1
|
Amat S, Magossi G, Rakibuzzaman AGM, Holman DB, Schmidt KN, Kosel L, Ramamoorthy S. Screening and selection of essential oils for an intranasal spray against bovine respiratory pathogens based on antimicrobial, antiviral, immunomodulatory, and antibiofilm activities. Front Vet Sci 2024; 11:1360398. [PMID: 38384959 PMCID: PMC10879409 DOI: 10.3389/fvets.2024.1360398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The rise in antibiotic resistant pathogens associated with bovine respiratory disease (BRD) poses a serious challenge, particularly to the beef feedlot industry, as they currently depend on antibiotics to prevent BRD to mitigate the financial burden (approx. $1 billion annual loss) inflicted by BRD-associated high mortality and morbidity in feedlot cattle. Thus, there is an impetus need for the development of antimicrobial alternative strategies against BRD. This study aimed to screen and select candidate essential oils (EOs) for the development of an intranasal EO spray that can inhibit BRD pathogens and promote microbiota-mediated respiratory health. Methods The effects of selected EOs (ajowan, cinnamon leaf, citronella, grapefruit, fennel, and thyme) on a bovine nasopharyngeal microbiota culture were evaluated using 16S rRNA gene sequencing. The microbiota culture was enriched by incubating nasopharyngeal swabs obtained from finishing beef heifers in brain heart infusion broth with and without EOs (0.025%, v/v). These EOs were then also evaluated for their immunomodulatory effects on bovine turbinate (BT) cells by analyzing the concentrations of 15 cytokines and chemokines in cell culture after 24 h incubation. The crystal violet assay was done to assess the antibiofilm activity of EOs against Escherichia coli UMN026 strain. Finally, 15 EOs were screened for their antiviral activity against the bovine viral diarrhea virus 1 (BVDV-1) using BT cells and a fluorescence-based method. Results Ajowan, fennel, and thyme resulted in a moderate reduction of overall nasopharyngeal microbiota growth with significant alterations of both alpha and beta diversity, and the relative abundance of predominant bacterial families (e.g., increasing Enterobacteriaceae and decreasing Moraxellaceae) compared to the control (p < 0.05). Co-incubation of BT cells with selected EOs resulted in minimal alterations in cytokine and chemokine levels (p > 0.05). Ajowan, thyme, fennel, and cinnamon leaf exhibited antibiofilm activity at concentrations of 0.025 and 0.05%. Reduction of BVDV-1 replication in BT cells was observed with thyme (strong), and ajowan and citronella (moderate) at 0.0125% concentration. Discussion Accordingly, ajowan, thyme, fennel, cinnamon leaf, and citronella EOs were selected for further development as an intranasal EO spray to prevent and control of BRD pathogens in feedlot cattle.
Collapse
Affiliation(s)
- Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Gabriela Magossi
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - AGM Rakibuzzaman
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie N. Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Luke Kosel
- Department of Biological Sciences, North Dakota State University, Fargo, ND, United States
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
2
|
Bava R, Castagna F, Ruga S, Nucera S, Caminiti R, Serra M, Bulotta RM, Lupia C, Marrelli M, Conforti F, Statti G, Domenico B, Palma E. Plants and Their Derivatives as Promising Therapeutics for Sustainable Control of Honeybee ( Apis mellifera) Pathogens. Pathogens 2023; 12:1260. [PMID: 37887776 PMCID: PMC10610010 DOI: 10.3390/pathogens12101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The most important pollinator for agricultural crops is the Western honeybee (Apis mellifera). During the winter and summer seasons, diseases and stresses of various kinds endanger honeybee numbers and production, resulting in expenses for beekeepers and detrimental effects on agriculture and ecosystems. Researchers are continually in search of therapies for honeybees using the resources of microbiology, molecular biology, and chemistry to combat diseases and improve the overall health of these important pollinating insects. Among the most investigated and most promising solutions are medicinal plants and their derivatives. The health of animals and their ability to fight disease can be supported by natural products (NPs) derived from living organisms such as plants and microbes. NPs contain substances that can reduce the effects of diseases by promoting immunity or directly suppressing pathogens, and parasites. This literature review summarises the advances that the scientific community has achieved over the years regarding veterinary treatments in beekeeping through the use of NPs. Their impact on the prevention and control of honeybee diseases is investigated both in trials that have been conducted in the laboratory and field studies.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Saverio Nucera
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Rosamaria Caminiti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Maria Serra
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy;
- National Ethnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Britti Domenico
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| |
Collapse
|
3
|
Li J, Chen W, Liu H, Liu H, Xiang S, You F, Jiang Y, Lin J, Zhang D, Zheng C. Pharmacologic effects approach of essential oils and their components on respiratory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:115962. [PMID: 36529244 DOI: 10.1016/j.jep.2022.115962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Essential oils (EOs) are concentrated hydrophobic liquids with volatility and a unique aroma. Formed by aromatic plants as secondary metabolites, EOs have been used as traditional medicines to treat various health problems worldwide. Historical records show that herbs rich in EOs have been widely used to treat respiratory diseases in China, Europe, and many other regions. AIM OF THE REVIEW This review summarizes the traditional applications and modern pharmacological mechanisms of EOs derived from aromatic herbs and their active ingredients in respiratory diseases in preclinical and clinical trials through multitarget synergy. MATERIALS AND METHODS Information about EOs and respiratory diseases was collected from electronic databases, such as ScienceDirect, Web of Science, PubMed, Google Scholar, Baidu Scholar, and the China National Knowledge Infrastructure (CNKI). RESULTS This review presents the preventive and therapeutic effects of EOs on respiratory diseases, including chronic obstructive pulmonary disease, bronchial asthma, acute lung injury, pulmonary infection, and pulmonary fibrosis. The molecular mechanisms of EOs in treating different lung diseases are summarized, including anti-inflammation, anti-oxidation, mucolytic, and immune regulatory mechanisms. CONCLUSIONS EOs show potential as supplements or substitutes for treating lung diseases.
