1
|
Graczyk P, Dach A, Dyrka K, Pawlik A. Pathophysiology and Advances in the Therapy of Cardiomyopathy in Patients with Diabetes Mellitus. Int J Mol Sci 2024; 25:5027. [PMID: 38732253 PMCID: PMC11084712 DOI: 10.3390/ijms25095027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Diabetes mellitus (DM) is known as the first non-communicable global epidemic. It is estimated that 537 million people have DM, but the condition has been properly diagnosed in less than half of these patients. Despite numerous preventive measures, the number of DM cases is steadily increasing. The state of chronic hyperglycaemia in the body leads to numerous complications, including diabetic cardiomyopathy (DCM). A number of pathophysiological mechanisms are behind the development and progression of cardiomyopathy, including increased oxidative stress, chronic inflammation, increased synthesis of advanced glycation products and overexpression of the biosynthetic pathway of certain compounds, such as hexosamine. There is extensive research on the treatment of DCM, and there are a number of therapies that can stop the development of this complication. Among the compounds used to treat DCM are antiglycaemic drugs, hypoglycaemic drugs and drugs used to treat myocardial failure. An important element in combating DCM that should be kept in mind is a healthy lifestyle-a well-balanced diet and physical activity. There is also a group of compounds-including coenzyme Q10, antioxidants and modulators of signalling pathways and inflammatory processes, among others-that are being researched continuously, and their introduction into routine therapies is likely to result in greater control and more effective treatment of DM in the future. This paper summarises the latest recommendations for lifestyle and pharmacological treatment of cardiomyopathy in patients with DM.
Collapse
Affiliation(s)
- Patryk Graczyk
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.G.); (A.D.)
| | - Aleksandra Dach
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.G.); (A.D.)
| | - Kamil Dyrka
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.G.); (A.D.)
| |
Collapse
|
2
|
D’Elia JA, Bayliss GP, Weinrauch LA. The Diabetic Cardiorenal Nexus. Int J Mol Sci 2022; 23:ijms23137351. [PMID: 35806355 PMCID: PMC9266839 DOI: 10.3390/ijms23137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
The end-stage of the clinical combination of heart failure and kidney disease has become known as cardiorenal syndrome. Adverse consequences related to diabetes, hyperlipidemia, obesity, hypertension and renal impairment on cardiovascular function, morbidity and mortality are well known. Guidelines for the treatment of these risk factors have led to the improved prognosis of patients with coronary artery disease and reduced ejection fraction. Heart failure hospital admissions and readmission often occur, however, in the presence of metabolic, renal dysfunction and relatively preserved systolic function. In this domain, few advances have been described. Diabetes, kidney and cardiac dysfunction act synergistically to magnify healthcare costs. Current therapy relies on improving hemodynamic factors destructive to both the heart and kidney. We consider that additional hemodynamic solutions may be limited without the use of animal models focusing on the cardiomyocyte, nephron and extracellular matrices. We review herein potential common pathophysiologic targets for treatment to prevent and ameliorate this syndrome.
Collapse
Affiliation(s)
- John A. D’Elia
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Boston, MA 02215, USA
| | - George P. Bayliss
- Division of Organ Transplantation, Rhode Island Hospital, Providence, RI 02903, USA;
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Boston, MA 02215, USA
- Correspondence: ; Tel.: +617-923-0800; Fax: +617-926-5665
| |
Collapse
|
3
|
Zhang C, Zhang B, Zhang X, Wang M, Sun X, Sun G. Panax notoginseng Saponin Protects Against Diabetic Cardiomyopathy Through Lipid Metabolism Modulation. J Am Heart Assoc 2022; 11:e023540. [PMID: 35112884 PMCID: PMC9245810 DOI: 10.1161/jaha.121.023540] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background People with diabetes are more likely to develop cardiovascular diseases. Lipotoxicity plays a key role in the development of diabetic cardiomyopathy. Panax notoginseng saponin (PNS) has been used to treat diabetes and obesity. However, the role of PNS in diabetic cardiomyopathy remains unclear. Methods and Results Diabetic db/db mice received high‐dose (200 mg/kg per day) or medium‐dose (100 mg/kg per day) PNS by gavage for 12 weeks until week 36. Lipid accumulation and cardiac function in diabetic mice were detected and possible mechanisms involved were explored. PNS significantly improved body weight, body fat content, serum lipids, adipocytokines, and antioxidative function in db/db mice. Lipid accumulation in adipose tissue, liver, and heart were also alleviated by PNS treatment. Cardiac function and mitochondrial structure were also improved by PNS. H9c2 cells were treated with palmitate acid, and PNS pretreatment reduced lipid accumulation, mitochondrial reactive oxygen species, as well as improved mitochondrial membrane potential and mitochondrial oxygen consumption rate. Levels of proteins and expression of genes related to glucose and lipid metabolism, antioxidative function, and mitochondrial dynamics were also improved by PNS administration. Conclusions PNS attenuated heart dysfunction in diabetic mice by reducing lipotoxicity as well as modulating oxidative stress and improving mitochondrial function.
Collapse
Affiliation(s)
- Chenyang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Xuelian Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
4
|
Qian J, Zhuang F, Chen Y, Fan X, Wang J, Wang Z, Wang Y, Xu M, Samorodov AV, Pavlov VN, Liang G. Myeloid differential protein-2 inhibition improves diabetic cardiomyopathy via p38MAPK inhibition and AMPK pathway activation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166369. [DOI: 10.1016/j.bbadis.2022.166369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
|
5
|
Bartosova L, Horvath C, Galis P, Ferenczyova K, Kalocayova B, Szobi A, Duris-Adameova A, Bartekova M, Rajtik T. Quercetin alleviates diastolic dysfunction and suppresses adverse pro-hypertrophic signaling in diabetic rats. Front Endocrinol (Lausanne) 2022; 13:1029750. [PMID: 36568083 PMCID: PMC9772025 DOI: 10.3389/fendo.2022.1029750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Quercetin (Que) is a potent anti-inflammatory and antioxidant flavonoid with cardioprotective potential. However, very little is known about the signaling pathways and gene regulatory proteins Que may interfere with, especially in diabetic cardiomyopathy. Therefore, we aimed to study the potential cardioprotective effects of Que on the cardiac phenotype of type 2 diabetes mellitus (T2DM) accompanied by obesity. METHODS For this experiment, we used Zucker Diabetic Fatty rats (fa/fa) and their age-matched lean controls (fa/+) that were treated with either vehicle or 20 mg/kg/day of Que for 6 weeks. Animals underwent echocardiographic (echo) examination before the first administration of Que and after 6 weeks. RESULTS After the initial echo examination, the diabetic rats showed increased E/A ratio, a marker of left ventricular (LV) diastolic dysfunction, in comparison to the control group which was selectively reversed by Que. Following the echo analysis, Que reduced LV wall thickness and exhibited an opposite effect on LV luminal area. In support of these results, the total collagen content measured by hydroxyproline assay was decreased in the LVs of diabetic rats treated with Que. The follow-up immunoblot analysis of proteins conveying cardiac remodeling pathways revealed that Que was able to interfere with cardiac pro-hypertrophic signaling. In fact, Que reduced relative protein expression of pro-hypertrophic transcriptional factor MEF2 and its counter-regulator HDAC4 along with pSer246-HDAC4. Furthermore, Que showed potency to decrease GATA4 transcription factor, NFAT3 and calcineurin, as well as upstream extracellular signal-regulated kinase Erk5 which orchestrates several pro-hypertrophic pathways. DISCUSSION In summary, we showed for the first time that Que ameliorated pro-hypertrophic signaling on the level of epigenetic regulation and targeted specific upstream pathways which provoked inhibition of pro-hypertrophic signals in ZDF rats. Moreover, Que mitigated T2DM and obesity-induced diastolic dysfunction, therefore, might represent an interesting target for future research on novel cardioprotective agents.
