1
|
Alamri ES, El Rabey HA. The Protective Effects of Vanillic Acid and Vanillic Acid-Coated Silver Nanoparticles (AgNPs) in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2024; 2024:4873544. [PMID: 38577302 PMCID: PMC10994697 DOI: 10.1155/2024/4873544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
The production of nanoparticles enhances the bioactivity of biological molecules for drug delivery to diseased sites. This study explains how silver nanoparticle (AgNP) coating enhanced the protection effects of vanillic acid in male diabetic rats with streptozotocin- (STZ-) induced diabetes. Twenty-four rats were divided into four groups (n = 6) for this investigation. The first group (G1) is untreated, whereas diabetes was induced in the other three groups through STZ injection. Diabetic rats that were not getting therapy were included in the second group (G2, STZ-positive), whereas the other diabetic rats were divided into the third group (G3, vanillic acid-treated) and the fourth group (G4, vanillic acid-coated AgNPs treated). The treatment lasted four weeks. In G2, the induction of diabetes significantly (at P = 0.05) increased in serum glucose, glycated proteins, renal indices, interleukin-6 (IL-6), K+, immunoglobulins, and lipid peroxidation, while decreased Ca++, Na+, and other antioxidants in the kidney tissue homogenate. In addition, pathological altered signs were present in the pancreas and kidneys of diabetic rats. The renal and pancreatic tissues were effectively enhanced by vanillic acid or vanillic acid-coated AgNPs, bringing them very close to their prediabetic conditions. Vanillic acid-coated AgNPs offered a stronger defense against STZ-induced diabetes and lessened the effects of hyperglycemia compared to ordinary vanillic acid. Additionally, using vanillic acid coated with silver nanoparticles greatly increased the antioxidant and antidiabetic activity and reduced inflammation when compared to using vanillic acid alone.
Collapse
Affiliation(s)
- Eman S. Alamri
- Department of Nutrition and Food Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Haddad A. El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| |
Collapse
|
2
|
Gulzar N, Andleeb S, Raza A, Ali S, Liaqat I, Raja SA, Ali NM, Khan R, Awan UA. Acute Toxicity, Anti-diabetic, and Anti-cancerous Potential of Trillium Govanianum-conjugated Silver Nanoparticles in Balb/c Mice. Curr Pharm Biotechnol 2024; 25:1304-1320. [PMID: 37594092 DOI: 10.2174/1389201024666230818124025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND The current study aimed to develop an economic plant-based therapeutic agent to improve the treatment strategies for diseases at the nano-scale because Cancer and Diabetes mellitus are major concerns in developing countries. Therefore, in vitro and in vivo antidiabetic and anti-cancerous activities of Trillium govanianum conjugated silver nanoparticles were assessed. METHODS In the current study synthesis of silver nanoparticles using Trillium govanianum and characterization were done using a scanning electron microscope, UV-visible spectrophotometer, and FTIR analysis. The in vitro and in vivo anti-diabetic and anti-cancerous potential (200 mg/kg and 400 mg/kg) were carried out. RESULTS It was discovered that Balb/c mice did not show any major alterations during observation of acute oral toxicity when administered orally both TGaqu (1000 mg/kg) and TGAgNPs (1000 mg/kg), and results revealed that 1000 mg/kg is not lethal dose as did not find any abnormalities in epidermal and dermal layers when exposed to TGAgNPs. In vitro studies showed that TGAgNPs could not only inhibit alpha-glucosidase and protein kinases but were also potent against the brine shrimp. Though, a significant reduction in blood glucose levels and significant anti-cancerous effects was recorded when alloxan-treated and CCl4-induced mice were treated with TGAgNPs and TGaqu. CONCLUSION Both in vivo and in vitro studies revealed that TGaqu and TGAgNPs are not toxic at 200 mg/kg, 400 mg/kg, and 1000 mg/kg doses and possess strong anti-diabetic and anti-cancerous effects due to the presence of phyto-constituents. Further, suggesting that green synthesized silver nanoparticles could be used in pharmaceutical industries to develop potent therapeutic agents.
Collapse
Affiliation(s)
- Nazia Gulzar
- Department of Zoology, Microbial Biotechnology Laboratory, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Saiqa Andleeb
- Department of Zoology, Microbial Biotechnology Laboratory, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Abida Raza
- PMAS-arid Agriculture University Rawalpindi, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Iram Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Sadaf Azad Raja
- Bioscience Department, COMSATS University, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| | - Nazish Mazhar Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rida Khan
- Department of Zoology, Microbial Biotechnology Laboratory, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| |
Collapse
|
3
|
Phoraksa O, Chimkerd C, Thiyajai P, Judprasong K, Tuntipopipat S, Tencomnao T, Charoenkiatkul S, Muangnoi C, Sukprasansap M. Neuroprotective Effects of Albizia lebbeck (L.) Benth. Leaf Extract against Glutamate-Induced Endoplasmic Reticulum Stress and Apoptosis in Human Microglial Cells. Pharmaceuticals (Basel) 2023; 16:989. [PMID: 37513900 PMCID: PMC10384906 DOI: 10.3390/ph16070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Endoplasmic reticulum (ER) stress caused by excessive glutamate in the central nervous system leads to neurodegeneration. Albizia lebbeck (L.) Benth. has been reported to possess neuroprotective properties. We aimed to investigate the effect and mechanism of A. lebbeck leaf extracts on glutamate-induced neurotoxicity and apoptosis linked to ER stress using human microglial HMC3 cells. A. lebbeck leaves were extracted using hexane (AHE), mixed solvents, and ethanol. Each different extract was evaluated for cytotoxic effects on HMC3 cells, and then non-cytotoxic concentrations of the extracts were pretreated with the cells, followed by glutamate. Our results showed that AHE treatment exhibited the highest protective effect and was thus selected for finding the mechanistic approach. AHE inhibited the specific ER stress proteins (calpain1 and caspase-12). AHE also suppressed the apoptotic proteins (Bax, cytochrome c, cleaved caspase-9, and cleaved caspase-3); however, it also increased the antiapoptotic Bcl-2 protein. Remarkably, AHE increased cellular antioxidant activities (SOD, CAT, and GPx). To support the activation of antioxidant defense and inhibition of apoptosis in our HMC3 cell model, the bioactive phytochemicals within AHE were identified by HPLC analysis. We found that AHE had high levels of carotenoids (α-carotene, β-carotene, and lutein) and flavonoids (quercetin, luteolin, and kaempferol). Our novel findings indicate that AHE can inhibit glutamate-induced neurotoxicity via ER stress and apoptosis signaling pathways by activating cellular antioxidant enzymes in HMC3 cells, suggesting a potential mechanism for neuroprotection. As such, A. lebbeck leaf might potentially represent a promising source and novel alternative approach for preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Onuma Phoraksa
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
| | - Chanika Chimkerd
- Center of Analysis for Product Quality (Natural Products Division), Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Parunya Thiyajai
- Food Chemistry Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Kunchit Judprasong
- Food Chemistry Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Siriporn Tuntipopipat
- Cell and Animal Model Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somsri Charoenkiatkul
- Food Chemistry Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Chawanphat Muangnoi
- Cell and Animal Model Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| |
Collapse
|
4
|
Multi-Mechanistic and Therapeutic Exploration of Nephroprotective Effect of Traditional Ayurvedic Polyherbal Formulation Using In Silico, In Vitro and In Vivo Approaches. Biomedicines 2023; 11:biomedicines11010168. [PMID: 36672676 PMCID: PMC9855918 DOI: 10.3390/biomedicines11010168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Based on traditional therapeutic claims, NEERI KFT (a traditional Ayurvedic polyherbal preparation) has been innovatively developed in recent time on the decades of experience for treating kidney dysfunction. Due to the lack of scientific evidence, the present investigations are needed to support the rationale use of NEERI KFT. Considering the facts, the study investigated the nephroprotective effect of NEERI KFT against kidney dysfunction using in silico, in vitro and in vivo approaches. In this study, phytochemical and network pharmacology studies were performed for the developed formulation to evaluate the molecular mechanism of NEERI KFT in the amelioration of kidney disease. In vitro nephroprotective and antioxidant effect of NEERI KFT was determined on HEK 293 cells against cisplatin-induced cytotoxicity and oxidative stress. In vivo nephroprotective effect of NEERI KFT was determined against cisplatin-induced nephrotoxicity in Wistar rats, via assessing biochemical markers, antioxidant enzymes and inflammatory cytokines such as TNF-α, IL-1β, CASP-3, etc. The results showed that the compounds such as gallic acid, caffeic acid and ferulic acid are the major constituents of NEERI KFT, while network pharmacology analysis indicated a strong interaction between polyphenols and several genes (CASPs, ILs, AGTR1, AKT, ACE2, SOD1, etc.) involved in the pathophysiology of kidney disease. In vivo studies showed a significant (p < 0.05) ameliorative effect on biochemical markers and antioxidant enzymes (SOD, CAT, GSH, etc.), and regulates inflammatory cytokine (TNF-α, IL-1β, CASP-3) expression in kidney tissue. Hence, it can be concluded that NEERI KFT subsequently alleviates renal dysfunction mediated by cisplatin via attenuating oxidative and inflammatory stress, thus preserving the normalcy of kidney function.
Collapse
|
5
|
Woumbo CY, Kuate D, Metue Tamo DG, Womeni HM. Antioxidant and antidiabetic activities of a polyphenol rich extract obtained from Abelmoschus esculentus (okra) seeds using optimized conditions in microwave-assisted extraction (MAE). Front Nutr 2022; 9:1030385. [PMID: 36386938 PMCID: PMC9650115 DOI: 10.3389/fnut.2022.1030385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/12/2022] [Indexed: 08/10/2023] Open
Abstract
Functional foods have gained popularity in recent decades. They are exploited for their bioactive compounds like polyphenols, which are highly demanded in cosmetic, pharmaceutical and nutraceutical industries. However, extractive techniques and conditions used up to recently are almost obsolete and must be optimized for higher efficiency. The current study aimed to evaluate the antidiabetic potential of an optimized extract of Abelmoschus esculentus (okra) seeds. The optimal conditions for extracting polyphenolic compounds from okra seeds were determined using Microwave Assisted Extraction (MAE). A Face Center Composite Design (FCCD) was used for optimization. Solvent/dry matter ratio, wavelength and time were considered while the response studied was the polyphenolic content. The extract obtained at optimal conditions was characterized using Thin Layer Chromatography (TLC) and Fourier Transform Infra-Red (FTIR) spectroscopy, then tested for its antioxidant, alpha amylase inhibitory and antidiabetic activities. Response Surface Methodology (RSM) permitted the determination of the optimal conditions for phenols extraction as: microwave power 330 W, with a solvent ratio of 97.04/1 mL/g for 9.5 min of extraction time. The optimized extract showed a phenolic content up to 86.37 ± 1.13 mg GAE/g containing quercetin and catechin as revealed by the TLC. Functional groups characteristic of polyphenols were identified on FTIR spectra, and the extract exhibited good in vitro antioxidant capacities with DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical scavenging capacity and FRAP (Ferric Reducing Antioxidant Power Assay). An IC50 of 3.99 ± 0.15 μg/mL was obtained with the DPPH scavenging test. Alpha amylase inhibitory assay revealed that the optimized okra extract behaved as a non-competitive inhibitor of porcine pancreatic amylase with an IC50 of 484.17 ± 2.33 μg/mL. Antidiabetic activity of the extract was observed in streptozotocin-induced diabetic males Wistar rats, as shown by the fasting blood glucose levels, food intake, changes in body weight and serum lipid profile among others.