Collapse
Affiliation(s)
- Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Wu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Huimin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu, 611137, China.
| | - Hong Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Sirui Xiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu, 611137, China.
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
4
|
Zhang L, Ye X, Liu Y, Zhang Z, Xia X, Dong S. Research progress on the effect of traditional Chinese medicine on the activation of PRRs-mediated NF-κB signaling pathway to inhibit influenza pneumonia. Front Pharmacol 2023; 14:1132388. [PMID: 37089926 PMCID: PMC10119400 DOI: 10.3389/fphar.2023.1132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Influenza pneumonia has challenged public health and social development. One of the hallmarks of severe influenza pneumonia is overproduction of pro-inflammatory cytokines and chemokines, which result from the continuous activation of intracellular signaling pathways, such as the NF-κB pathway, mediated by the interplay between viruses and host pattern recognition receptors (PRRs). It has been reported that traditional Chinese medicines (TCMs) can not only inhibit viral replication and inflammatory responses but also affect the expression of key components of PRRs and NF-κB signaling pathways. However, whether the antiviral and anti-inflammatory roles of TCM are related with its effects on NF-κB signaling pathway activated by PRRs remains unclear. Here, we reviewed the mechanism of PRRs-mediated activation of NF-κB signaling pathway following influenza virus infection and summarized the influence of anti-influenza TCMs on inflammatory responses and the PRRs/NF-κB signaling pathway, so as to provide better understanding of the mode of action of TCMs in the treatment of influenza pneumonia.
Collapse
Affiliation(s)
- Ling Zhang
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Ye
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhongde Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Xueshan Xia
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Shuwei Dong
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| |
Collapse
|
5
|
Antioxidant and Immunomodulatory Activities of Essential Oil Isolated from Anti-Upper Respiratory Tract Infection Formulation and Their Chemical Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7297499. [PMID: 35958917 PMCID: PMC9357706 DOI: 10.1155/2022/7297499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
This study evaluates the in vitro antioxidant and immunomodulation activities of essential oils isolated from an anti-upper respiratory tract infection (URTI) formulation with a view to their therapeutic potential. The chemical components of the essential oil were analysed by gas chromatography-mass spectrometry (GC-MS). The antioxidative activity of the oils was investigated with regard to their ability to scavenge DPPH●, ABTS●+, and hydroxyl free radical (•OH). Their immunostimulatory activities were determined using murine macrophage cells. The main components of the oil with pharmacological and biological activities include 1,8-eucalyptol (42.9%), patchouli alcohol (19.9%), trans-erinolide (9.2%), and guaiacol (5%). The oils displayed high DPPH, ABTS, and hydroxyl radical scavenging activities and anti-inflammatory activities by reducing tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production. The results indicate that essential oils have the potential to be used in products for anti-URTI treatment.
Collapse
|
6
|
Reichling J. Antiviral and Virucidal Properties of Essential Oils and Isolated Compounds - A Scientific Approach. PLANTA MEDICA 2022; 88:587-603. [PMID: 34144626 DOI: 10.1055/a-1382-2898] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Essential oils and isolated essential oil compounds are known to exert various pharmacological effects, such as antibacterial, antifungal, antiviral, anti-inflammatory, anti-immunomodulatory, antioxidant, and wound healing effects. Based on selected articles, this review deals with the potential antiviral and virucidal activities of essential oils and essential oil compounds together with their mechanism of action as well as in silico studies involving viral and host cell-specific target molecules that are indispensable for virus cell adsorption, penetration, and replication. The reported in vitro and in vivo studies highlight the baseline data about the latest findings of essential oils and essential oil compounds antiviral and virucidal effects on enveloped and non-enveloped viruses, taking into account available biochemical and molecular biological tests. The results of many in vitro studies revealed that several essential oils and essential oil compounds from different medicinal and aromatic plants are potent antiviral and virucidal agents that inhibit viral progeny by blocking different steps of the viral infection/replication cycle of DNA and RNA viruses in various host cell lines. Studies in mice infected with viruses causing respiratory diseases showed that different essential oils and essential oil compounds were able to prolong the life of infected animals, reduce virus titers in brain and lung tissues, and significantly inhibit the synthesis of proinflammatory cytokines and chemokines. In addition, some in vitro studies on hydrophilic nano-delivery systems encapsulating essential oils/essential oil compounds exhibited a promising way to improve the chemical stability and enhance the water solubility, bioavailabilty, and antiviral efficacy of essential oils and essential oil compounds.
Collapse
Affiliation(s)
- Jürgen Reichling
- Formerly Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Madia VN, Toscanelli W, De Vita D, De Angelis M, Messore A, Ialongo D, Scipione L, Tudino V, D’Auria FD, Di Santo R, Garzoli S, Stringaro A, Colone M, Marchetti M, Superti F, Nencioni L, Costi R. Ultrastructural Damages to H1N1 Influenza Virus Caused by Vapor Essential Oils. Molecules 2022; 27:3718. [PMID: 35744845 PMCID: PMC9230754 DOI: 10.3390/molecules27123718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Influenza viruses are transmitted from human to human via airborne droplets and can be transferred through contaminated environmental surfaces. Some works have demonstrated the efficacy of essential oils (EOs) as antimicrobial and antiviral agents, but most of them examined the liquid phases, which are generally toxic for oral applications. In our study, we describe the antiviral activity of Citrus bergamia, Melaleuca alternifolia, Illicium verum and Eucalyptus globulus vapor EOs against influenza virus type A. In the vapor phase, C. bergamia and M. alternifolia strongly reduced viral cytopathic effect without exerting any cytotoxicity. The E. globulus vapor EO reduced viral infection by 78% with no cytotoxicity, while I. verum was not effective. Furthermore, we characterized the EOs and their vapor phase by the head-space gas chromatography-mass spectrometry technique, observing that the major component found in each liquid EO is the same one of the corresponding vapor phases, with the exception of M. alternifolia. To deepen the mechanism of action, the morphological integrity of virus particles was checked by negative staining transmission electron microscopy, showing that they interfere with the lipid bilayer of the viral envelope, leading to the decomposition of membranes. We speculated that the most abundant components of the vapor EOs might directly interfere with influenza virus envelope structures or mask viral structures important for early steps of viral infection.