Collapse
Affiliation(s)
- Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Csaba Horvath
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Kristina Ferenczyova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Kalocayova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adrian Szobi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Adriana Duris-Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- *Correspondence: Tomas Rajtik, ; Monika Bartekova,
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Tomas Rajtik, ; Monika Bartekova,
| |
Collapse
|
6
|
Thai PN, Miller CV, King MT, Schaefer S, Veech RL, Chiamvimonvat N, Bers DM, Dedkova EN. Ketone Ester D-β-Hydroxybutyrate-(R)-1,3 Butanediol Prevents Decline in Cardiac Function in Type 2 Diabetic Mice. J Am Heart Assoc 2021; 10:e020729. [PMID: 34583524 PMCID: PMC8649133 DOI: 10.1161/jaha.120.020729] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Heart failure is responsible for approximately 65% of deaths in patients with type 2 diabetes mellitus. However, existing therapeutics for type 2 diabetes mellitus have limited success on the prevention of diabetic cardiomyopathy. The aim of this study was to determine whether moderate elevation in D‐β‐hydroxybutyrate improves cardiac function in animals with type 2 diabetes mellitus. Methods and Results Type 2 diabetic (db/db) and their corresponding wild‐type mice were fed a control diet or a diet where carbohydrates were equicalorically replaced by D‐β‐hydroxybutyrate‐(R)‐1,3 butanediol monoester (ketone ester [KE]). After 4 weeks, echocardiography demonstrated that a KE diet improved systolic and diastolic function in db/db mice. A KE diet increased expression of mitochondrial succinyl‐CoA:3‐oxoacid‐CoA transferase and restored decreased expression of mitochondrial β‐hydroxybutyrate dehydrogenase, key enzymes in cardiac ketone metabolism. A KE diet significantly enhanced both basal and ADP‐mediated oxygen consumption in cardiac mitochondria from both wild‐type and db/db animals; however, it did not result in the increased mitochondrial respiratory control ratio. Additionally, db/db mice on a KE diet had increased resistance to oxidative and redox stress, with evidence of restoration of decreased expression of thioredoxin and glutathione peroxidase 4 and less permeability transition pore activity in mitochondria. Mitochondrial biogenesis, quality control, and elimination of dysfunctional mitochondria via mitophagy were significantly increased in cardiomyocytes from db/db mice on a KE diet. The increase in mitophagy was correlated with restoration of mitofusin 2 expression, which contributed to improved coupling between cytosolic E3 ubiquitin ligase translocation into mitochondria and microtubule‐associated protein 1 light chain 3–mediated autophagosome formation. Conclusions Moderate elevation in circulating D‐β‐hydroxybutyrate levels via KE supplementation enhances mitochondrial biogenesis, quality control, and oxygen consumption and increases resistance to oxidative/redox stress and mPTP opening, thus resulting in improvement of cardiac function in animals with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Phung N Thai
- Department of Internal Medicine Cardiovascular Medicine University of California Davis CA
| | | | - M Todd King
- Laboratory of Metabolic Control National Institute on Alcohol Abuse and AlcoholismNational Institutes of Health Rockville MD
| | - Saul Schaefer
- Department of Internal Medicine Cardiovascular Medicine University of California Davis CA.,Department of Veterans Affairs Northern California Health Care System Mather CA
| | - Richard L Veech
- Laboratory of Metabolic Control National Institute on Alcohol Abuse and AlcoholismNational Institutes of Health Rockville MD
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine Cardiovascular Medicine University of California Davis CA.,Department of Veterans Affairs Northern California Health Care System Mather CA
| | - Donald M Bers
- Department of Pharmacology University of California Davis CA
| | - Elena N Dedkova
- Department of Pharmacology University of California Davis CA.,Department of Molecular Biosciences University of California Davis CA
| |
Collapse
|
7
|
Zhang B, Zhang CY, Zhang XL, Sun GB, Sun XB. Guan Xin Dan Shen formulation protects db/db mice against diabetic cardiomyopathy via activation of Nrf2 signaling. Mol Med Rep 2021; 24:531. [PMID: 34036388 PMCID: PMC8170264 DOI: 10.3892/mmr.2021.12170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Guan Xin Dan Shen formulation (GXDSF) is a widely used treatment for the management of coronary heart disease in China and is composed of three primary components: Dalbergiae odoriferae Lignum, Salviae miltiorrhizae Radix et Rhizoma and Panax notoginseng Radix et Rhizoma. However, the potential use of GXDSF for the management of diabetic cardiomyopathy (DCM) has not been previously assessed. The present study aimed to assess the effects of GXDSF on DCM, as well as the underlying mechanism. In the present study, db/db mice were used. Following treatment with GXDSF for 10 weeks, fasting blood glucose, insulin sensitivity, serum lipid levels and cardiac enzyme levels were detected. Cardiac pathological alterations and cardiac function were assessed by performing hematoxylin and eosin staining and echocardiograms, respectively. TUNEL assays were conducted to assess cardiomyocyte apoptosis. Additionally, reverse transcription‑quantitative PCR and western blotting were performed to evaluate the expression of apoptosis‑associated genes and proteins, respectively. In the model group, the db/db mice displayed obesity, hyperlipidemia and hyperglycemia, accompanied by noticeable myocardial hypertrophy and diastolic dysfunction. Following treatment with GXDSF for 10 weeks, serum triglyceride levels were lower and insulin sensitivity was enhanced in db/db mice compared with the model group, which indicated improvement in condition. Cardiac hypertrophy and dysfunction were also improved in db/db mice following treatment with GXDSF, resulting in significantly increased left ventricular ejection fraction and fractional shortening compared with the model group. Following treatment with metformin or GXDSF, model‑induced increases in levels of myocardial enzymes were decreased in the moderate and high dose groups. Moreover, the results indicated that, compared with the model group, GXDSF significantly inhibited cardiomyocyte apoptosis in diabetic heart tissues by increasing Bcl‑2 expression and decreasing the expression levels of Bax, cleaved caspase‑3 and cleaved caspase‑9. Mechanistically, GXDSF enhanced Akt phosphorylation, which upregulated antioxidant enzymes mediated by nuclear factor erythroid 2‑related factor 2 (Nrf2) signaling. Collectively, the results of the present study indicated that GXDSF attenuated cardiac dysfunction and inhibited cardiomyocyte apoptosis in diabetic mice via activation of Akt/Nrf2 signaling. Therefore, GXDSF may serve as a potential therapeutic agent for the management of DCM.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Chen-Yang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Xue-Lian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| |
Collapse
|
8
|
Abstract
Diabetic heart disease is a growing and important public health risk. Apart from the risk of coronary artery disease or hypertension, diabetes mellitus (DM) is a well-known risk factor for heart failure in the form of diabetic cardiomyopathy (DiaCM). Currently, DiaCM is defined as myocardial dysfunction in patients with DM in the absence of coronary artery disease and hypertension. The underlying pathomechanism of DiaCM is partially understood, but accumulating evidence suggests that metabolic derangements, oxidative stress, increased myocardial fibrosis and hypertrophy, inflammation, enhanced apoptosis, impaired intracellular calcium handling, activation of the renin-angiotensin-aldosterone system, mitochondrial dysfunction, and dysregulation of microRNAs, among other factors, are involved. Numerous animal models have been used to investigate the pathomechanisms of DiaCM. Despite some limitations, animal models for DiaCM have greatly advanced our understanding of pathomechanisms and have helped in the development of successful disease management strategies. In this review, we summarize the current pathomechanisms of DiaCM and provide animal models for DiaCM according to its pathomechanisms, which may contribute to broadening our understanding of the underlying mechanisms and facilitating the identification of possible new therapeutic targets.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| |
Collapse
|
9
|
Bafadam S, Mahmoudabady M, Niazmand S, Rezaee SA, Soukhtanloo M. Cardioprotective effects of Fenugreek ( Trigonella foenum-graceum) seed extract in streptozotocin induced diabetic rats. J Cardiovasc Thorac Res 2021; 13:28-36. [PMID: 33815699 PMCID: PMC8007891 DOI: 10.34172/jcvtr.2021.01] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/22/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction: Inadequate control of diabetes mellitus (DM) leads to considerable cardiovascular implications like diabetic cardiomyopathy (DCM). Cardiomyocyte apoptosis is one of the main mechanisms of DCM pathogenesis associated with hyperglycemia, oxidative stress, inflammation, hyperlipidemia and several other factors. Trigonella foenum-graecum (Fenugreek) has been long used as a traditional medicine and has many therapeutic effects, including anti-diabetic, anti-hyperlipidemia, anti-inflammatory and anti-oxidant properties. The current study aimed to investigate cardioprotective effects of fenugreek seed on diabetic rats. Methods: Diabetes was induced in forty-two male rats by injection of streptozotocin (STZ) (60 mg/ kg). Diabetic animals were treated with three different doses of fenugreek seed extract (50, 100 and 200 mg/kg) or metformin (300 mg/kg) for six weeks by gavage. Nondiabetic rats served as controls. Glucose, cholesterol, and triglycerides levels were measured in the blood samples, and oxidative stress markers as well as gene expression of ICAM1 , Bax and Bcl2 were assessed in the cardiac tissues of the experimental groups. Results: Diabetic rats exhibited increased serum glucose, cholesterol and triglycerides levels, elevated markers of oxidative stress thiobarbituric acid-reacting substances (TBARS) levels , total thiol groups (SH), catalase (CAT) and superoxide dismutase (SOD) activity, and enhanced apoptosis cell death (ratio of Bax/Bcl2). Fenugreek seed extract considerably improved metabolism abnormalities, attenuated oxidative stress and diminished apoptosis index. Conclusion: Our study suggests that fenugreek seed may protect the cardiac structure in STZ-induced diabetic rats by attenuating oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Soleyman Bafadam
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020; 8:biomedicines8120550. [PMID: 33260304 PMCID: PMC7760527 DOI: 10.3390/biomedicines8120550] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
- Graduate Institute of Medicine, College of Medicine and Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Vineet Kumar Mishra
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Ye-Hsu Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: ; Tel.: +886-73121101 (ext. 2297); Fax: +886-73111996
| |
Collapse
|
11
|
Abstract
The presence of comorbidities significantly influences long-term morbidity and mortality of symptomatic and asymptomatic heart failure (HF) patients. Metabolic syndrome and diabetic cardiomyopathy are two clinical conditions that share multiple pathophysiological mechanisms and that might be both responsible for cardiac dysfunction. However, it is argued whether metabolic syndrome (MS) independently increases HF risk or the association between MS and HF merely reflects the impact of individual risk factors included in its definition on HF development. Similarly, in the context of diabetic cardiomyopathy, many aspects are still challenging starting from the definition up to the therapeutic management. In this clinical review, we focused the attention on molecular pathways, myocyte alterations, and specific patterns of metabolic syndrome and diabetic cardiomyopathy in order to better define the potential diagnostic and therapeutic approaches of these two pathological conditions.
