlighting recent in vivo studies. We also discuss the current evidence linking oxidative damage to pathological conditions associated with neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kasturi Biswas
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kellianne Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
12
|
Proteomics and Schizophrenia: The Evolution of a Great Partnership. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:129-138. [DOI: 10.1007/978-3-030-97182-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Known and Unexplored Post-Translational Modification Pathways in Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:75-87. [DOI: 10.1007/978-3-030-97182-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
15
|
Zuccoli GS, Reis-de-Oliveira G, Garbes B, Falkai P, Schmitt A, Nakaya HI, Martins-de-Souza D. Linking proteomic alterations in schizophrenia hippocampus to NMDAr hypofunction in human neurons and oligodendrocytes. Eur Arch Psychiatry Clin Neurosci 2021; 271:1579-1586. [PMID: 33751207 DOI: 10.1007/s00406-021-01248-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Glutamatergic neurotransmission dysfunction and the early involvement of the hippocampus have been proposed to be important aspects of the pathophysiology of schizophrenia. Here, we performed proteomic analysis of hippocampus postmortem samples from schizophrenia patients as well as neural cells-neurons and oligodendrocytes-treated with MK-801, an NMDA receptor antagonist. There were similarities in processes such as oxidative stress and apoptotic process when comparing hippocampus samples with MK-801-treated neurons, and in proteins synthesis when comparing hippocampus samples with MK-801-treated oligodendrocytes. This reveals that studying the effects of glutamatergic dysfunction in different neural cells can contribute to a better understanding of what it is observed in schizophrenia patients' postmortem brains.
Collapse
Affiliation(s)
- Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruna Garbes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximillian University of Munich (LMU), Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximillian University of Munich (LMU), Munich, Germany
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil.
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil. .,Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brasil. .,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil. .,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
16
|
Murphy CE, Walker AK, Weickert CS. Neuroinflammation in schizophrenia: the role of nuclear factor kappa B. Transl Psychiatry 2021; 11:528. [PMID: 34650030 PMCID: PMC8516884 DOI: 10.1038/s41398-021-01607-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, particularly in the dorsolateral prefrontal cortex, is well-established in a subset of people with schizophrenia, with significant increases in inflammatory markers including several cytokines. Yet the cause(s) of cortical inflammation in schizophrenia remains unknown. Clues as to potential microenvironmental triggers and/or intracellular deficits in immunoregulation may be gleaned from looking further upstream of effector immune molecules to transcription factors that control inflammatory gene expression. Here, we focus on the 'master immune regulator' nuclear factor kappa B (NF-κB) and review evidence in support of NF-κB dysregulation causing or contributing to neuroinflammation in patients. We discuss the utility of 'immune biotyping' as a tool to analyse immune-related transcripts and proteins in patient tissue, and the insights into cortical NF-κB in schizophrenia revealed by immune biotyping compared to studies treating patients as a single, homogenous group. Though the ubiquitous nature of NF-κB presents several hurdles for drug development, targeting this key immunoregulator with novel or repurposed therapeutics in schizophrenia is a relatively underexplored area that could aid in reducing symptoms of patients with active neuroinflammation.
Collapse
Affiliation(s)
- Caitlin E. Murphy
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia
| | - Adam K. Walker
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Randwick, NSW 2031 Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Randwick, NSW, 2031, Australia. .,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
17
|
Analysis of Molecular Networks in the Cerebellum in Chronic Schizophrenia: Modulation by Early Postnatal Life Stressors in Murine Models. Int J Mol Sci 2021; 22:ijms221810076. [PMID: 34576238 PMCID: PMC8469990 DOI: 10.3390/ijms221810076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023] Open
Abstract
Despite the growing importance of the cerebellum as a region highly vulnerable to accumulating molecular errors in schizophrenia, limited information is available regarding altered molecular networks with potential therapeutic targets. To identify altered networks, we conducted one-shot liquid chromatography–tandem mass spectrometry in postmortem cerebellar cortex in schizophrenia and healthy individuals followed by bioinformatic analysis (PXD024937 identifier in ProteomeXchange repository). A total of 108 up-regulated proteins were enriched in stress-related proteins, half of which were also enriched in axonal cytoskeletal organization and vesicle-mediated transport. A total of 142 down-regulated proteins showed an enrichment in proteins involved in mitochondrial disease, most of which were also enriched in energy-related biological functions. Network analysis identified a mixed module of mainly axonal-related pathways for up-regulated proteins with a high number of interactions for stress-related proteins. Energy metabolism and neutrophil degranulation modules were found for down-regulated proteins. Further, two double-hit postnatal stress murine models based on maternal deprivation combined with social isolation or chronic restraint stress were used to investigate the most robust candidates of generated networks. CLASP1 from the axonal module in the model of maternal deprivation was combined with social isolation, while YWHAZ was not altered in either model. METTL7A from the degranulation pathway was reduced in both models and was identified as altered also in previous gene expression studies, while NDUFB9 from the energy network was reduced only in the model of maternal deprivation combined with social isolation. This work provides altered stress- and mitochondrial disease-related proteins involved in energy, immune and axonal networks in the cerebellum in schizophrenia as possible novel targets for therapeutic interventions and suggests that METTL7A is a possible relevant altered stress-related protein in this context.
Collapse
|
18
|
Peroxiredoxin 6 Knockout Mice Demonstrate Anxiety Behavior and Attenuated Contextual Fear Memory after Receiving Acute Immobilization Stress. Antioxidants (Basel) 2021; 10:antiox10091416. [PMID: 34573048 PMCID: PMC8466988 DOI: 10.3390/antiox10091416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Stress can elicit glucocorticoid release to promote coping mechanisms and influence learning and memory performance. Individual memory performance varies in response to stress, and the underlying mechanism is not clear yet. Peroxiredoxin 6 (PRDX6) is a multifunctional enzyme participating in both physiological and pathological conditions. Several studies have demonstrated the correlation between PRDX6 expression level and stress-related disorders. Our recent finding indicates that lack of the Prdx6 gene leads to enhanced fear memory. However, it is unknown whether PRDX6 is involved in changes in anxiety response and memory performance upon stress. The present study reveals that hippocampal PRDX6 level is downregulated 30 min after acute immobilization stress (AIS) and trace fear conditioning (TFC). In human retinal pigment epithelium (ARPE-19) cells, the PRDX6 expression level decreases after being treated with stress hormone corticosterone. Lack of PRDX6 caused elevated basal H2O2 levels in the hippocampus, basolateral amygdala, and medial prefrontal cortex, brain regions involved in anxiety response and fear memory formation. Additionally, this H2O2 level was still high in the medial prefrontal cortex of the knockout mice under AIS. Anxiety behavior of Prdx6-/- mice was enhanced after immobilization for 30 min. After exposure to AIS before a contextual test, Prdx6-/- mice displayed a contextual fear memory deficit. Our results showed that the memory performance of Prdx6-/- mice was impaired when responding to AIS, accompanied by dysregulated H2O2 levels. The present study helps better understand the function of PRDX6 in memory performance after acute stress.