Collapse
Affiliation(s)
- Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy; (V.N.M.); (A.M.); (D.I.); (L.S.); (V.T.); (R.D.S.); (R.C.)
| | - Walter Toscanelli
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy; (W.T.); (F.D.D.); (L.N.)
| | - Daniela De Vita
- Department of Environmental Biology, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy; (W.T.); (F.D.D.); (L.N.)
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy; (V.N.M.); (A.M.); (D.I.); (L.S.); (V.T.); (R.D.S.); (R.C.)
| | - Davide Ialongo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy; (V.N.M.); (A.M.); (D.I.); (L.S.); (V.T.); (R.D.S.); (R.C.)
| | - Luigi Scipione
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy; (V.N.M.); (A.M.); (D.I.); (L.S.); (V.T.); (R.D.S.); (R.C.)
| | - Valeria Tudino
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy; (V.N.M.); (A.M.); (D.I.); (L.S.); (V.T.); (R.D.S.); (R.C.)
| | - Felicia Diodata D’Auria
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy; (W.T.); (F.D.D.); (L.N.)
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy; (V.N.M.); (A.M.); (D.I.); (L.S.); (V.T.); (R.D.S.); (R.C.)
| | - Stefania Garzoli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, V.le Regina Elena, 299, I-00161 Rome, Italy; (A.S.); (M.C.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, V.le Regina Elena, 299, I-00161 Rome, Italy; (A.S.); (M.C.)
| | - Magda Marchetti
- National Centre for Innovative Technologies in Public Health, Italian National Institute of Health, V.le Regina Elena, 299, I-00161 Rome, Italy; (M.M.); (F.S.)
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, Italian National Institute of Health, V.le Regina Elena, 299, I-00161 Rome, Italy; (M.M.); (F.S.)
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy; (W.T.); (F.D.D.); (L.N.)
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy; (V.N.M.); (A.M.); (D.I.); (L.S.); (V.T.); (R.D.S.); (R.C.)
| |
Collapse
|
8
|
The inhibition effects and mechanisms of sulfated chitooligosaccharides on influenza A virus in vitro and in vivo. Carbohydr Polym 2022; 286:119316. [DOI: 10.1016/j.carbpol.2022.119316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023]
|
9
|
Devan AR, Nair B, Kumar AR, Gorantla JN, T S A, Nath LR. Unravelling the Immune Modulatory Effect of Indian Spices to Impede the Transmission of COVID-19: A Promising Approach. Curr Pharm Biotechnol 2022; 23:201-220. [PMID: 33593256 DOI: 10.2174/1389201022666210216144917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Months after WHO declared COVID-19 as a Global Public Health Emergency of International Concern, it does not seem to be flattening the curve as we are still devoid of an effective treatment modality and vaccination is in the first phase in many countries. Amid such uncertainty, being immune is the best strategy to defend against corona attacks. As the whole world is referring back to immune-boosting traditional remedies, interest is rekindled in the Indian system of Medicine, which is gifted with an abundance of herbal medicines as well as remedies. Among them, spices (root, rhizome, seed, fruit, leaf, bud, and flower of various plants used to add taste and flavors to food) are bestowed with immense medicinal potential. A plethora of clinical as well as preclinical studies reported the effectiveness of various spices for various ailments. The potential immune-boosting properties together with their excellent safety profiles are making spices the current choice of phytoresearch as well as the immune-boosting home remedies during these sceptical times. The present review critically evaluates the immune impact of various Indian spices and their potential to tackle the novel coronavirus, with comments on the safety and toxicity aspects of spices.
Collapse
Affiliation(s)
- Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Jaggaiah N Gorantla
- Department of Chemistry, Wayne State University, Detroit, 48201, Michigan, USA
| | - Aishwarya T S
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| |
Collapse
|
10
|
Bailey ES, Curcic M, Biros J, Erdogmuş H, Bac N, Sacco A. Essential Oil Disinfectant Efficacy Against SARS-CoV-2 Microbial Surrogates. Front Public Health 2021; 9:783832. [PMID: 34970529 PMCID: PMC8712468 DOI: 10.3389/fpubh.2021.783832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Reports of COVID-19 cases potentially attributed to fomite transmission led to the extensive use of various disinfectants to control viral spread. Alternative disinfectants, such as essential oils, have emerged as a potential antimicrobial. Four essential oil blends were tested on three different surfaces inoculated with a coronavirus surrogate, bacteriophage Phi 6, and a bacterial indicator, Staphylococcus aureus. Log10 concentration reductions were analyzed using GraphPad Prism software. Data collected in this study show that the application of dilute essential oil disinfectants using a spray delivery device is an effective way to reduce concentrations of bacterial and viral microorganisms on ceramic, stainless steel, and laminate surfaces. Surrogate viruses were reduced up to 6 log10 PFU and bacterial were reduced up to 4 log10 CFU. Although surfaces are no longer considered a high risk fomite for COVID-19 transmission, the disinfection of microorganisms on surfaces remains an important consideration for high touch areas in hospitals, waiting rooms, etc. The application of spray disinfectants, based on essential oil blends, provides a rapid and effective means to reduce microbial contamination on high-touched surfaces.