Collapse
|
12
|
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 2020; 17:585-607. [PMID: 32080423 PMCID: PMC7849055 DOI: 10.1038/s41569-020-0339-2] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and clinical features of diabetic cardiomyopathy have been well-studied in the past decade, but effective approaches to prevent and treat this disease are limited. Diabetic cardiomyopathy occurs as a result of the dysregulated glucose and lipid metabolism associated with diabetes mellitus, which leads to increased oxidative stress and the activation of multiple inflammatory pathways that mediate cellular and extracellular injury, pathological cardiac remodelling, and diastolic and systolic dysfunction. Preclinical studies in animal models of diabetes have identified multiple intracellular pathways involved in the pathogenesis of diabetic cardiomyopathy and potential cardioprotective strategies to prevent and treat the disease, including antifibrotic agents, anti-inflammatory agents and antioxidants. Some of these interventions have been tested in clinical trials and have shown favourable initial results. In this Review, we discuss the mechanisms underlying the development of diabetic cardiomyopathy and heart failure in type 1 and type 2 diabetes mellitus, and we summarize the evidence from preclinical and clinical studies that might provide guidance for the development of targeted strategies. We also highlight some of the novel pharmacological therapeutic strategies for the treatment and prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- The Second Affiliated Hospital Center of Chinese-American Research Institute for Diabetic Complications, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
13
|
Paolillo S, Marsico F, Prastaro M, Renga F, Esposito L, De Martino F, Di Napoli P, Esposito I, Ambrosio A, Ianniruberto M, Mennella R, Paolillo R, Gargiulo P. Diabetic Cardiomyopathy: Definition, Diagnosis, and Therapeutic Implications. Heart Fail Clin 2019; 15:341-347. [PMID: 31079692 DOI: 10.1016/j.hfc.2019.02.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A strict bidirectional relationship exists between diabetes mellitus and heart failure. Diabetic cardiomyopathy is a specific cardiac manifestation of patients with diabetes characterized by left ventricular hypertrophy and diastolic dysfunction in the early phase up to overt heart failure with reduced systolic function in the advanced stages. The pathogenesis of this condition is multifactorial and recognizes as main promoting factors the presence of insulin resistance and hyperglycemia. Diabetic cardiomyopathy exerts a negative prognostic impact in affected patients and no target treatments are currently available. More efforts are needed to better define the diagnostic and therapeutic approach in this specific setting.
Collapse
Affiliation(s)
| | - Fabio Marsico
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Via Sergio Pansini, 5, Naples 80131, Italy; Center for Congenital Heart Disease, University Hospital Inselspital, University of Bern, Freiburrgstrasse 18, Bern 3010, Switzerland
| | - Maria Prastaro
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Francesco Renga
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Luca Esposito
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Fabiana De Martino
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Pierfrancesco Di Napoli
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Immacolata Esposito
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Antonio Ambrosio
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Monica Ianniruberto
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Rosa Mennella
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Roberta Paolillo
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Via Sergio Pansini, 5, Naples 80131, Italy
| | | |
Collapse
|
14
|
Mahmod M, Pal N, Rayner J, Holloway C, Raman B, Dass S, Levelt E, Ariga R, Ferreira V, Banerjee R, Schneider JE, Rodgers C, Francis JM, Karamitsos TD, Frenneaux M, Ashrafian H, Neubauer S, Rider O. The interplay between metabolic alterations, diastolic strain rate and exercise capacity in mild heart failure with preserved ejection fraction: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2018; 20:88. [PMID: 30580760 PMCID: PMC6304764 DOI: 10.1186/s12968-018-0511-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Heart failure (HF) is characterized by altered myocardial substrate metabolism which can lead to myocardial triglyceride accumulation (steatosis) and lipotoxicity. However its role in mild HF with preserved ejection fraction (HFpEF) is uncertain. We measured myocardial triglyceride content (MTG) in HFpEF and assessed its relationships with diastolic function and exercise capacity. METHODS Twenty seven HFpEF (clinical features of HF, left ventricular EF >50%, evidence of mild diastolic dysfunction and evidence of exercise limitation as assessed by cardiopulmonary exercise test) and 14 controls underwent 1H-cardiovascular magnetic resonance spectroscopy (1H-CMRS) to measure MTG (lipid/water, %), 31P-CMRS to measure myocardial energetics (phosphocreatine-to-adenosine triphosphate - PCr/ATP) and feature-tracking cardiovascular magnetic resonance (CMR) imaging for diastolic strain rate. RESULTS When compared to controls, HFpEF had 2.3 fold higher in MTG (1.45 ± 0.25% vs. 0.64 ± 0.16%, p = 0.009) and reduced PCr/ATP (1.60 ± 0.09 vs. 2.00 ± 0.10, p = 0.005). HFpEF had significantly reduced diastolic strain rate and maximal oxygen consumption (VO2 max), which both correlated significantly with elevated MTG and reduced PCr/ATP. On multivariate analyses, MTG was independently associated with diastolic strain rate while diastolic strain rate was independently associated with VO2 max. CONCLUSIONS Myocardial steatosis is pronounced in mild HFpEF, and is independently associated with impaired diastolic strain rate which is itself related to exercise capacity. Steatosis may adversely affect exercise capacity by indirect effect occurring via impairment in diastolic function. As such, myocardial triglyceride may become a potential therapeutic target to treat the increasing number of patients with HFpEF.
Collapse
Affiliation(s)
- Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
- National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nikhil Pal
- Divisions of Experimental Therapeutics and Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Jennifer Rayner
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - Cameron Holloway
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - Betty Raman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - Sairia Dass
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - Eylem Levelt
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - Rina Ariga
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - Vanessa Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - Rajarshi Banerjee
- 1st Department of Cardiology, Aristotle University, Thessaloniki, Greece
| | - Jurgen E. Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - Christopher Rodgers
- Department of Medicine, John Radcliffe Hospital, Oxford, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Jane M. Francis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - Theodoros D. Karamitsos
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
- 1st Department of Cardiology, Aristotle University, Thessaloniki, Greece
| | - Michael Frenneaux
- Norwich Medical School, Bob Champion Research and Education Building, James Watson Road, University of East Anglia Norwich Research Park, Norwich, NR4 7UQ UK
| | - Houman Ashrafian
- Divisions of Experimental Therapeutics and Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - Oliver Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| |
Collapse
|
15
|
Lee MMY, McMurray JJV, Lorenzo-Almorós A, Kristensen SL, Sattar N, Jhund PS, Petrie MC. Diabetic cardiomyopathy. Heart 2018; 105:337-345. [PMID: 30337334 DOI: 10.1136/heartjnl-2016-310342] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Matthew Meng Yang Lee
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - John J V McMurray
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Ana Lorenzo-Almorós
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciónes Sanitarias-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | - Søren Lund Kristensen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Pardeep S Jhund
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Mark C Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Favorable outcomes of metformin on coronary microvasculature in experimental diabetic cardiomyopathy. J Mol Histol 2018; 49:639-649. [PMID: 30317407 DOI: 10.1007/s10735-018-9801-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Although metformin is widely prescribed in diabetes, its use with associated cardiac dysfunction remains debatable. In the current study, we investigated the effect of metformin on coronary microvasculature in experimental diabetic cardiomyopathy (DCM) induced by streptozotocin. Administration of metformin after induction of DCM, reversed almost all cardiomyocyte degenerative changes induced by DCM. Metformin diminished the significantly increased (p < 0.05) collagen deposited in the DCM. In addition metformin had improved the density of the significantly decreased arteriolar (αSMA+) and capillary (CD31+) coronary microvasculature compared to that of the DCM and non-diabetics (ND) with downregulation of the significantly increased expression (p < 0.05) of COL-I, III, TGF-β, CTGF, ICAM and VCAM genes. Therefore metformin may be beneficial in limiting the fibrotic and the vascular remodeling occurring in DCM at the genetic as well as the structural levels.