Collapse
|
19
|
Fioramonte M, Reis-de-Oliveira G, Brandão-Teles C, Martins-de-Souza D. A glimpse on the architecture of hnRNP C1/C2 interaction network in cultured oligodendrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140711. [PMID: 34403818 DOI: 10.1016/j.bbapap.2021.140711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
hnRNP represent a large family of RNA-binding proteins related to regulation of transcriptional and translational processes. More specifically, hnRNPs play pivotal roles in the myelination of the central nervous system. The regulation of these proteins are associated with neurodegenerative and psychiatric disorders, including schizophrenia. hnRNPs were shown differentially regulated on schizophrenia postmortem brain tissue as well as in cultured oligodendrocytes treated with clozapine, a common antipsychotic used in schizophrenia treatment. Here we employed co-immunoprecipitation of hnRNP C1/C2 to investigate for the first time in a large-scale manner its interaction partners on cultured oligodendrocytes (MO3.13). Even preliminarily, results bring a more comprehensive description of hnRNP C1/C2 interaction network, and therefore insights regarding the potential role of this protein in the central nervous system in health and disease, warranting further investigation.
Collapse
Affiliation(s)
- Mariana Fioramonte
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| | - Guilherme Reis-de-Oliveira
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Caroline Brandão-Teles
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil; D'Or Institute for Research and Education (IDOR), São Paulo, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, SP, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
20
|
Liao J, Zhang Y, Chen X, Zhang J. The Roles of Peroxiredoxin 6 in Brain Diseases. Mol Neurobiol 2021; 58:4348-4364. [PMID: 34013449 DOI: 10.1007/s12035-021-02427-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Peroxiredoxin 6 (PRDX6), the only mammalian 1-Cys member of the peroxiredoxins (PRDXs) family, has multiple functions of glutathione peroxidase (Gpx) activity, acidic calcium-independent phospholipase (aiPLA2) activity, and lysophosphatidylcholine acyl transferase (LPCAT) activity. It has been documented to be involved in redox homeostasis, phospholipid turnover, glycolipid metabolism, and cellular signaling. Here, we reviewed the characteristics of the available Prdx6 genetic mouse models and the research progresses made with regard to PRDX6 in neuropsychiatric disorders, including neurodegenerative diseases, brain aging, stroke, neurotrauma, gliomas, major depressive disorder, drug addiction, post-traumatic stress disorder, and schizophrenia. The present review highlights the important roles of PRDX6 in neuropsychiatric disorders and may provide novel insights for the development of effective pharmacological treatments and genetic therapies.
Collapse
Affiliation(s)
- Jiangfeng Liao
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China
| | - Yusi Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China. .,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China.
| | - Jing Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China. .,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
21
|
Widespread transcriptional disruption of the microRNA biogenesis machinery in brain and peripheral tissues of individuals with schizophrenia. Transl Psychiatry 2020; 10:376. [PMID: 33149139 PMCID: PMC7642431 DOI: 10.1038/s41398-020-01052-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
In schizophrenia, altered transcription in brain and peripheral tissues may be due to altered expression of the microRNA biogenesis machinery genes. In this study, we explore the expression of these genes both at the cerebral and peripheral levels. We used shinyGEO application to analyze gene expression from ten Gene Expression Omnibus datasets, in order to perform differential expression analyses for eight genes encoding the microRNA biogenesis machinery. First, we compared expression of the candidate genes between control subjects and individuals with schizophrenia in postmortem cerebral samples from seven different brain regions. Then, we compared the expression of the candidate genes between control subjects and individuals with schizophrenia in three peripheral tissues. In brain and peripheral tissues of individuals with schizophrenia, we report distinct altered expression patterns of the microRNA biogenesis machinery genes. In the dorsolateral prefrontal cortex, associative striatum and cerebellum of individuals with schizophrenia, we observed an overexpression pattern of some candidate genes suggesting a heightened miRNA production in these brain regions. Additionally, mixed transcriptional abnormalities were identified in the hippocampus. Moreover, in the blood and olfactory epithelium of individuals with schizophrenia, we observed distinct aberrant transcription patterns of the candidate genes. Remarkably, in individuals with schizophrenia, we report DICER1 overexpression in the dorsolateral prefrontal cortex, hippocampus and cerebellum as well as a congruent DICER1 upregulation in the blood compartment suggesting that it may represent a peripheral marker. Transcriptional disruption of the miRNA biogenesis machinery may contribute to schizophrenia pathogenesis both in brain and peripheral tissues.
Collapse
|
22
|
Reis-de-Oliveira G, Zuccoli GS, Fioramonte M, Schimitt A, Falkai P, Almeida V, Martins-de-Souza D. Digging deeper in the proteome of different regions from schizophrenia brains. J Proteomics 2020; 223:103814. [PMID: 32389842 DOI: 10.1016/j.jprot.2020.103814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a psychiatric disorder that affects 21 million people worldwide. Despite several studies having been shown that some brain regions may play a critical role in the pathophysiology of schizophrenia, the molecular basis to explain this diversity is still lacking. The cerebellum (CER), caudate nucleus (CAU), and posterior cingulate cortex (PCC) are areas associated with negative and cognitive symptoms in schizophrenia. In this study, we performed shotgun proteomics of the aforementioned brain regions, collected postmortem from patients with schizophrenia and compared with the mentally healthy group. In addition, we performed a proteomic analysis of nuclear and mitochondrial fractions of these same regions. Our results presented 106, 727 and 135 differentially regulated proteins in the CAU, PCC, and CER, respectively. Pathway enrichment analysis revealed dysfunctions associated with synaptic processes in the CAU, transport in the CER, and in energy metabolism in the PCC. In all brain areas, we found that proteins related to oligodendrocytes and the metabolic processes were dysregulated in schizophrenia. SIGNIFICANCE: Schizophrenia is a complex and heterogeneous psychiatric disorder. Despite much research having been done to increase the knowledge about the role of each region in the pathophysiology of this disorder, the molecular mechanisms underlying it are still lacking. We performed shotgun proteomics in the postmortem cerebellum (CER), caudate nucleus (CAU) and posterior cingulate cortex (PCC) from patients with schizophrenia and compared with healthy controls. Our findings suggest that each aforementioned region presents dysregulations in specific molecular pathways, such as energy metabolism in the PCC, transport in the CER, and synaptic process in the CAU. Additionally, these areas presented dysfunctions in oligodendrocytes and metabolic processes. Our results may highlight future directions for the development of novel clinical approaches for specific therapeutic targets.
Collapse
Affiliation(s)
- G Reis-de-Oliveira
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - G S Zuccoli
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - M Fioramonte
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - A Schimitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University (LMU), Munich, Germany; Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - P Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University (LMU), Munich, Germany
| | - V Almeida
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - D Martins-de-Souza
- Lab of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil; D'Or Institute for Research and Education (IDOR), São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
23
|
Borgmann-Winter KE, Wang K, Bandyopadhyay S, Torshizi AD, Blair IA, Hahn CG. The proteome and its dynamics: A missing piece for integrative multi-omics in schizophrenia. Schizophr Res 2020; 217:148-161. [PMID: 31416743 PMCID: PMC7500806 DOI: 10.1016/j.schres.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
Abstract
The complex and heterogeneous pathophysiology of schizophrenia can be deconstructed by integration of large-scale datasets encompassing genes through behavioral phenotypes. Genome-wide datasets are now available for genetic, epigenetic and transcriptomic variations in schizophrenia, which are then analyzed by newly devised systems biology algorithms. A missing piece, however, is the inclusion of information on the proteome and its dynamics in schizophrenia. Proteomics has lagged behind omics of the genome, transcriptome and epigenome since analytic platforms were relatively less robust for proteins. There has been remarkable progress, however, in the instrumentation of liquid chromatography (LC) and mass spectrometry (MS) (LCMS), experimental paradigms and bioinformatics of the proteome. Here, we present a summary of methodological innovations of recent years in MS based proteomics and the power of new generation proteomics, review proteomics studies that have been conducted in schizophrenia to date, and propose how such data can be analyzed and integrated with other omics results. The function of a protein is determined by multiple molecular properties, i.e., subcellular localization, posttranslational modification (PTMs) and protein-protein interactions (PPIs). Incorporation of these properties poses additional challenges in proteomics and their integration with other omics; yet is a critical next step to close the loop of multi-omics integration. In sum, the recent advent of high-throughput proteome characterization technologies and novel mathematical approaches enable us to incorporate functional properties of the proteome to offer a comprehensive multi-omics based understanding of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Karin E Borgmann-Winter
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America; Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Sabyasachi Bandyopadhyay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America
| | - Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America.
