1
|
Li J, Luo Y, Li M, Li J, Zeng T, Luo J, Chang X, Wang M, Jongsma MA, Hu H, Wang C. Nocturnal burst emissions of germacrene D from the open disk florets of pyrethrum flowers induce moths to oviposit on a nonhost and improve pollination success. THE NEW PHYTOLOGIST 2024; 244:2036-2048. [PMID: 39205445 DOI: 10.1111/nph.20060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Recent studies show that nocturnal pollinators may be more important to ecosystem function and food production than is currently appreciated. Here, we describe an agricultural field study of pyrethrum (Tanacetum cinerariifolium) flower pollination. Pyrethrum is genetically self-incompatible and thus is reliant on pollinators for seed set. Our pollinator exclusion experiment showed that nocturnal insects, particularly moths, significantly contribute to seed set and quality. We discovered that the most abundant floral volatile, the sesquiterpene (-)-germacrene D (GD), is key in attracting the noctuid moths Peridroma saucia and Helicoverpa armigera. Germacrene D synthase (GDS) gene expression regulates the specific GD production and accumulation in flowers, which, in contrast to related species, lose the habit of closing at night. We did observe that female moths also oviposited on pyrethrum leaves and flower peduncles, but found that only a small fraction of those eggs hatched. Larvae were severely stunted in development, most likely due to the presence of pyrethrin defense compounds. This example of exploitative mutualism, which blocks the reproductive success of the moth pollinator and depends on nocturnal interactions, is placed into an ecological context to explain why it may have developed.
Collapse
Affiliation(s)
- Jinjin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maoyuan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawen Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tuo Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangqian Chang
- Institute of Plant Protection & Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maarten A Jongsma
- Business Unit Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Hao Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Cai F, Jin X, Han L, Chen H, Shao C, Shi G, Bao M, Sun Y, Zhang J. AINTEGUMENTA-LIKE genes regulate reproductive growth and bud dormancy in Platanus acerifolia. PLANT CELL REPORTS 2024; 43:261. [PMID: 39400607 DOI: 10.1007/s00299-024-03349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
KEY MESSAGE Platanus acerifolia AIL genes PaAIL5a/b and PaAIL6b participate in FT-AP1/FUL-AIL pathways to regulate bud dormancy. In addition, PaAIL6a/b can promote flowering, and PaAIL5b and PaAIL6b affect floral development. Bud dormancy and floral induction are essential processes for perennial plants, they are both regulated by photoperiod, temperature, and hormones, indicating the existence of common regulators for both processes. AINTEGUMENTA-LIKE (AIL) genes regulate reproductive growth of annual plants, including floral induction and flower development, and their homologs in poplar and grape act downstream of the florigen gene FT and the floral meristem identity genes AP1/FUL and function to maintain growth and thus inhibit dormancy induction. However, it is not known whether AIL homologs participate in the reproduction processes in perennials and whether the Platanus acerifolia AIL genes are involved in dormancy. P. acerifolia is a perennial woody plant whose reproductive growth is strongly associated with dormancy. Here, we isolated four AIL homologs from P. acerifolia, PaAIL5a, PaAIL5b, PaAIL6a, and PaAIL6b, and systematically investigated their functions by ectopic-overexpression in tobacco. The findings demonstrate that PaAIL5a/b and PaAIL6b respond to short day, low temperature, and hormone signals and act as the components of the FT-AP1/FUL-AIL pathway to regulate the bud dormancy in P. acerifolia. Notably, PaAIL5a/b and PaAIL6b function downstream of PaFTL-PaFUL1/2/3 to inhibit the dormancy induction and downstream of PaFT-PaFUL2/3 to promote the dormancy release. In addition, PaAIL6a/b were found to accelerate flowering in transgenic tobacco, whereas PaAIL5b and PaAIL6b affected the flower development. Together, our results suggest that PaAIL genes may act downstream of different PaFT/PaFTL and PaFUL proteins to fulfill conservative and diverse roles in floral initiation, floral development, and dormancy regulation in P. acerifolia.
Collapse
Affiliation(s)
- Fangfang Cai
- Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin Jin
- Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Linshan Han
- Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Hui Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Changsheng Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hangzhou Vocational & Technical College, Hangzhou, 310018, Zhejiang, China
| | - Gehui Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
3
|
Zhao H, Su J, Zhong Z, Xiong T, Dai W, Zhang D, Chang Y. Functional Identification and Regulatory Active Site Screening of the DfDXS Gene of Dryopteris fragrans. PLANTS (BASEL, SWITZERLAND) 2024; 13:2647. [PMID: 39339623 PMCID: PMC11435244 DOI: 10.3390/plants13182647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Dryopteris fragrans (L.) Schott has anti-inflammatory and antioxidant properties, and terpenoids are important components of its active constituents. The methyl-D-erythritol 4-phosphate (MEP) pathway is one of the major pathways for the synthesis of terpene precursors in plants, and 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is the first rate-limiting enzyme in this pathway. DXS has been shown to be associated with increased stress tolerance in plants. In this experiment, two DXS genes were extracted from the D. fragrans transcriptome and named DfDXS1 and DfDXS2. Based on phylogenetic tree and conserved motif analyses, DXS was shown to be highly conserved evolutionarily and its localization to chloroplasts was determined by subcellular localization. Prokaryotic expression results showed that the number and growth status of recombinant colonies were better than the control under 400 mM NaCl salt stress and 800 mM mannitol-simulated drought stress. In addition, the DfDXS1 and DfDXS2 transgenic tobacco plants showed improved resistance to drought and salt stress. DfDXS1 and DfDXS2 responded strongly to methyl jasmonate (MeJA) and PEG-mimicked drought stress following exogenous hormone and abiotic stress treatments of D. fragrans. The transcriptional active sites were investigated by dual luciferase and GUS staining assays, and the results showed that the STRE element (AGGGG), the ABRE element (ACGTGGC), and the MYC element (CATTTG) were the important transcriptional active sites in the promoters of the two DXS genes, which were closely associated with hormone response and abiotic stress. These results suggest that the DfDXS gene of D. fragrans plays an important role in hormone signaling and response to stress. This study provides a reference for analyzing the molecular mechanisms of stress tolerance in D. fragrans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Chang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (J.S.); (Z.Z.); (T.X.); (W.D.); (D.Z.)
| |
Collapse
|
4
|
Su Y, Wang X, Luo Y, Jiang H, Tang G, Liu H. The Catalase Gene MrCat1 Contributes to Oxidative Stress Tolerance, Microsclerotia Formation, and Virulence in the Entomopathogenic Fungus Metarhizium rileyi. J Fungi (Basel) 2024; 10:543. [PMID: 39194869 DOI: 10.3390/jof10080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Catalases play a crucial role in the metabolism of reactive oxygen species (ROS) by converting H2O2 into molecular oxygen and water. They also contribute to virulence and fungal responses to various stresses. Previously, the MrCat1-deletion mutant (ΔMrCat1) was generated using the split-marker method in Metarhizium rileyi. In this study, the Cat1 gene was identified, and its function was evaluated. Under normal culture conditions, there were no significant differences in colony growth or dimorphic switching between ΔMrCat1 and the wild-type (WT) strains. However, under oxidative stress, the colony growth was inhibited, and the yeast-hyphal transition was suppressed in the ΔMrCat1 strain. Hyperosmotic stress did not differ significantly between the two strains. In the ΔMrCat1 strain, microsclerotia (MS) formation was delayed, resulting in less uniform MS size and a 76% decrease in MS yield compared to the WT strain. Moreover, the ΔMrCat1 strain exhibited diminished virulence. Gene expression analysis revealed up-regulation of ΔMrCat1, MrCat2, MrCat4, and MrAox in the ΔMrCat1 strain. These findings indicate that the MrCat1 gene in M. rileyi is essential for oxidative stress tolerance, MS formation, and virulence.
Collapse
Affiliation(s)
- Yu Su
- College of Plant Protection, Southwest University, Chongqing 400716, China
- Southeast Chongqing Academy of Agricultural Sciences, Chongqing 408000, China
| | - Xuyi Wang
- Southeast Chongqing Academy of Agricultural Sciences, Chongqing 408000, China
| | - Yuanli Luo
- Southeast Chongqing Academy of Agricultural Sciences, Chongqing 408000, China
| | - Huan Jiang
- Southeast Chongqing Academy of Agricultural Sciences, Chongqing 408000, China
| | - Guiting Tang
- Southeast Chongqing Academy of Agricultural Sciences, Chongqing 408000, China
| | - Huai Liu
- College of Plant Protection, Southwest University, Chongqing 400716, China
| |
Collapse
|
5
|
Huang Y, Shen L, Du F, Wang Z, Yin Y. Functional studies of McSTE24, McCYP305a1, and McJHEH, three essential genes act in cantharidin biosynthesis in the blister beetle (Coleoptera: Meloidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:4. [PMID: 38989843 PMCID: PMC11237990 DOI: 10.1093/jisesa/ieae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/21/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Cantharidin is a toxic defensive substance secreted by most blister beetles when attacked. It has been used to treat many complex diseases since ancient times and has recently regained popularity as an anticancer agent. However, the detailed mechanism of the cantharidin biosynthesis has not been completely addressed. In this study, we cloned McSTE24 (encoding STE24 endopeptidase) from terpenoid backbone pathway, McCYP305a1 (encoding cytochrome P450, family 305) and McJHEH [encoding subfamily A, polypeptide 1 and juvenile hormone (JH) epoxide hydrolase] associated to JH synthesis/degradation in the blister beetle Mylabris cichorii (Linnaeus, 1758, Coleoptera: Meloidae). Expression pattern analyses across developmental stages in adult males revealed that the expressions of 3 transcripts were closely linked to cantharidin titer exclusively during the peak period of cantharidin synthesis (20-25 days old). In contrast, at other stages, these genes may primarily regulate different biological processes. When RNA interference with double-stranded RNA suppressed the expressions of the 3 genes individually, significant reductions in cantharidin production were observed in males and also in females following McJHEH knockdown, indicating that these 3 genes might primarily contribute to cantharidin biosynthesis in males, but not in females, while females could self-synthesis a small amount of cantharidin. These findings support the previously hypothesized sexual dimorphism in cantharidin biosynthesis during the adult phase. McCYP305a1 collaborates with its upstream gene McSTE24 in cantharidin biosynthesis, while McJHEH independently regulates cantharidin biosynthesis in males.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Genetic Function and Regulation, School of Life Science, Chongqing University, Chongqing 400030, China
| | - Ling Shen
- Key Laboratory of Genetic Function and Regulation, School of Life Science, Chongqing University, Chongqing 400030, China
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Fang Du
- Key Laboratory of Genetic Function and Regulation, School of Life Science, Chongqing University, Chongqing 400030, China
| | - Zhongkang Wang
- Key Laboratory of Genetic Function and Regulation, School of Life Science, Chongqing University, Chongqing 400030, China
| | - Youping Yin
- Key Laboratory of Genetic Function and Regulation, School of Life Science, Chongqing University, Chongqing 400030, China
| |
Collapse
|
6
|
Niu Y, Zhou Z, Yue Z, Zhang X, Jiang X, Hu L, Liu Q, Zhang X, Dong K. Functional validation of AaCaM3 response to high temperature stress in Amorphophallus albus. BMC PLANT BIOLOGY 2024; 24:615. [PMID: 38937722 PMCID: PMC11212397 DOI: 10.1186/s12870-024-05283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Amorphophallus is a perennial monocotyledonous herbaceous plant native to the southwestern region of China, widely used in various fields such as food processing, biomedicine and chemical agriculture. However, Amorphophallus is a typical thermolabile plant, and the continuous high temperature in summer have seriously affected the growth, development and economic yield of Amorphophallus in recent years. Calmodulin (CaM), a Ca2+ sensor ubiquitous in eukaryotes, is the most important multifunctional receptor protein in plant cells, which affects plant stress resistance by participating in the activities of a variety of signaling molecules. In this study, the key gene AaCaM3 for the Ca2+-CaM regulatory pathway was obtained from A. albus, the sequence analysis confirmed that it is a typical calmodulin. The qRT-PCR results demonstrated that with the passage of heat treatment time, the expression of AaCaM3 was significantly upregulated in A. albus leaves. Subcellular localization analysis revealed that AaCaM3 localized on the cytoplasm and nucleus. Meanwhile, heterologous transformation experiments have shown that AaCaM3 can significantly improve the heat tolerance of Arabidopsis under heat stress. The promoter region of AaCaM3 was sequenced 1,338 bp by FPNI-PCR and GUS staining assay showed that the promoter of AaCaM3 was a high-temperature inducible promoter. Yeast one-hybrid analysis and Luciferase activity reporting system analysis showed that the AaCaM3 promoter may interact with AaHSFA1, AaHSFA2c, AaHSP70, AaDREB2a and AaDREB2b. In conclusion, this study provides new ideas for further improving the signal transduction network of high-temperature stress in Amorphophallus.