Collapse
|
17
|
Osteomeles schwerinae Extract Prevents Diabetes-Induced Renal Injury in Spontaneously Diabetic Torii Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6824215. [PMID: 29849722 PMCID: PMC5941800 DOI: 10.1155/2018/6824215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Mesangial cell proliferation contributes to the development of glomerulosclerosis in diabetic nephropathy. This study was aimed at determining whether Osteomeles schwerinae (OSSC) extract can ameliorate renal damage in Spontaneously Diabetic Torii (SDT) rats. OSSC extract (100 and 250 mg/kg/day) was administered to the SDT rats through oral gavage for 17 weeks. At the end of the experiment, glucose, HbA1c, and albuminuria were measured. In addition, the levels of mesangial proliferation-related proteins were determined by western blotting and immunohistochemistry. Our results show that albuminuria, accumulation of the extracellular matrix (ECM), and renal expansion were markedly restored by OSSC extract administration. The OSSC treatment also inhibited α-smooth muscle actin and transforming growth factor-β1 protein expression. In addition, OSSC and its bioactive compounds hyperoside and quercitrin inhibited the platelet-derived growth factor-BB (PDGF-BB)/platelet-derived growth factor-B receptor (PDGFR-β) ligand binding in an in vitro assay. Taken together, these results indicate that OSSC inhibits ECM accumulation and mesangial proliferation of the glomeruli in SDT rats through inhibition of the interaction between PDGF-BB and PDGFR-β. OSSC has ameliorating effects on the initiation and progression of diabetes complications and can be used for the treatment of early diabetic renal dysfunction.
Collapse
|
18
|
Gaur V, Connor T, Venardos K, Henstridge DC, Martin SD, Swinton C, Morrison S, Aston-Mourney K, Gehrig SM, van Ewijk R, Lynch GS, Febbraio MA, Steinberg GR, Hargreaves M, Walder KR, McGee SL. Scriptaid enhances skeletal muscle insulin action and cardiac function in obese mice. Diabetes Obes Metab 2017; 19:936-943. [PMID: 28155245 DOI: 10.1111/dom.12896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 12/20/2022]
Abstract
AIM To determine the effect of Scriptaid, a compound that can replicate aspects of the exercise adaptive response through disruption of the class IIa histone deacetylase (HDAC) corepressor complex, on muscle insulin action in obesity. MATERIALS AND METHODS Diet-induced obese mice were administered Scriptaid (1 mg/kg) via daily intraperitoneal injection for 4 weeks. Whole-body and skeletal muscle metabolic phenotyping of mice was performed, in addition to echocardiography, to assess cardiac morphology and function. RESULTS Scriptaid treatment had no effect on body weight or composition, but did increase energy expenditure, supported by increased lipid oxidation, while food intake was also increased. Scriptaid enhanced the expression of oxidative genes and proteins, increased fatty acid oxidation and reduced triglycerides and diacylglycerides in skeletal muscle. Furthermore, ex vivo insulin-stimulated glucose uptake by skeletal muscle was enhanced. Surprisingly, heart weight was reduced in Scriptaid-treated mice and was associated with enhanced expression of genes involved in oxidative metabolism in the heart. Scriptaid also improved indices of both diastolic and systolic cardiac function. CONCLUSION These data show that pharmacological targeting of the class IIa HDAC corepressor complex with Scriptaid could be used to enhance muscle insulin action and cardiac function in obesity.
Collapse
Affiliation(s)
- Vidhi Gaur
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Timothy Connor
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kylie Venardos
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Darren C Henstridge
- Metabolism and Inflammation Program, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Sheree D Martin
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Courtney Swinton
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Shona Morrison
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | | | - Stefan M Gehrig
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | - Roelof van Ewijk
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | - Gordon S Lynch
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | - Mark A Febbraio
- Metabolism and Inflammation Program, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Division of Diabetes and Metabolism, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Canada
| | - Mark Hargreaves
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | - Ken R Walder
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Metabolism and Inflammation Program, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
19
|
Abstract
Fibrosis is a major player in cardiovascular disease, both as a contributor to the development of disease, as well as a post-injury response that drives progression. Despite the identification of many mechanisms responsible for cardiovascular fibrosis, to date no treatments have emerged that have effectively reduced the excess deposition of extracellular matrix associated with fibrotic conditions. Novel treatments have recently been identified that hold promise as potential therapeutic agents for cardiovascular diseases associated with fibrosis, as well as other fibrotic conditions. The purpose of this review is to provide an overview of emerging antifibrotic agents that have shown encouraging results in preclinical or early clinical studies, but have not yet been approved for use in human disease. One of these agents is bone morphogenetic protein-7 (BMP7), which has beneficial effects in multiple models of fibrotic disease. Another approach discussed involves altering the levels of micro-RNA (miR) species, including miR-29 and miR-101, which regulate the expression of fibrosis-related gene targets. Further, the antifibrotic potential of agonists of the peroxisome proliferator-activated receptors will be discussed. Finally, evidence will be reviewed in support of the polypeptide hormone relaxin. Relaxin is long known for its extracellular remodeling properties in pregnancy, and is rapidly emerging as an effective antifibrotic agent in a number of organ systems. Moreover, relaxin has potent vascular and renal effects that make it a particularly attractive approach for the treatment of cardiovascular diseases. In each case, the mechanism of action and the applicability to various fibrotic diseases will be discussed.
Collapse
Affiliation(s)
- Benita L McVicker
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, OmahaNE, United States
| | - Robert G Bennett
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,The Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, OmahaNE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, OmahaNE, United States
| |
Collapse
|
20
|
Manganese supplementation increases adiponectin and lowers ICAM-1 and creatinine blood levels in Zucker type 2 diabetic rats, and downregulates ICAM-1 by upregulating adiponectin multimerization protein (DsbA-L) in endothelial cells. Mol Cell Biochem 2017; 429:1-10. [PMID: 28083716 DOI: 10.1007/s11010-016-2931-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/23/2016] [Indexed: 12/15/2022]
Abstract
Blood and tissue levels of manganese (Mn) are lower in type 2 diabetic and atherosclerosis patients compared with healthy subjects. Adiponectin has anti-diabetic and anti-atherogenic properties. Impairment in Disulfide bond A-like protein (DsbA-L) is associated with low adiponectin levels and diabetes. This study investigates the hypothesis that the beneficial effects of Mn supplementation are mediated by adiponectin and DsbA-L. At 6 weeks of age, Male Zucker diabetic fatty rats (ZDF) were randomly divided into two groups: diabetic controls and Mn-supplemented diabetic rats. Each rat was supplemented with Mn (D+Mn, 16 mg/kg BW) or water (placebo, D+P) daily for 7 weeks by oral gavage. For cell culture studies, Human Umbilical Vein Endothelial Cells (HUVEC) or 3T3L1 adipocytes were pretreated with Mn (0-10 µM MnCl2) for 24 h, followed by high glucose (HG, 25 mM) or normal glucose (5 mM) exposure for another 24 h. Mn supplementation resulted in higher adiponectin (p = 0.01), and lower ICAM-1 (p = 0.04) and lower creatinine (p = 0.04) blood levels compared to those in control ZDF rats. Mn-supplemented rats also caused reduced oxidative stress (ROS) and NADPH oxidase, and higher DsbA-L expression in the liver (p = 0.03) of ZDF rats compared to those in livers of control rats; however, Fe levels in liver were lower but not significant (p = 0.08). Similarly, treatment with high glucose (25 mM) caused a decrease in DsbA-L, which was prevented by Mn supplementation in HUVEC and adipocytes. Mechanistic studies with DsbA-L siRNA showed that the beneficial effects of Mn supplementation on ROS, NOX4, and ICAM-1 expression were abolished in DsbA-L knock-down HUVEC. These studies demonstrate that DsbA-L-linked adiponectin mediates the beneficial effects observed with Mn supplementation and provides evidence for a novel mechanism by which Mn supplementation can increase adiponectin and reduce the biomarkers of endothelial dysfunction in diabetes.
Collapse
|
21
|
Ghadge A, Harsulkar A, Karandikar M, Pandit V, Kuvalekar A. Comparative anti-inflammatory and lipid-normalizing effects of metformin and omega-3 fatty acids through modulation of transcription factors in diabetic rats. GENES AND NUTRITION 2016; 11:10. [PMID: 27551311 PMCID: PMC4968436 DOI: 10.1186/s12263-016-0518-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence suggests beneficial effects of omega-3 fatty acids on diabetic complications. The present study compared the progressive effects of metformin and flax/fish oil on lipid metabolism, inflammatory markers, and liver and renal function test markers in streptozotocin-nicotinamide-induced diabetic rats. METHODS Streptozotocin-induced diabetic rats were randomized into control and four diabetic groups: streptozotocin (STZ), metformin (200 mg/kg body weight (b.w)/day (D)), flax and fish oil (500 mg/kg b.w/D). RESULTS Metformin and flax and fish oil exhibited increased expression of transcription factor peroxisome proliferator-activated receptor γ while the treatment downregulated sterol regulatory element-binding protein 1 and nuclear factor kβ as compared to those of the STZ group. Apart from modulation of transcription factor expression, the expression of fatty acid synthase, long chain acyl CoA synthase, and malonyl-CoA-acyl carrier protein transacylase was lowered by flax/fish oil treatment. Serum cholesterol, triglycerides, and VLDL were also significantly reduced in the treatment groups as compared to those in the STZ group. Although pathological abnormalities were seen in the liver and kidneys of rats on metformin, no significant changes in liver/renal function markers were observed at day 15 and day 30 of the treatment groups. Flax/fish oil had protective effects toward pathological abnormalities in the liver and kidney. Flax/fish oil improved lipid profile and alkaline phosphatase at day 30 as compared to that at day 15. CONCLUSIONS The present study demonstrates potential beneficial effects of metformin and flax/fish oil intervention in improving serum lipid profile by regulating the expression of transcription factors and genes involved in lipid metabolism in diabetic rats. In addition, these interventions also lowered the expression of atherogenic cytokines. The protective effects of flax/fish oil are worth investigating in human subjects on metformin monotherapy.