Collapse
Affiliation(s)
- Emily S. Bailey
- Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Marina Curcic
- Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Jnev Biros
- Edward E. Whitacre Jr. College of Engineering, Texas Tech University, Lubbock, TX, United States
| | | | - Nurcan Bac
- Edward E. Whitacre Jr. College of Engineering, Texas Tech University, Lubbock, TX, United States
| | - Albert Sacco
- Edward E. Whitacre Jr. College of Engineering, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
11
|
Essential Oil-Rich Chinese Formula Luofushan-Baicao Oil Inhibits the Infection of Influenza A Virus through the Regulation of NF- κB P65 and IRF3 Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5547424. [PMID: 34497658 PMCID: PMC8421167 DOI: 10.1155/2021/5547424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022]
Abstract
Background Luofushan-Baicao Oil (LBO) is an essential oil-rich traditional Chinese medicine (TCM) formula that is commonly used to treat cold, cough, headache, sore throat, swelling, and pain. However, the anti-influenza activities of LBO and the underlying mechanism remain to be investigated. Methods The in vitro anti-influenza activity of LBO was tested with methyl thiazolyl tetrazolium (MTT) and plaque assays. The effects of LBO on the expressions of viral nucleoprotein and cytokines were evaluated. In the polyinosinic-polycytidylic acid- (Poly I: C-) induced inflammation model, the influences of LBO on the expression of cytokines and the activation of NF-κB P65 (P65) and interferon regulatory factor 3 (IRF3) were tested. After influenza A virus (IVA) infection, mice were administered with LBO for 5 days. The lung index, histopathologic change, the expression of viral protein, P65, and IRF3 in the lung tissue were measured. The levels of proinflammatory cytokines in serum were examined. Results In vitro, LBO could significantly inhibit the infection of IVA, decrease the formation of plaques, and reduce the expression of viral nucleoprotein and cytokines. LBO could also effectively downregulate the expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and interferon-β and the activation of P65 and IRF3 in Poly I:C-treated cells. In the IVA-infected mice model, inhalation of LBO with atomizer could decrease the lung index, alleviate the pathological injury in the lung tissue, and reduce the serum levels of IL-1β and IL-6. LBO could significantly downregulate the expression of viral protein (nucleoprotein, PB2, and matrix 2 ion channel) and the phosphorylation of P65 and IRF3 in the lungs of mice. Conclusion The therapeutic effects of LBO on treating influenza might result from the regulation of the immune response of IVA infection. LBO can be developed as an alternative therapeutic agent for influenza prevention.
Collapse
|
12
|
Arena ME, Alberto MR, Cartagena E. Potential use of Citrus essential oils against acute respiratory syndrome caused by coronavirus. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.1912839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mario Eduardo Arena
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - María Rosa Alberto
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - Elena Cartagena
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| |
Collapse
|
13
|
Iranzadasl M, Karimi Y, Moadeli F, Pasalar M. Persian medicine recommendations for the prevention of pandemics related to the respiratory system: a narrative literature review. Integr Med Res 2021; 10:100483. [PMID: 32802742 PMCID: PMC7381935 DOI: 10.1016/j.imr.2020.100483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pandemics of infectious diseases have long been regarded as societal challenges. This study aimed to summarize the theories of Persian medicine for controlling respiratory disease-related pandemics and to compare these theories with the findings of modern medicine. METHODS We searched the classic medical reference books of the 9th to 19th centuries for the terms 'polluted air' and 'pandemic', and we searched 4 databases (PubMed, Google Scholar, Science Direct, and Scopus) with the keywords 'COVID-19', 'pandemic', 'history', and 'prevention programs'. The results were collected and subjected to content analysis. RESULTS From the point of view of traditional Iranian physicians, disease prevention is primarily possible by avoiding pathogenic factors. As a secondary solution, reducing one's susceptibility to the disease is crucial; this can be achieved through cleansing the body and strengthening the mood, reducing food intake, decreasing the internal humidity, disinfecting the house with herbal fumigation, and making use of pleasant aromas. Some of these recommendations are reaffirmed by modern research. CONCLUSION Persian medicine techniques may be preventive during respiratory, influenza-like disease pandemics. However, rigorous studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Maryam Iranzadasl
- Department of Traditional Persian Medicine, School of Medicine, Shahed University, Tehran, Iran
| | - Yasin Karimi
- Department of Traditional Persian Medicine, School of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Moadeli
- Department of Traditional Persian Medicine, School of Medicine, Shahed University, Tehran, Iran
| | - Mehdi Pasalar
- Research Center for Traditional Medicine and History of Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Alam S, Bhuiyan FR, Emon TH, Hasan M. Prospects of nutritional interventions in the care of COVID-19 patients. Heliyon 2021; 7:e06285. [PMID: 33615017 PMCID: PMC7879162 DOI: 10.1016/j.heliyon.2021.e06285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) has unfolded an unprecedented worldwide public health emergency with disastrous economic consequences. Around 96 million coronavirus cases have already been identified with over half a million deaths. Despite numerous efforts by the government as well as international organizations, these numbers are still increasing with a surprising rate. Although urgent and absolutely necessary, a reliable therapeutic or vaccine is still elusive and this status quo may remain for an uncertain period of time. Taken that into account, boosting up adaptive immunity through nutritional interventions may help subside this epidemic and save many lives. This review focuses on the nexus between a balanced diet and adaptive immunity, particularly, how a poor diet may lead to compromised immunity resulting in susceptibility to viral infections. Additionally, we discuss how nutrients (vitamins, minerals, trace elements) can be used as a tool to modulate immune response and thus impede viral infections. The study also summarizes nutritional recommendations to combat COVID-19 in different countries and territories as well as dietary sources of those key nutrients. Moreover, different nutritional intervention strategies based on different age groups, physiological and medical conditions were also included, and the challenges of nutritional interventions towards the care of COVID-19 patients are also discussed. Since the availability of a drug or vaccine is still uncertain, a balanced diet or nutrient therapy can be used as a robust strategy to combat COVID-19. Thus, we hope this review may help to make an informed decision with regard to diet choice both at individual level as well as clinical settings.