Collapse
Affiliation(s)
- Cerile Ypolyte Woumbo
- Department of Biochemistry, Faculty of Sciences, University of Dschang, Dschang, Cameroon
| | - Dieudonné Kuate
- Department of Biochemistry, Faculty of Sciences, University of Dschang, Dschang, Cameroon
| | | | - Hilaire Macaire Womeni
- Department of Biochemistry, Faculty of Sciences, University of Dschang, Dschang, Cameroon
| |
Collapse
|
6
|
Rahman MM, Dhar PS, Sumaia, Anika F, Ahmed L, Islam MR, Sultana NA, Cavalu S, Pop O, Rauf A. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed Pharmacother 2022; 152:113217. [PMID: 35679719 DOI: 10.1016/j.biopha.2022.113217] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic syndrome. Diabetes has become more common in recent years. Chemically generated drugs are used to lessen the effects of DM and its following repercussions due to unpleasant side effects such as weight gain, gastrointestinal issues, and heart failure. On the other hand, medicinal plants could be a good source of anti-diabetic medications. This article aims to determine any plant matrix's positive potential. Food restriction, physical activity, and the use of antidiabetic plant-derived chemicals are all being promoted as effective ways to manage diabetes because they are less expensive and have fewer or no side effects. This review focuses on antidiabetic plants, along with their bioactive constituent, chemically characterization, and plant-based diets for diabetes management. There is minimal scientific data about the mechanism of action of the plant-based product has been found. The purpose of this article is to highlight anti-diabetic plants and plant-derived bioactive compounds that have anti-diabetic properties. It also provides researchers with data that may be used to build future strategies, such as identifying promising bioactive molecules to make diabetes management easier.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sumaia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nazneen Ahmeda Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Ovidiu Pop
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, KPK, Pakistan.
| |
Collapse
|
7
|
Duman KE, Dogan A, Kaptaner B. Ameliorative role of Cyanus depressus (M.Bieb.) Soják plant extract against diabetes-associated oxidative-stress-induced liver, kidney, and pancreas damage in rats. J Food Biochem 2022; 46:e14314. [PMID: 35802765 DOI: 10.1111/jfbc.14314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Abstract
In this original article, we aimed to assess the ameliorative role of Cyanus depressus (CD) plant ethanolic extract treatment of streptozotocin (STZ)-induced liver, kidney, and pancreas damage in rats. The rats were divided into five groups (n = 7): control, CD, Diabetes mellitus (DM), DM + CD, and DM + glibenclamide (Gly). The DM groups were injected with a single dose of 50 mg/kg STZ intraperitoneally (i.p.). While the CD and DM + CD groups received 400 mg/kg/day intragastrically for 21 days, the DM + Gly group received 3 mg/kg/day of Gly intragastrically throughout the experiment. Statistically significance was accepted as p < .05. According to our liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) data, quinic acid, cosmosiin, nicotiflorin, apigenin, and protocatechuic acid were the major compounds, in descending order. Weekly blood glucose, serum glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and urea, malondialdehyde (MDA) (liver and pancreas), and blood glycosylated hemoglobin % (HbA1c %) were significantly decreased, whereas finally live body weights (LBWs), reduced glutathione (GSH), glutathione S-transferase (GST) and catalase (CAT) (pancreas), and pancreatic islet diameter and area were increased significantly in the CD-treated diabetic group. Moreover, CD administration was found to be effective in the protection of the histology of the liver, kidneys, and pancreatic islets in the STZ-induced rats. Consequently, we concluded that CD administration reduces hyperglycemia, oxidative stress, and histopathology in STZ-induced experimental rats by improving antioxidant defenses. PRACTICAL APPLICATIONS: Today, the prevalence of diabetes is increasing rapidly throughout the world and it causes complications such as kidney damage, blindness, amputations, and cardiovascular diseases. Despite medical technological advances, people's interest in medicinal herbal products is gradually increasing. Biochemical and histopathological findings showed that the use of the plant CD at the determined dose (400 mg/kg/day) in rats with DM by STZ had strong antioxidant and antidiabetic effects. CD may have a drug potential in preventing DM and its complications because of its phytochemical content including some phenolic acids such as quinic acid, cosmosiin, nicotiflorin, apigenin, and protocatechuic acid. Isolation of bioactive compounds from CD and investigation of their therapeutic effects could be planned as further studies.
Collapse
Affiliation(s)
- Kendal Erdem Duman
- Department of Basic Sciences Pharmacy, Institute of Health Sciences, Van Yuzuncu Yil University, Van, Turkey
| | - Abdulahad Dogan
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Burak Kaptaner
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
8
|
Bamisaye FA, Ibrahim RA, Sulyman AO, Jubril AO, Ajuwon O. Hypoglycemic, Hypolipidemic and Antioxidant Potentials of Ethanolic Stem Bark Extract of Anacardium occidentale in Streptozotocin-Induced Diabetic Rats. Niger J Physiol Sci 2022; 37:137-145. [PMID: 35947843 DOI: 10.54548/njps.v37i1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/03/2022] [Indexed: 06/09/2023]
Abstract
Diabetes mellitus is one of the most widespread diseases affecting the world's population causing substantial morbidity, mortality and long-term complications. This study was designed to investigate possible hypoglycemic, hypolipidemic and antioxidant effect of ethanolic stem bark extract of Anacardium occidentale in streptozotocin (STZ)-induced diabetic rats. Twenty-eight STZ (60 mg/kg body weight)-induced diabetic, male albino rats were randomly distributed into Groups II-V (7 rats each) and orally administered with water, metformin (14.2 mg/kg), 200 mg/kg Anacardium occidentale extract and 400 mg/kg Anacardium occidentale extract respectively daily for 15 days. Group I rats were untreated with STZ and serves as control all under the same sham handling. Blood samples were taken for measurement of fasting blood glucose (FBG) and lipid profile. Liver and kidney tissue samples were taken for determination of glycemic indices (glucose and glycogen), as well as redox status markers such as malondialdehyde (MDA), total glutathione (GSH), activities of superoxide dismutase (SOD) and glutathione-s-transferase (GST). Results showed that treatment with 200 and 400 mg/kg Anacardium occidentale stem bark extract reversed hyperglycemia and hyperlipidemia induced by STZ similar to what was observed with the standard drug, metformin. Similarly, both extract concentration produced a significant reduction in MDA while the activity of SOD and GST, as well as concentration of GSH were elevated. This study suggested that ethanolic stem bark extract of Anacardium occidentale at 200 and 400 mg/kg can ameliorate diabetes and its associated complications via its hypoglycemic, hypolipidemic, antioxidant and free radical scavenging properties.
Collapse
Affiliation(s)
| | | | | | | | - Olawale Ajuwon
- Department of Biochemistry, Federal University, Oye-Ekiti.
| |
Collapse
|
9
|
A Comprehensive Insight into the Phytochemical, Pharmacological Potential, and Traditional Medicinal Uses of Albizia lebbeck (L.) Benth. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5359669. [PMID: 35497931 PMCID: PMC9050289 DOI: 10.1155/2022/5359669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
Abstract
Background. Albizialebbeck is a deciduous tree having tremendous medicinal utilities, for example, respiratory, skin, gastrointestinal, oral disorders, eye, urinary, genital, anorectal, inflammatory, and neurological disorders, and venereal diseases. Several studies have been undertaken on the medicinal and traditional values of A. lebbeck. Objective. The detailed information about its medicinal uses and pharmacological implications is highly scattered and distributed in different data sources. Hence, the study was conducted to supply an inclusive review of its ethnomedicinal uses, phytochemicals, and the available pharmacological attributes supporting its efficiency in traditional medicine. Method. Literature surveys were conducted on this medicinal plant via search engines like Google Scholar, PubMed, and Science Direct, and obtained information up to December 2020 has been assessed and analyzed for this study. Results. Systematic investigation revealed that A. lebbeck consists of various phytochemicals, including major alkaloids, flavonoids, saponins, and terpenoids. Its crude extract, fraction, and bioactive compounds exhibited potent adulticidal, antiallergic, anticancer, anticonvulsant, antidiabetic, antidiarrheal, anti-inflammatory, antimicrobial, antinociceptive, antioxidant, antiparasitic, antipyretic, antivenom, estrogenic, neuroprotective, nootropic, ovicidal, and wound healing activities. Conclusions. This study proposes that A. lebbeck remains a rich source of phytochemicals with various biological activities which possess outstanding therapeutic benefits to humanity across the world. However, studies are required to estimate the potential side effects. Moreover, mechanistic physiognomies of the isolated compounds with known bioactivities are quite limited; thus, forthcoming research needs to focus on the mechanisms of these active phytochemicals to facilitate their potential enrolling for drug discovery.
Collapse
|
10
|
Lu W, Cui Y, Zhang L. Isofraxidin exerts anti-diabetic, antilipidemic, and antioxidant effects and protects renal tissues via inhibition of NF-ĸB in Streptozotocin-induced diabetic rats. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00204-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Khadka D, Pandey K. Exploring the Crucial Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Plant Secondary Metabolite Production and Diabetes Management. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Gautam G, Parveen B, Umar Khan M, Sharma I, Kumar Sharma A, Parveen R, Ahmad S. A systematic review on nephron protective AYUSH drugs as constituents of NEERI-KFT (A traditional Indian polyherbal formulation) for the management of chronic kidney disease. Saudi J Biol Sci 2021; 28:6441-6453. [PMID: 34764761 PMCID: PMC8568826 DOI: 10.1016/j.sjbs.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a major health problem characterized by kidney dysfunction with progressive segmental glomerulosclerosis to end-stage renal disease (ESRD). Due to lack of scientific data and comprehensive reports, the current systematic review provides an inclusive understanding and prospective associated with phytopharmacology of NEERI-KFT in CKD. The data was collected from more than five databases such as Science Direct, Google Scholar, Elsevier, PubMed, Springer, ACS publication etc using keywords like CKD/Kidney disease, epidemiology/prevalence, modern therapies for CKD management, NEERI-KFT and its role in kidney disease. The study was performed based on scientific reports screened by experts according to inclusion and exclusion criteria. The pre-clinical and clinical findings suggested that NEERI-KFT has promising effects as nephroprotective and considered safe and well effective in primary care of kidney against disease. Phytopharmacological evaluation of NEERI-KFT suggest that it exhibit substantial potential against oxidative and inflammatory stress induced apoptosis by exerting antioxidants, nephroprotective and immunomodulatory effects. Hence, it can be enlighten that NEERI-KFT have potential herbs which exerts significant antioxidants, nephroprotective and immunomodulatory effects in the patients associated with renal dysfunction or CKD thus improving altered renal architecture and renal physiology. Clinically, it is concluded that NEERI-KFT works kidney malfunction and cease ESRD progression or even reduce the number of dialysis.