| |
Collapse
|
24
|
Toyoshima M, Jiang X, Ogawa T, Ohnishi T, Yoshihara S, Balan S, Yoshikawa T, Hirokawa N. Enhanced carbonyl stress induces irreversible multimerization of CRMP2 in schizophrenia pathogenesis. Life Sci Alliance 2019; 2:2/5/e201900478. [PMID: 31591136 PMCID: PMC6781483 DOI: 10.26508/lsa.201900478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
Enhanced carbonyl stress results in neurodevelopmental deficits by affecting microtubule function through the formation of irreversible dysfunctional multimer of carbonylated CRMP2. Enhanced carbonyl stress underlies a subset of schizophrenia, but its causal effects remain elusive. Here, we elucidated the molecular mechanism underlying the effects of carbonyl stress in iPS cells in which the gene encoding zinc metalloenzyme glyoxalase I (GLO1), a crucial enzyme for the clearance of carbonyl stress, was disrupted. The iPS cells exhibited significant cellular and developmental deficits, and hyper-carbonylation of collapsing response mediator protein 2 (CRMP2). Structural and biochemical analyses revealed an array of multiple carbonylation sites in the functional motifs of CRMP2, particularly D-hook (for dimerization) and T-site (for tetramerization), which are critical for the activity of the CRMP2 tetramer. Interestingly, carbonylated CRMP2 was stacked in the multimer conformation by irreversible cross-linking, resulting in loss of its unique function to bundle microtubules. Thus, the present study revealed that the enhanced carbonyl stress stemmed from the genetic aberrations results in neurodevelopmental deficits through the formation of irreversible dysfunctional multimer of carbonylated CRMP2.
Collapse
Affiliation(s)
- Manabu Toyoshima
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Xuguang Jiang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tadayuki Ogawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Shogo Yoshihara
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan .,Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Sullivan CR, Koene RH, Hasselfeld K, O'Donovan S, Ramsey A, McCullumsmith RE. Neuron-specific deficits of bioenergetic processes in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 2019; 24:1319-1328. [PMID: 29497148 PMCID: PMC6119539 DOI: 10.1038/s41380-018-0035-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/07/2017] [Accepted: 01/15/2018] [Indexed: 12/20/2022]
Abstract
Schizophrenia is a devastating illness that affects over 2 million people in the United States and costs society billions of dollars annually. New insights into the pathophysiology of schizophrenia are needed to provide the conceptual framework to facilitate development of new treatment strategies. We examined bioenergetic pathways in the dorsolateral prefrontal cortex (DLPFC) of subjects with schizophrenia and control subjects using western blot analysis, quantitative real-time polymerase chain reaction, and enzyme/substrate assays. Laser-capture microdissection-quantitative polymerase chain reaction was used to examine these pathways at the cellular level. We found decreases in hexokinase (HXK) and phosphofructokinase (PFK) activity in the DLPFC, as well as decreased PFK1 mRNA expression. In pyramidal neurons, we found an increase in monocarboxylate transporter 1 mRNA expression, and decreases in HXK1, PFK1, glucose transporter 1 (GLUT1), and GLUT3 mRNA expression. These results suggest abnormal bioenergetic function, as well as a neuron-specific defect in glucose utilization, in the DLPFC in schizophrenia.
Collapse
Affiliation(s)
- Courtney R. Sullivan
- Corresponding author: , Phone number: 513-558-4855, Mail address: 231 Albert Sabin Way, Care 5830, Cincinnati, Ohio, 45267-2827
| | - Rachael H. Koene
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Kathryn Hasselfeld
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Sinead O'Donovan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Amy Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Robert E. McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
26
|
He Y, de Witte LD, Houtepen LC, Nispeling DM, Xu Z, Yu Q, Yu Y, Hol EM, Kahn RS, Boks MP. DNA methylation changes related to nutritional deprivation: a genome-wide analysis of population and in vitro data. Clin Epigenetics 2019; 11:80. [PMID: 31097004 PMCID: PMC6524251 DOI: 10.1186/s13148-019-0680-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND DNA methylation has recently been identified as a mediator between in utero famine exposure and a range of metabolic and psychiatric traits. However, genome-wide analyses are scarce and cross-sectional analyses are hampered by many potential confounding factors. Moreover, causal relations are hard to identify due to the lack of controlled experimental designs. In the current study, we therefore combined a comprehensive assessment of genome-wide DNA methylation differences in people exposed to the great Chinese famine in utero with an in vitro study in which we deprived fibroblasts of nutrition. METHODS We compared whole blood DNA methylation differences between 25 individuals in utero exposed to famine and 54 healthy control individuals using the HumanMethylation450 platform. In vitro, we analyzed DNA methylation changes in 10 fibroblast cultures that were nutritionally deprived for 72 h by withholding fetal bovine serum. RESULTS We identified three differentially methylated regions (DMRs) in four genes (ENO2, ZNF226, CCDC51, and TMA7) that were related to famine exposure in both analyses. Pathway analysis with data from both Chinese famine samples and fibroblasts highlighted the nervous system and neurogenesis pathways as the most affected by nutritional deprivation. CONCLUSIONS The combination of cross-sectional and experimental data provides indications that biological adaptation to famine leads to DNA methylation changes in genes involved in the central nervous system.
Collapse
Affiliation(s)
- Yujie He
- Brain Center University Medical Center Utrecht, Department of Psychiatry, Utrecht University, A01.468, PO Box 85500, 3508, GA, Utrecht, The Netherlands
- Brain Center University Medical Center Utrecht, Department of Translational Neuroscience, Utrecht University, Utrecht, The Netherlands
| | - Lot D de Witte
- Brain Center University Medical Center Utrecht, Department of Psychiatry, Utrecht University, A01.468, PO Box 85500, 3508, GA, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Lotte C Houtepen
- Brain Center University Medical Center Utrecht, Department of Psychiatry, Utrecht University, A01.468, PO Box 85500, 3508, GA, Utrecht, The Netherlands
| | - Danny M Nispeling
- Brain Center University Medical Center Utrecht, Department of Psychiatry, Utrecht University, A01.468, PO Box 85500, 3508, GA, Utrecht, The Netherlands
| | - Zhida Xu
- Brain Center University Medical Center Utrecht, Department of Psychiatry, Utrecht University, A01.468, PO Box 85500, 3508, GA, Utrecht, The Netherlands
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yaqin Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Elly M Hol
- Brain Center University Medical Center Utrecht, Department of Translational Neuroscience, Utrecht University, Utrecht, The Netherlands
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, an Institute of the Royal Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - René S Kahn
- Brain Center University Medical Center Utrecht, Department of Psychiatry, Utrecht University, A01.468, PO Box 85500, 3508, GA, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Marco P Boks
- Brain Center University Medical Center Utrecht, Department of Psychiatry, Utrecht University, A01.468, PO Box 85500, 3508, GA, Utrecht, The Netherlands.