Collapse
Affiliation(s)
- Abhijit Ghadge
- Nutrigenomics and Functional Foods Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| | - Abhay Harsulkar
- Nutrigenomics and Functional Foods Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| | - Manjiri Karandikar
- Department of Pathology, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| | - Vijaya Pandit
- Department of Pharmacology, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| | - Aniket Kuvalekar
- Nutrigenomics and Functional Foods Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| |
Collapse
|
22
|
Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of Type 1 diabetic mice. Clin Sci (Lond) 2016; 130:625-41. [PMID: 26795437 DOI: 10.1042/cs20150623] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/21/2016] [Indexed: 02/02/2023]
Abstract
Fenofibrate (FF) as a commonly-used lipid-lowering medicine in clinics was examined for its potentially repurposing to prevent the cardiac abnormalities in patients with type 1 diabetes. We demonstrated here that fenofibrate significantly prevented diabetes-induced cardiac dysfunction and remodeling in fibroblast growth factor 21 (FGF21)-dependent manner.
Collapse
|
23
|
Roberts NW, González-Vega M, Berhanu TK, Mull A, García J, Heydemann A. Successful metabolic adaptations leading to the prevention of high fat diet-induced murine cardiac remodeling. Cardiovasc Diabetol 2015; 14:127. [PMID: 26408147 PMCID: PMC4582643 DOI: 10.1186/s12933-015-0286-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/10/2015] [Indexed: 01/02/2023] Open
Abstract
Background Cardiomyopathy is a devastating complication of obesity and type 2 diabetes mellitus (T2DM). It arises even in patients with normoglycemia (glycosylated hemoglobin, A1C ≤7 %). As obesity and T2DM are approaching epidemic levels worldwide, the cardiomyopathy associated with these diseases must be therapeutically addressed. We have recently analyzed the systemic effects of a 12-week high fat diet (HFD) on wild type mice from the C57Bl/6 (B6) strain and the wild type super-healing Murphy Roths Large (MRL) mouse strain. The MRL HFD mice gained significantly more weight than their control diet counterparts, but did not present any of the other usual systemic T2DM phenotypes. Methods Cardiac pathology and adaptation to HFD-induced obesity in the MRL mouse strain compared to the HFD C57Bl/6 mice were thoroughly analyzed with echocardiography, histology, qPCR, electron microscopy and immunoblots. Results The obese HFD C57Bl/6 mice develop cardiac hypertrophy, cardiomyocyte lipid droplets, and initiate an ineffective metabolic adaptation of an overall increase in electron transport chain complexes. In contrast, the obese HFD MRL hearts do not display hypertrophy nor lipid droplets and their metabolism adapts quite robustly by decreasing pAMPK levels, decreasing proteins in the carbohydrate metabolism pathway and increasing proteins utilized in the β-oxidation pathway. The result of these metabolic shifts is the reduction of toxic lipid deposits and reactive oxygen species in the hearts of the obese HFD fed MRL hearts. Conclusions We have identified changes in metabolic signaling in obese HFD fed MRL mice that confer resistance to diabetic cardiomyopathy. The changes include a reduction of cardiac pAMPK, Glut4 and hexokinase2 in the MRL HFD hearts. Overall the MRL hearts down regulate glucose metabolism and favor lipid metabolism. These adaptations are essential to pursue for the identification of novel therapeutic targets to combat obesity related cardiomyopathy.
Collapse
Affiliation(s)
- Nathan W Roberts
- The University of Illinois at Chicago, COMRB 2035, MC 901, 835 South Wolcott Ave., Chicago, IL, 60612-7352, USA.
| | - Magdalis González-Vega
- The University of Illinois at Chicago, COMRB 2035, MC 901, 835 South Wolcott Ave., Chicago, IL, 60612-7352, USA.
| | - Tirsit K Berhanu
- The University of Illinois at Chicago, COMRB 2035, MC 901, 835 South Wolcott Ave., Chicago, IL, 60612-7352, USA.
| | - Aaron Mull
- The University of Illinois at Chicago, COMRB 2035, MC 901, 835 South Wolcott Ave., Chicago, IL, 60612-7352, USA.
| | - Jesús García
- The University of Illinois at Chicago, COMRB 2035, MC 901, 835 South Wolcott Ave., Chicago, IL, 60612-7352, USA. .,The Center for Cardiovascular Research, Chicago, IL, 60612, USA.
| | - Ahlke Heydemann
- The University of Illinois at Chicago, COMRB 2035, MC 901, 835 South Wolcott Ave., Chicago, IL, 60612-7352, USA. .,The Center for Cardiovascular Research, Chicago, IL, 60612, USA.
| |
Collapse
|
24
|
Venardos K, De Jong KA, Elkamie M, Connor T, McGee SL. The PKD inhibitor CID755673 enhances cardiac function in diabetic db/db mice. PLoS One 2015; 10:e0120934. [PMID: 25798941 PMCID: PMC4370864 DOI: 10.1371/journal.pone.0120934] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/09/2015] [Indexed: 01/06/2023] Open
Abstract
The development of diabetic cardiomyopathy is a key contributor to heart failure and mortality in obesity and type 2 diabetes (T2D). Current therapeutic interventions for T2D have limited impact on the development of diabetic cardiomyopathy. Clearly, new therapies are urgently needed. A potential therapeutic target is protein kinase D (PKD), which is activated by metabolic insults and implicated in the regulation of cardiac metabolism, contractility and hypertrophy. We therefore hypothesised that PKD inhibition would enhance cardiac function in T2D mice. We first validated the obese and T2D db/db mouse as a model of early stage diabetic cardiomyopathy, which was characterised by both diastolic and systolic dysfunction, without overt alterations in left ventricular morphology. These functional characteristics were also associated with increased PKD2 phosphorylation in the fed state and a gene expression signature characteristic of PKD activation. Acute administration of the PKD inhibitor CID755673 to normal mice reduced both PKD1 and 2 phosphorylation in a time and dose-dependent manner. Chronic CID755673 administration to T2D db/db mice for two weeks reduced expression of the gene expression signature of PKD activation, enhanced indices of both diastolic and systolic left ventricular function and was associated with reduced heart weight. These alterations in cardiac function were independent of changes in glucose homeostasis, insulin action and body composition. These findings suggest that PKD inhibition could be an effective strategy to enhance heart function in obese and diabetic patients and provide an impetus for further mechanistic investigations into the role of PKD in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Kylie Venardos
- Metabolic Remodelling Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Kirstie A. De Jong
- Metabolic Remodelling Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Mansour Elkamie
- Metabolic Remodelling Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Timothy Connor
- Metabolic Remodelling Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Sean L. McGee
- Metabolic Remodelling Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
- Program for Metabolism and Inflammation, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
25
|
Fuentes-Antrás J, Picatoste B, Ramírez E, Egido J, Tuñón J, Lorenzo Ó. Targeting metabolic disturbance in the diabetic heart. Cardiovasc Diabetol 2015; 14:17. [PMID: 25856422 PMCID: PMC4328972 DOI: 10.1186/s12933-015-0173-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy is defined as ventricular dysfunction initiated by alterations in cardiac energy substrates in the absence of coronary artery disease and hypertension. In addition to the demonstrated burden of cardiovascular events associated with diabetes, diabetic cardiomyopathy partly explains why diabetic patients are subject to a greater risk of heart failure and a worse outcome after myocardial ischemia. The raising prevalence and accumulating costs of cardiovascular disease in diabetic patients underscore the deficiencies of tertiary prevention and call for a shift in medical treatment. It is becoming increasingly clearer that the effective prevention and treatment of diabetic cardiomyopathy require measures to regulate the metabolic derangement occurring in the heart rather than merely restoring suitable systemic parameters. Recent research has provided deeper insight into the metabolic etiology of diabetic cardiomyopathy and numerous heart-specific targets that may substitute or reinforce current strategies. From both experimental and translational perspectives, in this review we first discuss the progress made with conventional therapies, and then focus on the need for prospective metabolic targets that may avert myocardial vulnerability and functional decline in next-generation diabetic care.