Collapse
Affiliation(s)
- Gaurav Gautam
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bushra Parveen
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Umar Khan
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ikshit Sharma
- AIMIL Pharmaceuticals (India) Ltd, Saini Majra, Ropar Nalagarh Rd, Tehsil Nalagarh, Solan District, H.P 174101, India
| | - Anil Kumar Sharma
- AIMIL Pharmaceuticals (India) Ltd, Saini Majra, Ropar Nalagarh Rd, Tehsil Nalagarh, Solan District, H.P 174101, India
| | - Rabea Parveen
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
13
|
Effect of black pepper, turmeric and ajwa date on the endocrine pancreas of the experimentally induced diabetes in wister albino rats: A histological and immunohistochemical study. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2021.100098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Meligi NM, Dyab AKF, Paunov VN. Sustained In Vitro and In Vivo Delivery of Metformin from Plant Pollen-Derived Composite Microcapsules. Pharmaceutics 2021; 13:1048. [PMID: 34371742 PMCID: PMC8309045 DOI: 10.3390/pharmaceutics13071048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
We developed a dual microencapsulation platform for the type 2 diabetes drug metformin (MTF), which is aimed to increase its bioavailability. We report the use of Lycopodium clavatum sporopollenin (LCS), derived from their natural spores, and raw Phoenix dactylifera L. (date palm) pollens (DPP) for MTF microencapsulation. MTF was loaded into LCS and DPP via a vacuum and a novel method of hydration-induced swelling. The loading capacity (LC) and encapsulation efficiency (EE) percentages for MTF-loaded LCS and MTF-loaded DPP microcapsules were 14.9% ± 0.7, 29.8 ± 0.8, and 15.2% ± 0.7, 30.3 ± 1.0, respectively. The release of MTF from MTF-loaded LCS microcapsules was additionally controlled by re-encapsulating the loaded microcapsules into calcium alginate (ALG) microbeads via ionotropic gelation, where the release of MTF was found to be significantly slower and pH-dependent. The pharmacokinetic parameters, obtained from the in vivo study, revealed that the relative bioavailability of the MTF-loaded LCS-ALG beads was 1.215 times higher compared to pure MTF, following oral administration of a single dose equivalent to 25 mg/kg body weight MTF to streptozotocin (STZ)-induced diabetic male Sprague-Dawley rats. Significant hypoglycemic effect was obtained for STZ-induced diabetic rats orally treated with MTF-loaded LCS-ALG beads compared to control diabetic rats. Over a period of 29 days, the STZ-induced diabetic rats treated with MTF-loaded LCS-ALG beads showed a decrease in the aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglycerides, cholesterol, and low-density lipoprotein-cholesterol (LDL-C) levels, as well as an increase in glutathione peroxidase (GPx) and a recovery in the oxidative stress biomarker, lipid peroxidation (LPx). In addition, histopathological studies of liver, pancreas, kidney, and testes suggested that MTF-loaded LCS-ALG beads improved the degenerative changes in organs of diabetic rats. The LCS-ALG platform for dual encapsulation of MTF achieved sustained MTF delivery and enhancement of bioavailability, as well as the improved biochemical and histopathological characteristics in in vivo studies, opening many other intriguing applications in sustained drug delivery.
Collapse
Affiliation(s)
- Noha M. Meligi
- Zoology Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Amro K. F. Dyab
- Colloids & Advanced Materials Group, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Vesselin N. Paunov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nursultan 010000, Kazakhstan
| |
Collapse
|
15
|
Tripathy D, Upadhyay R, Singh CS, Boruah N, Mandal N, Chatterjee A. Mitigation of X-ray induced DNA damages and expression of DNA-repair genes by antioxidative Potentilla fulgens root extract and its ethyl-acetate fraction in mammalian cells. Mutagenesis 2021; 36:165-175. [PMID: 33693790 DOI: 10.1093/mutage/geab009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Potentilla fulgens is a medicinal plant in North-East India whose root is reported to have anti-diabetic, anticarcinogenic and antioxidant properties. The potential of hydro-alcoholic extract of P. fulgens root (PRE) for providing protection to mammalian cells exposed to ionising radiation was investigated in this study. The methanolic extract of PRE shows an enhanced radical scavenging ability in a concentration dependent manner. PRE-pre-treatment to stimulated human blood lymphocytes (HBLs) reduced the frequency of deletion and exchange aberrations induced by X-irradiation. Similar protection of chromosome aberrations was also observed in mouse bone marrow cells (BMCs) where mice were given PRE extract (1 mg extract/day/mice) ad libitum in the drinking water for 45 days before whole-body X-irradiation. Of the various extracts prepared by partitioning of the methanol extract, the ethyl-acetate (EA) fraction was found to possess better antioxidant, radical scavenging and DNA-damage reduction activities. PRE-pre-treatment also reduced the radiation-induced cell-cycle delay effectively in HBL. In HEK-293 cells, PRE reduced radiation-induced G2-block in cell kinetics. Interestingly, PRE-treatment alone increased the concentration of endogenous glutathione (GSH) in mouse BMC and in stimulated HBL along with the elevated expression of γ-glutamyl-cysteine synthetase heavy/catalytic subunit, a key determinant of GSH synthesis. Studies on expression of two DNA-repair genes revealed that there was a marked increase in the expression of GADD45 and H2AX genes after X-irradiation in stimulated HBL, and such expression was reduced significantly if PRE-treatment was given prior to radiation. The present findings show the ability of PRE to reduce radiation-induced DNA damages probably by free radical scavenging whereas modulation of expression of DNA-repair genes' and endogenous GSH-increment emerge as effective strategies. The present study is the first report on the selected medicinal plant species that suggests it to be a potential natural radioprotector when used as root extract or its EA fraction for mitigating radiation toxicity.
Collapse
Affiliation(s)
- Debabrata Tripathy
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Ravi Upadhyay
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Chongtham Sovachandra Singh
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Nabamita Boruah
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, CIT Scheme VII M, Kolkata, India
| | - Anupam Chatterjee
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
16
|
Effects of 22 traditional anti-diabetic medicinal plants on DPP-IV enzyme activity and glucose homeostasis in high-fat fed obese diabetic rats. Biosci Rep 2021; 41:227539. [PMID: 33416077 PMCID: PMC7823188 DOI: 10.1042/bsr20203824] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
The present study investigated the effects of hot water extracts of 22 medicinal plants used traditionally to treat diabetes on Dipeptidyl peptidase-IV (DPP-IV) activity both in vitro and in vivo in high-fat fed (HFF) obese-diabetic rats. Fluorometric assay was employed to determine the DPP-IV activity. For in vivo studies, HFF obese-diabetic rats were fasted for 6 h and blood was sampled at different times before and after the oral administration of the glucose alone (18 mmol/kg body weight) or with either of the four most active plant extracts (250 mg/5 ml/kg, body weight) or established DPP-IV inhibitors (10 μmol/5 ml/kg). DPP-IV inhibitors: sitagliptin, vildagliptin and diprotin A, decreased enzyme activity by a maximum of 95-99% (P<0.001). Among the 22 natural anti-diabetic plants tested, AnogeissusLatifolia exhibited the most significant (P<0.001) inhibitory activity (96 ± 1%) with IC50 and IC25 values of 754 and 590 μg/ml. Maximum inhibitory effects of other extracts: Aegle marmelos, Mangifera indica, Chloropsis cochinchinensis, Trigonella foenum-graecum and Azadirachta indica were (44 ±7%; 38 ± 4%; 31±1%; 28±2%; 27±2%, respectively). A maximum of 45% inhibition was observed with >25 μM concentrations of selected phytochemicals (rutin). A.latifolia, A. marmelos, T. foenum-graecum and M. indica extracts improved glucose tolerance, insulin release, reduced DPP-IV activity and increased circulating active GLP-1 in HFF obese-diabetic rats (P<0.05-0.001). These results suggest that ingestion of selected natural anti-diabetic plants, in particular A. latifolia, A. marmelos, T. foenum-graecum and M. indica can substantially inhibit DPP-IV and improve glucose homeostasis, thereby providing a useful therapeutic approach for the treatment of T2DM.
Collapse
|
17
|
Xie F, Wu M, Lai B, Halim M, Liu S, Shi D. Effects of redox interference on the pancreatic mitochondria and the abnormal blood glucose. Free Radic Res 2021; 55:119-130. [PMID: 33327807 DOI: 10.1080/10715762.2020.1866180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) has been implicated as a contributor to both the onset and the progression of diabetes, however how does redox state affect diabetes has not been fully understood. Here we study the role of redox interference on pancreatic mitochondria and the progression of diabetes. We applied streptozotocin (STZ) to establish diabetes mellitus (DM) model in rats, applied FeSO4 to produce oxidative stress (OS) and Ganoderma lucidum polysaccharides as antioxidant intervention (AO). Our results showed that in OS and DM group, oxidative stress caused the imbalance of redox state, resulting in higher lipid peroxidation level and lower antioxidant level, while AO treatment group reduced blood glucose by repairing the redox balance. The insulin level has the order of Normal Control (NC)<AO < DM < OS, suggesting oxidative stress promoted insulin secretion in a compensatory mechanism. The Mn-SOD expression in OS groups of pancreas were significantly lower than other groups, while the p53 expression was significantly higher. The mitochondrial ultrastructure of pancreatic β cells were impaired in DM group, and the damage was more severe in OS group, paralleled with significantly reduced secretory granules, both of which were repaired in the AO group. Our results demonstrated that the redox state can affect the blood glucose of diabetic rats, and oxidative stress can aggravate diabetes, while the early antioxidant treatment can alleviate the process of diabetes through reversing the imbalance of redox state and repairing the pancreatic mitochondria. These results suggest that redox balance plays an important role in the treatment of diabetes.
Collapse
Affiliation(s)
- Feizhou Xie
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Meiling Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ben Lai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Michael Halim
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shanlin Liu
- Free Radical Regulation and Application Research Center of Fudan University, Shanghai, China
| | - Dongyun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
18
|
He Y, Wang Q, Ye Y, Liu Z, Sun H. The ethnopharmacology, phytochemistry, pharmacology and toxicology of genus Albizia: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112677. [PMID: 32278761 DOI: 10.1016/j.jep.2020.112677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Albizia (Leguminosae) comprises about 150 species and some species have been used for the treatment of rheumatism, stomachache, cough, diarrhea, and wounds in traditional and local medicine. The aim of the review: This review article documents and critically assesses the current status of the traditional uses, phytochemistry, pharmacology, and toxicology of the Albizia species. MATERIALS AND METHODS All provided literatures on the Albizia species were searched using the electronic databases (e.g. Web of Science, Elsevier, Springer, PubMed, ACS, CNKI, Google Scholar, and Baidu Scholar), books, and theses with keywords of 'Albizia' and 'Albizzia'. RESULTS Albizia species have been used for melancholia, insomnia, wounds, fever, abscesses, diabetes, headache, stomachache, diarrhea, cough, rheumatism, snake bite, malaria, and parasitic infection in traditional and local medicine. These plants mainly contain triterpenoid saponins, flavonoids, lignanoids, alkaloids, phenolic glycosides, etc. Albizia species have been demonstrated to possess various pharmacological activities. Among them, the antidiabetic, anti-inflammatory, antifertility, antianxiety, antidepressant, and anti-fever properties are consistent with the traditional and local applications of the Albizia species. CONCLUSIONS The traditional and local uses of Albizia species have been partially demonstrated by the pharmacological investigation. However, some traditional applications have not been assessed scientifically due to incomplete methodologies and ambiguous findings. Moreover, no clinical evidences support the health benefits of these plants. The systematic and comprehensive preclinical studies and clinical trials are still required to verify the pharmacological activities, clinical efficacy, and safety of Albizia species.