| |
Collapse
|
27
|
Brandão-Teles C, de Almeida V, Cassoli JS, Martins-de-Souza D. Biochemical Pathways Triggered by Antipsychotics in Human [corrected] Oligodendrocytes: Potential of Discovering New Treatment Targets. Front Pharmacol 2019; 10:186. [PMID: 30890939 PMCID: PMC6411851 DOI: 10.3389/fphar.2019.00186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/14/2019] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia is a psychiatric disorder that affects more than 21 million people worldwide. It is an incurable disorder and the primary means of managing symptoms is through administration of pharmacological treatments, which consist heavily of antipsychotics. First-generation antipsychotics have the properties of D2 receptor antagonists. Second-generation antipsychotics are antagonists of both D2 and 5HT2 receptors. Recently, there has been increasing interest in the effects of antipsychotics beyond their neuronal targets and oligodendrocytes are one of the main candidates. Thus, our aim was to evaluate the molecular effects of typical and atypical drugs across the proteome of the human oligodendrocyte cell line, MO3.13. For this, we performed a mass spectrometry-based, bottom-up shotgun proteomic analysis to identify differences triggered by typical (chlorpromazine and haloperidol) and atypical (quetiapine and risperidone) antipsychotics. Proteins which showed changes in their expression levels were analyzed in silico using Ingenuity® Pathway Analysis, which implicated dysregulation of canonical pathways for each treatment. Our results shed light on the biochemical pathways involved in the mechanisms of action of these drugs, which may guide the identification of novel biomarkers and the development of new and improved treatments.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Juliana S. Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Faculdade de Palmas, Palmas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- UNICAMP’s Neurobiology Center, Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
28
|
Park DI, Turck CW. Interactome Studies of Psychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:163-173. [PMID: 30747422 DOI: 10.1007/978-3-030-05542-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High comorbidity and complexity have precluded reliable diagnostic assessment and treatment of psychiatric disorders. Impaired molecular interactions may be relevant for underlying mechanisms of psychiatric disorders but by and large remain unknown. With the help of a number of publicly available databases and various technological tools, recent research has filled the paucity of information by generating a novel dataset of psychiatric interactomes. Different technological platforms including yeast two-hybrid screen, co-immunoprecipitation-coupled with mass spectrometry-based proteomics, and transcriptomics have been widely used in combination with cellular and molecular techniques to interrogate the psychiatric interactome. Novel molecular interactions have been identified in association with different psychiatric disorders including autism spectrum disorders, schizophrenia, bipolar disorder, and major depressive disorder. However, more extensive and sophisticated interactome research needs to be conducted to overcome the current limitations such as incomplete interactome databases and a lack of functional information among components. Ultimately, integrated psychiatric interactome databases will contribute to the implementation of biomarkers and therapeutic intervention.
Collapse
Affiliation(s)
- Dong Ik Park
- Danish Research Institute of Translational Neuroscience (DANDRITE), Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Christoph W Turck
- Proteomics and Biomarkers, Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
29
|
Redox dysregulation as a link between childhood trauma and psychopathological and neurocognitive profile in patients with early psychosis. Proc Natl Acad Sci U S A 2018; 115:12495-12500. [PMID: 30455310 PMCID: PMC6298080 DOI: 10.1073/pnas.1812821115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Early traumatic experiences interact with redox regulation and oxidative stress. Blood glutathione peroxidase (GPx) activity, involved in reducing peroxides, may reflect the oxidation status of the organism, thus allowing for the stratification of patients. Traumatized patients with psychosis who have a high blood oxidation status (high-GPx) have smaller hippocampal volumes (but not a smaller amygdala or intracranial volume), and this is associated with more severe clinical symptoms, while those with a lower oxidation status (low-GPx) showed better cognition and a correlated activation of the antioxidant thioredoxin/peroxiredoxin system. Thus, in patients with psychosis, traumatic experiences during childhood may interact with various redox systems, leading to long-term neuroanatomical and clinical defects. This redox profile may represent important biomarkers for patient stratification, defining treatment strategies at early stages of psychosis. Exposure to childhood trauma (CT) increases the risk for psychosis and affects the development of brain structures, possibly through oxidative stress. As oxidative stress is also linked to psychosis, it may interact with CT, leading to a more severe clinical phenotype. In 133 patients with early psychosis (EPP), we explored the relationships between CT and hippocampal, amygdala, and intracranial volume (ICV); blood antioxidant defenses [glutathione peroxidase (GPx) and thioredoxin/peroxiredoxin (Trx/Prx)]; psychopathological results; and neuropsychological results. Nonadjusted hippocampal volume correlated negatively with GPx activity in patients with CT, but not in patients without CT. In patients with CT with high GPx activity (high-GPx+CT), hippocampal volume was decreased compared with that in patients with low-GPx+CT and patients without CT, who had similar hippocampal volumes. Patients with high-GPx+CT had more severe positive and disorganized symptoms than other patients. Interestingly, Trx and oxidized Prx levels correlated negatively with GPx only in patients with low-GPx+CT. Moreover, patients with low-GPx+CT performed better than other patients on cognitive tasks. Discriminant analysis combining redox markers, hippocampal volume, clinical scores, and cognitive scores allowed for stratification of the patients into subgroups. In conclusion, traumatized EPP with high peripheral oxidation status (high-GPx activity) had smaller hippocampal volumes and more severe symptoms, while those with lower oxidation status (low-GPx activity) showed better cognition and regulation of GPx and Trx/Prx systems. These results suggest that maintained regulation of various antioxidant systems allowed for compensatory mechanisms preventing long-term neuroanatomical and clinical impacts. The redox marker profile may thus represent important biomarkers for defining treatment strategies in patients with psychosis.
Collapse
|
30
|
Folsom TD, Higgins L, Markowski TW, Griffin TJ, Fatemi SH. Quantitative proteomics of forebrain subcellular fractions in fragile X mental retardation 1 knockout mice following acute treatment with 2-Methyl-6-(phenylethynyl)pyridine: Relevance to developmental study of schizophrenia. Synapse 2018; 73:e22069. [PMID: 30176067 DOI: 10.1002/syn.22069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022]
Abstract
The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5-2-Methyl-6-(phenylethynyl)pyridine (MPEP)-on protein expression. Strain- and treatment-specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras-related protein rab 3a (RAB3A) in the synaptic fraction; and ras-related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia.
Collapse
Affiliation(s)
- Timothy D Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
31
|
|
32
|
Sullivan CR, O'Donovan SM, McCullumsmith RE, Ramsey A. Defects in Bioenergetic Coupling in Schizophrenia. Biol Psychiatry 2018; 83:739-750. [PMID: 29217297 PMCID: PMC5891385 DOI: 10.1016/j.biopsych.2017.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/18/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Synaptic neurotransmission relies on maintenance of the synapse and meeting the energy demands of neurons. Defects in excitatory and inhibitory synapses have been implicated in schizophrenia, likely contributing to positive and negative symptoms as well as impaired cognition. Recently, accumulating evidence has suggested that bioenergetic systems, important in both synaptic function and cognition, are abnormal in psychiatric illnesses such as schizophrenia. Animal models of synaptic dysfunction demonstrated endophenotypes of schizophrenia as well as bioenergetic abnormalities. We report findings on the bioenergetic interplay of astrocytes and neurons and discuss how dysregulation of these pathways may contribute to the pathogenesis of schizophrenia, highlighting metabolic systems as important therapeutic targets.