Collapse
Affiliation(s)
- Jesús Fuentes-Antrás
- />Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, 28040 Spain
| | - Belén Picatoste
- />Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, 28040 Spain
- />Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) network, Madrid, Spain
| | - Elisa Ramírez
- />Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, 28040 Spain
- />Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) network, Madrid, Spain
| | - Jesús Egido
- />Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, 28040 Spain
- />Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) network, Madrid, Spain
| | - José Tuñón
- />Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, 28040 Spain
| | - Óscar Lorenzo
- />Vascular, Renal and Diabetes Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, 28040 Spain
- />Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) network, Madrid, Spain
| |
Collapse
|
26
|
Fuentes-Antrás J, Picatoste B, Gómez-Hernández A, Egido J, Tuñón J, Lorenzo Ó. Updating experimental models of diabetic cardiomyopathy. J Diabetes Res 2015; 2015:656795. [PMID: 25973429 PMCID: PMC4417999 DOI: 10.1155/2015/656795] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy entails a serious cardiac dysfunction induced by alterations in structure and contractility of the myocardium. This pathology is initiated by changes in energy substrates and occurs in the absence of atherothrombosis, hypertension, or other cardiomyopathies. Inflammation, hypertrophy, fibrosis, steatosis, and apoptosis in the myocardium have been studied in numerous diabetic experimental models in animals, mostly rodents. Type I and type II diabetes were induced by genetic manipulation, pancreatic toxins, and fat and sweet diets, and animals recapitulate the main features of human diabetes and related cardiomyopathy. In this review we update and discuss the main experimental models of diabetic cardiomyopathy, analysing the associated metabolic, structural, and functional abnormalities, and including current tools for detection of these responses. Also, novel experimental models based on genetic modifications of specific related genes have been discussed. The study of specific pathways or factors responsible for cardiac failures may be useful to design new pharmacological strategies for diabetic patients.
Collapse
Affiliation(s)
- J. Fuentes-Antrás
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
| | - B. Picatoste
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - A. Gómez-Hernández
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - J. Egido
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - J. Tuñón
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
| | - Ó. Lorenzo
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
- *Ó. Lorenzo:
| |
Collapse
|
27
|
Bhatt NM, Aon MA, Tocchetti CG, Shen X, Dey S, Ramirez-Correa G, O'Rourke B, Gao WD, Cortassa S. Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose. Am J Physiol Heart Circ Physiol 2014; 308:H291-302. [PMID: 25485897 DOI: 10.1152/ajpheart.00378.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hearts from type 2 diabetic (T2DM) subjects are chronically subjected to hyperglycemia and hyperlipidemia, both thought to contribute to oxidizing conditions and contractile dysfunction. How redox alterations and contractility interrelate, ultimately diminishing T2DM heart function, remains poorly understood. Herein we tested whether the fatty acid palmitate (Palm), in addition to its energetic contribution, rescues function by improving redox [glutathione (GSH), NAD(P)H, less oxidative stress] in T2DM rat heart trabeculae subjected to high glucose. Using cardiac trabeculae from Zucker Diabetic Fatty (ZDF) rats, we assessed the impact of low glucose (EG) and high glucose (HG), in absence or presence of Palm or insulin, on force development, energetics, and redox responses. We found that in EG ZDF and lean trabeculae displayed similar contractile work, yield of contractile work (Ycw), representing the ratio of force time integral over rate of O2 consumption. Conversely, HG had a negative impact on Ycw, whereas Palm, but not insulin, completely prevented contractile loss. This effect was associated with higher GSH, less oxidative stress, and augmented matrix GSH/thioredoxin (Trx) in ZDF mitochondria. Restoration of myocardial redox with GSH ethyl ester also rescued ZDF contractile function in HG, independently from Palm. These results support the idea that maintained redox balance, via increased GSH and Trx antioxidant activities to resist oxidative stress, is an essential protective response of the diabetic heart to keep contractile function.
Collapse
Affiliation(s)
- Niraj M Bhatt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Carlo G Tocchetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Swati Dey
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Genaro Ramirez-Correa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
28
|
Hye Khan MA, Neckář J, Haines J, Imig JD. Azilsartan improves glycemic status and reduces kidney damage in zucker diabetic fatty rats. Am J Hypertens 2014; 27:1087-95. [PMID: 24598210 DOI: 10.1093/ajh/hpu016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Azilsartan medoxomil (AZL-M), an angiotensin II receptor blocker, demonstrates antihypertensive and organ protective effects in hypertension. We investigated the efficacy of AZL-M to ameliorate metabolic syndrome and kidney damage associated with type 2 diabetes using Zucker diabetic fatty (ZDF) rats. METHODS ZDF rats were treated with vehicle or AZL-M for 8 weeks. Zucker diabetic lean (ZDL) rats were used as controls. Urine and plasma samples were collected for biochemical analysis, and kidney tissues were used for histopathological and immunohistopathological examination at the end of the 8-week protocol. RESULTS ZDF rats were diabetic with hyperglycemia and impaired glucose tolerance, and AZL-M ameliorated the diabetic phenotype. ZDF rats were hypertensive compared with ZDL rats (181±6 vs. 129±7mm Hg), and AZL-M decreased blood pressure in ZDF rats (116±7mm Hg). In ZDF rats, there was marked renal damage with elevated proteinuria, albuminuria, nephrinuria, 2-4-fold higher tubular cast formation, and glomerular injury compared with ZDL rats. AZL-M treatment reduced renal damage in ZDF rats. ZDF rats demonstrated renal inflammation and oxidative stress with elevated urinary monocyte chemoattractant protein 1 excretion, renal infiltration of macrophages, and elevated kidney malondialdehyde levels. AZL-M reduced oxidative stress and inflammation in ZDF rats. CONCLUSIONS Overall, we demonstrate that AZL-M attenuates kidney damage in type 2 diabetes. We further demonstrate that anti-inflammatory and antioxidative activities of AZL-M contribute to its kidney protective action.
Collapse
Affiliation(s)
- Md Abdul Hye Khan
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jan Neckář
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin; Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jasmine Haines
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John D Imig
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
29
|
Daniels A, Linz D, van Bilsen M, Rütten H, Sadowski T, Ruf S, Juretschke HP, Neumann-Haefelin C, Munts C, van der Vusse GJ, van Nieuwenhoven FA. Long-term severe diabetes only leads to mild cardiac diastolic dysfunction in Zucker diabetic fatty rats. Eur J Heart Fail 2014; 14:193-201. [DOI: 10.1093/eurjhf/hfr166] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Anneleen Daniels
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM); Maastricht University; Maastricht The Netherlands
| | - Dominik Linz
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM); Maastricht University; Maastricht The Netherlands
| | - Marc van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM); Maastricht University; Maastricht The Netherlands
| | | | | | - Sven Ruf
- Sanofi-Aventis Deutschland GmbH, R&D; Frankfurt Germany
| | | | | | - Chantal Munts
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM); Maastricht University; Maastricht The Netherlands
| | - Ger J. van der Vusse
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM); Maastricht University; Maastricht The Netherlands
| | - Frans A. van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM); Maastricht University; Maastricht The Netherlands
| |
Collapse
|
30
|
Song MK, Davies NM, Roufogalis BD, Huang THW. Management of cardiorenal metabolic syndrome in diabetes mellitus: a phytotherapeutic perspective. J Diabetes Res 2014; 2014:313718. [PMID: 24818164 PMCID: PMC4003752 DOI: 10.1155/2014/313718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/15/2022] Open
Abstract
Cardiorenal syndrome (CRS) is a complex disease in which the heart and kidney are simultaneously affected and their deleterious declining functions are reinforced in a feedback cycle, with an accelerated progression. Although the coexistence of kidney and heart failure in the same individual carries an extremely bad prognosis, the exact cause of deterioration and the pathophysiological mechanisms underlying the initiation and maintenance of the interaction are complex, multifactorial in nature, and poorly understood. Current therapy includes diuretics, natriuretic hormones, aquaretics (arginine vasopressin antagonists), vasodilators, and inotropes. However, large numbers of patients still develop intractable disease. Moreover, the development of resistance to many standard therapies, such as diuretics and inotropes, has led to an increasing movement toward utilization and development of novel therapies. Herbal and traditional natural medicines may complement or provide an alternative to prevent or delay the progression of CRS. This review provides an analysis of the possible mechanisms and the therapeutic potential of phytotherapeutic medicines for the amelioration of the progression of CRS.