Collapse
Affiliation(s)
- Yanfei He
- Laboratory of Natural Drug, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiaowen Wang
- Laboratory of Natural Drug, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yiping Ye
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Zhaoying Liu
- Laboratory of Natural Drug, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Hongxiang Sun
- Laboratory of Natural Drug, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
19
|
Kumar V, Sachan R, Rahman M, Sharma K, Al-Abbasi FA, Anwar F. Prunus amygdalus extract exert antidiabetic effect via inhibition of DPP-IV: in-silico and in-vivo approaches. J Biomol Struct Dyn 2020; 39:4160-4174. [PMID: 32602806 DOI: 10.1080/07391102.2020.1775124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Prunus amygdalus (PA) is a popular invasive seed utilized in the management of diabetes in Jammu and Kashmir, India. The objective of the current study was to scrutinize the antidiabetic effect of Prunus amygdalus (PA) against Streptozotocin (STZ) induced diabetic rats and explore the possible mechanism of action at cellular and sub-cellular levels. Box Benkan Design (BBD) was performed to determine the effect of PA powder to methanol, extraction time and extraction temperature on DPPH and ABTS free radical scavenging activity of decoction. In-silico study was performed on GLUT1 (5EQG) and dipeptidyl peptidase IV (DPPIV) (2G63) protein. Type II diabetes mellitus was initiated by single intra-peritoneal injection of STZ. The Blood Glucose Level (BGL) and body weight were estimated at regular interval of time. The different biochemical parameters such as hepatic, antioxidant, and lipid parameters were estimated. At end of the study, pancreas was used for histopathological observation. The variation in DPPH antiradical scavenging activity 40.0-90.0% and ABTS antiradical scavenging activity 34-82%, were estimated respectively. STZ induced DM rats showed increased BGL at end of the experimental study. PA treatment significantly (p < 0.001) down-regulated the BGL level. PA significantly (p < 0.001) altered the biochemical, hepatic and antioxidant parameters in a dose-dependent manner. Histopathological examination demonstrated the constructive mass of β-cells in pancreas. Overall, the current study indicates that the PA treatment down-regulated the hyperglycemic, oxidative stress and hyperlipidaemia in diabetic rats, due to inhibition of enzymes or amelioration of oxidative stress. [Formula: see text] Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Richa Sachan
- School of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon, Korea
| | - Mahfoozur Rahman
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Kalicharan Sharma
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, New Delhi, India
| | - Fahad A Al-Abbasi
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
El Rabey HA, Al-Sieni AI, Al-Seeni MN, Alsieni MA, Alalawy AI, Almutairi FM. The antioxidant and antidiabetic activity of the Arabian balsam tree “Commiphora gileadensis” in hyperlipidaemic male rats. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1780020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Haddad A. El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Abdulbasit I. Al-Sieni
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Madeha N. Al-Seeni
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A. Alsieni
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel I. Alalawy
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Fahad M. Almutairi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
21
|
Antiarrhythmic Mechanisms of Chinese Herbal Medicine Dingji Fumai Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9185707. [PMID: 32256664 PMCID: PMC7109552 DOI: 10.1155/2020/9185707] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Background Dingji Fumai decoction (DFD) is used to treat ventricular arrhythmia, and it has provided a very good curative effect. However, its cellular electrophysiological mechanism is unknown. Methods Electrocardiogram was recorded, and oxidative stress response and ion-channel-related molecules were detected in rats with barium chloride- and aconitine-induced ventricular arrhythmia. Moreover, whole-cell patch-clamp assay was used to investigate the inhibitory effect of DFD on Nav1.5 in Chinese hamster ovary cells. Results DFD prolonged the occurrence time and shortened the duration of ventricular arrhythmia, decreased the malondialdehyde and increased the superoxide dismutase, and alleviated the activation of Na+-K+-ATPase and connexin-43. DFD suppressed Nav1.5dose-dependently with an IC50 of 24.0 ± 2.4 mg/mL. Conclusions The clinical antiarrhythmic mechanisms of DFD are based on its antioxidant potential, alleviation of Na+-K+-ATPase and connexin-43, and class I antiarrhythmic properties by suppressing Nav1.5dose-dependently with an IC50 of 24.0 ± 2.4 mg/mL.
Collapse
|
22
|
Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1356893. [PMID: 32148647 PMCID: PMC7042557 DOI: 10.1155/2020/1356893] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a metabolic disorder that majorly affects the endocrine gland, and it is symbolized by hyperglycemia and glucose intolerance owing to deficient insulin secretory responses and beta cell dysfunction. This ailment affects as many as 451 million people worldwide, and it is also one of the leading causes of death. In spite of the immense advances made in the development of orthodox antidiabetic drugs, these drugs are often considered not successful for the management and treatment of T2DM due to the myriad side effects associated with them. Thus, the exploration of medicinal herbs and natural products as therapeutic sources for the treatment of T2DM is promoted because they have little or no side effects. Bioactive molecules isolated from natural sources have been proven to lower blood glucose levels via regulating one or more of the following mechanisms: improvement of beta cell function, insulin resistance, glucose (re)absorption, and glucagon-like peptide-1 homeostasis. In recent times, the mechanisms of action of different bioactive molecules with antidiabetic properties and phytochemistry are gaining a lot of attention in the area of drug discovery. This review article presents an update of the findings from clinical research into medicinal plant therapy for T2DM.
Collapse
|
23
|
Hifnawy MS, Aboseada MA, Hassan HM, AboulMagd AM, Tohamy AF, Abdel-Kawi SH, Rateb ME, El Naggar EMB, Liu M, Quinn RJ, Alhadrami HA, Abdelmohsen UR. Testicular Caspase-3 and β-Catenin Regulators Predicted via Comparative Metabolomics and Docking Studies. Metabolites 2020; 10:metabo10010031. [PMID: 31940785 PMCID: PMC7022381 DOI: 10.3390/metabo10010031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Many routes have been explored to search for effective, safe, and affordable alternatives to hazardous female contraceptives. Herbal extracts and their secondary metabolites are some of the interesting research areas to address this growing issue. This study aims to investigate the effects of ten different plant extracts on testicular spermatogenesis. The correlation between the chemical profile of these extracts and their in vivo effect on male reproductive system was evaluated using various techniques. Approximately 10% of LD50 of hydro-methanolic extracts were orally administrated to rats for 60 days. Semen parameters, sexual organ weights, and serum levels of male sex hormones in addition to testes histopathology, were evaluated. Moreover, metabolomic analysis using (LC-HRESIMS), multivariate analysis (PCA), immunohistochemistry (caspase-3 and β-catenin), and a docking study were performed. Results indicated that three plant extracts significantly decreased epididymal sperm density and motility. Moreover, their effects on testicular cells were also assured by histopathological evaluations. Metabolomic profiling of the bioactive plant extracts showed the presence of diverse phytochemicals, mostly oleanane saponins, phenolic diterpenes, and lupane triterpenes. A docking study on caspase-3 enzyme showed that oleanane saponins possessed the highest binding affinity. An immunohistochemistry assay on β-catenin and caspase-3 indicated that Albizzia lebbeck was the most active extract for decreasing immunoexpression of β-catenin, while Rosmarinus officinalis showed the highest activity for increasing immunoexpression of caspase-3. The spermatogenesis decreasing the activity of A. lebbeck, Anagallis arvensis, and R. officinalis can be mediated via up-regulation of caspase-3 and down-regulation of β-catenin existing in testis cells.
Collapse
Affiliation(s)
- Mohammed S. Hifnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11865, Egypt;
| | - Mahmoud A. Aboseada
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt; (H.M.H.); (M.E.R.)
| | - Asmaa M. AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Adel F. Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Cairo 11865, Egypt;
| | - Samraa H. Abdel-Kawi
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62513, Egypt;
- Department of Basic Science, Faculty of Dentistry, Nahda University, Beni-Suef 62513, Egypt
| | - Mostafa E. Rateb
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt; (H.M.H.); (M.E.R.)
- Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, UK
- School of Computing, Engineering and Physical Sciences, University of West Scotland, Paisley PA1 2BE, UK
| | | | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; (M.L.); (R.J.Q.)
| | - Ronald J. Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; (M.L.); (R.J.Q.)
| | - Hani A. Alhadrami
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, King Abdulaziz University, P. O. Box 80402, Jeddah 21589, Saudi Arabi
- King Fahd Medical Research Centre, King Abdulaziz University, P. O. Box 80402, Jeddah 21589, Saudi Arabia
- Correspondence: (H.A.A.); (U.R.A.)
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt
- Correspondence: (H.A.A.); (U.R.A.)
| |
Collapse
|
24
|
Dharmani M, Kamarulzaman K, Giribabu N, Choy KW, Zuhaida MZ, Aladdin NA, Jamal JA, Mustafa MR. Effect of Marantodes pumilum Blume (Kuntze) var.alata on β-cell function and insulin signaling in ovariectomised diabetic rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153101. [PMID: 31648126 DOI: 10.1016/j.phymed.2019.153101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Oestrogen deficiency leads to metabolic disturbances such as insulin resistance and impairment of adipose tissue or lipid metabolism. Marantodes pumilum (Blume) Kuntze (Primulaceae) is believed to have phytoestrogenic properties and is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), but the mechanism behind its phytoestrogenic effects on estrogen-deficient diabetic condition have not been fully examined. PURPOSE The present study investigated the effects of oral treatment with M. pumilum var. alata (MPA) extracts on the estrogen receptor, metabolic characteristics and insulin signaling pathway in pancreas and liver of ovariectomised nicotidamide streptozotocin-induced diabetes in female rats. MATERIALS AND METHODS Ovariectomised diabetic (OVXS) Sprague-Dawley rats were orally administered with either aqueous leaf extract and ethanol (50%) stem-root extract of MPA (50 or 100 mg/kg) respectively for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin, oral glucose and insulin tolerance test. Distribution and expression level of insulin, oxidative stress and inflammatory marker in the pancreatic islets and liver were evaluated by immunohistochemistry and western blot, respectively. RESULTS Oral treatment with aqueous leaf and ethanol (50%) stem-root extracts of MPA (100 mg/kg) significantly reversed the elevated fasting blood glucose, impaired glucose and insulin tolerance. The protein expression of insulin, glucose transporter (GLUT-2 and GLUT-4) increased in the pancreatic islets and liver. Furthermore, marked improvement in the tissue morphology following treatment with MPA was observed. Similarly, the western blots analysis denotes improved insulin signaling in the liver and decreased reactive oxygen species producing enzymes, inflammatory and pro-apoptotic molecules with MPA treatment. CONCLUSIONS Taken together, this work demonstrate that 100 mg/kg of aqueous leaf extract and ethanol (50%) stem-root extract of MPA improves β-cell function and insulin signaling in postmenopausal diabetes through attenuation of oxidative stress and partially mediated by oestrogen receptor stimulation.