Collapse
Affiliation(s)
- Yi Niu
- Yibin Academy of Southwest University, Yibin, China.
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing, China.
| | - Zixuan Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing, China
| | - Zhenyu Yue
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing, China
| | - Xiaofei Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing, China
| | - Xuekuan Jiang
- Chongqing SINO Konjac Biotechnology Co., Ltd, Chongqing, China
| | - Lingyu Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing, China
| | - Quanshuo Liu
- Yibin Academy of Southwest University, Yibin, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing, China
| | - Xu Zhang
- Yibin Academy of Southwest University, Yibin, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing, China
| | - Kun Dong
- Institute of Fuyuan Konjac, Yunnan Academy of Agricultural Sciences, Qujing, China
| |
Collapse
|
7
|
Li T, Wang J, Zhang Z, Fan Y, Qin H, Yin Y, Dai G, Cao Y, Tang L. Anthocyanin biosynthesis in goji berry is inactivated by deletion in a bHLH transcription factor LrLAN1b promoter. PLANT PHYSIOLOGY 2024; 195:1461-1474. [PMID: 38431527 DOI: 10.1093/plphys/kiae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 03/05/2024]
Abstract
Black goji berry (Lycium ruthenicum Murray) contains a rich source of health-promoting anthocyanins which are used in herbal medicine and nutraceutical foods in China. A natural variant producing white berries allowed us to identify two key genes involved in the regulation of anthocyanin biosynthesis in goji berries: one encoding a MYB transcription factor (LrAN2-like) and one encoding a basic helix-loop-helix (bHLH) transcription factor (LrAN1b). We previously found that LrAN1b expression was lost in the white berry variant, but the molecular basis for this phenotype was unknown. Here, we identified the molecular mechanism for loss of anthocyanins in white goji berries. In white goji, the LrAN1b promoter region has a 229 bp deletion that removes three MYB-binding elements and one bHLH-binding element, which are key to its expression. Complementation of the white goji berry LrAN1b allele with the LrAN1b promoter restored pigmentation. Virus-induced gene silencing of LrAN1b in black goji berry reduced fruit anthocyanin biosynthesis. Molecular analyses showed that LrAN2-like and another bHLH transcription factor LrJAF13 can activate LrAN1b by binding directly to the MYB-recognizing element and bHLH-recognizing element of its promoter-deletion region. LrAN1b expression is enhanced by the interaction of LrAN2-like with LrJAF13 and the WD40 protein LrAN11. LrAN2-like and LrAN11 interact with either LrJAF13 or LrAN1b to form two MYB-bHLH-WD40 complexes, which hierarchically regulate anthocyanin biosynthesis in black goji berry. This study on a natural variant builds a comprehensive anthocyanin regulatory network that may be manipulated to tailor goji berry traits.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province 610065, China
| | - Jingjin Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province 610065, China
| | - Zihan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province 610065, China
| | - Yunfang Fan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia Hui Autonomous Region 750002, China
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia Hui Autonomous Region, 750002, China
| | - Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province 610065, China
| | - Yue Yin
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia Hui Autonomous Region 750002, China
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia Hui Autonomous Region, 750002, China
| | - Guoli Dai
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia Hui Autonomous Region 750002, China
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia Hui Autonomous Region, 750002, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia Hui Autonomous Region 750002, China
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia Hui Autonomous Region, 750002, China
| | - Lin Tang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province 610065, China
| |
Collapse
|
8
|
Meng L, Yang H, Yang J, Wang Y, Ye T, Xiang L, Chan Z, Wang Y. Tulip transcription factor TgWRKY75 activates salicylic acid and abscisic acid biosynthesis to synergistically promote petal senescence. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2435-2450. [PMID: 38243353 DOI: 10.1093/jxb/erae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
WRKY transcription factors play a central role in controlling plant organ senescence; however, it is unclear whether and how they regulate petal senescence in the widely grown ornamental plant tulip (Tulipa gesneriana). In this study, we report that TgWRKY75 promotes petal senescence by enhancing the synthesis of both abscisic acid (ABA) and salicylic acid (SA) in tulip and in transgenic Arabidopsis. The expression level of TgWRKY75 was up-regulated in senescent petals, and exogenous ABA or SA treatment induced its expression. The endogenous contents of ABA and SA significantly increased during petal senescence and in response to TgWRKY75 overexpression. Two SA synthesis-related genes, TgICS1 and TgPAL1, were identified as direct targets of TgWRKY75, which binds to their promoters. In parallel, TgWRKY75 activated the expression of the ABA biosynthesis-related gene TgNCED3 via directly binding to its promoter region. Site mutation of the W-box core motif located in the promoters of TgICS1, TgPAL1, and TgNCED3 eliminated their interactions with TgWRKY75. In summary, our study demonstrates a dual regulation of ABA and SA biosynthesis by TgWRKY75, revealing a synergistic process of tulip petal senescence through feedback regulation between TgWRKY75 and the accumulation of ABA and SA.
Collapse
Affiliation(s)
- Lin Meng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- Hubei Hongshan Laboratory, Wuhan 30070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haipo Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- Hubei Hongshan Laboratory, Wuhan 30070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jinli Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yaping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tiantian Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Lin Xiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhulong Chan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- Hubei Hongshan Laboratory, Wuhan 30070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
9
|
Wang X, Yuan S, Wang C, Yan W, Xie G, Wang C, Qiu S, Wu J, Deng XW, Xu C, Tang X. Construction of a Female Sterility Maintaining System Based on a Novel Mutation of the MEL2 Gene. RICE (NEW YORK, N.Y.) 2024; 17:12. [PMID: 38310612 PMCID: PMC10838886 DOI: 10.1186/s12284-024-00688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Hybrid rice has significant yield advantage and stress tolerance compared with inbred rice. However, production of hybrid rice seeds requires extensive manual labors. Currently, hybrid rice seeds are produced by crosspollination of male sterile lines by fertile paternal lines. Because seeds from paternal lines can contaminate the hybrid seeds, mechanized production by mixed-seeding and mixed-harvesting is difficult. This problem can be solved if the paternal line is female sterile. RESULTS Here we identified a female infertile mutant named h569 carrying a novel mutation (A1106G) in the MEL2 gene that was previously reported to regulate meiosis entry both in male and female organs. h569 mutant is female infertile but male normal, suggesting that MEL2 regulates meiosis entry in male and female organs through distinct pathways. The MEL2 gene and h569 mutant gave us tools to construct female sterility maintaining systems that can be used for propagation of female sterile lines. We connected the wild-type MEL2 gene with pollen-killer gene ZmAA1 and seed-marker gene DsRed2 in one T-DNA cassette and transformed it into ZZH1607, a widely used restorer line. Transgenic line carrying a single transgene inserted in an intergenic region was selected to cross with h569 mutant. F2 progeny carrying homozygous A1106G mutation and hemizygous transgene displayed 1:1 segregation of fertile and infertile pollen grains and 1:1 segregation of fluorescent and non-fluorescent seeds upon self-fertilization. All of the non-fluorescent seeds generated female infertile plants, while the fluorescent seeds generated fertile plants that reproduced in the way as their previous generation. CONCLUSIONS These results indicated that the female sterility maintaining system constructed in the study can be used to breed and propagate paternal lines that are female infertile. The application of this system will enable mechanized production of hybrid rice seed by using the mixed-seeding and mixed harvesting approach, which will significantly reduce the cost in hybrid rice seed production.
Collapse
Affiliation(s)
- Xia Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Shuting Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, 518107, Shenzhen, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Gang Xie
- Shenzhen Institute of Molecular Crop Design, 518107, Shenzhen, China
| | - Cuifang Wang
- Shenzhen Institute of Molecular Crop Design, 518107, Shenzhen, China
| | - Shijun Qiu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, 518107, Shenzhen, China.
- School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China.
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, 518107, Shenzhen, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China.
- Shenzhen Institute of Molecular Crop Design, 518107, Shenzhen, China.
| |
Collapse
|
10
|
Pinsky M, Kornitzer D. Genetic Analysis of Candida albicans Filamentation by the Iron Chelator BPS Reveals a Role for a Conserved Kinase-WD40 Protein Pair. J Fungi (Basel) 2024; 10:83. [PMID: 38276029 PMCID: PMC10820326 DOI: 10.3390/jof10010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Candida albicans is a major human pathogenic fungus that is distinguished by its capability to switch from a yeast to a hyphal morphology under different conditions. Here, we analyze the cellular effects of high concentrations of the iron chelator bathophenanthroline disulfonate (BPS). BPS inhibits cellular growth by withholding iron, but when iron chelation is overcome by the addition of hemoglobin as an iron source, the cells resume growth as hyphae. The BPS hyphal induction pathway was characterized by identifying the hyphal-specific transcription factors that it requires and by a forward genetic screen for mutants that fail to form hyphae in BPS using a transposon library generated in a haploid strain. Among the mutants identified are the DYRK1-like kinase Yak1 and Orf19.384, a homolog of the DYRK1-associated protein WDR68/DCAF7. Orf19.384 nuclear localization depends on Yak1, similar to their mammalian counterparts. We identified the hyphal suppressor transcription factor Sfl1 as a candidate target of Yak1-Orf19.384 and show that Sfl1 modification is similarly affected in the yak1 and orf19.384 mutant strains. These results suggest that DYRK1/Yak1 and WDR68/Orf19.384 represent a conserved protein pair that regulates cell differentiation from fungi to animals.
Collapse
Affiliation(s)
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion—I.I.T., Haifa 31096, Israel;
| |
Collapse
|
11
|
Zhao S, Luo J, Tang M, Zhang C, Song M, Wu G, Yan X. Analysis of the Candidate Genes and Underlying Molecular Mechanism of P198, an RNAi-Related Dwarf and Sterile Line. Int J Mol Sci 2023; 25:174. [PMID: 38203344 PMCID: PMC10778984 DOI: 10.3390/ijms25010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The genome-wide long hairpin RNA interference (lhRNAi) library is an important resource for plant gene function research. Molecularly characterizing lhRNAi mutant lines is crucial for identifying candidate genes associated with corresponding phenotypes. In this study, a dwarf and sterile line named P198 was screened from the Brassica napus (B. napus) RNAi library. Three different methods confirmed that eight copies of T-DNA are present in the P198 genome. However, only four insertion positions were identified in three chromosomes using fusion primer and nested integrated polymerase chain reaction. Therefore, the T-DNA insertion sites and copy number were further investigated using Oxford Nanopore Technologies (ONT) sequencing, and it was found that at least seven copies of T-DNA were inserted into three insertion sites. Based on the obtained T-DNA insertion sites and hairpin RNA (hpRNA) cassette sequences, three candidate genes related to the P198 phenotype were identified. Furthermore, the potential differentially expressed genes and pathways involved in the dwarfism and sterility phenotype of P198 were investigated by RNA-seq. These results demonstrate the advantage of applying ONT sequencing to investigate the molecular characteristics of transgenic lines and expand our understanding of the complex molecular mechanism of dwarfism and male sterility in B. napus.
Collapse
Affiliation(s)
- Shengbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Junling Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Min Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Chi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Miaoying Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaohong Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
12
|
Walgraeve J, Ferrero-Bordera B, Maaß S, Becher D, Schwerdtfeger R, van Dijl JM, Seefried M. Diamide-based screening method for the isolation of improved oxidative stress tolerance phenotypes in Bacillus mutant libraries. Microbiol Spectr 2023; 11:e0160823. [PMID: 37819171 PMCID: PMC10714788 DOI: 10.1128/spectrum.01608-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE During their life cycle, bacteria are exposed to a range of different stresses that need to be managed appropriately in order to ensure their growth and viability. This applies not only to bacteria in their natural habitats but also to bacteria employed in biotechnological production processes. Oxidative stress is one of these stresses that may originate either from bacterial metabolism or external factors. In biotechnological settings, it is of critical importance that production strains are resistant to oxidative stresses. Accordingly, this also applies to the major industrial cell factory Bacillus subtilis. In the present study, we, therefore, developed a screen for B. subtilis strains with enhanced oxidative stress tolerance. The results show that our approach is feasible and time-, space-, and resource-efficient. We, therefore, anticipate that it will enhance the development of more robust industrial production strains with improved robustness under conditions of oxidative stress.