Collapse
Affiliation(s)
- Sabiha Alam
- Institute of Nutrition and Food Science, University of Dhaka, Bangladesh
| | - Farhana Rumzum Bhuiyan
- Department of Botany, University of Chittagong, Chittagong, Bangladesh
- Laboratory of Biotechnology and Molecular Biology, Department of Botany, University of Chittagong, Chittagong, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
15
|
Hu C, Liang M, Gong F, He B, Zhao D, Zhang G. Efficacy of Lianhua Qingwen Compared with Conventional Drugs in the Treatment of Common Pneumonia and COVID-19 Pneumonia: A Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5157089. [PMID: 32963563 PMCID: PMC7501551 DOI: 10.1155/2020/5157089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
METHODS Seven English and Chinese databases were used to search for qualified experimental studies as of July 27, 2020. All data were extracted directly from the included studies, and no special conversion formula was used. The weighted mean difference (WMD), 95% confidence interval (CI), and odds ratio (OR) were used for evaluation. RESULTS Forty-two studies involving 3793 subjects met the qualification criteria. For common pneumonia, a short duration of flu-like symptoms (WMD = -1.81, 95% CI = -2.12 to -1.50, P < 0.001), sputum (WMD = -1.10, 95% CI = -1.50 to -0.70, P < 0.001), pulmonary rale (WMD = -2.03, 95% CI = -2.74 to -1.31, P < 0.001), pulmonary imaging improvement (WMD = -1.88, 95% CI = -2.28 to -1.47, P < 0.001), curative effect (OR = 3.65, 95% CI = 2.81 to 4.76, P < 0.001), and healing period (WMD = -1.68, 95% CI = -2.62 to -0.74, P < 0.001) were associated with the Lianhua Qingwen group; subgroup analysis based on flu-like symptoms showed statistically significant improvements in fever and cough. For COVID-19 pneumonia, improvements in flu-like symptoms (OR = 3.18, 95% CI = 2.36 to 4.29, P < 0.001), shortness of breath (OR = 10.62, 95% CI = 3.71 to 30.40, P < 0.001), curative effect (OR = 2.49, 95% CI = 1.76 to 3.53, P < 0.001), healing period (WMD = -2.06, 95% CI = -3.36 to -0.75, P = 0.002), and conversion of severe cases (OR = 0.46, 95% CI = 0.27 to 0.77, P = 0.003) were associated with the Lianhua Qingwen group; subgroup analysis indicated statistically significant improvements of fever, cough, fatigue, and muscle pain in the Lianhua Qingwen group compared to the conventional drug group. Regarding adverse reactions, no significant difference was detected for common pneumonia (OR = 0.75, 95% CI = 0.54 to 1.05, P = 0.097). CONCLUSIONS Lianhua Qingwen combined with conventional drugs may be a promising therapy for treating common pneumonia and COVID-19 pneumonia.
Collapse
Affiliation(s)
- Caiyun Hu
- Department of Scientific Research, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, Anhui, China
| | - Mingming Liang
- Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Fengfeng Gong
- Fuyang Hospital of Anhui Medical University, No. 99 Huangshan Road, Fuyang, Anhui, China
| | - Bin He
- Department of Scientific Research, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, Anhui, China
| | - Dongdong Zhao
- Infection Department, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China
| | - Guoliang Zhang
- Department of Scientific Research, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, 117 Meishan Road, Hefei, Anhui, China
| |
Collapse
|
16
|
Panyod S, Ho CT, Sheen LY. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J Tradit Complement Med 2020; 10:420-427. [PMID: 32691006 PMCID: PMC7260602 DOI: 10.1016/j.jtcme.2020.05.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
A novel coronavirus disease (COVID-19), transmitted from humans to humans, has rapidly become the pandemic responsible for the current global health crisis. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is said to be of zoonotic origin. This review describes the etiology and signs and symptoms as well as the current allopathic therapy for COVID-19. Additionally, findings of previous studies on the immunomodulatory effects and antiviral activities of particular foods and herbs on influenza virus and coronaviruses have been collated, with the aim of promoting the use of dietary therapy and herbal medicine as COVID-19 preventive therapies, while specific drugs and vaccines are yet to be discovered or are still under development. The volume of existing reports is irrefutable evidence that foods and herbs possess a potential antiviral ability against SARS-CoV-2 and can prevent COVID-19. Foods and herbs could be used as dietary or complementary therapy to prevent infection and strengthen immunity, as antiviral agents for masks, as disinfectants to curb aerosol transmission, or as sanitizing agents to disinfect surfaces. However, these hypotheses need to be experimentally verified for SARS-CoV-2 and COVID-19 patients.
Collapse
Affiliation(s)
- Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan
- National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Lee JY, Abundo MEC, Lee CW. Herbal Medicines with Antiviral Activity Against the Influenza Virus, a Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 46:1663-1700. [PMID: 30612461 DOI: 10.1142/s0192415x18500854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rapidly changing influenza virus has remained a consistent threat to the well-being of a variety of species on the planet. Influenza virus' high mutation rate has allowed the virus to rapidly and continuously evolve, as well as generate new strains that are resistant to the current commercially available antivirals. Thus, the increased resistance has compelled the scientific community to explore alternative compounds that have antiviral effects against influenza virus. In this paper, the authors systematically review numerous herbal extracts that were shown to have antiviral effects against the virus. Specifically, the herbal antiviral targets mainly include hemagglutinin, neuraminidase and matrix 2 proteins. In some instances, herbal extracts inhibited the replication of oseltamivir-resistant strains and certain pentacyclic triterpenes exhibited higher antiviral activity than oseltamivir. This paper also explores the possibility of targeting various host-cell signaling pathways that are utilized by the virus during its replication process. Infected cell pathways are hijacked by intracellular signaling cascades such as NF-kB signaling, PI3K/Akt pathway, MAPK pathway and PKC/PKR signaling cascades. Herbal antivirals have been shown to target these pathways by suppressing nuclear export of influenza vRNP and thus inhibiting the phosphorylation signaling cascade. In conclusion, copious amounts of herbal antivirals have been shown to inhibit influenza virus, however further studies are needed for these new compounds to be up to modern pharmacological standards.