Collapse
Affiliation(s)
- M Dharmani
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - K Kamarulzaman
- Physiology Unit, International Medical School, Management and Science University, University Drive, Sekysen 13, 40100 Shah Alam, Malaysia
| | - N Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - K W Choy
- Department of Anatomy, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jalan SP2, Bandar Saujana Putra, 42610 Jenjarum, Selangor, Malaysia; Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, 47000, Selangor, Malaysia
| | - M Z Zuhaida
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - N A Aladdin
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - J A Jamal
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - M R Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Ren L. Protective effect of ganoderic acid against the streptozotocin induced diabetes, inflammation, hyperlipidemia and microbiota imbalance in diabetic rats. Saudi J Biol Sci 2019; 26:1961-1972. [PMID: 31889779 PMCID: PMC6923438 DOI: 10.1016/j.sjbs.2019.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 01/03/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with numerous symptoms categorized via serves hyperglycemia effect along with altered fat, protein and carbohydrate metabolism mainly resultant from defects in insulin action/secretion or both. The aim of the current experimental study was to comfort the neuroprotective effect of ganoderic acid against the streptozotocin (STZ)-induced type I diabetes mellitus in mice and explore the underlying mechanism. Differentiation of 3T3-L1 preadipocytes effect; hepatic and glucose consumption effect of ganoderic acid was estimated on HepG2 cell lines and peroxisome proliferator-activated receptor (PPAR). FFA content was estimated in adipose and hepatic tissues. Ganoderic acid induced the 3T3-L1 preadipocytes differentiation. The mRNA expression of PPAR was increased in the high glucose-treated group in HepG2 and ganoderic acid treatment down-regulated the mRNA expression of PPAR. Ganoderic acid exhibited the inhibitory effect of α-glucosidase and α-amylase. Ganoderic acid demonstrated the reduced blood glucose and increase insulin level and also reduced the free fatty in hepatic and adipose tissue. Histopathological study showed the enhancement of β-cells in ganoderic acid-treated mice. Finally, their prebiotic effects on gut microbiota were illustrated via enhancing the population of diabetes resistant bacteria and also reducing the quantity of diabetes sensitive bacteria. Ganoderic acid attenuated STZ induced T1DM in mice via inflammatory pathways.
Collapse
|
26
|
Novel pentacyclic triterpene isolated from seeds of Euryale Ferox Salisb. ameliorates diabetes in streptozotocin induced diabetic rats. Interdiscip Toxicol 2019; 11:275-288. [PMID: 31762679 PMCID: PMC6853018 DOI: 10.2478/intox-2018-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/17/2018] [Indexed: 01/09/2023] Open
Abstract
The present research was carried out to study the effect of 2β-hydroxybetulinic acid 3β-oleiate (HBAO), a novel compound isolated from the seeds of Euryale ferox salisb. on glycemic control, antioxidant status and histopathological morphological alterations in the liver, pancreas, kidney and heart in streptozotocin induced type-2 diabetes in rats. HBAO was isolated from the seeds of Euryale ferox salisb. according to Lee. Isolation of the active principle HBAO was performed for the first time. To date there are no reports on the isolation and evaluation of 2β-hydroxybetulinic acid 3β-oleiate (HBAO) from Euryale ferox salisb. Assessment of different biochemical parameters like the effect of HBAO on glycemic control, plasma insulin, glycosylated hemoglobin, hepatic glucose-6-phosphate dehydrogenase, glucose-6-phosphatase and fructose-1-6-biphosphatase, hepatic hexokinase, lipid profile, antioxidant marker and histopathology of pancreas, liver and kidney examination was done at the end of the experimentation, i.e. on day 45. HBAO exhibited remarkable improvement in glycemic control, lipid levels, plasma insulin, glycogenic liver enzymes and antioxidant activity in diabetic rats, along with progressive enhancement of distortive histopathological morphology of liver, pancreas and kidney. The results strongly suggest that HBAO could be a potential therapeutic agent in diabetes.
Collapse
|
27
|
Salehi B, Ata A, V. Anil Kumar N, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Abdulmajid Ayatollahi S, Valere Tsouh Fokou P, Kobarfard F, Amiruddin Zakaria Z, Iriti M, Taheri Y, Martorell M, Sureda A, N. Setzer W, Durazzo A, Lucarini M, Santini A, Capasso R, Adrian Ostrander E, -ur-Rahman A, Iqbal Choudhary M, C. Cho W, Sharifi-Rad J. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019; 9:E551. [PMID: 31575072 PMCID: PMC6843349 DOI: 10.3390/biom9100551] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is one of the major health problems in the world, the incidence and associated mortality are increasing. Inadequate regulation of the blood sugar imposes serious consequences for health. Conventional antidiabetic drugs are effective, however, also with unavoidable side effects. On the other hand, medicinal plants may act as an alternative source of antidiabetic agents. Examples of medicinal plants with antidiabetic potential are described, with focuses on preclinical and clinical studies. The beneficial potential of each plant matrix is given by the combined and concerted action of their profile of biologically active compounds.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada;
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104, India;
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan;
| | - Karina Ramírez-Alarcón
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepción 4070386, Chile;
| | - Ana Ruiz-Ortega
- Facultad de Educación y Ciencias Sociales, Universidad Andrés Bello, Autopista Concepción—Talcahuano, Concepción 7100, Chile;
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Patrick Valere Tsouh Fokou
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon;
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Zainul Amiruddin Zakaria
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Integrative Pharmacogenomics Institute (iPROMISE), Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam Selangor 42300, Malaysia
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepción 4070386, Chile;
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN—Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, E-07122 Palma de Mallorca, Spain;
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49-80131 Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Elise Adrian Ostrander
- Medical Illustration, Kendall College of Art and Design, Ferris State University, Grand Rapids, MI 49503, USA;
| | - Atta -ur-Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.-u.-R.); (M.I.C.)
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.-u.-R.); (M.I.C.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Javad Sharifi-Rad
- Department of Pharmacology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft 7861756447, Iran
| |
Collapse
|
28
|
Middha SK, Usha T, Basistha BC, Goyal AK. Amelioration of antioxidant potential, toxicity, and antihyperglycemic activity of Hippophae salicifolia D. Don leaf extracts in alloxan-induced diabetic rats. 3 Biotech 2019; 9:308. [PMID: 31355117 PMCID: PMC6661051 DOI: 10.1007/s13205-019-1840-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Efficacy of several plant extracts in the clinical research for modulating oxidative stress correlated with diabetes mellitus (DM) is well documented. In the present study, we investigated the in vitro antioxidant activity, toxicity, and anti-diabetic activity of methanolic extract of Hippophae salicifolia leaves in normal and alloxan-induced diabetic wistar rats. H. salicifolia leaves were found to be rich in antioxidants. The acute toxicity test of methanolic extract of H. salicifolia leaves revealed that the median lethal dose (LD50) was found to be 3.92 g/kg body weight in mice. Administration of H. salicifolia leaves at 200 mg/kg and 400 mg/kg in alloxan-induced diabetic rats illustrated significant reduction (22% and 39%, respectively) in fasting blood glucose compared to diabetic control. Both the doses were found to be effective when compared to diabetic rats. The Hippophae-treated diabetic rats showed significant increase in the endogenous antioxidant enzymes, superoxide dismutase (50% and 74%, respectively), glutathione peroxidase (57% and 41%, respectively) and decrease in malondialdehyde (33% and 15%, respectively) levels. These results suggested that the methanolic leaf extract of H. salicifolia enhanced the antioxidant defence against reactive oxygen species produced under hyperglycaemic conditions.
Collapse
Affiliation(s)
- Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Malleswaram, Bengaluru, Karnataka 560012 India
| | - Talambedu Usha
- Department of Biochemistry, Bangalore University, Sneha Bhavana, Jnanabharathi Campus, Bengaluru, Karnataka 5600056 India
| | | | - Arvind Kumar Goyal
- Centre for Bamboo Studies and Department of Biotechnology, Bodoland University, Bodoland Territorial Area Districts (BTAD), Kokrajhar, Assam 783370 India
| |
Collapse
|
29
|
Anwar F, Khan R, Sachan R, Kazmi I, Rawat A, Sabih A, Singh R, Afzal M, Ahmad A, Al-Orab AS, Al-Abbasi FA, Bhatt PC, Kumar V. Therapeutic role of calcium and vitamin K3 in chemically induced hepatocarcinogenesis - new tools for cancer treatment. Arch Physiol Biochem 2019; 125:270-275. [PMID: 29663832 DOI: 10.1080/13813455.2018.1455708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
HCC has been reported to be immensely occurring carcinoma worldwide. Recent days the mortality occurred due to liver cancer has also been found to be increased at an alarming speed affecting mostly the young patients. The aim of the current study was to decipher the role of calcium and vitamin K3 in the treatment of chemically induced hepatocarcinogenesis in the male Wistar rats. Liver cancer was induced via a subnecrogenic dose of 160 mg/kg body weight, diethylnitrosamine (DENA) when associated with fasting/refeeding in male Wistar rats. It elevated the serum glutamate oxaloacetate (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), bilirubin, total cholesterol (CH), triglycerides (TG), alfa-fetoprotein (AFP) and reduced high-density lipoprotein (HDL). Histopathological examination of liver tissue showed marked carcinogenicity of the chemical carcinogen. Food, water intake and animal weights were also assessed, respectively. The animals exposed to DENA showed a significant decrease in the body weight. The elevated levels of serum SGOT, SGPT, ALP, AFP, TC and TG were restored by administration of calcium and Vit K (ad libitum) combination at higher dose than the normal dietary requirement (3 mg/kg) daily for 12 weeks p.o. Physiological and biochemical analysis showed the beneficial effects of calcium and vitamin K3 combination in the animals exposed to DENA. The results deciphered the beneficial effects of calcium and vitamin K3 in combination.