Collapse
Affiliation(s)
| | | | - Sandra Maaß
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | | | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | |
Collapse
|
13
|
Liang Z, Huang L, Liu H, Zheng Y, Feng J, Shi Z, Chen Y, Lv M, Zhou J, Zhang L, Chen S. Characterization of the Arn lipopolysaccharide modification system essential for zeamine resistance unveils its new roles in Dickeya oryzae physiology and virulence. MOLECULAR PLANT PATHOLOGY 2023; 24:1480-1494. [PMID: 37740253 PMCID: PMC10632790 DOI: 10.1111/mpp.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
The zeamines produced by Dickeya oryzae are potent polyamine antibiotics and phytotoxins that are essential for bacterial virulence. We recently showed that the RND efflux pump DesABC in D. oryzae confers partial resistance to zeamines. To fully elucidate the bacterial self-protection mechanisms, in this study we used transposon mutagenesis to identify the genes encoding proteins involved in zeamine resistance in D. oryzae EC1. This led to the identification of a seven-gene operon, arnEC1 , that encodes enzyme homologues associated with lipopolysaccharide modification. Deletion of the arnEC1 genes in strain EC1 compromised its zeamine resistance 8- to 16-fold. Further deletion of the des gene in the arnEC1 mutant background reduced zeamine resistance to a level similar to that of the zeamine-sensitive Escherichia coli DH5α. Intriguingly, the arnEC1 mutants showed varied bacterial virulence on rice, potato, and Chinese cabbage. Further analyses demonstrated that ArnBCATEC1 are involved in maintenance of the bacterial nonmucoid morphotype by repressing the expression of capsular polysaccharide genes and that ArnBEC1 is a bacterial virulence determinant, influencing transcriptional expression of over 650 genes and playing a key role in modulating bacterial motility and virulence. Taken together, these findings decipher a novel zeamine resistance mechanism in D. oryzae and document new roles of the Arn enzymes in modulation of bacterial physiology and virulence.
Collapse
Affiliation(s)
- Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Luhao Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Huidi Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Ying Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Jiani Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zurong Shi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- School of Biological EngineeringHuainan Normal UniversityHuainanChina
| | - Yufan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Research Center of Chinese Herbal Resource Science and EngineeringGuangzhou University of Chinese MedicineGuangzhouChina
| | - Mingfa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Lian‐Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Shaohua Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
14
|
Ling Z, Li J, Dong Y, Zhang W, Bai H, Li S, Wang S, Li H, Shi L. Terpene produced by coexpression of the TPS and P450 genes from Lavandula angustifolia protects plants from herbivore attacks during budding stages. BMC PLANT BIOLOGY 2023; 23:477. [PMID: 37807036 PMCID: PMC10561503 DOI: 10.1186/s12870-023-04490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
To deter herbivore attacks, plants employ a diverse array of volatile compounds, particularly during the early developmental stages. The highly expressed genes LaTPS7, LaTPS8, and LaCYP71D582 were identified during the budding phases of Lavandula angustifolia. In vitro studies revealed that LaTPS7 generated nine distinct compounds, including camphene, myrcene, and limonene. LaTPS8 enzymatically converted eight volatiles by utilizing geranyl diphosphate and nerolidyl diphosphate as substrates. Overexpression of plastid-localized LaTPS7 in Nicotiana benthamiana resulted in the production of limonene. Furthermore, the endoplasmic reticulum-associated enzyme LaCYP71D582 potentially converted limonene into carveol. In N. benthamiana, LaTPS8 is responsible for the synthesis of α-pinene and sylvestrene. Furthermore, leaves transfected with LaTPS7 and leaves cotransfected with LaTPS7 and LaCYP71D582 exhibited a repellent effect on aphids, with an approximate rate of 70%. In comparison, leaves with an empty vector displayed a repellent rate of approximately 20%. Conversely, tobacco leaves expressing LaTPS7 attracted ladybugs at a rate of 48.33%, while leaves coexpressing LaTPS7 and LaCYP71D582 attracted ladybugs at a slightly higher rate of 58.33%. Subsequent authentic standard tests confirmed that limonene and carveol repel Myzus persicae while attracting Harmonia axyridis. The promoter activity of LaTPS7 and LaCYP71D582 was evaluated in Arabidopsis thaliana using GUS staining, and it was observed that wounding stimulated the expression of LaTPS7. The volatile compounds produced by LaTPS7, LaTPS8, and LaCYP71D582 play a crucial role in plant defence mechanisms. In practical applications, employing biological control measures based on plant-based approaches can promote human and environmental health.
Collapse
Affiliation(s)
- Zhengyi Ling
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingrui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yanmei Dong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wenying Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongtong Bai
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Shu Li
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Science, Beijing, 100097, China
| | - Su Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Science, Beijing, 100097, China
| | - Hui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Lei Shi
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
15
|
Neelakandan AK, Kabahuma M, Yang Q, Lopez M, Wisser RJ, Balint-Kurti P, Lauter N. Characterization of integration sites and transfer DNA structures in Agrobacterium-mediated transgenic events of maize inbred B104. G3 (BETHESDA, MD.) 2023; 13:jkad166. [PMID: 37523773 PMCID: PMC10542558 DOI: 10.1093/g3journal/jkad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
In maize, the community-standard transformant line B104 is a useful model for dissecting features of transfer DNA (T-DNA) integration due to its compatibility with Agrobacterium-mediated transformation and the availability of its genome sequence. Knowledge of transgene integration sites permits the analysis of the genomic environment that governs the strength of gene expression and phenotypic effects due to the disruption of an endogenous gene or regulatory element. In this study, we optimized a fusion primer and nested integrated PCR (FPNI-PCR) technique for T-DNA detection in maize to characterize the integration sites of 89 T-DNA insertions in 81 transformant lines. T-DNA insertions preferentially occurred in gene-rich regions and regions distant from centromeres. Integration junctions with and without microhomologous sequences as well as junctions with de novo sequences were detected. Sequence analysis of integration junctions indicated that T-DNA was incorporated via the error-prone repair pathways of nonhomologous (predominantly) and microhomology-mediated (minor) end-joining. This report provides a quantitative assessment of Agrobacterium-mediated T-DNA integration in maize with respect to insertion site features, the genomic distribution of T-DNA incorporation, and the mechanisms of integration. It also demonstrates the utility of the FPNI-PCR technique, which can be adapted to any species of interest.
Collapse
Affiliation(s)
| | - Mercy Kabahuma
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
- Interdisciplinary Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Qin Yang
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
| | - Miriam Lopez
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011, USA
| | - Randall J Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environmentaux, INRAE, University of Montpellier, L’Institut Agro, Montpellier 34000, France
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC 27695, USA
| | - Nick Lauter
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
- Interdisciplinary Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011, USA
| |
Collapse
|
16
|
Zhang S, Zhou Q, Yang X, Wang J, Jiang J, Sun M, Liu Y, Nie C, Bao M, Liu G. Functional characterization of three TERMINAL FLOWER 1-like genes from Platanus acerifolia. PLANT CELL REPORTS 2023; 42:1071-1088. [PMID: 37024635 DOI: 10.1007/s00299-023-03014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE TFL1-like genes of the basal eudicot Platanus acerifolia have conserved roles in maintaining vegetative growth and inhibiting flowering, but may act through distinct regulatory mechanism. Three TERMINAL FLOWER 1 (TFL1)-like genes were isolated and characterized from London plane tree (Platanus acerifolia). All genes have conserved genomic organization and characteristic of the phosphatidylethanolamine-binding protein (PEBP) family. Sequence alignment and phylogenetic analysis indicated that two genes belong to the TFL1 clade, designated as PlacTFL1a and PlacTFL1b, while another one was grouped in the BFT clade, named as PlacBFT. qRT-PCR analysis showed that all three genes primarily expressed in vegetative phase, but the expression of PlacTFL1a was much higher and wider than that of PlacTFL1b, with the latter only detected at relatively low expression levels in apical and lateral buds in April. PlacBFT was mainly expressed in young stems of adult trees followed by juvenile tissues. Ectopic expression of any TFL1-like gene in Arabidopsis showed phenotypes of delayed or repressed flowering. Furthermore, overexpression of PlacTFL1a gene in petunia also resulted in extremely delayed flowering. In non-flowering 35:PlacTFL1a transgenic petunia plants, the FT-like gene (PhFT) gene was significantly upregulated and AP1 homologues PFG, FBP26 and FBP29 were significantly down-regulated in leaves. Yeast two-hybrid analysis indicated that only weak interactions were detected between PlacTFL1a and PlacFDL, and PlacTFL1a showed no interaction with PhFDL1/2. These results indicated that the TFL1-like genes of Platanus have conserved roles in repressing flowering, but probably via a distinct regulatory mechanism.
Collapse
Affiliation(s)
- Sisi Zhang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Jianqiang Wang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Jie Jiang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Miaomiao Sun
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, Guangdong, China
| | - Yanjun Liu
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Chaoren Nie
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guofeng Liu
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
17
|
Li Y, Chen F, Yang Y, Han Y, Ren Z, Li X, Soppe WJJ, Cao H, Liu Y. The Arabidopsis pre-mRNA 3' end processing related protein FIP1 promotes seed dormancy via the DOG1 and ABA pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37035898 DOI: 10.1111/tpj.16239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Seed dormancy is an important adaptive trait to prevent germination occurring at an inappropriate time. The mechanisms governing seed dormancy and germination are complex. Here, we report that FACTOR INTERACTING WITH POLY(A) POLYMERASE 1 (FIP1), a component of the pre-mRNA 3' end processing machinery, is involved in seed dormancy and germination processes in Arabidopsis thaliana. FIP1 is mainly expressed in seeds and the knockout of FIP1 causes reduced seed dormancy, indicating that FIP1 positively influences seed dormancy. Meanwhile, fip1 mutants are insensitive to exogenous ABA during seed germination and early seedling establishment. The terms 'seed maturation' and 'response to ABA stimulus' are significantly enriched in a gene ontology analysis based on genes differentially expressed between fip1-1 and the wild type. Several of these genes, including ABI5, DOG1 and PYL12, show significantly decreased transcript levels in fip1. Genetic analysis showed that either cyp707a2 or dog1-5 partially, but in combination completely, represses the reduced seed dormancy of fip1, indicating that the double mutant cyp707a2 dog1-5 is epistatic to fip1. Moreover, FIP1 is required for CFIM59, another component of pre-mRNA 3' end processing machinery, to govern seed dormancy and germination. Overall, we identified FIP1 as a regulator of seed dormancy and germination that plays a crucial role in governing these processes through the DOG1 and ABA pathways.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Yue Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Yi Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Ziyun Ren
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wim J J Soppe
- Rijk Zwaan Breeding B.V., De Lier, 2678 ZG, the Netherlands
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| |
Collapse
|
18
|
Liang Z, Lin Q, Wang Q, Huang L, Liu H, Shi Z, Cui Z, Zhou X, Gao YG, Zhou J, Zhang LH, Deng Y. Gram-negative bacteria resist antimicrobial agents by a DzrR-mediated envelope stress response. BMC Biol 2023; 21:62. [PMID: 36978084 PMCID: PMC10052836 DOI: 10.1186/s12915-023-01565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Envelope stress responses (ESRs) are critical for adaptive resistance of Gram-negative bacteria to envelope-targeting antimicrobial agents. However, ESRs are poorly defined in a large number of well-known plant and human pathogens. Dickeya oryzae can withstand a high level of self-produced envelope-targeting antimicrobial agents zeamines through a zeamine-stimulated RND efflux pump DesABC. Here, we unraveled the mechanism of D. oryzae response to zeamines and determined the distribution and function of this novel ESR in a variety of important plant and human pathogens. RESULTS In this study, we documented that a two-component system regulator DzrR of D. oryzae EC1 mediates ESR in the presence of envelope-targeting antimicrobial agents. DzrR was found modulating bacterial response and resistance to zeamines through inducing the expression of RND efflux pump DesABC, which is likely independent on DzrR phosphorylation. In addition, DzrR could also mediate bacterial responses to structurally divergent envelope-targeting antimicrobial agents, including chlorhexidine and chlorpromazine. Significantly, the DzrR-mediated response was independent on the five canonical ESRs. We further presented evidence that the DzrR-mediated response is conserved in the bacterial species of Dickeya, Ralstonia, and Burkholderia, showing that a distantly located DzrR homolog is the previously undetermined regulator of RND-8 efflux pump for chlorhexidine resistance in B. cenocepacia. CONCLUSIONS Taken together, the findings from this study depict a new widely distributed Gram-negative ESR mechanism and present a valid target and useful clues to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiqi Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qingwei Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Luhao Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Huidi Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zurong Shi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- School of Biological Engineering, HuaiNan Normal University, Huainan, 232038, China
| | - Zining Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Zhang D, Tang X, Chen L, Qiu X, Song C, Wang H, Chang Y. Functional characterization and transcriptional activity analysis of Dryopteris fragrans farnesyl diphosphate synthase genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1105240. [PMID: 37035090 PMCID: PMC10079908 DOI: 10.3389/fpls.2023.1105240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Farnesyl diphosphate synthase (FPS), a key enzyme of the terpene metabolic pathway, catalyzes the precursor of sesquiterpene compounds farnesyl diphosphate (FPP) synthesis, and plays an important role in regulating plant growth and development. Dryopteris fragrans is a medicinal plant rich terpenoids. In this study, the function of the gene was verified in vitro and in vivo, the promoter of the gene was amplified and its transcriptional activity was analyzed. In the present study, we report the molecular cloning and functional characterization of DfFPS1 and DfFPS2, two FPS genes from D. fragrans. We found that the two genes were evolutionarily conserved. Both DfFPS genes were highly expressed in the gametophyte and mature sporophyte leaves, and their expression levels increased in response to methyl jasmonate (MeJA) and high temperature. Both DfFPS proteins were localized in the cytoplasm and could catalyze FPP synthesis in vitro. We also found that the overexpression of DfFPS genes in tobacco plants promoted secondary metabolite accumulation but exhibited negligible effect on plant growth and development. However, the transgenic plants exhibited tolerance to high temperature and drought. The promoters of the two genes were amplified using fusion primer and nested integrated polymerase chain reaction (FPNI-PCR). The promoter sequences were truncated and their activity was examined using the β-glucuronidase (GUS) gene reporter system in tobacco leaves, and we found that both genes were expressed in the stomata. The transcriptional activity of the promoters was found to be similar to the expression pattern of the genes, and the transcriptional core regions of the two genes were mainly between -943 bp and -740 bp of proDfFPS1. Therefore, we present a preliminary study on the function and transcriptional activity of the FPS genes of D. fragrans and provide a basis for the regulation of terpene metabolism in D. fragrans. The results also provide a novel basis for the elucidation of terpene metabolic pathways in ferns.