Collapse
Affiliation(s)
- Ju-Young Lee
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,‡ Mom-Pyon Han Pharmacy, Nambusoonhwan-ro 770, Seosan City, Chungnam, Republic of Korea
| | - Michael Edward C Abundo
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,† Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Chang-Won Lee
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,† Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Jopke K, Sanders H, White-Traut R. Use of Essential Oils Following Traumatic Burn Injury: A Case Study. J Pediatr Nurs 2017; 34:72-77. [PMID: 28089405 DOI: 10.1016/j.pedn.2016.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
Hospital admissions related to burn injury reach 40,000 annually. Patients who experience extensive burns require longer hospital stays and are at increased risk for infection and hospital acquired conditions. This comparative case study is a two patient matched case control design that follows the hospital course of two children who experienced burn injuries. For one of these patients, with the consent of the child's parents, the grandmother treated her granddaughter with essential oils. Essential oils have the potential to inhibit microbial growth, support treatment of wounds, and facilitate healing. However, there have been no large scale studies on essential oils. Data for the two cases were retrieved from the electronic medical record at a Midwestern Pediatric Hospital. Retrieved data included burn site description, treatment for burns, number of days on the ventilator, white blood cell count, length of hospital stay, number of ICU days, infections diagnosed by positive culture and pain ratings. While the goals for treatment were the same for both children, the child who received only standard care was diagnosed with two blood stream infections and four hospital acquired conditions while the child who received supplemental treatment with essential oils did not develop any blood stream infections, was diagnosed with one hospital acquired condition, was in the PICU one day less, and had a four day shorter length of hospital stay. While these case findings are intriguing, research is needed to expand understanding of the role of essential oils in the treatment of burns.
Collapse
Affiliation(s)
| | | | - Rosemary White-Traut
- Children's Hospital of Wisconsin, United States; University of Illinois at Chicago, Department of Women, Children, and Family Health Science, United States.
| |
Collapse
|
19
|
Brochot A, Guilbot A, Haddioui L, Roques C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. Microbiologyopen 2017; 6. [PMID: 28296357 PMCID: PMC5552930 DOI: 10.1002/mbo3.459] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/09/2017] [Accepted: 01/25/2017] [Indexed: 01/01/2023] Open
Abstract
New agents that are effective against common pathogens are needed particularly for those resistant to conventional antimicrobial agents. Essential oils (EOs) are known for their antimicrobial activity. Using the broth microdilution method, we showed that (1) two unique blends of Cinnamomum zeylanicum, Daucus carota, Eucalyptus globulus and Rosmarinus officinalis EOs (AB1 and AB2; cinnamon EOs from two different suppliers) were active against the fourteen Gram‐positive and ‐negative bacteria strains tested, including some antibiotic‐resistant strains. Minimal inhibitory concentrations (MICs) ranged from 0.01% to 3% v/v with minimal bactericidal concentrations from <0.01% to 6.00% v/v; (2) a blend of Cinnamomum zeylanicum, Daucus carota, Syzygium aromaticum, Origanum vulgare EOs was antifungal to the six Candida strains tested, with MICs ranging from 0.01% to 0.05% v/v with minimal fungicidal concentrations from 0.02% to 0.05% v/v. Blend AB1 was also effective against H1N1 and HSV1 viruses. With this dual activity, against H1N1 and against S. aureus and S. pneumoniae notably, AB1 may be interesting to treat influenza and postinfluenza bacterial pneumonia infections. These blends could be very useful in clinical practice to combat common infections including those caused by microorganisms resistant to antimicrobial drugs.
Collapse
Affiliation(s)
| | | | | | - Christine Roques
- Fonderephar, Toulouse Cedex 09, France.,Laboratoire de Génie Chimique UMR 5503, Faculté des Sciences Pharmaceutiques, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
20
|
Lee NK, Paik HD. Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems. Korean J Food Sci Anim Resour 2016; 36:547-57. [PMID: 27621697 PMCID: PMC5018516 DOI: 10.5851/kosfa.2016.36.4.547] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 01/16/2023] Open
Abstract
This review discusses the status, antimicrobial mechanisms, application, and regulation of natural preservatives in livestock food systems. Conventional preservatives are synthetic chemical substances including nitrates/nitrites, sulfites, sodium benzoate, propyl gallate, and potassium sorbate. The use of artificial preservatives is being reconsidered because of concerns relating to headache, allergies, and cancer. As the demand for biopreservation in food systems has increased, new natural antimicrobial compounds of various origins are being developed, including plant-derived products (polyphenolics, essential oils, plant antimicrobial peptides (pAMPs)), animal-derived products (lysozymes, lactoperoxidase, lactoferrin, ovotransferrin, antimicrobial peptide (AMP), chitosan and others), and microbial metabolites (nisin, natamycin, pullulan, ε-polylysine, organic acid, and others). These natural preservatives act by inhibiting microbial cell walls/membranes, DNA/RNA replication and transcription, protein synthesis, and metabolism. Natural preservatives have been recognized for their safety; however, these substances can influence color, smell, and toxicity in large amounts while being effective as a food preservative. Therefore, to evaluate the safety and toxicity of natural preservatives, various trials including combinations of other substances or different food preservation systems, and capsulation have been performed. Natamycin and nisin are currently the only natural preservatives being regulated, and other natural preservatives will have to be legally regulated before their widespread use.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
21
|
Abstract
Many plant essential oils, extracts, and individual chemical components have been demonstrated to possess antiviral efficacy against enveloped and/or non-enveloped viruses. In general, plant antimicrobials exhibit greater antiviral efficacy against enveloped viruses than non-enveloped viruses (though not in all cases). There appear to be multiple mechanisms of antiviral action for plant antimicrobials; nevertheless, the majority of antimicrobials appear to act either directly on the virus itself (e.g., on the envelope or capsid) or during the early stages of virus replication following internalization of the virus into its host cell.