Collapse
Affiliation(s)
- Firoz Anwar
- a Department of Biochemistry , Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Ruqaiyah Khan
- b Siddhartha Institute of Pharmacy , Dehradun , India
| | - Richa Sachan
- c School of Pharmacy, Sungkyunkwan University , Republic of Korea
| | - Imran Kazmi
- d Glocal School of Pharmacy, Glocal University , Saharanpur , Uttar Pradesh, India
| | - Alisha Rawat
- b Siddhartha Institute of Pharmacy , Dehradun , India
| | | | - Rajbala Singh
- b Siddhartha Institute of Pharmacy , Dehradun , India
| | - Muhammad Afzal
- e Department of Pharmacology , Jouf University , Sakaka , Kingdom of Saudi Arabia
| | - Aftab Ahmad
- a Department of Biochemistry , Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Abdulaziz S Al-Orab
- a Department of Biochemistry , Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - F A Al-Abbasi
- a Department of Biochemistry , Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Prakash Chandra Bhatt
- f Centre for Advanced Research in Pharmaceutical Sciences, Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy , JamiaHamdard , New Delhi, India
| | - Vikas Kumar
- g Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences , Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS) , Allahabad , Uttar Pradesh, India
| |
Collapse
|
30
|
Fahmy MK, Sayyed HG, Abd Elrahim EA, Farag RT. Superimposed effect of ovariectomy on type 2 diabetes mellitus in Wistar rats. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Minerva K. Fahmy
- Medical Physiology Department, Faculty of Medicine, Assiut University, EgyptMedical Physiology Department, Faculty of Medicine, Assiut University, Egypt
| | - Hayam G. Sayyed
- Medical Physiology Department, Faculty of Medicine, Assiut University, EgyptMedical Physiology Department, Faculty of Medicine, Assiut University, Egypt
| | - Eman A. Abd Elrahim
- Medical Histology Department, Faculty of Medicine, South Vally University, EgyptMedical Histology Department, Faculty of Medicine, South Vally University, Egypt
| | - Rana T.A. Farag
- Medical Physiology Department, Faculty of Medicine, South Vally University, EgyptMedical Physiology Department, Faculty of Medicine, South Vally University, Egypt
| |
Collapse
|
31
|
Đurašević S, Jasnić N, Prokić M, Grigorov I, Martinović V, Đorđević J, Pavlović S. The protective role of virgin coconut oil on the alloxan-induced oxidative stress in the liver, kidneys and heart of diabetic rats. Food Funct 2019; 10:2114-2124. [PMID: 30919867 DOI: 10.1039/c9fo00107g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study was to investigate the potential protective effect of virgin coconut oil (VCO) on oxidative stress parameters in the liver, kidneys and heart of alloxan-induced (150 mg kg-1 i.p.-1) diabetes in rats. Our results showed that daily supplementation of VCO (20% of food) for 16 weeks significantly (p < 0.05) ameliorates some deleterious effects caused by alloxan. VCO reduced the diabetes-related increase in food (82.15 ± 1.49 vs. 145.51 ± 4.81 g per kg b.m. per day) and water (305.49 ± 6.09 vs. 583.98 ± 14.80 mL per kg b.m. per day) intake, and the decrease in the body mass gain (0.56 ± 0.16 vs. -2.13 ± 0.49 g per 100 g b.m. per week). In all three tissues, diabetes caused an increase in the concentration of total glutathione and sulfhydryl groups, and catalase and glutathione S-transferase activities, without changes in superoxide dismutase activity. Glutathione peroxidase activity was increased in the kidneys and heart, but not in the liver of the diabetic animals, while glutathione reductase activity was increased in the liver and the kidneys, and not in the heart. The simultaneous VCO supplementation increased the concentration of the sulfhydryl group in all three tissues of diabetic animals and decreased the glutathione S-transferase activity and glutathione concentration, without affecting the glutathione reductase activity. In the liver of diabetic animals it decreased superoxide dismutase, catalase and glutathione peroxidase activities, in the heart catalase and glutathione peroxidase activities, and in the kidney catalase activity only. The results of canonical discriminant analysis of oxidative stress parameters revealed that VCO exerts its effects in a tissue-specific manner.
Collapse
Affiliation(s)
- Siniša Đurašević
- Faculty of Biology, Institute of Biochemistry and Physiology, University of Belgrade, Belgrade, Serbia.
| | - Nebojša Jasnić
- Faculty of Biology, Institute of Biochemistry and Physiology, University of Belgrade, Belgrade, Serbia.
| | - Marko Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Ilijana Grigorov
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Vesna Martinović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Jelena Đorđević
- Faculty of Biology, Institute of Biochemistry and Physiology, University of Belgrade, Belgrade, Serbia.
| | - Slađan Pavlović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
32
|
Progress in the discovery of naturally occurring anti-diabetic drugs and in the identification of their molecular targets. Fitoterapia 2019; 134:270-289. [PMID: 30840917 DOI: 10.1016/j.fitote.2019.02.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM), a chronic metabolic disease, severely affects patients' life and intensively increases risks of developing other diseases. It is estimated that 0.4 billion individuals worldwide are subjected to diabetes, especially type 2 diabetes mellitus. At present, although various synthetic drugs for diabetes such as Alogliptin and Rosiglitazone, etc. have been used to manage diabetes, some of them showed severe side effects. Given that the pathogenesis of type 2 diabetes mellitus, natural occurring drugs are beneficial alternatives for diabetes therapy with low adverse effects or toxicity. Recently, more and more plant-derived extracts or compounds were evaluated to have anti-diabetic activities. Their anti-diabetic mechanisms involve certain key targets like α-glucosidase, α-amylase, DPP-4, PPAR γ, PTP1B, and GLUT4, etc. Here, we summarize the newly found anti-diabetic (type 2 diabetes mellitus) natural compounds and extracts from 2011-2017, and give the identification of their molecular targets. This review could provide references for the research of natural agents curing type 2 diabetes mellitus (T2DM).
Collapse
|
33
|
Mawa J, Rahman MA, Hashem MA, Juwel Hosen M. Leea macrophylla root extract upregulates the mRNA expression for antioxidative enzymes and repairs the necrosis of pancreatic β-cell and kidney tissues in fructose-fed Type 2 diabetic rats. Biomed Pharmacother 2018; 110:74-84. [PMID: 30466005 DOI: 10.1016/j.biopha.2018.11.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/12/2023] Open
Abstract
This research investigated the functional food effect of Leea macrophylla (Roxb.) ex Hornem root extract on pancreatic necrosis in Streptozotocin-induced type-2 diabetes. Prior to animal intervention, Leea macrophylla root extract (LMR) was subjected to GC-MS analysis. Across a three-week intervention of fructose-fed albino model with LMR50, LMR100 and LMR200, the fluid & food intake, body weight changes, weekly blood glucose concentrations and oral glucose tolerance (OGT) were recorded. The animals were sacrificed after intervention and serum was analyzed for insulin, ALT, AST, LDH, CK-MB, creatinine, uric acid and lipid profile and liver section was used for glycogen estimation. Changes of pancreas and kidney architecture were evaluated by histopathology. Relative mRNA for superoxide dismutase 1 (SOD1), glutathione peroxidase (GPx) and catalase (CAT) were quantitated using assay kits. Results showed that fluid and food intake, weekly blood glucose level, ALT, AST, LDH, CK-MB level were significantly (p < 0.05) decreased in LMR50 group. Conversely, the glucose tolerance ability, liver glycogen level, serum insulin, organ weight and pancreatic morphology were improved significantly in this group. Diameter of islet of Langerhans (μm), area occupied by β-cell/ islet of Langerhans (μm2) and number of β-cells/islet of Langerhans were amazingly improved to the NC animals. Expressions of mRNA for SOD1 and CAT from liver tissue have been found to be increased multifold while GPx was remained unchanged. The data suggests that L. macrophylla root extract could be very potential as functional food to modulate pancreatic action.
Collapse
Affiliation(s)
- Jannatul Mawa
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh.
| | - M A Hashem
- Department of Biochemistry and Biotechnology, University of Science and Technology, Chittagong, Bangladesh
| | - Md Juwel Hosen
- Designated Reference Institute for Chemical Measurements (DRiCM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| |
Collapse
|
34
|
Nna VU, Abu Bakar AB, Md Lazin MRML, Mohamed M. Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocin-induced diabetic rats. Food Chem Toxicol 2018; 120:305-320. [PMID: 30026088 DOI: 10.1016/j.fct.2018.07.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/23/2018] [Accepted: 07/15/2018] [Indexed: 01/21/2023]
Abstract
Diabetes mellitus is characterized by hyperglycemia which causes oxidative stress. Propolis has been reported to have antihyperglycemic and antioxidant potentials. The present study therefore examined the anti-hyperglycemic, antioxidant and anti-inflammatory activities of Malaysian propolis (MP) using streptozotocin-induced diabetic rats. Ethanol extract of MP showed in vitro antioxidant (DPPH, FRAP and H2O2 radical scavenging) and α-glucosidase inhibition activities. Male Sprague Dawley rats were either treated with distilled water (normal control and diabetic control), MP (300 mg/kg b. w.), metformin (Met) (300 mg/kg b. w.) or both. After four weeks, fasting blood glucose decreased, while body weight change and serum insulin level increased significantly in MP, Met and MP + Met treated diabetic groups compared to diabetic control (DC) group. Furthermore, pancreatic antioxidant enzymes, total antioxidant capacity, interleukin (IL)-10 and proliferating cell nuclear antigen increased, while malondialdehyde, nuclear factor-kappa B (p65), tumor necrosis factor alpha, IL-1β and cleaved caspase-3 decreased significantly in the treated diabetic groups compared to DC group. Histopathology of the pancreas showed increased islet area and number of beta cells in the treated groups, compared to DC group, with D + MP + Met group comparable to normal control. We conclude that MP has anti-hyperglycemic, antioxidant, anti-inflammatory and antiapoptotic potentials, and exhibits synergistic effect with metformin.
Collapse
Affiliation(s)
- Victor Udo Nna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia; Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia
| | | | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia; Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia.