Collapse
Affiliation(s)
- Dongrui Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xun Tang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Lingling Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology , Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojie Qiu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chunhua Song
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hemeng Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Chang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
A Method for Precisely Identifying Modifications to Plant Mitochondrial Genomes by mitoTALENs. Methods Mol Biol 2023; 2615:365-378. [PMID: 36807804 DOI: 10.1007/978-1-0716-2922-2_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The ability to transform plant mitochondrial genomes has many benefits. Although delivery of foreign DNA to mitochondria is presently very difficult, it is now possible to knock out mitochondrial genes using mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs). Such knockouts have been achieved by a genetic transformation of mitoTALENs encoding genes into the nuclear genome. Previous studies have shown that double-strand breaks (DSBs) induced by mitoTALENs are repaired by ectopic homologous recombination. As a result of DNA repair by homologous recombination, a portion of the genome containing the mitoTALEN target site is deleted. The deletion and repair process cause the mitochondrial genome to become more complex. Here, we describe a method for identifying the ectopic homologous recombination events that occur following the repair of double-strand breaks induced by mitoTALENs.
Collapse
|
21
|
Chen X, Zhang Y, Yan H, Niu M, Xiong Y, Zhang X, Li Y, Teixeira da Silva JA, Ma G. Cloning and functional analysis of 1-deoxy-d-xylulose-5-phosphate synthase (DXS) in Santalum album L. Gene 2023; 851:146762. [PMID: 35933050 DOI: 10.1016/j.gene.2022.146762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022]
Abstract
The commercial value of Santalum album L. lies in its aromatic heartwood and essential oil. Sesquiterpenes are the main components of sandal essential oil, and these are synthesized through the plant's mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. In this study, the first key rate-limiting enzyme, 1-deoxy-d-xylulose-5-phosphate synthase (SaDXS), was investigated to provide a theoretical molecular basis for the sandalwood MEP sesquiterpene biosynthetic pathway. The biofunctions of SaDXS were also analyzed. SaDXS promoters were successfully cloned from a seven-year-old S. album tree. SaDXS1A/1B promoter activity was verified by a β-glucuronidase (GUS) assay and by analyzing cis-acting elements of the promoters, which carried light- and methyl jasmonate (MeJA)-responsive signals. In an experiment involving yellow S. album seedlings, exposure to light upregulated SaDXS1A/1B expression and increased chlorophyll and carotenoid contents when overexpressed in Arabidopsis thaliana. Analysis of the expression of SaDXS1A/1B and SaSSy, key genes of santalol biosynthesis, revealed SaDXS1A expression in all tissues whereas SaDXS1B was expressed in tissues that contained photosynthetic pigments, such as stems, leaves and flowers. Sandal seedlings exogenously treated with two hormones, MeJA and ethylene, revealed similar expression patterns for SaDXS1A/1B and SaSSy. Sandal seedlings were treated with an inhibitor of DXS, clomazone, but showed no significant changes in the contents of α-santalene, β-santalene and α-santalol between treatment and control groups. These results suggest that SaDXS1A/1B play a role in the synthesis of sandalwood sesquiterpenes, providing carbon for downstream secondary metabolites. SaDXS1A/1B also play a role in the biosynthesis of chlorophyll, carotenoids, and primary metabolites.
Collapse
Affiliation(s)
- Xiaohong Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yueya Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Haifeng Yan
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Meiyun Niu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuping Xiong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China
| | | | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
22
|
Qian J, Jiang L, Qing H, Chen J, Wan Z, Xu M, Fu J, Zhang C. ZeMYB9 regulates cyanidin synthesis by activating the expression of flavonoid 3'-hydroxylase gene in Zinnia elegans. FRONTIERS IN PLANT SCIENCE 2022; 13:981086. [PMID: 36330274 PMCID: PMC9623174 DOI: 10.3389/fpls.2022.981086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Petal color in Zinnia elegans is characterized mainly by anthocyanin accumulation. The difference in the content of anthocyanins, especially cyanidins, affects petal coloration in Z. elegans, but the underlying regulatory mechanism remains elusive. Here, we report one R2R3-MYB transcription factor from subgroup 6, ZeMYB9, acting as a positive regulator of anthocyanin accumulation in Z. elegans. Up-regulated expression of ZeMYB9 and flavonoid 3'-hydroxylase gene (ZeF3'H) was detected in the cultivar with higher cyanidin content. ZeMYB9 could specifically activate the promoter of ZeF3'H, and over-expression of ZeMYB9 induces much greater anthocyanin accumulation and higher expression level of anthocyanin biosynthetic genes in both petunia and tobacco. And then, ZeMYB9 was demonstrated to interact with ZeGL3, a bHLH transcription factor belonging to IIIf subgroup. Promoter activity of ZeF3'H was significantly promoted by co-expressing ZeMYB9 and ZeGL3 compared with expressing ZeMYB9 alone. Moreover, transient co-expression of ZeMYB9 and ZeGL3 induced anthocyanin accumulation in tobacco leaves. Our results suggest that ZeMYB9 could enhance cyanidin synthesis and regulate petal color in Z. elegans though activating the expression of ZeF3'H, by itself or interacting with ZeGL3.
Collapse
Affiliation(s)
- Jieyu Qian
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Lingli Jiang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Hongsheng Qing
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jiahong Chen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Ziyun Wan
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Menghan Xu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|
23
|
Zhou L, Li J, Zeng T, Xu Z, Luo J, Zheng R, Wang Y, Wang C. TcMYB8, a R3-MYB Transcription Factor, Positively Regulates Pyrethrin Biosynthesis in Tanacetum cinerariifolium. Int J Mol Sci 2022; 23:12186. [PMID: 36293043 PMCID: PMC9602545 DOI: 10.3390/ijms232012186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Pyrethrins are a mixture of terpenes, with insecticidal properties, that accumulate in the aboveground parts of the pyrethrum (Tanacetum cinerariifolium). Numerous studies have been published on the positive role of MYB transcription factors (TFs) in terpenoid biosynthesis; however, the role of MYB TFs in pyrethrin biosynthesis remains unknown. Here, we report the isolation and characterization of a T. cinerariifolium MYB gene encoding a R3-MYB protein, TcMYB8, containing a large number of hormone-responsive elements in its promoter. The expression of the TcMYB8 gene showed a downward trend during the development stage of flowers and leaves, and was induced by methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA). Transient overexpression of TcMYB8 enhanced the expression of key enzyme-encoding genes, TcCHS and TcGLIP, and increased the content of pyrethrins. By contrast, transient silencing of TcMYB8 decreased pyrethrin contents and downregulated TcCHS and TcGLIP expression. Further analysis indicated that TcMYB8 directly binds to cis-elements in proTcCHS and proTcGLIP to activate their expression, thus regulating pyrethrin biosynthesis. Together, these results highlight the potential application of TcMYB8 for improving the T. cinerariifolium germplasm, and provide insight into the pyrethrin biosynthesis regulation network.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Zhizhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Riru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Three-Layered Complex Interactions among Capsidless (+)ssRNA Yadokariviruses, dsRNA Viruses, and a Fungus. mBio 2022; 13:e0168522. [PMID: 36040032 PMCID: PMC9600902 DOI: 10.1128/mbio.01685-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously discovered a virus neo-lifestyle exhibited by a capsidless positive-sense (+), single-stranded (ss) RNA virus YkV1 (family Yadokariviridae) and an unrelated double-stranded (ds) RNA virus YnV1 (proposed family "Yadonushiviridae") in a phytopathogenic ascomycete, Rosellinia necatrix. YkV1 has been proposed to replicate in the capsid provided by YnV1 as if it were a dsRNA virus and enhance YnV1 replication in return. Recently, viruses related to YkV1 (yadokariviruses) have been isolated from diverse ascomycetous fungi. However, it remains obscure whether such viruses generally show the YkV1-like lifestyle. Here, we identified partner viruses for three distinct yadokariviruses, YkV3, YkV4a, and YkV4b, isolated from R. necatrix that were coinfected with multiple dsRNA viruses phylogenetically distantly related to YnV1. We first established transformants of R. necatrix carrying single yadokarivirus cDNAs and fused them with infectants by single partner candidate dsRNA viruses. Consequently, YkV3 and YkV4s replicated only in the presence of RnMBV3 (family Megabirnaviridae) and RnMTV1 (proposed family "Megatotiviridae"), respectively. The partners were mutually interchangeable between the two YkV4 strains and three RnMTV1 strains but not between other combinations involving YkV1 or YkV3. In contrast to YkV1 enhancing YnV1 accumulation, YkV4s reduced RnMTV1 accumulation to different degrees according to strains. Interestingly, YkV4 rescued the host R. necatrix from impaired growth induced by RnMTV1. YkV3 exerted no apparent effect on its partner (RnMBV3) or host fungus. Overall, we revealed that while yadokariviruses generally require partner dsRNA viruses for replication, each yadokarivirus partners with a different dsRNA virus species in the three diverse families and shows a distinct symbiotic relation in a fungus. IMPORTANCE A capsidless (+)ssRNA virus YkV1 (family Yadokariviridae) highjacks the capsid of an unrelated dsRNA virus YnV1 (proposed family "Yadonushiviridae") in a phytopathogenic ascomycete, while YkV1 trans-enhances YnV1 replication. Herein, we identified the dsRNA virus partners of three yadokariviruses (YkV3, YkV4a, and YkV4b) with genome organization different from YkV1 as being different from YnV1 at the suborder level. Their partners were mutually interchangeable between the two YkV4 strains and three strains of the partner virus RnMTV1 (proposed family "Megatotiviridae") but not between other combinations involving YkV1 or YkV3. Unlike YkV1, YkV4s reduced RnMTV1 accumulation and rescued the host fungus from impaired growth induced by RnMTV1. YkV3 exerted no apparent effect on its partner (RnMBV3, family Megabirnaviridae) or host fungus. These revealed that while each yadokarivirus has a species-specific partnership with a dsRNA virus, yadokariviruses collectively partner extremely diverse dsRNA viruses and show three-layered complex mutualistic/antagonistic interactions in a fungus.