Collapse
Affiliation(s)
- Courtney R Sullivan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Sinead M O'Donovan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio.
| | - Amy Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada
| |
Collapse
|
33
|
Gibbons A, Udawela M, Dean B. Non-Coding RNA as Novel Players in the Pathophysiology of Schizophrenia. Noncoding RNA 2018; 4:E11. [PMID: 29657307 PMCID: PMC6027250 DOI: 10.3390/ncrna4020011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is associated with diverse changes in the brain's transcriptome and proteome. Underlying these changes is the complex dysregulation of gene expression and protein production that varies both spatially across brain regions and temporally with the progression of the illness. The growing body of literature showing changes in non-coding RNA in individuals with schizophrenia offers new insights into the mechanisms causing this dysregulation. A large number of studies have reported that the expression of microRNA (miRNA) is altered in the brains of individuals with schizophrenia. This evidence is complemented by findings that single nucleotide polymorphisms (SNPs) in miRNA host gene sequences can confer an increased risk of developing the disorder. Additionally, recent evidence suggests the expression of other non-coding RNAs, such as small nucleolar RNA and long non-coding RNA, may also be affected in schizophrenia. Understanding how these changes in non-coding RNAs contribute to the development and progression of schizophrenia offers potential avenues for the better treatment and diagnosis of the disorder. This review will focus on the evidence supporting the involvement of non-coding RNA in schizophrenia and its therapeutic potential.
Collapse
Affiliation(s)
- Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
- The Department of Psychiatry, the University of Melbourne, Parkville, Victoria, Australia.
| | - Madhara Udawela
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
- The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
34
|
Zuccoli GS, Saia-Cereda VM, Nascimento JM, Martins-de-Souza D. The Energy Metabolism Dysfunction in Psychiatric Disorders Postmortem Brains: Focus on Proteomic Evidence. Front Neurosci 2017; 11:493. [PMID: 28936160 PMCID: PMC5594406 DOI: 10.3389/fnins.2017.00493] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/22/2017] [Indexed: 12/27/2022] Open
Abstract
Psychiatric disorders represent a great medical and social challenge and people suffering from these conditions face many impairments regarding personal and professional life. In addition, a mental disorder will manifest itself in approximately one quarter of the world's population at some period of their life. Dysfunction in energy metabolism is one of the most consistent scientific findings associated with these disorders. With this is mind, this review compiled data on disturbances in energy metabolism found by proteomic analyses of postmortem brains collected from patients affected by the most prevalent psychiatric disorders: schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD). We searched in the PubMed database to gather the studies and compiled all the differentially expressed proteins reported in each work. SCZ studies revealed 92 differentially expressed proteins related to energy metabolism, while 95 proteins were discovered in BPD, and 41 proteins in MDD. With the compiled data, it was possible to determine which proteins related to energy metabolism were found to be altered in all the disorders as well as which ones were altered exclusively in one of them. In conclusion, the information gathered in this work could contribute to a better understanding of the impaired metabolic mechanisms and hopefully bring insights into the underlying neuropathology of psychiatric disorders.
Collapse
Affiliation(s)
- Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of CampinasCampinas, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e TecnologicoSão Paulo, Brazil
| | - Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of CampinasCampinas, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e TecnologicoSão Paulo, Brazil
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of CampinasCampinas, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e TecnologicoSão Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of CampinasCampinas, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e TecnologicoSão Paulo, Brazil
| |
Collapse
|
35
|
Gray KT, Kostyukova AS, Fath T. Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function. Mol Cell Neurosci 2017; 84:48-57. [PMID: 28433463 DOI: 10.1016/j.mcn.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Actin is a profoundly influential protein; it impacts, among other processes, membrane morphology, cellular motility, and vesicle transport. Actin can polymerize into long filaments that push on membranes and provide support for intracellular transport. Actin filaments have polar ends: the fast-growing (barbed) end and the slow-growing (pointed) end. Depolymerization from the pointed end supplies monomers for further polymerization at the barbed end. Tropomodulins (Tmods) cap pointed ends by binding onto actin and tropomyosins (Tpms). Tmods and Tpms have been shown to regulate many cellular processes; however, very few studies have investigated their joint role in the nervous system. Recent data directly indicate that they can modulate neuronal morphology. Additional studies suggest that Tmod and Tpm impact molecular processes influential in synaptic signaling. To facilitate future research regarding their joint role in actin regulation in the nervous system, we will comprehensively discuss Tpm and Tmod and their known functions within molecular systems that influence neuronal development.
Collapse
Affiliation(s)
- Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States.
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
36
|
Manzhurtsev AV, Semenova NA, Ublinskii MV, Akhadov TA, Varfolomeev SD. The effect of neurostimulation on the intracellular concentrations of proton-containing metabolites and macroergic phosphates in the brain cortex upon schizophrenia according to the data from 1H and 31P magnetic resonance spectroscopy. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1491-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Saia-Cereda VM, Cassoli JS, Martins-de-Souza D, Nascimento JM. Psychiatric disorders biochemical pathways unraveled by human brain proteomics. Eur Arch Psychiatry Clin Neurosci 2017; 267:3-17. [PMID: 27377417 DOI: 10.1007/s00406-016-0709-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/25/2016] [Indexed: 12/17/2022]
Abstract
Approximately 25 % of the world population is affected by a mental disorder at some point in their life. Yet, only in the mid-twentieth century a biological cause has been proposed for these diseases. Since then, several studies have been conducted toward a better comprehension of those disorders, and although a strong genetic influence was revealed, the role of these genes in disease mechanism is still unclear. This led most recent studies to focus on the molecular basis of mental disorders. One line of investigation that has risen in the post-genomic era is proteomics, due to its power of revealing proteins and biochemical pathways associated with biological systems. Therefore, this review compiled and analyzed data of differentially expressed proteins, which were found in postmortem brain studies of the three most prevalent psychiatric diseases: schizophrenia, bipolar disorder and major depressive disorders. Overviewing both the proteomic methods used in postmortem brain studies, the most consistent metabolic pathways found altered in these diseases. We have unraveled those disorders share about 21 % of proteins affected, and though most are related to energy metabolism pathways deregulation, the main differences found are 14-3-3-mediated signaling in schizophrenia, mitochondrial dysfunction in bipolar disorder and oxidative phosphorylation in depression.
Collapse
Affiliation(s)
- Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil. .,UNICAMP's Neurobiology Center, Campinas, Brazil.