Collapse
|
22
|
Hirano T, Kikuchi T, Tode N, Santoso A, Yamada M, Mitsuhashi Y, Komatsu R, Kawabe T, Tanimoto T, Ishii N, Tanaka Y, Nishimura H, Nukiwa T, Watanabe A, Ichinose M. OX40 ligand newly expressed on bronchiolar progenitors mediates influenza infection and further exacerbates pneumonia. EMBO Mol Med 2016; 8:422-36. [PMID: 26976612 PMCID: PMC4818750 DOI: 10.15252/emmm.201506154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 12/20/2022] Open
Abstract
Influenza virus epidemics potentially cause pneumonia, which is responsible for much of the mortality due to the excessive immune responses. The role of costimulatory OX40-OX40 ligand (OX40L) interactions has been explored in the non-infectious pathology of influenza pneumonia. Here, we describe a critical contribution of OX40L to infectious pathology, with OX40L deficiency, but not OX40 deficiency, resulting in decreased susceptibility to influenza viral infection. Upon infection, bronchiolar progenitors increase in number for repairing the influenza-damaged epithelia. The OX40L expression is induced on the progenitors for the antiviral immunity during the infectious process. However, these defense-like host responses lead to more extensive infection owing to the induced OX40L with α-2,6 sialic acid modification, which augments the interaction with the viral hemagglutinin. In fact, the specific antibody against the sialylated site of OX40L exhibited therapeutic potency in mitigating the OX40L-mediated susceptibility to influenza. Our data illustrate that the influenza-induced expression of OX40L on bronchiolar progenitors has pathogenic value to develop a novel therapeutic approach against influenza.
Collapse
Affiliation(s)
- Taizou Hirano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Tode
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Arif Santoso
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiya Mitsuhashi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Riyo Komatsu
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Tanimoto
- Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine University of the Ryukyus, Okinawa, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Sendai Medical Center National Hospital Organization, Sendai, Japan
| | - Toshihiro Nukiwa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Watanabe
- Research Division for Development of Anti-Infective Agents, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
23
|
Hintz T, Matthews KK, Di R. The Use of Plant Antimicrobial Compounds for Food Preservation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:246264. [PMID: 26539472 PMCID: PMC4619768 DOI: 10.1155/2015/246264] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/08/2015] [Indexed: 12/14/2022]
Abstract
Foodborne disease is a global issue with significant impact on human health. With the growing consumer demand for natural preservatives to replace chemical compounds, plant antimicrobial compounds must be thoroughly investigated for their potential to serve as biopreservatives. This review paper will focus on the plant-derived products as antimicrobial agents for use in food preservation and to control foodborne pathogens in foods. Structure, modes of action, stability, and resistance to these plant compounds will be discussed as well as their application in food industries and possible technologies by which they can be delivered. Benefits as well as challenges, such as the need for further research for implementation and governmental regulation, will be highlighted.
Collapse
Affiliation(s)
- Tana Hintz
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Karl K. Matthews
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Rong Di
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
24
|
Seow YX, Yeo CR, Chung HL, Yuk HG. Plant essential oils as active antimicrobial agents. Crit Rev Food Sci Nutr 2014; 54:625-44. [PMID: 24261536 DOI: 10.1080/10408398.2011.599504] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Essential oils derived from plants have been recognized for decades to exhibit biological activities, including antioxidant, anticancer, and antimicrobial attributes. Antimicrobial activities of these natural plant materials have been intensively explored in recent years, mainly in response to the overwhelming concern of consumers over the safety of synthetic food additives. Gram-negative organisms are believed to be slightly less sensitive to essential oils than Gram-positive bacteria. Generally, a higher concentration is required to obtain the same efficacy in foods than in synthetic media. The combinations of different types of essential oils or with other food additives have been found to potentially exhibit synergistic if not additive effects. This suggests a cost-efficient and wholesome alternative to both food industry and consumers, at the same time adhering to the hurdle technology in inhibiting proliferation of foodborne pathogens. This review aims to examine the conventional methods commonly used for assessment of antimicrobial activities of essential oils and phytochemicals, the use of these substances as antimicrobials in food products, factors that affect their efficacy, synergism between components or with available food preservatives as well as the challenges and future directions of using essential oils and phytochemicals as natural food preservatives.
Collapse
Affiliation(s)
- Yi Xin Seow
- a Food Science & Technology Programme, Department of Chemistry , National University of Singapore, Block S3 Level 6, Science Drive 3 , Singapore , 117543
| | | | | | | |
Collapse
|
25
|
Mechanisms of antiviral action of plant antimicrobials against murine norovirus. Appl Environ Microbiol 2014; 80:4898-910. [PMID: 24907316 DOI: 10.1128/aem.00402-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤ 35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses.