Collapse
|
25
|
Prakashrao AS, Beuerle T, Simões ARG, Hopf C, Çiçek SS, Stegemann T, Ober D, Kaltenegger E. The long road of functional recruitment-The evolution of a gene duplicate to pyrrolizidine alkaloid biosynthesis in the morning glories (Convolvulaceae). PLANT DIRECT 2022; 6:e420. [PMID: 35865076 PMCID: PMC9295680 DOI: 10.1002/pld3.420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
In plants, homospermidine synthase (HSS) is a pathway-specific enzyme initiating the biosynthesis of pyrrolizidine alkaloids (PAs), which function as a chemical defense against herbivores. In PA-producing Convolvulaceae ("morning glories"), HSS originated from deoxyhypusine synthase at least >50 to 75 million years ago via a gene duplication event and subsequent functional diversification. To study the recruitment of this ancient gene duplicate to PA biosynthesis, the presence of putative hss gene copies in 11 Convolvulaceae species was analyzed. Additionally, various plant parts from seven of these species were screened for the presence of PAs. Although all of these species possess a putative hss copy, PAs could only be detected in roots of Ipomoea neei (Spreng.) O'Donell and Distimake quinquefolius (L.) A.R.Simões & Staples in this study. A precursor of PAs was detected in roots of Ipomoea alba L. Thus, despite sharing high sequence identities, the presence of an hss gene copy does not correlate with PA accumulation in particular species of Convolvulaceae. In vitro activity assays of the encoded enzymes revealed a broad spectrum of enzyme activity, further emphasizing a functional diversity of the hss gene copies. A recently identified HSS specific amino acid motif seems to be important for the loss of the ancestral protein function-the activation of the eukaryotic initiation factor 5A (eIF5A). Thus, the motif might be indicative for a change of function but allows not to predict the new function. This emphasizes the challenges in annotating functions for duplicates, even for duplicates from closely related species.
Collapse
Affiliation(s)
- Arunraj Saranya Prakashrao
- Department Biochemical Ecology and Molecular Evolution, Botanical InstituteChristian‐Albrechts‐UniversityKielGermany
- Present address:
Heart Research Center GöttingenUniversity Medical Center GöttingenGöttingenGermany.
| | - Till Beuerle
- Institute of Pharmaceutical BiologyTechnische Universität BraunschweigBraunschweigGermany
| | - Ana Rita G. Simões
- Royal Botanic Gardens, KewRichmondUK
- Systematic and Evolutionary Botany LabGhent UniversityGhentBelgium
| | - Christina Hopf
- Department of Structural Biology, Zoological InstituteChristian‐Albrechts‐UniversityKielGermany
| | - Serhat Sezai Çiçek
- Department of Pharmaceutical Biology, Pharmaceutical InstituteChristian‐Albrechts‐UniversityKielGermany
| | - Thomas Stegemann
- Department Biochemical Ecology and Molecular Evolution, Botanical InstituteChristian‐Albrechts‐UniversityKielGermany
| | - Dietrich Ober
- Department Biochemical Ecology and Molecular Evolution, Botanical InstituteChristian‐Albrechts‐UniversityKielGermany
| | - Elisabeth Kaltenegger
- Department Biochemical Ecology and Molecular Evolution, Botanical InstituteChristian‐Albrechts‐UniversityKielGermany
| |
Collapse
|
26
|
Chen X, Wang X, Wu D, Li J, Huang H, Wang X, Zhan R, Chen L. PatDREB Transcription Factor Activates Patchoulol Synthase Gene Promoter and Positively Regulates Jasmonate-Induced Patchoulol Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7188-7201. [PMID: 35654756 DOI: 10.1021/acs.jafc.2c01660] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The production of patchoulol in the patchouli (Pogostemon cablin) plant determines its application value, as it is the principal active sesquiterpene of essential oil extracted from this plant. Here, the promoter of patchoulol synthase gene (PatPTSpro) was isolated and found to be methyl jasmonate (MeJA)-induced. A nucleus-localized AP2/ERF transcription factor PatDREB was identified as a transcription activator binding to PatPTSpro, regulating patchoulol biosynthesis through modulating the gene expression. PatDREB also interacts with jasmonate ZIM-domain 4 (JAZ4). Furthermore, PatDREB could physically interact with the MYB-related transcription factor PatSWC4 and synergistically facilitate patchoulol biosynthesis. However, the transcriptional activation activity of the PatDREB-PatSWC4 complex could be inhibited by PatJAZ4, and JA could reverse this interference. Overall, we demonstrated the positive roles of PatDREB and the PatDREB-PatSWC4 complex in regulating patchoulol production, which advance our understanding of the regulatory network of patchoulol biosynthesis.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510006, Guangdong, China
| | - Xiaobing Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, Guangdong, China
| | - Daidi Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, Guangdong, China
| | - Junren Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, Guangdong, China
| | - Huiling Huang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, Guangdong, China
| | - Xilin Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, Guangdong, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, Guangdong, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525100, Guangdong, China
| | - Likai Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, Guangdong, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525100, Guangdong, China
| |
Collapse
|
27
|
Pombo JP, Ebenberger SP, Müller AM, Wolinski H, Schild S. Impact of Gene Repression on Biofilm Formation of Vibrio cholerae. Front Microbiol 2022; 13:912297. [PMID: 35722322 PMCID: PMC9201469 DOI: 10.3389/fmicb.2022.912297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrio cholerae, the etiological agent of cholera, is a facultative intestinal pathogen which can also survive in aquatic ecosystems in the form of biofilms, surface-associated microbial aggregates embedded in an extracellular matrix, which protects them from predators and hostile environmental factors. Biofilm-derived bacteria and biofilm aggregates are considered a likely source for cholera infections, underscoring the importance of V. cholerae biofilm research not just to better understand bacterial ecology, but also cholera pathogenesis in the human host. While several studies focused on factors induced during biofilm formation, genes repressed during this persistence stage have been fairly neglected. In order to complement these previous studies, we used a single cell-based transcriptional reporter system named TetR-controlled recombination-based in-biofilm expression technology (TRIBET) and identified 192 genes to be specifically repressed by V. cholerae during biofilm formation. Predicted functions of in-biofilm repressed (ibr) genes range from metabolism, regulation, surface association, transmembrane transport as well as motility and chemotaxis. Constitutive (over)-expression of these genes affected static and dynamic biofilm formation of V. cholerae at different stages. Notably, timed expression of one candidate in mature biofilms induced their rapid dispersal. Thus, genes repressed during biofilm formation are not only dispensable for this persistence stage, but their presence can interfere with ordered biofilm development. This work thus contributes new insights into gene silencing during biofilm formation of V. cholerae.
Collapse
Affiliation(s)
- Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Anna M. Müller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
28
|
Wang L, Jia M, Li Z, Liu X, Sun T, Pei J, Wei C, Lin Z, Li H. Wristwatch PCR: A Versatile and Efficient Genome Walking Strategy. Front Bioeng Biotechnol 2022; 10:792848. [PMID: 35497369 PMCID: PMC9039356 DOI: 10.3389/fbioe.2022.792848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Genome walking is a method used to retrieve unknown flanking DNA. Here, we reported wristwatch (WW) PCR, an efficient genome walking technique mediated by WW primers (WWPs). WWPs feature 5′- and 3′-overlap and a heterologous interval. Therefore, a wristwatch-like structure can be formed between WWPs under relatively low temperatures. Each WW-PCR set is composed of three nested (primary, secondary, and tertiary) PCRs individually performed by three WWPs. The WWP is arbitrarily annealed somewhere on the genome in the one low-stringency cycle of the primary PCR, or directionally to the previous WWP site in one reduced-stringency cycle of the secondary/tertiary PCR, producing a pool of single-stranded DNAs (ssDNAs). A target ssDNA incorporates a gene-specific primer (GSP) complementary at the 3′-end and the WWP at the 5′-end and thus can be exponentially amplified in the next high-stringency cycles. Nevertheless, a non-target ssDNA cannot be amplified as it lacks a perfect binding site for any primers. The practicability of the WW-PCR was validated by successfully accessing unknown regions flanking Lactobacillus brevis CD0817 glutamate decarboxylase gene and the hygromycin gene of rice. The WW-PCR is an attractive alternative to the existing genome walking techniques.
Collapse
Affiliation(s)
- Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Mengya Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhaoqin Li
- Charles W. Davidson College of Engineering, San Jose State University, San Jose, CA, United States
| | - Xiaohua Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- *Correspondence: Haixing Li,
| |
Collapse
|
29
|
Huang Y, Chen J, Dong C, Sosa D, Xia S, Ouyang Y, Fan C, Li D, Mortola E, Long M, Bergelson J. Species-specific partial gene duplication in Arabidopsis thaliana evolved novel phenotypic effects on morphological traits under strong positive selection. THE PLANT CELL 2022; 34:802-817. [PMID: 34875081 PMCID: PMC8824575 DOI: 10.1093/plcell/koab291] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/25/2021] [Indexed: 05/04/2023]
Abstract
Gene duplication is increasingly recognized as an important mechanism for the origination of new genes, as revealed by comparative genomic analysis. However, how new duplicate genes contribute to phenotypic evolution remains largely unknown, especially in plants. Here, we identified the new gene EXOV, derived from a partial gene duplication of its parental gene EXOVL in Arabidopsis thaliana. EXOV is a species-specific gene that originated within the last 3.5 million years and shows strong signals of positive selection. Unexpectedly, RNA-sequencing analyses revealed that, despite its young age, EXOV has acquired many novel direct and indirect interactions in which the parental gene does not engage. This observation is consistent with the high, selection-driven substitution rate of its encoded protein, in contrast to the slowly evolving EXOVL, suggesting an important role for EXOV in phenotypic evolution. We observed significant differentiation of morphological changes for all phenotypes assessed in genome-edited and T-DNA insertional single mutants and in double T-DNA insertion mutants in EXOV and EXOVL. We discovered a substantial divergence of phenotypic effects by principal component analyses, suggesting neofunctionalization of the new gene. These results reveal a young gene that plays critical roles in biological processes that underlie morphological evolution in A. thaliana.
Collapse
Affiliation(s)
- Yuan Huang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Jiahui Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chuan Dong
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Dezhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Emily Mortola
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
30
|
The Structure of T-DNA Insertions in Transgenic Tobacco Plants Producing Bovine Interferon-Gamma. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Many of the most modern drugs are of a protein nature and are synthesized by transgenic producer organisms. Bacteria, yeast, or animal cell cultures are commonly used, but plants have a number of advantages—minimal biomass unit cost, animal safety (plants are not attacked by mammalian pathogens), the agricultural scale of production, and the ability to produce complex proteins. A disadvantage of plants may be an unstable level of transgene expression, which depends on the transgene structure and its insertion site. We analyzed the structure of T-DNA inserts in transgenic tobacco plants (Nicotiana tabacum L.) belonging to two lines obtained using the same genetic construct but demonstrating different biological activities of the recombinant protein (bovine interferon-gamma). We found that, in one case, T-DNA was integrated into genomic DNA in the region of centromeric repeats, and in the other, into a transcriptionally active region of the genome. It was also found that in one case, the insert has a clustered structure and consists of three copies. Thus, the structure of T-DNA inserts in both lines is not optimal (the optimal structure includes a single copy of the insert located in the active region of the genome). It is desirable to carry out such studies at the early stages of transgenic plants selection.
Collapse
|
31
|
Liu M, Sun T, Liu C, Zhang H, Wang W, Wang Y, Xiang L, Chan Z. Integrated physiological and transcriptomic analyses of two warm- and cool-season turfgrass species in response to heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:275-286. [PMID: 34929431 DOI: 10.1016/j.plaphy.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Warm- and cool-season turfgrasses were originated from different locations with contrasting heat tolerance. The molecular mechanisms of heat tolerance have not been extensively studied in turfgrass species. In this study, transcriptomic analysis showed that bermudagrass was more tolerant to heat stress as evidenced by lower contents of H2O2, proline and glutathione than those in tall fescue after heat treatment. RNA sequencing analysis revealed that 32.7% and 17.7% more genes were changed in tall fescue than in bermudagrass after 2 and 12h heat treatment, respectively. GO terms of redox were enriched in bermudagrass whereas metabolite transportation ones were over-represented in tall fescue after 2h treatment. Ubiquitin dependent degradation pathways were commonly regulated in both grass species. CdF-box and FaF-box transgenic Arabidopsis exhibited improved tolerance to heat stress. Regulatory elements analysis revealed that four ABA-responsive elements present in CdF-box promoter, indicating CdF-box could be potentially regulated by ABRE binding factors (ABFs). All these findings provide evidences for understanding heat stress response in warm- and cool-season grass species.