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Lee SA, Huang KC. Epigenetic profiling of human brain differential DNA methylation networks in schizophrenia. BMC Med Genomics 2016; 9:68. [PMID: 28117656 PMCID: PMC5260790 DOI: 10.1186/s12920-016-0229-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Epigenetics of schizophrenia provides important information on how the environmental factors affect the genetic architecture of the disease. DNA methylation plays a pivotal role in etiology for schizophrenia. Previous studies have focused mostly on the discovery of schizophrenia-associated SNPs or genetic variants. As postmortem brain samples became available, more and more recent studies surveyed transcriptomics of the diseases. In this study, we constructed protein-protein interaction (PPI) network using the disease associated SNP (or genetic variants), differentially expressed disease genes and differentially methylated disease genes (or promoters). By combining the different datasets and topological analyses of the PPI network, we established a more comprehensive understanding of the development and genetics of this devastating mental illness. Results We analyzed the previously published DNA methylation profiles of prefrontal cortex from 335 healthy controls and 191 schizophrenic patients. These datasets revealed 2014 CpGs identified as GWAS risk loci with the differential methylation profile in schizophrenia, and 1689 schizophrenic differential methylated genes (SDMGs) identified with predominant hypomethylation. These SDMGs, combined with the PPIs of these genes, were constructed into the schizophrenic differential methylation network (SDMN). On the SDMN, there are 10 hypermethylated SDMGs, including GNA13, CAPNS1, GABPB2, GIT2, LEFTY1, NDUFA10, MIOS, MPHOSPH6, PRDM14 and RFWD2. The hypermethylation to differential expression network (HyDEN) were constructed to determine how the hypermethylated promoters regulate gene expression. The enrichment analyses of biochemical pathways in HyDEN, including TNF alpha, PDGFR-beta signaling, TGF beta Receptor, VEGFR1 and VEGFR2 signaling, regulation of telomerase, hepatocyte growth factor receptor signaling, ErbB1 downstream signaling and mTOR signaling pathway, suggested that the malfunctioning of these pathways contribute to the symptoms of schizophrenia. Conclusions The epigenetic profiles of DNA differential methylation from schizophrenic brain samples were investigated to understand the regulatory roles of SDMGs. The SDMGs interplays with SCZCGs in a coordinated fashion in the disease mechanism of schizophrenia. The protein complexes and pathways involved in SDMN may be responsible for the etiology and potential treatment targets. The SDMG promoters are predominantly hypomethylated. Increasing methylation on these promoters is proposed as a novel therapeutic approach for schizophrenia. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0229-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng-An Lee
- Department of Information Management, Kainan University, Taoyuan, Taiwan
| | - Kuo-Chuan Huang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan.
| |
Collapse
|
39
|
Giusti L, Ciregia F, Mazzoni MR, Lucacchini A. Proteomics insight into psychiatric disorders: an update on biological fluid biomarkers. Expert Rev Proteomics 2016; 13:941-950. [DOI: 10.1080/14789450.2016.1230499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Federica Ciregia
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
40
|
Kim D, Kang M, Biswas A, Liu C, Gao J. Integrative approach for inference of gene regulatory networks using lasso-based random featuring and application to psychiatric disorders. BMC Med Genomics 2016; 9 Suppl 2:50. [PMID: 27510319 PMCID: PMC4980788 DOI: 10.1186/s12920-016-0202-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Inferring gene regulatory networks is one of the most interesting research areas in the systems biology. Many inference methods have been developed by using a variety of computational models and approaches. However, there are two issues to solve. First, depending on the structural or computational model of inference method, the results tend to be inconsistent due to innately different advantages and limitations of the methods. Therefore the combination of dissimilar approaches is demanded as an alternative way in order to overcome the limitations of standalone methods through complementary integration. Second, sparse linear regression that is penalized by the regularization parameter (lasso) and bootstrapping-based sparse linear regression methods were suggested in state of the art methods for network inference but they are not effective for a small sample size data and also a true regulator could be missed if the target gene is strongly affected by an indirect regulator with high correlation or another true regulator. Results We present two novel network inference methods based on the integration of three different criteria, (i) z-score to measure the variation of gene expression from knockout data, (ii) mutual information for the dependency between two genes, and (iii) linear regression-based feature selection. Based on these criterion, we propose a lasso-based random feature selection algorithm (LARF) to achieve better performance overcoming the limitations of bootstrapping as mentioned above. Conclusions In this work, there are three main contributions. First, our z score-based method to measure gene expression variations from knockout data is more effective than similar criteria of related works. Second, we confirmed that the true regulator selection can be effectively improved by LARF. Lastly, we verified that an integrative approach can clearly outperform a single method when two different methods are effectively jointed. In the experiments, our methods were validated by outperforming the state of the art methods on DREAM challenge data, and then LARF was applied to inferences of gene regulatory network associated with psychiatric disorders.
Collapse
Affiliation(s)
- Dongchul Kim
- Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, 78541, TX, US
| | - Mingon Kang
- Department of Computer Science, Kennesaw State University, Marietta, 30144, GA, US
| | - Ashis Biswas
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, 76019, TX, US
| | - Chunyu Liu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, 60607, IL, US
| | - Jean Gao
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, 76019, TX, US.
| |
Collapse
|
41
|
Wang L, Wu N, Zhao TY, Li J. The potential biomarkers of drug addiction: proteomic and metabolomics challenges. Biomarkers 2016; 21:678-685. [PMID: 27328859 DOI: 10.1080/1354750x.2016.1201530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Drug addiction places a significant burden on society and individuals. Proteomics and metabolomics approaches pave the road for searching potential biomarkers to assist the diagnosis and treatment. This review summarized putative drug addiction-related biomarkers in proteomics and metabolomics studies and discussed challenges and prospects in future studies. Alterations of several hundred proteins and metabolites were reported when exposure to abused drug, which enriched in energy metabolism, oxidative stress response, protein modification and degradation, synaptic function and neurotrasmission, etc. Hsp70, peroxiredoxin-6 and α- and β-synuclein, as well as n-methylserotonin and purine metabolites, were promising as potential biomarker for drug addiction.
Collapse
Affiliation(s)
- Lv Wang
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Ning Wu
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Tai-Yun Zhao
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Jin Li
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| |
Collapse
|
42
|
Brettle M, Patel S, Fath T. Tropomyosins in the healthy and diseased nervous system. Brain Res Bull 2016; 126:311-323. [PMID: 27298153 DOI: 10.1016/j.brainresbull.2016.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/25/2022]
Abstract
Regulation of the actin cytoskeleton is dependent on a plethora of actin-associated proteins in all eukaryotic cells. The family of tropomyosins plays a key role in controlling the function of several of these actin-associated proteins and their access to actin filaments. In order to understand the regulation of the actin cytoskeleton in highly dynamic subcellular compartments of neurons such as growth cones of developing neurons and the synaptic compartment of mature neurons, it is pivotal to decipher the functional role of tropomyosins in the nervous system. In this review, we will discuss the current understanding and recent findings on the regulation of the actin cytoskeleton by tropomyosins and potential implication that this has for the dysregulation of the actin cytoskeleton in neurological diseases.
Collapse
Affiliation(s)
- Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Shrujna Patel
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia.
| |
Collapse
|
43
|
Coumans JVF, Palanisamy SKA, McFarlane J, Moens PDJ. Proteomic and Microscopic Strategies towards the Analysis of the Cytoskeletal Networks in Major Neuropsychiatric Disorders. Int J Mol Sci 2016; 17:E581. [PMID: 27104521 PMCID: PMC4849037 DOI: 10.3390/ijms17040581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 11/17/2022] Open
Abstract
Mental health disorders have become worldwide health priorities. It is estimated that in the next 20 years they will account for a 16 trillion United State dollars (US$) loss. Up to now, the underlying pathophysiology of psychiatric disorders remains elusive. Altered cytoskeleton proteins expression that may influence the assembly, organization and maintenance of cytoskeletal integrity has been reported in major depressive disorders, schizophrenia and to some extent bipolar disorders. The use of quantitative proteomics, dynamic microscopy and super-resolution microscopy to investigate disease-specific protein signatures holds great promise to improve our understanding of these disorders. In this review, we present the currently available quantitative proteomic approaches use in neurology, gel-based, stable isotope-labelling and label-free methodologies and evaluate their strengths and limitations. We also reported on enrichment/subfractionation methods that target the cytoskeleton associated proteins and discuss the need of alternative methods for further characterization of the neurocytoskeletal proteome. Finally, we present live cell imaging approaches and emerging dynamic microscopy technology that will provide the tools necessary to investigate protein interactions and their dynamics in the whole cells. While these areas of research are still in their infancy, they offer huge potential towards the understanding of the neuronal network stability and its modification across neuropsychiatric disorders.