| |
Collapse
|
35
|
Zangeneh MM, Zangeneh A, Almasi M, Tahvilian R, Hosseini F, Moradi R. A comparative study of hepatoprotective effect of Inula britannica L aqueous extract and glibenclamide in streptozotocin-induced diabetic mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2789-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Saeed F, Afzaal M, Niaz B, Arshad MU, Tufail T, Hussain MB, Javed A. Bitter melon (Momordica charantia): a natural healthy vegetable. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1446023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Farhan Saeed
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Niaz
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Umair Arshad
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tabussam Tufail
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Bilal Hussain
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahsan Javed
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
37
|
Evaluation of hematoprotective and hepatoprotective properties of aqueous extract of Ceterach officinarum DC against streptozotocin-induced hepatic injury in male mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2754-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
38
|
Kumar V, Sharma K, Ahmed B, Al-Abbasi FA, Anwar F, Verma A. Deconvoluting the dual hypoglycemic effect of wedelolactone isolated from Wedelia calendulacea: investigation via experimental validation and molecular docking. RSC Adv 2018; 8:18180-18196. [PMID: 35542112 PMCID: PMC9080591 DOI: 10.1039/c7ra12568b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/02/2018] [Indexed: 01/10/2023] Open
Abstract
Wedelia calendulacea has a long history of use in the Indian Ayurvedic System of Medicine for the treatment, prevention, and cure of a diverse range of human diseases such as diabetes obesity, and other metabolic diseases. A wide range of chemical constituents, such as triterpenoid saponin, kauren diterpene, and coumestans, has been isolated from the plant. Conversely, no published literature is available in relation to the isolation of wedelolactone (WEL) for its anti-diabetic effect. The aim of the present study was to isolate the bioactive phyto-constituent from Wedelia calendulacea and to scrutinize the antidiabetic effect with its possible mechanism of action. The structure of the isolated compound was elucidated by different spectroscopy techniques. Proteins, such as dipeptidyl peptidase-4 (DPPIV), glucose transporter 1 (GLUT1), and peroxisome proliferator-activated receptors-γ (PPARγ), were also subjected to in silico docking. Later, this isolated compound was scrutinized against α-glucosidase and α-amylase enzyme activity along with an oral glucose tolerance test (OGTT) for estimation of glucose utilization. Streptozotocin (STZ) was used for the induction of type II diabetes mellitus (DM) in Wistar rats. The rats were divided into different groups and received the WEL (5, 10, and 20 mg kg-1, b.w.) and glibenclamide (2.5 mg kg-1, b.w.) for 28 days. The blood glucose level (BGL), plasma insulin, and body weight were determined at regular time intervals. The serum lipid profile hypolipidemic effect for the different antioxidant markers and hepatic tissue markers were scrutinized along with an inflammatory mediator to deduce the possible mechanism. With the help of spectroscopy techniques, the isolated compound was identified as wedelolactone. In the docking study, WEL showed docking scores of -6.17, -9.43, and -7.66 against DPP4, GLUTI, and PRARY, respectively. WEL showed the inhibition of α-glucosidase (80.65%) and α-amylase (93.83%) and suggested an effect on postprandial hyperglycemia. In the OGTT, WEL significantly (P < 0.001) downregulated the BGL, a marker for better utilization of drugs. In the diabetes model, WEL reduced the BGL and enhanced the plasma insulin and body weight. It also significantly (P < 0.001) modulated the lipid profile; this suggested an anti-hyperlipidemia effect. WEL significantly (P < 0.001) distorted the hepatic tissue, acting as an antioxidant marker in a dose-dependent manner. WEL significantly (P < 0.001) downregulated the C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) level. On the basis of the available results, we can conclude that WEL can be an alternative drug for the treatment of type II DM either by inhibiting the production of inflammatory mediator or by the downregulation of oxidative stress.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences Allahabad Uttar Pradesh India - 211007
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard New Delhi-110062 India
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard New Delhi-110062 India
| | - F A Al-Abbasi
- Department of Biochemistry, King Abdulaziz University Jeddah-21589 Kingdom of Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, King Abdulaziz University Jeddah-21589 Kingdom of Saudi Arabia
| | - Amita Verma
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences Allahabad-211007 Uttar Pradesh India
| |
Collapse
|
39
|
Amelioration of renal structural changes in STZ-induced diabetic mice with ethanolic extract of Allium saralicum R.M. Fritsch. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2674-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Lu A, Shen M, Fang Z, Xu Y, Yu M, Wang S, Zhang Y, Wang W. Antidiabetic Effects of the Auricularia auricular Polysaccharides Simulated Hydrolysates in Experimental Type-2 Diabetic Rats. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A model of type-2 diabetes mellitus (T2DM) using high-fat diet and low-dose STZ was established to assess the antidiabetic effects of Auricularia auricular polysaccharides simulated hydrolysates (AAPHs) obtained from the dried fruiting body of A. auricular. AAPHs were administered intragastrically (i.g.) at the dose of 0.15 g/kg b. W. to diabetic Wistar rats for 4 weeks. Results show that AAPHs was demonstrated to exhibit significant diminution in T-CHO and LDL-C levels (P < 0.05 or P < 0.01) compared to the diabetic control group. In addition, the secretion level of GLP-1 were different with the diabetes model group from 0 to 30 min, and had a tendency to alleviate weight loss. The current study suggests that AAPHs might be incorporated as a supplement in diabetic agents or combined with other health-care foods.
Collapse
Affiliation(s)
- Aoxue Lu
- College of Life Sciences China JiLiang University, Hangzhou, Zhejiang, 310018, China
| | - Meng Shen
- College of Life Sciences China JiLiang University, Hangzhou, Zhejiang, 310018, China
| | - Zhiyu Fang
- College of Life Sciences China JiLiang University, Hangzhou, Zhejiang, 310018, China
| | - Yaoyao Xu
- College of Life Sciences China JiLiang University, Hangzhou, Zhejiang, 310018, China
| | - Mengen Yu
- College of Life Sciences China JiLiang University, Hangzhou, Zhejiang, 310018, China
| | - Shuang Wang
- College of Life Sciences China JiLiang University, Hangzhou, Zhejiang, 310018, China
| | - Yongjun Zhang
- College of Life Sciences China JiLiang University, Hangzhou, Zhejiang, 310018, China
| | - Weimin Wang
- College of Life Sciences China JiLiang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
41
|
Antihyperglycemic, Antidiabetic, and Antioxidant Effects of Garcinia pedunculata in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2979760. [PMID: 29234381 PMCID: PMC5672145 DOI: 10.1155/2017/2979760] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/21/2017] [Accepted: 09/12/2017] [Indexed: 11/18/2022]
Abstract
The antihyperglycemic, antidiabetic, and antioxidant potentials of the methanolic extract of Garcinia pedunculata (GP) fruit in rats were investigated. The acute antihyperglycemic effect of different doses of GP was studied in normal male Wistar rats. Diabetes was induced by streptozotocin (STZ) injection in another cohort of male Wistar rats and they showed significantly higher blood glucose and glycated hemoglobin (HbA1c) levels, altered lipid profiles, and lower insulin levels compared to nondiabetic control animals. There were increased lipid peroxidation and reduced levels of cellular antioxidant enzymes in different tissues of diabetic rats. However, oral administration of GP extracts, especially the highest dose (1000 mg/kg), significantly ameliorated hyperglycemia (42%); elevated insulin levels (165%); decreased HbA1c (29.4%); restored lipid levels (reduction in TG by 25%, TC by 15%, and LDL-C by 75% and increase in HDL-C by 4%), liver and renal function markers, and lipid peroxidation (reduction by 52% in the liver, 39% in the kidney, 44% in the heart, and 46% in the pancreas); and stimulated tissue antioxidant enzymes to near normalcy. Overall, the findings suggest that GP fruit is effective against hyperglycemia and could be used in the treatment of diabetes and its complications and other oxidative stress-mediated pathological conditions.
Collapse
|
42
|
Ogunyinka BI, Oyinloye BE, Osunsanmi FO, Opoku AR, Kappo AP. Protective Effects of Parkia biglobosa Protein Isolate on Streptozotocin-Induced Hepatic Damage and Oxidative Stress in Diabetic Male Rats. Molecules 2017; 22:molecules22101654. [PMID: 28974040 PMCID: PMC6151535 DOI: 10.3390/molecules22101654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 11/16/2022] Open
Abstract
This study sought to investigate the possible protective role of Parkia biglobosa seed protein isolate (PBPi) against streptozotocin-induced hepatic damage and oxidative stress in diabetic male rats. Prior to animal experiments, a HPLC fingerprint of PBPi was recorded. Diabetes was induced in rats by a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg body weight). Diabetic rats were orally treated daily with PBPi (200 or 400 mg/kg body weight) or insulin (5 U/kg, i.p.) for 28 days. The degree of protection was evaluated using biochemical parameters such as malondialdehyde (MDA) levels, serum transaminases (ALT and AST), total protein, total glutathione (Total GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and interleukin-6 (IL-6) activities. Histology of liver sections was also performed. The HPLC fingerprint of PBPi revealed eleven distinct peaks; PBPi at tested doses significantly attenuates STZ-induced elevated levels of serum IL-6, ALT and AST; and hepatic TBARS levels. Hepatic antioxidants (Total GSH, GST, SOD, CAT) as well as total protein were markedly restored in a dose-dependent manner. Histopathological results strongly support the protective role of PBPi. These results suggest PBPi could confer protection by ameliorating hepatic damage and oxidative stress caused by STZ in animal model possibly via its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Bolajoko Idiat Ogunyinka
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
- Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria.
| | - Foluso Oluwagbemiga Osunsanmi
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Andrew Rowland Opoku
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
43
|
Abd El-Moneam NM, Shreadah MA, El-Assar SA, Nabil-Adam A. Protective role of antioxidants capacity of Hyrtios aff. Erectus sponge extract against mixture of persistent organic pollutants (POPs)-induced hepatic toxicity in mice liver: biomarkers and ultrastructural study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22061-22072. [PMID: 28791578 DOI: 10.1007/s11356-017-9805-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
The current study investigates the hepatoprotective effect of Hyrtios aff. Erectus sponge extract against POPs intoxication on endogenous antioxidant enzymes and lipid peroxidation in mice liver tissue. In the present study, the mice BALB/C were assigned into four groups: group I: received saline subcutaneously for 7 days and served as negative control; group II: received subcutaneously for 7 days, 130.6 mg/100 g/b. w/day POPs mixture(mixture of PCB 28, PCB 52,, PCB 101, PCB 118, PCB 153, PCB 138 and PCB 180, alpha-Hexachlorocyclohexane, beta-Hexachloro-cyclohexane, gamma-hexachlorocyclohexane, Aldrin, O,P'-DDE, Dieldrin, P,p DDE, O,P DDD, Endrin, P,p DDD and P,pDDT were extracted from sediments collected from Lake Mariout), and served as induced group; group III: pretreated with Hyrtios aff. Erectus sponge extract for 7 days, as a protection dose and then treated with POPs as group II and served as protective group; and group IV: received i.p Hyrtios aff. Erectus sponge extract of dose 0.7 mg/100 g b.wt/day for 7 days and served as positive control. After 7 days (experimental period), mice were scarified and the liver was harvested for biochemical estimation. Significant reduction in lipid peroxidation (p < 0.002) was noticed compared to POPs-protected group. The antioxidant biomarkers levels were significantly increase as the hepatic GSH and GST increased by 69.9 and 89.9%, respectively. Such increase was accompanied by a decrease in tyrosine kinase activity by 59.82%, additionally remarkable histopathological changes in liver tissue indicate the protective effect of Hyrtios aff. Erectus sponge extract. The results of this study revealed that the Hyrtios aff. Erectus sponge extract has the potential to diminish the destructive effect of POPs intoxication through enhancement of the endogenous antioxidant status. The hepatoprotective activity of Hyrtios aff. Erectus sponge extract is mediated, by the antioxidant effect of its active constituents. The active constituents of Hyrtios aff. Erectus sponge extract were identified by LC-MS/MS.
Collapse
Affiliation(s)
- Nehad M Abd El-Moneam
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A Shreadah
- Marine Biotechnology and Natural Products Lab (MBNP), National Institute of Oceanography & Fisheries (NIOF), Alexandria, Egypt
| | - Samy A El-Assar
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Lab (MBNP), National Institute of Oceanography & Fisheries (NIOF), Alexandria, Egypt.
| |
Collapse
|
44
|
Pradeep SR, Srinivasan K. Amelioration of oxidative stress by dietary fenugreek (Trigonella foenum-graecum L.) seeds is potentiated by onion (Allium cepa L.) in streptozotocin-induced diabetic rats. Appl Physiol Nutr Metab 2017; 42:816-828. [DOI: 10.1139/apnm-2016-0592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress has a crucial role in the progression of diabetes and its complications. Soluble fibre-rich fenugreek seeds (Trigonella foenum-graecum L.) are understood to have a beneficial effect in the management of diabetes. Previously, we have shown that the amelioration of diabetic hyperglycemia and related metabolic abnormalities was potentiated by onion (Allium cepa L.) in experimental rats. The present study evaluated the additive beneficial effect of dietary fenugreek seeds (10%) and onion (3%) on oxidative stress in diabetic rats. These dietary interventions lowered oxidative stress, the combination producing a higher beneficial effect (p < 0.05), although not additive. Dietary fenugreek, onion, or fenugreek+onion countered hypercholesterolemia (p < 0.05), especially from low-density lipoprotein−associated fraction by 43%, 35%, and 54%, respectively. Elevated concentrations of cholesterol and triglycerides in the liver and heart under diabetic conditions were significantly counteracted by these dietary interventions, with the additive combination resulting in greater effect. These findings were also corroborated by restoration of histopathological abnormalities of heart and liver tissues along with lowered heart and liver weights. It is inferred that an alleviation of oxidative stress contributes further to the antidiabetic influence and this nutraceutical potential of fenugreek seeds and onion was higher when consumed together.