Collapse
Affiliation(s)
- Mengyao Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tianxiao Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chunling Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hui Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weiliang Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lin Xiang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
32
|
Zhang L, Qian J, Han Y, Jia Y, Kuang H, Chen J. Alternative splicing triggered by the insertion of a CACTA transposon attenuates LsGLK and leads to the development of pale-green leaves in lettuce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:182-195. [PMID: 34724596 DOI: 10.1111/tpj.15563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 05/28/2023]
Abstract
Lettuce (Lactuca sativa) is one of the most important vegetable crops in the world. As a leafy vegetable, the polymorphism of lettuce leaves from dark to pale green is an important trait. However, the genetic and molecular mechanisms underlying such variations remain poorly understood. In this study, one major locus controlling the polymorphism of dark- and pale-green leaves in lettuce was identified using genome-wide association studies (GWAS). This locus was then fine mapped to an interval of 5375 bp on chromosome 4 using a segregating population containing 2480 progeny. Only one gene, homologous to the GLK genes in Arabidopsis and other plants, is present in the candidate region. A complementation test confirmed that the candidate gene, LsGLK, contributes to the variation of dark- and pale-green leaves. Sequence analysis showed that a CACTA transposon of 7434 bp was inserted 10 bp downstream of the stop codon of LsGLK, followed by a duplication of a 1826-bp fragment covering exons 3-6 of the LsGLK gene. The transposon insertion did not change the expression level of the LsGLK gene. However, because of alternative splicing, only 6% of the transcripts produced from the transposon insertion were wild-type transcripts, which led to the production of pale-green leaves. An evolutionary analysis revealed that the insertion of the CACTA transposon occurred in cultivated lettuce and might have been selected in particular cultivars to satisfy the diverse demands of consumers. In this study, we demonstrated that a transposon insertion near a gene may affect its splicing and consequently generate phenotypic variations.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jinlong Qian
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yuting Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yue Jia
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
33
|
Luo J, Chen S, Cao S, Zhang T, Li R, Chan ZL, Wang C. Rose (Rosa hybrida) Ethylene Responsive Factor 3 Promotes Rose Flower Senescence via Direct Activation of the Abscisic Acid Synthesis-Related 9-CIS-EPOXYCAROTENOID DIOXYGENASE Gene. PLANT & CELL PHYSIOLOGY 2021; 62:1030-1043. [PMID: 34156085 DOI: 10.1093/pcp/pcab085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/09/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
During plant senescence, energy and nutrients are transferred to young leaves, fruits or seeds. However, senescence reduces flower quality, which leads to huge economic losses in flower production. Ethylene is an important factor affecting the quality of cut roses during transportation and storage. Ethylene-responsive factors (ERFs) are key nodes in ethylene signaling, but the molecular mechanism underlying ERFs regulated flower senescence is not well understood. We addressed this issue in the present study by focusing on RhERF3 from Rosa hybrida, an ERF identified in a previous transcriptome analysis of ethylene-treated rose flowers. Expression of RhERF3 was strongly induced by ethylene during rose flower senescence. Transient silencing of RhERF3 delayed flower senescence, whereas overexpression (OE) accelerated the process. RNA sequencing analysis of RhERF3 OE and pSuper vector control samples identified 13,214 differentially expressed genes that were mostly related to metabolic process and plant hormone signal transduction. Transient activation and yeast one-hybrid assays demonstrated that RhERF3 directly bound the promoter of the 9-cis-epoxycarotenoid dioxygenase (RhNCED1) gene and activated gene expression. Thus, a RhERF3/RhNCED1 axis accelerates rose flower senescence.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Sijia Chen
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Shenghai Cao
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Zhang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Ruirui Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Zhu Long Chan
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
34
|
Omukai S, Arimura SI, Toriyama K, Kazama T. Disruption of mitochondrial open reading frame 352 partially restores pollen development in cytoplasmic male sterile rice. PLANT PHYSIOLOGY 2021; 187:236-246. [PMID: 34015134 PMCID: PMC8418389 DOI: 10.1093/plphys/kiab236] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/01/2021] [Indexed: 05/20/2023]
Abstract
Plant mitochondrial genomes sometimes carry cytoplasmic male sterility (CMS)-associated genes. These genes have been harnessed in various crops to produce high-yielding F1 hybrid seeds. The gene open reading frame 352 (orf352) was reported to be an RT102-type CMS gene in rice (Oryza sativa), although the mechanism underlying its role in CMS is unknown. Here, we employed mitochondrion-targeted transcription activator-like effector nucleases (mitoTALENs) to knockout orf352 from the mitochondrial genome in the CMS rice RT102A. We isolated 18 independent transformation events in RT102A that resulted in genome editing of orf352, including its complete removal from the mitochondrial genome in several plants. Sequence analysis around the mitoTALEN target sites revealed their induced double-strand breaks were repaired via homologous recombination. Near the 5'-target site, repair involved sequences identical to orf284, while repair of the 3'-target site yielded various new sequences that generated chimeric genes consisting of orf352 fragments. Plants with a chimeric mitochondrial gene encoding amino acids 179-352 of ORF352 exhibited the same shrunken pollen grain phenotype as RT102A, whereas plants either lacking orf352 or harboring a chimeric gene encoding amino acids 211-352 of ORF352 exhibited partial rescue of pollen viability and germination, although these plants failed to set seed. These results demonstrated that disruption of orf352 partially restored pollen development, indicating that amino acids 179-210 from ORF352 may contribute to pollen abortion.
Collapse
Affiliation(s)
- Shiho Omukai
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Shin-ich Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyou-ku, Tokyo 113-8657, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kinya Toriyama
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Tomohiko Kazama
- Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
- Author for communication:
| |
Collapse
|
35
|
Liu Q, Li L, Cheng H, Yao L, Wu J, Huang H, Ning W, Kai G. The basic helix-loop-helix transcription factor TabHLH1 increases chlorogenic acid and luteolin biosynthesis in Taraxacum antungense Kitag. HORTICULTURE RESEARCH 2021; 8:195. [PMID: 34465735 PMCID: PMC8408231 DOI: 10.1038/s41438-021-00630-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
Polyphenols are the main active components of the anti-inflammatory compounds in dandelion, and chlorogenic acid (CGA) is one of the primary polyphenols. However, the molecular mechanism underlying the transcriptional regulation of CGA biosynthesis remains unclear. Hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT2) is the last rate-limiting enzyme in chlorogenic acid biosynthesis in Taraxacum antungense. Therefore, using the TaHQT2 gene promoter as a probe, a yeast one-hybrid library was performed, and a basic helix-loop-helix (bHLH) transcription factor, TabHLH1, was identified that shared substantial homology with Gynura bicolor DC bHLH1. The TabHLH1 transcript was highly induced by salt stress, and the TabHLH1 protein was localized in the nucleus. CGA and luteolin concentrations in TabHLH1-overexpression transgenic lines were significantly higher than those in the wild type, while CGA and luteolin concentrations in TabHLH1-RNA interference (RNAi) transgenic lines were significantly lower. Quantitative real-time polymerase chain reaction demonstrated that overexpression and RNAi of TabHLH1 in T. antungense significantly affected CGA and luteolin concentrations by upregulating or downregulating CGA and luteolin biosynthesis pathway genes, especially TaHQT2, 4-coumarate-CoA ligase (Ta4CL), chalcone isomerase (TaCHI), and flavonoid-3'-hydroxylase (TaF3'H). Dual-luciferase, yeast one-hybrid, and electrophoretic mobility shift assays indicated that TabHLH1 directly bound to the bHLH-binding motifs of proTaHQT2 and proTa4CL. This study suggests that TabHLH1 participates in the regulatory network of CGA and luteolin biosynthesis in T. antungense and might be useful for metabolic engineering to promote plant polyphenol biosynthesis.
Collapse
Affiliation(s)
- Qun Liu
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmacy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem.Sun Yat-Sen), Nanjing, 210014, China
| | - Li Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haitao Cheng
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lixiang Yao
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, PR China
| | - Jie Wu
- College of Life Sciences and Engineering, Shenyang University, Shenyang, 110044, PR China
| | - Hui Huang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmacy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Wei Ning
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmacy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| |
Collapse
|
36
|
Kalendar R, Shustov AV, Schulman AH. Palindromic Sequence-Targeted (PST) PCR, Version 2: An Advanced Method for High-Throughput Targeted Gene Characterization and Transposon Display. FRONTIERS IN PLANT SCIENCE 2021; 12:691940. [PMID: 34239528 PMCID: PMC8258406 DOI: 10.3389/fpls.2021.691940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/20/2021] [Indexed: 05/28/2023]
Abstract
Genome walking (GW), a strategy for capturing previously unsequenced DNA fragments that are in proximity to a known sequence tag, is currently predominantly based on PCR. Recently developed PCR-based methods allow for combining of sequence-specific primers with designed capturing primers capable of annealing to unknown DNA targets, thereby offering the rapidity and effectiveness of PCR. This study presents a methodological improvement to the previously described GW technique known as palindromic sequence-targeted PCR (PST-PCR). Like PST-PCR, this new method (called PST-PCR v.2) relies on targeting of capturing primers to palindromic sequences arbitrarily present in natural DNA templates. PST-PCR v.2 consists of two rounds of PCR. The first round uses a combination of one sequence-specific primer with one capturing (PST) primer. The second round uses a combination of a single (preferred) or two universal primers; one anneals to a 5' tail attached to the sequence-specific primer and the other anneals to a different 5' tail attached to the PST primer. The key advantage of PST-PCR v.2 is the convenience of using a single universal primer with invariable sequences in GW processes involving various templates. The entire procedure takes approximately 2-3 h to produce the amplified PCR fragment, which contains a portion of a template flanked by the sequence-specific and capturing primers. PST-PCR v.2 is highly suitable for simultaneous work with multiple samples. For this reason, PST-PCR v.2 can be applied beyond the classical task of GW for studies in population genetics, in which PST-PCR v.2 is a preferred alternative to amplified fragment length polymorphism (AFLP) or next-generation sequencing. Furthermore, the conditions for PST-PCR v.2 are easier to optimize, as only one sequence-specific primer is used. This reduces non-specific random amplified polymorphic DNA (RAPD)-like amplification and formation of non-templated amplification. Importantly, akin to the previous version, PST-PCR v.2 is not sensitive to template DNA sequence complexity or quality. This study illustrates the utility of PST-PCR v.2 for transposon display (TD), which is a method to characterize inter- or intra-specific variability related to transposon integration sites. The Ac transposon sequence in the maize (Zea mays) genome was used as a sequence tag during the TD procedure to characterize the Ac integration sites.
Collapse
Affiliation(s)
- Ruslan Kalendar
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
- Viikki Plant Science Centre, HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Alan H. Schulman
- Viikki Plant Science Centre, HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
37
|
Luo J, Li R, Xu X, Niu H, Zhang Y, Wang C. SMRT and Illumina RNA Sequencing and Characterization of a Key NAC Gene LoNAC29 during the Flower Senescence in Lilium oriental 'Siberia'. Genes (Basel) 2021; 12:genes12060869. [PMID: 34204040 PMCID: PMC8227295 DOI: 10.3390/genes12060869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
Lily (Lilium spp.) is an important cut flower around the world. Flower senescence in lilies is characterized by the wilting and abscission of tepals, which results in a decrease in flower quality and huge economic loss. However, the mechanism underlying flower senescence in lilies is largely unknown. In this study, single-molecule, real-time (SMRT) and Illumina sequencing were carried out in L. oriental ‘Siberia’. Sequencing yielded 73,218 non-redundant transcripts, with an N50 of 3792 bp. These data were further integrated with three published transcriptomes through cogent analysis, which yielded 62,960 transcripts, with an increase in N50 of 3935 bp. Analysis of differentially expressed genes showed that 319 transcription factors were highly upregulated during flower senescence. The expression of twelve NAC genes and eleven senescence-associated genes (SAGs) showed that LoNAC29 and LoSAG39 were highly expressed in senescent flowers. Transient overexpression of LoNAC29 and LoSAG39 in tepals of lily notably accelerated flower senescence, and the promoter activity of LoSAG39 was strongly induced by LoNAC29. This work supported new evidence for the molecular mechanism of flower senescence and provided better sequence data for further study in lilies.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Ruirui Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Xintong Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Hairui Niu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Yujie Zhang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-87282010
| |
Collapse
|
38
|
Takatsuka A, Kazama T, Toriyama K. Cytoplasmic Male Sterility-Associated Mitochondrial Gene orf312 Derived from Rice (Oryza sativa L.) Cultivar Tadukan. RICE (NEW YORK, N.Y.) 2021; 14:46. [PMID: 34021837 PMCID: PMC8141088 DOI: 10.1186/s12284-021-00488-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) is a trait associated with non-functional pollen or anthers, caused by the interaction between mitochondrial and nuclear genes. FINDINGS A Tadukan-type CMS line (TAA) and a restorer line (TAR) were obtained by successive backcrossing between the Oryza sativa cultivars Tadukan (a cytoplasmic donor) and Taichung 65 (a recurrent pollen parent). Using Illumina HiSeq, we determined whole-genome sequences of the mitochondria of TAA and screened the mitochondrial genome for the presence of open reading frame (orf) genes specific to this genome. One of these orf genes, orf312, showed differential expression patterns in TAA and TAR anthers at the meiotic and mature stages, with transcript amounts in TAR being less than those in TAA. The orf312 gene is similar to the previously described orf288, a part of which is among the components comprising WA352, a chimeric CMS-associated gene of wild-abortive-type CMS. CONCLUSIONS The orf312 gene is a promising candidate for CMS-associated gene in TAA.