Collapse
Affiliation(s)
- Joëlle V F Coumans
- School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia.
| | - Suresh K A Palanisamy
- Center for Bioactive Discovery in Health and Aging, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Jim McFarlane
- Center for Bioactive Discovery in Health and Aging, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Pierre D J Moens
- Center for Bioactive Discovery in Health and Aging, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
44
|
Cassoli JS, Iwata K, Steiner J, Guest PC, Turck CW, Nascimento JM, Martins-de-Souza D. Effect of MK-801 and Clozapine on the Proteome of Cultured Human Oligodendrocytes. Front Cell Neurosci 2016; 10:52. [PMID: 26973466 PMCID: PMC4776125 DOI: 10.3389/fncel.2016.00052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/15/2016] [Indexed: 01/06/2023] Open
Abstract
Separate lines of evidence have demonstrated the involvement of N-methyl-D-aspartate (NMDA) receptor and oligodendrocyte dysfunctions in schizophrenia. Here, we have carried out shotgun mass spectrometry proteome analysis of oligodendrocytes treated with the NMDA receptor antagonist MK-801 to gain potential insights into these effects at the molecular level. The MK-801 treatment led to alterations in the levels of 68 proteins, which are associated with seven distinct biological processes. Most of these proteins are involved in energy metabolism and many have been found to be dysregulated in previous proteomic studies of post-mortem brain tissues from schizophrenia patients. Finally, addition of the antipsychotic clozapine to MK-801-treated oligodendrocyte cultures resulted in changes in the levels of 45 proteins and treatment with clozapine alone altered 122 proteins and many of these showed opposite changes to the MK-801 effects. Therefore, these proteins and the associated energy metabolism pathways should be explored as potential biomarkers of antipsychotic efficacy. In conclusion, MK-801 treatment of oligodendrocytes may provide a useful model for testing the efficacy of novel treatment approaches.
Collapse
Affiliation(s)
- Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas Campinas, Brazil
| | - Keiko Iwata
- United Graduate School of Child Development, Department of Development of Functional Brain Activities, Research Center for Child Mental Development, Hamamatsu University School of Medicine, Osaka University and Kanazawa University and Chiba University and University of Fukui Fukui, Japan
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg Magdeburg, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas Campinas, Brazil
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry Munich, Germany
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of CampinasCampinas, Brazil; D'Or Institute for Research and Education Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of CampinasCampinas, Brazil; UNICAMP Neurobiology CenterCampinas, Brazil
| |
Collapse
|
45
|
Davalieva K, Maleva Kostovska I, Dwork AJ. Proteomics Research in Schizophrenia. Front Cell Neurosci 2016; 10:18. [PMID: 26909022 PMCID: PMC4754401 DOI: 10.3389/fncel.2016.00018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/18/2016] [Indexed: 11/29/2022] Open
Abstract
Despite intense scientific efforts, the neuropathology and pathophysiology of schizophrenia are poorly understood. Proteomic studies, by testing large numbers of proteins for associations with disease, may contribute to the understanding of the molecular mechanisms of schizophrenia. They may also indicate the types and locations of cells most likely to harbor pathological alterations. Investigations using proteomic approaches have already provided much information on quantitative and qualitative protein patterns in postmortem brain tissue, peripheral tissues and body fluids. Different proteomic technologies such as 2-D PAGE, 2-D DIGE, SELDI-TOF, shotgun proteomics with label-based (ICAT), and label-free (MSE) quantification have been applied to the study of schizophrenia for the past 15 years. This review summarizes the results, mostly from brain but also from other tissues and bodily fluids, of proteomics studies in schizophrenia. Emphasis is given to proteomics platforms, varying sources of material, proposed candidate biomarkers emerging from comparative proteomics studies, and the specificity of the putative markers in terms of other mental illnesses. We also compare proteins altered in schizophrenia with reports of protein or mRNA sequences that are relatively enriched in specific cell types. While proteomic studies of schizophrenia find abnormalities in the expression of many proteins that are not cell type-specific, there appears to be a disproportionate representation of proteins whose synthesis and localization are highly enriched in one or more brain cell type compared with other types of brain cells. Two of the three proteins most commonly altered in schizophrenia are aldolase C and glial fibrillary acidic protein, astrocytic proteins with entirely different functions, but the studies are approximately evenly divided with regard to the direction of the differences and the concordance or discordance between the two proteins. Alterations of common myelin-associated proteins were also frequently observed, and in four studies that identified alterations in at least two, all differences were downwards in schizophrenia, consistent with earlier studies examining RNA or targeting myelin-associated proteins.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov," Macedonian Academy of Sciences and Arts Skopje, Republic of Macedonia
| | - Ivana Maleva Kostovska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov," Macedonian Academy of Sciences and Arts Skopje, Republic of Macedonia
| | - Andrew J Dwork
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric InstituteNew York, NY, USA; Departments of Psychiatry and Pathology and Cell Biology, College of Physicians and Surgeons of Columbia UniversityNew York, NY, USA; Macedonian Academy of Sciences and ArtsSkopje, Republic of Macedonia
| |
Collapse
|
46
|
Cassoli JS, Guest PC, Santana AG, Martins-de-Souza D. Employing proteomics to unravel the molecular effects of antipsychotics and their role in schizophrenia. Proteomics Clin Appl 2016; 10:442-55. [PMID: 26679983 DOI: 10.1002/prca.201500109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/15/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Schizophrenia is an incurable neuropsychiatric disorder managed mostly by treatment of the patients with antipsychotics. However, the efficacy of these drugs has remained only low to moderate despite intensive research efforts since the early 1950s when chlorpromazine, the first antipsychotic, was synthesized. In addition, antipsychotic treatment can produce often undesired severe side effects in the patients and addressing these remains a large unmet clinical need. One of the reasons for the low effectiveness of these drugs is the limited knowledge about the molecular mechanisms of schizophrenia, which impairs the development of new and more effective treatments. Recently, proteomic studies of clinical and preclinical samples have identified changes in the levels of specific proteins in response to antipsychotic treatment, which have converged on molecular pathways such as cell communication and signaling, inflammation and cellular growth, and maintenance. The findings of these studies are summarized and discussed in this review and we suggest that this provides validation of proteomics as a useful tool for mining drug mechanisms of action and potentially for pinpointing novel molecular targets that may enable development of more effective medications.