Collapse
Affiliation(s)
- Min Kyong Song
- The University of Sydney, Faculty of Pharmacy, Sydney, NSW 2006, Australia
| | - Neal M. Davies
- The University of Manitoba, Faculty of Pharmacy, Winnipeg, MB, Canada R3T 2N2
| | - Basil D. Roufogalis
- The University of Sydney, Faculty of Pharmacy, Sydney, NSW 2006, Australia
- The University of Sydney, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, Sydney, NSW 2006, Australia
| | - Tom Hsun-Wei Huang
- The University of Sydney, Faculty of Pharmacy, Sydney, NSW 2006, Australia
- *Tom Hsun-Wei Huang:
| |
Collapse
|
31
|
Burlet E, Jain SK. Manganese supplementation reduces high glucose-induced monocyte adhesion to endothelial cells and endothelial dysfunction in Zucker diabetic fatty rats. J Biol Chem 2013; 288:6409-16. [PMID: 23329836 DOI: 10.1074/jbc.m112.447805] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Endothelial dysfunction is a hallmark of increased vascular inflammation, dyslipidemia, and the development of atherosclerosis in diabetes. Previous studies have reported lower levels of Mn(2+) in the plasma and lymphocytes of diabetic patients and in the heart and aortic tissue of patients with atherosclerosis. This study examines the hypothesis that Mn(2+) supplementation can reduce the markers/risk factors of endothelial dysfunction in type 2 diabetes. Human umbilical vein endothelial cells (HUVECs) were cultured with or without Mn(2+) supplementation and then exposed to high glucose (HG, 25 mm) to mimic diabetic conditions. Mn(2+) supplementation caused a reduction in monocyte adhesion to HUVECs treated with HG or MCP-1. Mn(2+) also inhibited ROS levels, MCP-1 secretion, and ICAM-1 up-regulation in HUVECs treated with HG. Silencing studies using siRNA against MnSOD showed that similar results were observed in MnSOD knockdown HUVECs following Mn(2+) supplementation, suggesting that the effect of manganese on monocyte adhesion to endothelial cells is mediated by ROS and ICAM-1, but not MnSOD. To validate the relevance of our findings in vivo, Zucker diabetic fatty rats were gavaged daily with water (placebo) or MnCl2 (16 mg/kg of body weight) for 7 weeks. When compared with placebo, Mn(2+)-supplemented rats showed lower blood levels of ICAM-1 (17%, p < 0.04), cholesterol (25%, p < 0.05), and MCP-1 (28%, p = 0.25). These in vitro and in vivo studies demonstrate that Mn(2+) supplementation can down-regulate ICAM-1 expression and ROS independently of MnSOD, leading to a decrease in monocyte adhesion to endothelial cells, and therefore can lower the risk of endothelial dysfunction in diabetes.
Collapse
Affiliation(s)
- Elodie Burlet
- Department of Pediatrics and Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | |
Collapse
|
32
|
Olsen KB, Axelsen LN, Braunstein TH, Sørensen CM, Andersen CB, Ploug T, Holstein-Rathlou NH, Nielsen MS. Myocardial impulse propagation is impaired in right ventricular tissue of Zucker diabetic fatty (ZDF) rats. Cardiovasc Diabetol 2013; 12:19. [PMID: 23327647 PMCID: PMC3561236 DOI: 10.1186/1475-2840-12-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/14/2013] [Indexed: 01/31/2023] Open
Abstract
Background Diabetes increases the risk of cardiovascular complications including arrhythmias, but the underlying mechanisms remain to be established. Decreased conduction velocity (CV), which is an independent risk factor for re-entry arrhythmias, is present in models with streptozotocin (STZ) induced type 1 diabetes. Whether CV is also disturbed in models of type 2 diabetes is currently unknown. Methods We used Zucker Diabetic Fatty (ZDF) rats, as a model of type 2 diabetes, and their lean controls Zucker Diabetic Lean (ZDL) rats to investigate CV and its response to the anti-arrhythmic peptide analogue AAP10. Gap junction remodeling was examined by immunofluorescence and western blotting. Cardiac histomorphometry was examined by Masson`s Trichrome staining and intracellular lipid accumulation was analyzed by Bodipy staining. Results CV was significantly slower in ZDF rats (56±1.9 cm/s) compared to non-diabetic controls (ZDL, 66±1.6 cm/s), but AAP10 did not affect CV in either group. The total amount of Connexin43 (C×43) was identical between ZDF and ZDL rats, but the amount of lateralized C×43 was significantly increased in ZDF rats (42±12 %) compared to ZDL rats (30±8%), p<0.04. Judged by electrophoretic mobility, C×43 phosphorylation was unchanged between ZDF and ZDL rats. Also, no differences in cardiomyocyte size or histomorphometry including fibrosis were observed between groups, but the volume of intracellular lipid droplets was 4.2 times higher in ZDF compared to ZDL rats (p<0.01). Conclusion CV is reduced in type 2 diabetic ZDF rats. The CV disturbance may be partly explained by increased lateralization of C×43, but other factors are likely also involved. Our data indicates that lipotoxicity potentially may play a role in development of conduction disturbances and arrhythmias in type 2 diabetes.
Collapse
Affiliation(s)
- Kristine Boisen Olsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Renal podocyte injury in a rat model of type 2 diabetes is prevented by metformin. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:210821. [PMID: 23056035 PMCID: PMC3465985 DOI: 10.1155/2012/210821] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/23/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022]
Abstract
Hyperglycemia promotes oxidative stress and hence generation of reactive oxygen species (ROS), which is known to play a crucial role in the pathogenesis of diabetic nephropathy. Metformin, an oral hypoglycemic drug, possesses antioxidant effects. The aim of this paper is to investigate the protective effects of metformin on the injury of renal podocytes in spontaneously diabetic Torii (SDT) rats, a new model for nonobese type 2 diabetes. Metformin (350 mg/kg/day) was given to SDT rats for 17 weeks. Blood glucose, glycated haemoglobin (HbA1c), and albuminuria were examined. Kidney histopathology, renal 8-hydroxydeoxyguanosine (8-OHdG) levels and apoptosis were examined. In 43-week-old SDT rats, severe hyperglycemia was developed, and albuminuria was markedly increased. Diabetes induced significant alterations in renal glomerular structure. In addition, urinary and renal 8-OHdG levels were highly increased, and podocyte loss was shown through application of the TUNEL and synaptopodin staining. However, treatment of SDT rats with metformin restored all these renal changes. Our data suggested that diabetes-induced podocyte loss in diabetic nephropathy could be suppressed by the antidiabetes drug, metformin, through the repression of oxidative injury.
Collapse
|
34
|
Papanas N, Maltezos E, Mikhailidis DP. Metformin and heart failure: never say never again. Expert Opin Pharmacother 2012; 13:1-8. [PMID: 22149365 DOI: 10.1517/14656566.2012.638283] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Metformin represents the cornerstone of treatment for type 2 diabetes mellitus. Traditionally, heart failure (HF) was considered a contraindication to its use. However, more recent evidence has shown that this should no longer be the case. Indeed, studies have demonstrated that metformin may even reduce the risk of incident HF and mortality in diabetic patients, while improving up to 2-year survival rates in those with HF. In addition, it appears to exert cardioprotective actions. Although longer follow-up data and more explicit information about the situation in patients with very advanced HF are needed, the cardiac safety of metformin has profound clinical implications and may be anticipated to further encourage its widespread use.
Collapse
|
35
|
Cittadini A, Napoli R, Monti MG, Rea D, Longobardi S, Netti PA, Walser M, Samà M, Aimaretti G, Isgaard J, Saccà L. Metformin prevents the development of chronic heart failure in the SHHF rat model. Diabetes 2012; 61:944-53. [PMID: 22344560 PMCID: PMC3314362 DOI: 10.2337/db11-1132] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insulin resistance is a recently identified mechanism involved in the pathophysiology of chronic heart failure (CHF). We investigated the effects of two insulin-sensitizing drugs (metformin and rosiglitazone) in a genetic model of spontaneously hypertensive, insulin-resistant rats (SHHF). Thirty SHHF rats were randomized into three treatment groups as follows: 1) metformin (100 mg/kg per day), 2) rosiglitazone (2 mg/kg per day), and 3) no drug. Ten Sprague-Dawley rats served as normal controls. At the end of the treatment period (12 months), the cardiac phenotype was characterized by histology, echocardiography, and isolated perfused heart studies. Metformin attenuated left ventricular (LV) remodeling, as shown by reduced LV volumes, wall stress, perivascular fibrosis, and cardiac lipid accumulation. Metformin improved both systolic and diastolic indices as well as myocardial mechanical efficiency, as shown by improved ability to convert metabolic energy into mechanical work. Metformin induced a marked activation of AMP-activated protein kinase, endothelial nitric oxide synthase, and vascular endothelial growth factor and reduced tumor necrosis factor-α expression and myocyte apoptosis. Rosiglitazone did not affect LV remodeling, increased perivascular fibrosis, and promoted further cardiac lipid accumulation. In conclusion, long-term treatment with metformin, but not with rosiglitazone, prevents the development of severe CHF in the SHHF model by a wide-spectrum interaction that involves molecular, structural, functional, and metabolic-energetic mechanisms.