Collapse
Affiliation(s)
- Ayumu Takatsuka
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572 Japan
| | - Tomohiko Kazama
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572 Japan
- Present address: Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0385 Japan
| | - Kinya Toriyama
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572 Japan
| |
Collapse
|
39
|
CmNAC73 Mediates the Formation of Green Color in Chrysanthemum Flowers by Directly Activating the Expression of Chlorophyll Biosynthesis Genes HEMA1 and CRD1. Genes (Basel) 2021; 12:genes12050704. [PMID: 34066887 PMCID: PMC8151904 DOI: 10.3390/genes12050704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Chrysanthemum is one of the most beautiful and popular flowers in the world, and the flower color is an important ornamental trait of chrysanthemum. Compared with other flower colors, green flowers are relatively rare. The formation of green flower color is attributed to the accumulation of chlorophyll; however, the regulatory mechanism of chlorophyll metabolism in chrysanthemum with green flowers remains largely unknown. In this study, we performed Illumina RNA sequencing on three chrysanthemum materials, Chrysanthemum vestitum and Chrysanthemum morifolium cultivars ‘Chunxiao’ and ‘Green anna’, which produce white, light green and dark green flowers, respectively. Based on the results of comparative transcriptome analysis, a gene encoding a novel NAC family transcription factor, CmNAC73, was found to be highly correlated to chlorophyll accumulation in the outer whorl of ray florets in chrysanthemum. The results of transient overexpression in chrysanthemum leaves showed that CmNAC73 acts as a positive regulator of chlorophyll biosynthesis. Furthermore, transactivation and yeast one-hybrid assays indicated that CmNAC73 directly binds to the promoters of chlorophyll synthesis-related genes HEMA1 and CRD1. Thus, this study uncovers the transcriptional regulation of chlorophyll synthesis-related genes HEMA1 and CRD1 by CmNAC73 and provides new insights into the development of green flower color in chrysanthemum and chlorophyll metabolism in plants.
Collapse
|
40
|
Shi J, Zhang Q, Yan X, Zhang D, Zhou Q, Shen Y, Anupol N, Wang X, Bao M, Larkin RM, Luo H, Ning G. A conservative pathway for coordination of cell wall biosynthesis and cell cycle progression in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:630-648. [PMID: 33547692 DOI: 10.1111/tpj.15187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The mechanism that coordinates cell growth and cell cycle progression remains poorly understood; in particular, whether the cell cycle and cell wall biosynthesis are coordinated remains unclear. Recently, cell wall biosynthesis and cell cycle progression were reported to respond to wounding. Nonetheless, no genes are reported to synchronize the biosynthesis of the cell wall and the cell cycle. Here, we report that wounding induces the expression of genes associated with cell wall biosynthesis and the cell cycle, and that two genes, AtMYB46 in Arabidopsis thaliana and RrMYB18 in Rosa rugosa, are induced by wounding. We found that AtMYB46 and RrMYB18 promote the biosynthesis of the cell wall by upregulating the expression of cell wall-associated genes, and that both of them also upregulate the expression of a battery of genes associated with cell cycle progression. Ultimately, this response leads to the development of curled leaves of reduced size. We also found that the coordination of cell wall biosynthesis and cell cycle progression by AtMYB46 and RrMYB18 is evolutionarily conservative in multiple species. In accordance with wounding promoting cell regeneration by regulating the cell cycle, these findings also provide novel insight into the coordination between cell growth and cell cycle progression and a method for producing miniature plants.
Collapse
Affiliation(s)
- Jiewei Shi
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qunxia Zhang
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Yan
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Zhou
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuxiao Shen
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nachaisin Anupol
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuqing Wang
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manzhu Bao
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634-0318, USA
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
41
|
Zhang Y, Yan H, Li Y, Xiong Y, Niu M, Zhang X, Teixeira da Silva JA, Ma G. Molecular Cloning and Functional Analysis of 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase from Santalum album. Genes (Basel) 2021; 12:genes12050626. [PMID: 33922119 PMCID: PMC8143465 DOI: 10.3390/genes12050626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/05/2022] Open
Abstract
Sandalwood (Santalum album L.) heartwood-derived essential oil contains a high content of sesquiterpenoids that are economically highly valued and widely used in the fragrance industry. Sesquiterpenoids are biosynthesized via the mevalonate acid and methylerythritol phosphate (MEP) pathways, which are also the sources of precursors for photosynthetic pigments. 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is a secondary rate-limiting enzyme in the MEP pathway. In this paper, the 1416-bp open reading frame of SaDXR and its 897-bp promoter region, which contains putative conserved cis-elements involved in stress responsiveness (HSE and TC-rich repeats), hormone signaling (abscisic acid, gibberellin and salicylic acid) and light responsiveness, were cloned from 7-year-old S. album trees. A bioinformatics analysis suggested that SaDXR encodes a functional and conserved DXR protein. SaDXR was widely expressed in multiple tissues, including roots, twigs, stem sapwood, leaves, flowers, fruit and stem heartwood, displaying significantly higher levels in tissues with photosynthetic pigments, like twigs, leaves and flowers. SaDXR mRNA expression increased in etiolated seedlings exposed to light, and the content of chlorophylls and carotenoids was enhanced in all 35S::SaDXR transgenic Arabidopsis thaliana lines, consistent with the SaDXR expression level. SaDXR was also stimulated by MeJA and H2O2 in seedling roots. α-Santalol content decreased in response to fosmidomycin, a DXR inhibitor. These results suggest that SaDXR plays an important role in the biosynthesis of photosynthetic pigments, shifting the flux to sandalwood-specific sesquiterpenoids.
Collapse
Affiliation(s)
- Yueya Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (Y.L.); (Y.X.); (M.N.); (X.Z.)
- Computer Science Department, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Yuan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (Y.L.); (Y.X.); (M.N.); (X.Z.)
| | - Yuping Xiong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (Y.L.); (Y.X.); (M.N.); (X.Z.)
- Computer Science Department, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyun Niu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (Y.L.); (Y.X.); (M.N.); (X.Z.)
- Computer Science Department, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (Y.L.); (Y.X.); (M.N.); (X.Z.)
| | | | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (Y.L.); (Y.X.); (M.N.); (X.Z.)
- Correspondence:
| |
Collapse
|
42
|
A Raf-like kinase is required for smoke-induced seed dormancy in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2021; 118:2020636118. [PMID: 33795513 DOI: 10.1073/pnas.2020636118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plants sense and integrate diverse stimuli to determine the timing for germination. A smoke compound, 3,4,5-trimethylfuran-2(5H)-one (trimethylbutenolide, TMB), has been identified to inhibit the seed germination of higher plants. To understand the mode of action, we examined various physiological and molecular aspects of the TMB-dependent inhibition of seed germination in Arabidopsis thaliana The results indicated that the effect of TMB is due to the enhanced physiological dormancy, which is modulated by other dormancy regulatory cues such as after-ripening, stratification, and ABA/GA signaling. In addition, gene expression profiling showed that TMB caused genome-wide transcriptional changes, altering the expression of a series of dormancy-related genes. Based on the TMB-responsive physiological contexts in Arabidopsis, we performed mutant screening to isolate genetic components that underpin the TMB-induced seed dormancy. As a result, the TMB-RESISTANT1 (TES1) gene in Arabidopsis, encoding a B2 group Raf-like kinase, was identified. Phenotypic analysis of the tes1 mutant implicated that TES1 has a critical role in the TMB-responsive gene expression and the inhibition of seed germination. Taken together, we propose that plants have been equipped with a TMB sensory pathway through which the TMB induces the seed dormancy in a TES1-dependent way.
Collapse
|
43
|
Yang S, Overlander M, Fiedler J. Genetic analysis of the barley variegation mutant, grandpa1.a. BMC PLANT BIOLOGY 2021; 21:134. [PMID: 33711931 PMCID: PMC7955646 DOI: 10.1186/s12870-021-02915-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/04/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Providing the photosynthesis factory for plants, chloroplasts are critical for crop biomass and economic yield. However, chloroplast development is a complicated process, coordinated by the cross-communication between the nucleus and plastids, and the underlying biogenesis mechanism has not been fully revealed. Variegation mutants have provided ideal models to identify genes or factors involved in chloroplast development. Well-developed chloroplasts are present in the green tissue areas, while the white areas contain undifferentiated plastids that are deficient in chlorophyll. Unlike albino plants, variegation mutants survive to maturity and enable investigation into the signaling pathways underlying chloroplast biogenesis. The allelic variegated mutants in barley, grandpa 1 (gpa1), have long been identified but have not been genetically characterized. RESULTS We characterized and genetically analyzed the grandpa1.a (gpa1.a) mutant. The chloroplast ultrastructure was evaluated using transmission electron microscopy (TEM), and it was confirmed that chloroplast biogenesis was disrupted in the white sections of gpa1.a. To determine the precise position of Gpa1, a high-resolution genetic map was constructed. Segregating individuals were genotyped with the barley 50 k iSelect SNP Array, and the linked SNPs were converted to PCR-based markers for genetic mapping. The Gpa1 gene was mapped to chromosome 2H within a gene cluster functionally related to photosynthesis or chloroplast differentiation. In the variegated gpa1.a mutant, we identified a large deletion in this gene cluster that eliminates a putative plastid terminal oxidase (PTOX). CONCLUSIONS Here we characterized and genetically mapped the gpa1.a mutation causing a variegation phenotype in barley. The PTOX-encoding gene in the delimited region is a promising candidate for Gpa1. Therefore, the present study provides a foundation for the cloning of Gpa1, which will elevate our understanding of the molecular mechanisms underlying chloroplast biogenesis, particularly in monocot plants.
Collapse
Affiliation(s)
- Shengming Yang
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA.
| | - Megan Overlander
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA
| | - Jason Fiedler
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
44
|
Huo Y, Zhang B, Chen L, Zhang J, Zhang X, Zhu C. Isolation and Functional Characterization of the Promoters of Miltiradiene Synthase Genes, TwTPS27a and TwTPS27b, and Interaction Analysis with the Transcription Factor TwTGA1 from Tripterygium wilfordii. PLANTS 2021; 10:plants10020418. [PMID: 33672407 PMCID: PMC7926782 DOI: 10.3390/plants10020418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022]
Abstract
Miltiradiene synthase (MS) genes, TwTPS27a and TwTPS27b, are the key diterpene synthase genes in the biosynthesis of triptolide, which is an important medicinally active diterpenoid in Tripterygium wilfordii. However, the mechanism underlying the regulation of key genes TwTPS27a/b in triptolide biosynthesis remains unclear. In this study, the promoters of TwTPS27a (1496 bp) and TwTPS27b (1862 bp) were isolated and analyzed. Some hormone-/stress-responsive elements and transcription factor (TF) binding sites were predicted in both promoters, which might be responsible for the regulation mechanism of TwTPS27a/b. The β-glucuronidase (GUS) activity analysis in promoter deletion assays under normal and methyl jasmonate (MeJA) conditions showed that the sequence of −921 to −391 bp is the potential core region of the TwTPS27b promoter. And the TGACG-motif, a MeJA-responsive element found in this core region, might be responsible for MeJA-mediated stress induction of GUS activity. Moreover, the TGACG-motif is also known as the TGA TF-binding site. Yeast one-hybrid and GUS transactivation assays confirmed the interaction between the TwTPS27a/b promoters and the TwTGA1 TF (a MeJA-inducible TGA TF upregulating triptolide biosynthesis in T. wilfordii), indicating that TwTPS27a/b are two target genes regulated by TwTGA1. In conclusion, our results provide important information for elucidating the regulatory mechanism of MS genes, TwTPS27a and TwTPS27b, as two target genes of TwTGA1, in jasmonic acid (JA)-inducible triptolide biosynthesis.