Collapse
Affiliation(s)
- Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline G Santana
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,UNICAMP Neurobiology Center, Campinas, São Paulo, Brazil
| |
Collapse
|
47
|
Kedracka-Krok S, Swiderska B, Jankowska U, Skupien-Rabian B, Solich J, Dziedzicka-Wasylewska M. Stathmin reduction and cytoskeleton rearrangement in rat nucleus accumbens in response to clozapine and risperidone treatment - Comparative proteomic study. Neuroscience 2015; 316:63-81. [PMID: 26708747 DOI: 10.1016/j.neuroscience.2015.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022]
Abstract
The complex network of anatomical connections of the nucleus accumbens (NAc) makes it an interface responsible for the selection and integration of cognitive and affective information to modulate appetitive or aversively motivated behaviour. There is evidence for NAc dysfunction in schizophrenia. NAc also seems to be important for antipsychotic drug action, but the biochemical characteristics of drug-induced alterations within NAc remain incompletely characterized. In this study, a comprehensive proteomic analysis was performed to describe the differences in the mechanisms of action of clozapine (CLO) and risperidone (RIS) in the rat NAc. Both antipsychotics influenced the level of microtubule-regulating proteins, i.e., stathmin, and proteins of the collapsin response mediator protein family (CRMPs), and only CLO affected NAD-dependent protein deacetylase sirtuin-2 and septin 6. Both antipsychotics induced changes in levels of other cytoskeleton-related proteins. CLO exclusively up-regulated proteins involved in neuroprotection, such as glutathione synthetase, heat-shock 70-kDa protein 8 and mitochondrial heat-shock protein 75. RIS tuned cell function by changing the pattern of post-translational modifications of some proteins: it down-regulated the phosphorylated forms of stathmin and dopamine and the cyclic AMP-regulated phosphoprotein (DARPP-32) isoform but up-regulated cyclin-dependent kinase 5 (Cdk5). RIS modulated the level and phosphorylation state of synaptic proteins: synapsin-2, synaptotagmin-1 and adaptor-related protein-2 (AP-2) complex.
Collapse
Affiliation(s)
- S Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - B Swiderska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - U Jankowska
- Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - B Skupien-Rabian
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - J Solich
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - M Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
48
|
Saia-Cereda VM, Cassoli JS, Schmitt A, Falkai P, Nascimento JM, Martins-de-Souza D. Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains. Eur Arch Psychiatry Clin Neurosci 2015; 265:601-12. [PMID: 26232077 DOI: 10.1007/s00406-015-0621-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
Abstract
Schizophrenia is an incurable and debilitating mental disorder that may affect up to 1% of the world population. Morphological, electrophysiological, and neurophysiological studies suggest that the corpus callosum (CC), which is the largest portion of white matter in the human brain and responsible for inter-hemispheric communication, is altered in schizophrenia patients. Here, we employed mass spectrometry-based proteomics to investigate the molecular underpinnings of schizophrenia. Brain tissue samples were collected postmortem from nine schizophrenia patients and seven controls at the University of Heidelberg, Germany. Because the CC has a signaling role, we collected cytoplasmic (soluble) proteins and submitted them to nano-liquid chromatography-mass spectrometry (nano LC-MS/MS). Proteomes were quantified by label-free spectral counting. We identified 5678 unique peptides that corresponded to 1636 proteins belonging to 1512 protein families. Of those proteins, 65 differed significantly in expression: 28 were upregulated and 37 downregulated. Our data increased significantly the knowledge derived from an earlier proteomic study of the CC. Among the differentially expressed proteins are those associated with cell growth and maintenance, such as neurofilaments and tubulins; cell communication and signaling, such as 14-3-3 proteins; and oligodendrocyte function, such as myelin basic protein and myelin-oligodendrocyte glycoprotein. Additionally, 30 of the differentially expressed proteins were found previously in other proteomic studies in postmortem brains; this overlap in findings validates the present study and indicates that these proteins may be markers consistently associated with schizophrenia. Our findings increase the understanding of schizophrenia pathophysiology and may serve as a foundation for further treatment strategies.
Collapse
Affiliation(s)
- Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Andrea Schmitt
- Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil. .,Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil. .,UNICAMP's Neurobiology Center, Campinas, Brazil.
| |
Collapse
|
49
|
Martins-de-Souza D, Cassoli JS, Nascimento JM, Hensley K, Guest PC, Pinzon-Velasco AM, Turck CW. The protein interactome of collapsin response mediator protein-2 (CRMP2/DPYSL2) reveals novel partner proteins in brain tissue. Proteomics Clin Appl 2015; 9:817-31. [PMID: 25921334 DOI: 10.1002/prca.201500004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/23/2015] [Accepted: 04/27/2015] [Indexed: 01/18/2023]
Abstract
PURPOSE Collapsin response mediator protein-2 (CRMP2) is a CNS protein involved in neuronal development, axonal and neuronal growth, cell migration, and protein trafficking. Recent studies have linked perturbations in CRMP2 function to neurodegenerative disorders such as Alzheimer's disease, neuropathic pain, and Batten disease, and to psychiatric disorders such as schizophrenia. Like most proteins, CRMP2 functions though interactions with a molecular network of proteins and other molecules. EXPERIMENTAL DESIGN Here, we have attempted to identify additional proteins of the CRMP2 interactome to provide further leads about its roles in neurological functions. We used a combined co-immunoprecipitation and shotgun proteomic approach in order to identify CRMP2 protein partners. RESULTS We identified 78 CRMP2 protein partners not previously reported in public protein interaction databases. These were involved in seven biological processes, which included cell signaling, growth, metabolism, trafficking, and immune function, according to Gene Ontology classifications. Furthermore, 32 different molecular functions were found to be associated with these proteins, such as RNA binding, ribosomal functions, transporter activity, receptor activity, serine/threonine phosphatase activity, cell adhesion, cytoskeletal protein binding and catalytic activity. In silico pathway interactome construction revealed a highly connected network with the most overrepresented functions corresponding to semaphorin interactions, along with axon guidance and WNT5A signaling. CONCLUSIONS AND CLINICAL RELEVANCE Taken together, these findings suggest that the CRMP2 pathway is critical for regulating neuronal and synaptic architecture. Further studies along these lines might uncover novel biomarkers and drug targets for use in drug discovery.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,UNICAMP's Neurobiology Center, Campinas, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Kenneth Hensley
- Department of Pathology, University of Toledo, Toledo, OH, USA.,Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Andres M Pinzon-Velasco
- Bioinformatics and Computational Systems Biology Group, Institute for Genetics, National University of Colombia, Bogotá, Colombia
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
50
|
Wolthusen RPF, Hass J, Walton E, Turner JA, Rössner V, Sponheim SR, Ho BC, Holt DJ, Gollub RL, Calhoun V, Ehrlich S. Genetic underpinnings of left superior temporal gyrus thickness in patients with schizophrenia. World J Biol Psychiatry 2015:1-11. [PMID: 26249676 PMCID: PMC4795983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
OBJECTIVES Schizophrenia is a highly disabling psychiatric disorder with a heterogeneous phenotypic appearance. We aimed to further the understanding of some of the underlying genetics of schizophrenia, using left superior temporal gyrus (STG) grey matter thickness reduction as an endophenoptype in a genome-wide association (GWA) study. METHODS Structural magnetic resonance imaging (MRI) and genetic data of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia were used to analyse the interaction effects between 1,067,955 single nucleotide polymorphisms (SNPs) and disease status on left STG thickness in 126 healthy controls and 113 patients with schizophrenia. We next used a pathway approach to detect underlying pathophysiological pathways that may be related to schizophrenia. RESULTS No SNP by diagnosis interaction effect reached genome-wide significance (5 × 10-8) in our GWA study, but 10 SNPs reached P-values less than 10-6. The most prominent pathways included those involved in insulin, calcium, PI3K-Akt and MAPK signalling. CONCLUSIONS Our strongest findings in the GWA study and pathway analysis point towards an involvement of glucose metabolism in left STG thickness reduction in patients with schizophrenia only. These results are in line with recently published studies, which showed an increased prevalence of psychosis among patients with metabolic syndrome-related illnesses including diabetes.
Collapse
Affiliation(s)
- Rick P F Wolthusen
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus of the Technische Universität Dresden , Dresden , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|