Collapse
Affiliation(s)
- Antonio Cittadini
- Department of Clinical Medicine and Cardiovascular and Immunological Sciences, University Federico II, Naples, Italy
| | - Raffaele Napoli
- Department of Clinical Medicine and Cardiovascular and Immunological Sciences, University Federico II, Naples, Italy
| | - Maria Gaia Monti
- Department of Clinical Medicine and Cardiovascular and Immunological Sciences, University Federico II, Naples, Italy
| | - Domenica Rea
- Department of Clinical Medicine and Cardiovascular and Immunological Sciences, University Federico II, Naples, Italy
| | | | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials, University Federico II, Naples, Italy
- Center for Advanced Biomaterial for Health Care, Interdisciplinary Research Centre on Biomaterials, Italian Institute of Technology, Naples, Italy
| | - Marion Walser
- Department of Internal Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mariateresa Samà
- Department of Clinical and Experimental Medicine, University A. Avogadro, Novara, Italy
| | - Gianluca Aimaretti
- Department of Clinical and Experimental Medicine, University A. Avogadro, Novara, Italy
| | - Jörgen Isgaard
- Department of Internal Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Luigi Saccà
- Department of Clinical Medicine and Cardiovascular and Immunological Sciences, University Federico II, Naples, Italy
- Corresponding author: Luigi Saccà,
| |
Collapse
|
36
|
VanHoose L, Sawers Y, Loganathan R, Vacek JL, Stehno-Bittel L, Novikova L, Al-Jarrah M, Smirnova IV. Electrocardiographic changes with the onset of diabetes and the impact of aerobic exercise training in the Zucker Diabetic Fatty (ZDF) rat. Cardiovasc Diabetol 2010; 9:56. [PMID: 20860788 PMCID: PMC2954909 DOI: 10.1186/1475-2840-9-56] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/22/2010] [Indexed: 01/01/2023] Open
Abstract
Background Early markers of diabetic autonomic neuropathy (DAN) in an electrocardiogram (ECG) include elevated R wave amplitudes, widening of QTc intervals and decreased heart rate variability (HRV). The severity of DAN has a direct relationship with mortality risk. Aerobic exercise training is a common recommendation for the delay and possible reversal of cardiac dysfunction. Limited research exists on ECG measures for the evaluation of aerobic exercise training in Zucker Diabetic Fatty (ZDF) rat, a model of type 2 diabetes. The objective of this study was to assess whether aerobic exercise training may attenuate diabetes induced ECG changes. Methods Male ZDF (obese fa/fa) and control Zucker (lean fa/+) rats were assigned to 4 groups: sedentary control (SC), sedentary diabetic (SD), exercised control (EC) and exercised diabetic (ED). The exercised groups began 7 weeks of treadmill training after the development of diabetes in the ED group. Baseline (prior to the training) and termination measurements included body weight, heart weight, blood glucose and glycated hemoglobin levels and ECG parameters. One way repeated measures ANOVA (group) analyzed within and between subject differences and interactions. Pearson coefficients and descriptive statistics described variable relationships and animal characteristics. Results Diabetes caused crucial changes in R wave amplitudes (p < 0.001), heart rate variability (p < 0.01), QT intervals (p < 0.001) and QTc intervals (p < 0.001). R wave amplitude augmentation in SD rats from baseline to termination was ameliorated by exercise, resulting in R wave amplitude changes in ED animals similar to control rats. Aerobic exercise training neither attenuated QT or QTc interval prolongation nor restored decreases in HRV in diabetic rats. Conclusion This study revealed alterations in R wave amplitudes, HRV, QT and QTc intervals in ZDF rats. Of these changes, aerobic exercise training was able to correct R wave amplitude changes. In addition, exercise has beneficial effect in this diabetic rat model in regards to ECG correlates of left ventricular mass.
Collapse
Affiliation(s)
- Lisa VanHoose
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, MS 2002, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang X, Liu X, Zhan Y, LaVallie ER, DiBlasio-Smith L, Collins-Racie L, Mounts WM, Rutkowski JL, Xu X, Goltsman I, Abassi Z, Winaver J, Feuerstein GZ. Pharmacogenomic, Physiological, and Biochemical Investigations on Safety and Efficacy Biomarkers Associated with the Peroxisome Proliferator-Activated Receptor-γ Activator Rosiglitazone in Rodents: A Translational Medicine Investigation. J Pharmacol Exp Ther 2010; 334:820-9. [DOI: 10.1124/jpet.110.167635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Carbaprostacyclin, a PPARδ agonist, ameliorates excess lipid accumulation in diabetic rat placentas. Life Sci 2010; 86:781-90. [DOI: 10.1016/j.lfs.2010.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/12/2010] [Accepted: 03/03/2010] [Indexed: 12/23/2022]
|
39
|
Hamlat N, Forcheron F, Negazzi S, del Carmine P, Feugier P, Bricca G, Aouichat-Bouguerra S, Beylot M. Lipogenesis in arterial wall and vascular smooth muscular cells: regulation and abnormalities in insulin-resistance. Cardiovasc Diabetol 2009; 8:64. [PMID: 20030821 PMCID: PMC2805610 DOI: 10.1186/1475-2840-8-64] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 12/23/2009] [Indexed: 01/10/2023] Open
Abstract
Background Vascular smooth muscular cells (VSMC) express lipogenic genes. Therefore in situ lipogenesis could provide fatty acids for triglycerides synthesis and cholesterol esterification and contribute to lipid accumulation in arterial wall with aging and during atheroma. Methods We investigated expression of lipogenic genes in human and rat arterial walls, its regulation in cultured VSMC and determined if it is modified during insulin-resistance and diabetes, situations with increased risk for atheroma. Results Zucker obese (ZO) and diabetic (ZDF) rats accumulated more triglycerides in their aortas than their respective control rats, and this triglycerides content increased with age in ZDF and control rats. However the expression in aortas of lipogenic genes, or of genes involved in fatty acids uptake, was not higher in ZDF and ZO rats and did not increase with age. Expression of lipogenesis-related genes was not increased in human arterial wall (carotid endarterectomy) of diabetic compared to non-diabetic patients. In vitro, glucose and adipogenic medium (ADM) stimulated moderately the expression and activity of lipogenesis in VSMC from control rats. LXR agonists, but not PXR agonist, stimulated also lipogenesis in VSMC but not in arterial wall in vivo. Lipogenic genes expression was lower in VSMC from ZO rats and not stimulated by glucose or ADM. Conclusion Lipogenic genes are expressed in arterial wall and VSMC; this expression is stimulated (VSMC) by glucose, ADM and LXR agonists. During insulin-resistance and diabetes, this expression is not increased and resists to the actions of glucose and ADM. It is unlikely that this metabolic pathway contribute to lipid accumulation of arterial wall during insulin-resistance and diabetes and thus to the increased risk of atheroma observed in these situations.
Collapse
Affiliation(s)
- Nadjiba Hamlat
- ERI-22 - EA4173, Faculté Rockefeller, UCBLyon1, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ares-Carrasco S, Picatoste B, Benito-Martín A, Zubiri I, Sanz AB, Sánchez-Niño MD, Ortiz A, Egido J, Tuñón J, Lorenzo O. Myocardial fibrosis and apoptosis, but not inflammation, are present in long-term experimental diabetes. Am J Physiol Heart Circ Physiol 2009; 297:H2109-19. [DOI: 10.1152/ajpheart.00157.2009] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this paper is to study the myocardial damage secondary to long-term streptozotocin-induced type 1 diabetes mellitus (DM1). Normotensive and spontaneously hypertensive rats (SHR) received either streptozotocin injections or vehicle. After 22 or 6 wk, DM1, SHR, DM1/SHR, and control rats were killed, and the left ventricles studied by histology, quantitative PCR, Western blot, ELISA, and electromobility shift assay. Cardiomyocyte cultures were also performed. The expression of profibrotic factors, transforming growth factor-β (TGF-β1), connective tissue growth factor, and matrix proteins was increased, and the TGF-β1-linked transcription factors phospho-Smad3/4 and activator protein-1 were activated in the DM1 myocardium. Proapoptotic molecules FasL, Fas, Bax, and cleaved caspase-3 were also augmented. Myocardial injury in long-term hypertension shared these features. In addition, hypertension was associated with activation of NF-κB, increased inflammatory cell infiltrate, and expression of the mediators [interleukin-1β (IL-1β), tumor necrosis factor-α, monocyte chemoattractant protein 1, vascular cell adhesion molecule 1, angiotensinogen, and oxidants], which were absent in long-term DM1. At this stage, the combination of DM1 and hypertension resulted in nonsignificant additive effects. Moreover, the coexistence of DM1 blunted the inflammatory response to hypertension. Anti-inflammatory IL-10 and antioxidants were induced in long-term DM1 and DM1/SHR hearts. Myocardial inflammation was, however, observed in the short-term model. In cultured cardiomyocytes, IL-10, TGF-β1, and catalase blocked the glucose-stimulated expression of proinflammatory genes. Fibrosis and apoptosis are features of long-term myocardial damage in experimental DM1. Associated hypertension does not induce additional changes. Myocardial inflammation is present in hypertension and short-term DM1, but is not a key feature in long-term DM1. Local reduction of proinflammatory factors and expression of anti-inflammatory and antioxidant molecules may underlie this effect.
Collapse
Affiliation(s)
| | | | | | - I. Zubiri
- Fundación Jiménez Díaz Hospital, and
| | | | | | - A. Ortiz
- Fundación Jiménez Díaz Hospital, and
- Autónoma University, Madrid, Spain
| | - J. Egido
- Fundación Jiménez Díaz Hospital, and
- Autónoma University, Madrid, Spain
| | - J. Tuñón
- Fundación Jiménez Díaz Hospital, and
- Autónoma University, Madrid, Spain
| | - O. Lorenzo
- Fundación Jiménez Díaz Hospital, and
- Autónoma University, Madrid, Spain
| |
Collapse
|
41
|
Current literature in diabetes. Diabetes Metab Res Rev 2009; 25:i-x. [PMID: 19790194 DOI: 10.1002/dmrr.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|