Collapse
Affiliation(s)
- Yanbo Huo
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
| | - Bin Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
| | - Ling Chen
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
| | - Jing Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
- Engineering and Research Center of Biological Pesticide of Shaanxi Province, Yangling 712100, China
| | - Xing Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
- Engineering and Research Center of Biological Pesticide of Shaanxi Province, Yangling 712100, China
- Correspondence: (X.Z.); (C.Z.)
| | - Chuanshu Zhu
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
- Engineering and Research Center of Biological Pesticide of Shaanxi Province, Yangling 712100, China
- Correspondence: (X.Z.); (C.Z.)
| |
Collapse
|
45
|
Wang Y, Bao Y, Zheng Y, Guo P, Peng D, Wang B. Promoter P PSP1-5- BnPSP-1 From Ramie ( Boehmeria nivea L. Gaud.) Can Drive Phloem-Specific GUS Expression in Arabidopsis thaliana. Front Genet 2021; 11:553265. [PMID: 33391335 PMCID: PMC7772962 DOI: 10.3389/fgene.2020.553265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/26/2020] [Indexed: 11/21/2022] Open
Abstract
Isolation of phloem-specific promoters is one of the basic conditions for improving the fiber development and resistance of ramie phloem using genetic engineering. In this study, we isolated a ramie endogenous promoter (named PPSP1-BnPSP-1) and analyzed the function of its truncated fragments in Arabidopsis. The results show that PPSP1-BnPSP-1 can drive the GUS reporter gene to be specifically expressed in the veins of Arabidopsis. After hormone and simulated drought treatment of the independent Arabidopsis lines carrying PPSP1-BnPSP-1 and its truncated fragments, only PPSP1–5-BnPSP-1 (−600 to −1 bp region of PPSP1-BnPSP-1) is stably expressed and exhibits phloem specificity. Our findings suggest that PPSP1–5-BnPSP-1 can be used as a phloem specific promoter for further research.
Collapse
Affiliation(s)
- Yunhe Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaning Bao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Tobacco Science, University of Guizhou, Guiyang, China
| | - Yancheng Zheng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping'an Guo
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, University of Hubei Normal, Huangshi, China
| | - Dingxiang Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
46
|
Zhang D, Tan Y, Dong F, Zhang Y, Huang Y, Zhou Y, Zhao Z, Yin Q, Xie X, Gao X, Zhang C, Tu N. The Expression of IbMYB1 Is Essential to Maintain the Purple Color of Leaf and Storage Root in Sweet Potato [ Ipomoea batatas (L.) Lam]. FRONTIERS IN PLANT SCIENCE 2021; 12:688707. [PMID: 34630449 PMCID: PMC8495246 DOI: 10.3389/fpls.2021.688707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/16/2021] [Indexed: 05/14/2023]
Abstract
IbMYB1 was one of the major anthocyanin biosynthesis regulatory genes that has been identified and utilized in purple-fleshed sweet potato breeding. At least three members of this gene, namely, IbMYB1-1, -2a, and -2b, have been reported. We found that IbMYB1-2a and -2b are not necessary for anthocyanin accumulation in a variety of cultivated species (hexaploid) with purple shoots or purplish rings/spots of flesh. Transcriptomic and quantitative reverse transcription PCR (RT-qPCR) analyses revealed that persistent and vigorous expression of IbMYB1 is essential to maintain the purple color of leaves and storage roots in this type of cultivated species, which did not contain IbMYB1-2 gene members. Compared with IbbHLH2, IbMYB1 is an early response gene of anthocyanin biosynthesis in sweet potato. It cannot exclude the possibility that other MYBs participate in this gene regulation networks. Twenty-two MYB-like genes were identified from 156 MYBs to be highly positively or negatively correlated with the anthocyanin content in leaves or flesh. Even so, the IbMYB1 was most coordinately expressed with anthocyanin biosynthesis genes. Differences in flanking and coding sequences confirm that IbMYB2s, the highest similarity genes of IbMYB1, are not the members of IbMYB1. This phenomenon indicates that there may be more members of IbMYB1 in sweet potato, and the genetic complementation of these members is involved in the regulation of anthocyanin biosynthesis. The 3' flanking sequence of IbMYB1-1 is homologous to the retrotransposon sequence of TNT1-94. Transposon movement is involved in the formation of multiple members of IbMYB1. This study provides critical insights into the expression patterns of IbMYB1, which are involved in the regulation of anthocyanin biosynthesis in the leaf and storage root. Notably, our study also emphasized the presence of a multiple member of IbMYB1 for genetic improvement.
Collapse
Affiliation(s)
- Daowei Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- *Correspondence: Daowei Zhang,
| | - Yongjun Tan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fang Dong
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ya Zhang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yanlan Huang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yizhou Zhou
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - ZhiJian Zhao
- Dryland Crop Research Institute, Shao Yang Academy of Agriculture Science, Shaoyang, China
| | - Qin Yin
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuehua Xie
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiewang Gao
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chaofan Zhang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Chaofan Zhang,
| | - Naimei Tu
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Naimei Tu,
| |
Collapse
|
47
|
Yao P, Huang Y, Dong Q, Wan M, Wang A, Chen Y, Li C, Wu Q, Chen H, Zhao H. FtMYB6, a Light-Induced SG7 R2R3-MYB Transcription Factor, Promotes Flavonol Biosynthesis in Tartary Buckwheat ( Fagopyrum tataricum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13685-13696. [PMID: 33171044 DOI: 10.1021/acs.jafc.0c03037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is rich in flavonols, which are thought to be highly beneficial for human health. However, little is known about the regulatory mechanism of flavonol biosynthesis in Tartary buckwheat. In this study, we identified and characterized a novel SG7 R2R3-MYB transcription factor in Tartary buckwheat, FtMYB6. We showed that FtMYB6 is located in the nucleus and acts as a transcriptional activator. The FtMYB6 promoter showed strong spatiotemporal specificity and was induced by light. The expression of FtMYB6 showed a significant correlation with rutin accumulation in the roots, stems, leaves, and flowers. Overexpression of FtMYB6 in transgenic Tartary buckwheat hairy roots and tobacco (Nicotiana tabacum) plants significantly increased the accumulation of flavonols. In transient luciferase (LUC) activity assay, FtMYB6 promoted the activity of FtF3H and FtFLS1 promoters and inhibited the activity of the Ft4CL promoter. Collectively, our results suggest that FtMYB6 promotes flavonol biosynthesis by activating FtF3H and FtFLS1 expression.
Collapse
Affiliation(s)
- Panfeng Yao
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Yunji Huang
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Qixin Dong
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Min Wan
- Department of Biological Science, College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Anhu Wang
- Xichang College, Xichang, Sichuan 615000, China
| | - Yuwei Chen
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, China
| |
Collapse
|
48
|
Zhang Y, Shao C, Bao Z, Cai F, Zhu H, Zhang J, Bao M. Identification and characterization of PaGL1-like genes from Platanus acerifolia related to the regulation of trichomes. PLANT MOLECULAR BIOLOGY 2020; 104:235-248. [PMID: 32757127 DOI: 10.1007/s11103-020-01028-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Two PaGL1-like genes were identified in London plane and functional in Arabidopsis, moreover, may play an important role in the regulation of trichome development in London plane. Trichome development is governed by a complex regulatory network. In Arabidopsis, subgroup 15 of the R2R3 MYB transcription factor family, which includes GLABRA1 (GL1), is involved in trichome development. In this study, we isolated and characterized two PaGL1-like genes from London plane (Platanus acerifolia). Sequence alignment and phylogenetic analysis indicated that these PaGL1-like genes are homologous to AtGL1. Quantitative real-time PCR (qRT-PCR) analysis showed that PaGL1-like1 was expressed in all of the tested organs taken from adult London plane trees, including trichomes, petioles after trichome removal, stems after trichome removal, and leaves after trichome removal, and also in the roots, cotyledons, hypocotyls and true leaves of seedlings. By contrast, the PaGL1-like2 was expressed only in the trichomes and leaves after trichome removal from adult trees, and in the cotyledons and true leaves of seedlings. Overexpression of PaGL1-like genes caused trichome abortion when transferred into wild type Arabidopsis and promoted trichome formation in the gl1 mutant. The expression profiles of some trichome-related genes were changed in transgenic Arabidopsis lines, and yeast two-hybrid analysis indicated that PaGL1-like proteins can directly interact with trichome-related bHLH proteins from both P. acerifolia and Arabidopsis. These results suggest that PaGL1-like genes are functional in Arabidopsis and may play an important role in the regulation of trichome development in London plane.
Collapse
Affiliation(s)
- Yanping Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, People's Republic of China
| | - Changsheng Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, People's Republic of China
| | - Zhiru Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, People's Republic of China
| | - Fangfang Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, People's Republic of China
| | - Haofei Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, People's Republic of China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, People's Republic of China.
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
49
|
Li L, Li Y, Wang R, Chao L, Xiu Y, Wang H. Characterization of the stearoyl-ACP desaturase gene (PoSAD) from woody oil crop Paeonia ostii var. lishizhenii in oleic acid biosynthesis. PHYTOCHEMISTRY 2020; 178:112480. [PMID: 32768716 DOI: 10.1016/j.phytochem.2020.112480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Paeonia ostii var. lishizhenii has been approved as a woody oil crop with the outstanding characteristic of abundant α-linolenic acid (C18:3, ALA) in its seed oil. The stearoyl-ACP desaturase gene (SAD) regulates the first key step from stearic acid (C18:0, SA) to oleic acid (C18:1, OA) in the ALA biosynthetic pathway, but its functional characterization in P. ostii var. lishizhenii is absent to date. In this study, a key PoSAD gene (1719 bp in length) was acquired from endosperm of P. ostii var. lishizhenii by transcriptome sequencing analysis and the RACE (rapid-amplification of cDNA ends) method. Bioinformatic analysis of the PoSAD protein showed high homology (ranging from 90.4% to 94.4%) and similar physical and chemical properties to SAD from other higher plants, indicating that it encodes a putative stearoyl-ACP desaturase. Analysis of cis-acting elements found several endosperm tissue-specific motifs; i.e., one Prolamin box, thirteen DOFCOREs and one RY repeat in its promoter. The results of the qRT-PCR experiments verified that PoSAD was most highly expressed in developing endosperm at 59 days after pollination (53.7 times that in shoots) compared with that in roots (1.4 times), stems (2.5 times), leaves (3.1 times), petals (13.1 times) and stamens (46.0 times). Meanwhile, the fatty acid contents in P. ostii var. lishizhenii endosperm at seven growth stages were compared with variation in PoSAD expression. Heterologous expression of PoSAD significantly decreased SA and increased OA content, which effectively reduced the ratios of SA to OA in Saccharomyces cerevisiae and Arabidopsis thaliana. However, contents and ratios of palmitic acid (C16:0) and palmitoleic acid (C16:1) were stable in transgenic yeast, and palmitoleic acid remained absent in transgenic A. thaliana seeds. These results illustrate that PoSAD plays an essential role in endosperm development of P. ostii var. lishizhenii, strictly in catalysis of SA desaturation and OA biosynthesis but without functioning in PA desaturation. The results contribute to our understanding of the characterization of PoSAD in OA biosynthesis in P. ostii var. lishizhenii.
Collapse
Affiliation(s)
- Linkun Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Yipei Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Ruoxin Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Longjun Chao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Beijing Peonature Biotechnology Co., Ltd., Beijing, 101301, China.
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Huafang Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
50
|
Pang J, Zhou J, Yang D. Knock-in at GluA1 locus improves recombinant human serum albumin expression in rice grain. J Biotechnol 2020; 321:87-95. [PMID: 32619642 DOI: 10.1016/j.jbiotec.2020.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Improving recombinant protein expression is a perpetual goal for molecular pharming. However, over-transcription of recombinant protein induces ER stress, and causes protein degradation. Here, we describe a knock-in approach to integrate a human serum albumin expression cassette into the locus of the rice storage protein GluA1 by site-specific integration via the nonhomologous end joining (NHEJ) pathway. The expression level of OsrHSA in the knock-in (KI) lines was much higher than that of the random integration (RI) lines. ER stress in KI line endosperm cells was not significantly altered even after massive OsrHSA accumulation in rice endosperm cell. Instead, ER stress induced by high OsrHSA expression was alleviated in the KI line via the inositol-requiring enzyme 1 (IRE1)-mediated/OsbZIP50 pathway. Furthermore, improvement of OsrHSA expression in KI lines is likely due to reduction of contents of glutelin and globulin in rice endosperm cell. These results provide insight into an approach to improving recombinant protein accumulation by alleviating ER stress and protein trafficking.
Collapse
Affiliation(s)
- Jianlei Pang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Jiaqi Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan, China.
| |
Collapse
|