Collapse
|
26
|
Gilling DH, Kitajima M, Torrey JR, Bright KR. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J Appl Microbiol 2014; 116:1149-63. [PMID: 24779581 DOI: 10.1111/jam.12453] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 01/08/2023]
Abstract
AIMS To investigate the antiviral efficacy of oregano oil and its primary active component, carvacrol, against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. METHODS AND RESULTS Along with an observed loss in cell culture infectivity, the antiviral mechanisms of action were determined in side-by-side experiments including a cell-binding assay, an RNase I protection assay and transmission electron microscopy (TEM). Both antimicrobials produced statistically significant reductions (P ≤ 0·05) in virus infectivity within 15 min of exposure (c. 1·0-log10). Despite this, the MNV infectivity remained stable with increasing time exposure to oregano oil (1·07-log10 after 24 h), while carvacrol was far more effective, producing up to 3·87-log10 reductions within 1 h. Based on the RNase I protection assay, both antimicrobials appeared to act directly upon the virus capsid and subsequently the RNA. Under TEM, the capsids enlarged from ≤35 nm in diameter to up to 75 nm following treatment with oregano oil and up to 800 nm with carvacrol; with greater expansion, capsid disintegration could be observed. Virus adsorption to host cells did not appear to be affected by either antimicrobial. CONCLUSIONS Our results demonstrate that carvacrol is effective in inactivating MNV within 1 h of exposure by acting directly on the viral capsid and subsequently the RNA. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides novel findings on the antiviral properties of oregano oil and carvacrol against MNV and demonstrates the potential of carvacrol as a natural food and surface (fomite) sanitizer to control human norovirus.
Collapse
Affiliation(s)
- D H Gilling
- Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
27
|
Naveed R, Hussain I, Tawab A, Tariq M, Rahman M, Hameed S, Mahmood MS, Siddique AB, Iqbal M. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria. Altern Ther Health Med 2013; 13:265. [PMID: 24119438 PMCID: PMC3853939 DOI: 10.1186/1472-6882-13-265] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022]
Abstract
Background The main objective of this study was the phytochemical characterization of four indigenous essential oils obtained from spices and their antibacterial activities against the multidrug resistant clinical and soil isolates prevalent in Pakistan, and ATCC reference strains. Methods Chemical composition of essential oils from four Pakistani spices cumin (Cuminum cyminum), cinnamon (Cinnamomum verum), cardamom (Amomum subulatum) and clove (Syzygium aromaticum) were analyzed on GC/MS. Their antibacterial activities were investigated by minimum inhibitory concentration (MIC) and Thin-Layer Chromatography-Bioautographic (TLC-Bioautographic) assays against pathogenic strains Salmonella typhi (D1 Vi-positive), Salmonella typhi (G7 Vi-negative), Salmonella paratyphi A, Escherichia coli (SS1), Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis (ATCC 14580). The data were statistically analyzed by using Analysis of Variance (ANOVA) and Least Significant Difference (LSD) method to find out significant relationship of essential oils biological activities at p <0.05. Results Among all the tested essential oils, oil from the bark of C. verum showed best antibacterial activities against all selected bacterial strains in the MIC assay, especially with 2.9 mg/ml concentration against S. typhi G7 Vi-negative and P. fluorescens strains. TLC-bioautography confirmed the presence of biologically active anti-microbial components in all tested essential oils. P. fluorescens was found susceptible to C. verum essential oil while E. coli SS1 and S. aureus were resistant to C. verum and A. subulatum essential oils, respectively, as determined in bioautography assay. The GC/MS analysis revealed that essential oils of C. cyminum, C. verum, A. subulatum, and S. aromaticum contain 17.2% cuminaldehyde, 4.3% t-cinnamaldehyde, 5.2% eucalyptol and 0.73% eugenol, respectively. Conclusions Most of the essential oils included in this study possessed good antibacterial activities against selected multi drug resistant clinical and soil bacterial strains. Cinnamaldehyde was identified as the most active antimicrobial component present in the cinnamon essential oil which acted as a strong inhibitory agent in MIC assay against the tested bacteria. The results indicate that essential oils from Pakistani spices can be pursued against multidrug resistant bacteria.
Collapse
|
28
|
Abdelwhab EM, Veits J, Mettenleiter TC. Avian influenza virus NS1: A small protein with diverse and versatile functions. Virulence 2013; 4:583-8. [PMID: 24051601 PMCID: PMC3906290 DOI: 10.4161/viru.26360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut; Federal Research Institute for Animal Health; Institute of Molecular Biology; Insel Riems, Germany
| | | | | |
Collapse
|
29
|
Gómez LA, Stashenko E, Ocazionez RE. Comparative Study on In Vitro Activities of Citral, Limonene and Essential Oils from Lippia citriodora and L. alba on Yellow Fever Virus. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to compare the antiviral activities in vitro of citral, limonene and essential oils (EOs) from Lippia citriodora and L. alba on the replication of yellow fever virus (YFV). Citral and EOs were active before and after virus adsorption on cells; IC50 values were between 4.3 and 25 μg/mL and SI ranged from 1.1 to 10.8. Results indicate that citral could contribute to the antiviral activity of the L. citriodora EO. Limonene was not active and seemed to play an insignificant role in the antiviral activity of the examined EOs.
Collapse
Affiliation(s)
- Luz Angela Gómez
- Centro Nacional de Investigaciones para la Agroindustrialización de Especies Vegetales Aromáticas y Medicinales Tropicales (CENIVAM), Bucaramanga, Colombia
| | - Elena Stashenko
- Centro de Investigación en Biomoléculas, Bucaramanga, Colombia
| | - Raquel Elvira Ocazionez
- Centro de Investigaciones en Enfermedades Tropicales, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
30
|
Wang W, Zhang P, Hao C, Zhang XE, Cui ZQ, Guan HS. In vitro inhibitory effect of carrageenan oligosaccharide on influenza A H1N1 virus. Antiviral Res 2011; 92:237-46. [DOI: 10.1016/j.antiviral.2011.08.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/05/2011] [Accepted: 08/10/2011] [Indexed: 01/09/2023]
|