Collapse
Affiliation(s)
- Seetur R. Pradeep
- Department of Biochemistry and Nutrition, CSIR–Central Food Technological Research Institute, Mysore 570 020, India
- Department of Biochemistry and Nutrition, CSIR–Central Food Technological Research Institute, Mysore 570 020, India
| | - Krishnapura Srinivasan
- Department of Biochemistry and Nutrition, CSIR–Central Food Technological Research Institute, Mysore 570 020, India
- Department of Biochemistry and Nutrition, CSIR–Central Food Technological Research Institute, Mysore 570 020, India
| |
Collapse
|
45
|
Bhatnagar M, Goel I, Roy T, Shukla SD, Khurana S. Complete Comparison Display (CCD) evaluation of ethanol extracts of Centella asiatica and Withania somnifera shows that they can non-synergistically ameliorate biochemical and behavioural damages in MPTP induced Parkinson's model of mice. PLoS One 2017; 12:e0177254. [PMID: 28510600 PMCID: PMC5433711 DOI: 10.1371/journal.pone.0177254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/25/2017] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease remains as one of the most common debilitating neurodegenerative disorders. With the hopes of finding agents that can cure or reduce the pace of progression of the disease, we studied two traditional medicinal plants: Centella asiatica and Withania somnifera that have been explored in some recent studies. In agreement with the previous work on ethanol extracts of these two plants in mice model, we saw an improvement in oxidative stress profile as well as behavioral performance in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced Parkinson-like symptoms in Balb/c mice. Given the known potential of both the herbal extracts in improving Parkinson-like symptoms, we expected the combination of the two to show better results than either of the two but surprisingly there was no additivity in either oxidative stress or behavioural recovery. In fact, in some assays, the combination performed worse than either of the two individual constituents. This effect of mixtures highlights the need of testing mixtures in supplements market using enthomedicine. The necessity of comparing multiple groups in this study to get most information from the experiments motivated us to design a ladder-like visualization to show comparison with different groups that we call complete comparison display (CCD). In summary, we show the potential of Centella asiatica and Withania somnifera to ameliorate Parkinson's disorder.
Collapse
Affiliation(s)
- Maheep Bhatnagar
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Ishan Goel
- Pharmacology Department, Central Drug Research Institute - Lucknow, Uttar Pradesh, India
| | - Tathagato Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Haringhata Farm, West Bengal, India
| | - Sunil Dutt Shukla
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
- Government Meera Girl's College, Udaipur, Rajasthan, India
- * E-mail: (SS); (SK)
| | - Sukant Khurana
- Pharmacology Department, Central Drug Research Institute - Lucknow, Uttar Pradesh, India
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Haringhata Farm, West Bengal, India
- * E-mail: (SS); (SK)
| |
Collapse
|
46
|
El Rabey HA, Al-Seeni MN, Bakhashwain AS. The Antidiabetic Activity of Nigella sativa and Propolis on Streptozotocin-Induced Diabetes and Diabetic Nephropathy in Male Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:5439645. [PMID: 28298934 PMCID: PMC5337387 DOI: 10.1155/2017/5439645] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 01/19/2017] [Indexed: 12/21/2022]
Abstract
This study was conducted to compare the ameliorative effect of Nigella sativa and propolis methanol extract on streptozotocin-induced diabetic male rats and treating diabetic nephropathy. Forty male Albino rats were divided into four groups; the first group was the negative control fed standard diet. The other 30 rats were injected with streptozotocin to induce diabetes by a single intravenous injection and then divided equally into three groups; the second group was the positive diabetic control; the third and the fourth groups were treated orally with 20% w/w Nigella sativa seeds methanol extract and propolis methanol extract (20% w/w), respectively. The rats of the second group showed increased glucose levels and lipid peroxide accompanied with reduction in superoxide dismutase, catalase, and glutathione-S-transferase enzyme activities compared with the negative control. Carboxymethyl lysine, interleukin-6, and immunoglobulins were also increased as a result of diabetes. Kidney function parameters were also elevated, while potassium and sodium levels were decreased. Moreover, tissues of kidney and pancreas showed severe histopathological changes. Treating the diabetic rats with Nigella sativa and propolis methanol extract in the third and fourth groups, respectively, ameliorated all altered biochemical and pathological examinations approaching the negative control. Propolis was more effective than Nigella sativa.
Collapse
Affiliation(s)
- Haddad A. El Rabey
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Bioinformatics Department, Genetic Engineering and Biotechnology Institute, University of Sadat City, Sadat City, Monufia, Egypt
| | - Madeha N. Al-Seeni
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amal S. Bakhashwain
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
47
|
α-Mangostin Mediated Pharmacological Modulation of Hepatic Carbohydrate Metabolism in Diabetes Induced Wistar Rat. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2016. [DOI: 10.1016/j.bjbas.2016.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
48
|
Gushiken LF, Beserra FP, Rozza AL, Bérgamo PL, Bérgamo DA, Pellizzon CH. Chemical and Biological Aspects of Extracts from Medicinal Plants with Antidiabetic Effects. Rev Diabet Stud 2016; 13:96-112. [PMID: 28012277 DOI: 10.1900/rds.2016.13.96] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Diabetes mellitus is a chronic disease and a leading cause of death in western countries. Despite advancements in the clinical management of the disease, it is not possible to control the late complications of diabetes. The main characteristic feature of diabetes is hyperglycemia, which reflects the deterioration in the use of glucose due to a faulty or poor response to insulin secretion. Alloxan and streptozotocin (STZ) are the chemical tools that are most commonly used to study the disease in rodents. Many plant species have been used in ethnopharmacology or to treat experimentally symptoms of this disease. When evaluated pharmacologically, most of the plants employed as antidiabetic substances have been shown to exhibit hypoglycemic and antihyperglycemic activities, and to contain chemical constituents that may be used as new antidiabetic agents. There are many substances extracted from plants that offer antidiabetic potential, whereas others may result in hypoglycemia as a side effect due to their toxicity, particularly their hepatotoxicity. In this article we present an updated overview of the studies on extracts from medicinal plants, relating the mechanisms of action by which these substances act and the natural principles of antidiabetic activity.
Collapse
Affiliation(s)
- Lucas F Gushiken
- Laboratory of Experimentation of Natural Products (LENP), Department of Morphology, Institute of Biosciences of Botucatu, Unesp, 18618-970 Botucatu/SP, Brazil
| | - Fernando P Beserra
- Laboratory of Experimentation of Natural Products (LENP), Department of Morphology, Institute of Biosciences of Botucatu, Unesp, 18618-970 Botucatu/SP, Brazil
| | - Ariane L Rozza
- Laboratory of Experimentation of Natural Products (LENP), Department of Morphology, Institute of Biosciences of Botucatu, Unesp, 18618-970 Botucatu/SP, Brazil
| | - Patrícia L Bérgamo
- Laboratory of Experimentation of Natural Products (LENP), Department of Morphology, Institute of Biosciences of Botucatu, Unesp, 18618-970 Botucatu/SP, Brazil
| | - Danilo A Bérgamo
- Laboratory of Experimentation of Natural Products (LENP), Department of Morphology, Institute of Biosciences of Botucatu, Unesp, 18618-970 Botucatu/SP, Brazil
| | - Cláudia H Pellizzon
- Laboratory of Experimentation of Natural Products (LENP), Department of Morphology, Institute of Biosciences of Botucatu, Unesp, 18618-970 Botucatu/SP, Brazil
| |
Collapse
|
49
|
Muhammad HL, Kabiru AY, Busari MB, Mann A, Abdullah AS, Usman AT, Adamu U. Acute oral toxicity study of ethanol extract of Ceiba pentandra leaves as a glucose lowering agent in diabetic rats. JOURNAL OF ACUTE DISEASE 2016. [DOI: 10.1016/j.joad.2016.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Ghadge A, Harsulkar A, Karandikar M, Pandit V, Kuvalekar A. Comparative anti-inflammatory and lipid-normalizing effects of metformin and omega-3 fatty acids through modulation of transcription factors in diabetic rats. GENES AND NUTRITION 2016; 11:10. [PMID: 27551311 PMCID: PMC4968436 DOI: 10.1186/s12263-016-0518-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence suggests beneficial effects of omega-3 fatty acids on diabetic complications. The present study compared the progressive effects of metformin and flax/fish oil on lipid metabolism, inflammatory markers, and liver and renal function test markers in streptozotocin-nicotinamide-induced diabetic rats. METHODS Streptozotocin-induced diabetic rats were randomized into control and four diabetic groups: streptozotocin (STZ), metformin (200 mg/kg body weight (b.w)/day (D)), flax and fish oil (500 mg/kg b.w/D). RESULTS Metformin and flax and fish oil exhibited increased expression of transcription factor peroxisome proliferator-activated receptor γ while the treatment downregulated sterol regulatory element-binding protein 1 and nuclear factor kβ as compared to those of the STZ group. Apart from modulation of transcription factor expression, the expression of fatty acid synthase, long chain acyl CoA synthase, and malonyl-CoA-acyl carrier protein transacylase was lowered by flax/fish oil treatment. Serum cholesterol, triglycerides, and VLDL were also significantly reduced in the treatment groups as compared to those in the STZ group. Although pathological abnormalities were seen in the liver and kidneys of rats on metformin, no significant changes in liver/renal function markers were observed at day 15 and day 30 of the treatment groups. Flax/fish oil had protective effects toward pathological abnormalities in the liver and kidney. Flax/fish oil improved lipid profile and alkaline phosphatase at day 30 as compared to that at day 15. CONCLUSIONS The present study demonstrates potential beneficial effects of metformin and flax/fish oil intervention in improving serum lipid profile by regulating the expression of transcription factors and genes involved in lipid metabolism in diabetic rats. In addition, these interventions also lowered the expression of atherogenic cytokines. The protective effects of flax/fish oil are worth investigating in human subjects on metformin monotherapy.
Collapse
Affiliation(s)
- Abhijit Ghadge
- Nutrigenomics and Functional Foods Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| | - Abhay Harsulkar
- Nutrigenomics and Functional Foods Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| | - Manjiri Karandikar
- Department of Pathology, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| | - Vijaya Pandit
- Department of Pharmacology, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| | - Aniket Kuvalekar
- Nutrigenomics and Functional Foods Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| |
Collapse
|