1
|
Bermudez A, Latham ZD, Ma AJ, Bi D, Hu JK, Lin NYC. Regulation of chromatin modifications through coordination of nucleus size and epithelial cell morphology heterogeneity. Commun Biol 2025; 8:269. [PMID: 39979587 PMCID: PMC11842846 DOI: 10.1038/s42003-025-07677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Cell morphology heterogeneity is pervasive in epithelial collectives, yet the underlying mechanisms driving such heterogeneity and its consequential biological ramifications remain elusive. Here, we observed a consistent correlation between the epithelial cell morphology and nucleus morphology during crowding, revealing a persistent log-normal probability distribution characterizing both cell and nucleus areas across diverse epithelial model systems. We showed that this morphological diversity arises from asymmetric partitioning during cell division. Next, we provide insights into the impact of nucleus morphology on chromatin modifications. We demonstrated that constraining nucleus leads to downregulation of the euchromatic mark H3K9ac and upregulation of the heterochromatic mark H3K27me3. Furthermore, we showed that nucleus size regulates H3K27me3 levels through histone demethylase UTX. These findings highlight the significance of cell morphology heterogeneity as a driver of chromatin state diversity, shaping functional variability within epithelial tissues.
Collapse
Affiliation(s)
- Alexandra Bermudez
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Zoe D Latham
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Alex J Ma
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Broad Stem Cell Center, University of California Los Angeles, Los Angeles, CA, USA.
| | - Neil Y C Lin
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA.
- Broad Stem Cell Center, University of California Los Angeles, Los Angeles, CA, USA.
- Mechanical and Aerospace Engineering Department, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Chatterjee P, Mukherjee S, Majumder P. Shaping Drosophila eggs: unveiling the roles of Arpc1 and cpb in morphogenesis. Funct Integr Genomics 2024; 24:120. [PMID: 38960936 DOI: 10.1007/s10142-024-01396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
The Drosophila egg chamber (EC) starts as a spherical tissue at the beginning. With maturation, the outer follicle cells of EC collectively migrate in a direction perpendicular to the anterior-posterior axis, to shape EC from spherical to ellipsoidal. Filamentous actin (F-actin) plays a significant role in shaping individual migratory cells to the overall EC shape, like in every cell migration. The primary focus of this article is to unveil the function of different Actin Binding Proteins (ABPs) in regulating mature Drosophila egg shape. We have screened 66 ABPs, and the genetic screening data revealed that individual knockdown of Arp2/3 complex genes and the "capping protein β" (cpb) gene have severely altered the egg phenotype. Arpc1 and cpb RNAi mediated knockdown resulted in the formation of spherical eggs which are devoid of dorsal appendages. Studies also showed the role of Arpc1 and cpb on the number of laid eggs and follicle cell morphology. Furthermore, the depletion of Arpc1 and cpb resulted in a change in F-actin quantity. Together, the data indicate that Arpc1 and cpb regulate Drosophila egg shape, F-actin management, egg-laying characteristics and dorsal appendages formation.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Sandipan Mukherjee
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Pralay Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
3
|
Tegtmeyer M, Arora J, Asgari S, Cimini BA, Nadig A, Peirent E, Liyanage D, Way GP, Weisbart E, Nathan A, Amariuta T, Eggan K, Haghighi M, McCarroll SA, O'Connor L, Carpenter AE, Singh S, Nehme R, Raychaudhuri S. High-dimensional phenotyping to define the genetic basis of cellular morphology. Nat Commun 2024; 15:347. [PMID: 38184653 PMCID: PMC10771466 DOI: 10.1038/s41467-023-44045-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024] Open
Abstract
The morphology of cells is dynamic and mediated by genetic and environmental factors. Characterizing how genetic variation impacts cell morphology can provide an important link between disease association and cellular function. Here, we combine genomic sequencing and high-content imaging approaches on iPSCs from 297 unique donors to investigate the relationship between genetic variants and cellular morphology to map what we term cell morphological quantitative trait loci (cmQTLs). We identify novel associations between rare protein altering variants in WASF2, TSPAN15, and PRLR with several morphological traits related to cell shape, nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi confirms their role in cell morphology. Analysis of common variants yields one significant association and nominate over 300 variants with suggestive evidence (P < 10-6) of association with one or more morphology traits. We then use these data to make predictions about sample size requirements for increasing discovery in cellular genetic studies. We conclude that, similar to molecular phenotypes, morphological profiling can yield insight about the function of genes and variants.
Collapse
Affiliation(s)
- Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Centre for Gene Therapy and Regenerative Medicine, King's College, London, UK
| | - Jatin Arora
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samira Asgari
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ajay Nadig
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Emily Peirent
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dhara Liyanage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gregory P Way
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erin Weisbart
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tiffany Amariuta
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Halıcıoğlu Data Science Institute, University of California, La Jolla, CA, USA
- Department of Medicine, University of California, La Jolla, CA, USA
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Marzieh Haghighi
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Luke O'Connor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Ostalé CM, Vega-Cuesta P, González T, López-Varea A, de Celis JF. RNAi screen in the Drosophila wing of genes encoding proteins related to cytoskeleton organization and cell division. Dev Biol 2023; 498:61-76. [PMID: 37015290 DOI: 10.1016/j.ydbio.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Cell division and cytoskeleton organization are fundamental processes participating in the development of Drosophila imaginal discs. In this manuscript we describe the phenotypes in the adult fly wing generated by knockdowns of 85% of Drosophila genes encoding proteins likely related to the regulation of cell division and cytoskeleton organization. We also compile a molecular classification of these proteins into classes that describe their expected or known main biochemical characteristics, as well as mRNA expression in the wing disc and likely protein subcellular localization for a subset of these genes. Finally, we analyze in more detail one protein family of cytoskeleton genes (Arp2/3 complex), and define the consequences of interfering with cell division for wing growth and patterning.
Collapse
|
5
|
Chen W, Perkins TJ, Rudnicki MA. Quantification of Muscle Satellite Stem Cell Divisions by High-Content Analysis. Methods Mol Biol 2023; 2587:537-553. [PMID: 36401049 DOI: 10.1007/978-1-0716-2772-3_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-content screening is commonly performed on 2D cultured cells, which is high throughput but has low biological relevance. In contrast, single myofiber culture assay preserves the satellite cell niche between the basal lamina and sarcolemma and consequently has high biological relevance but is low throughput. We describe here a high-content screening method that utilizes single myofiber culture that addresses the caveats of both techniques. Our method utilizes the transgenic reporter allele Myf5-Cre:R26R-eYFP to differentiate stem and committed cells within a dividing couplet that can be quantified by high-content throughput immunodetection and bioinformatic analysis.
Collapse
Affiliation(s)
- William Chen
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
High-Content RNAi Phenotypic Screening Unveils the Involvement of Human Ubiquitin-Related Enzymes in Late Cytokinesis. Cells 2022; 11:cells11233862. [PMID: 36497121 PMCID: PMC9737832 DOI: 10.3390/cells11233862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
CEP55 is a central regulator of late cytokinesis and is overexpressed in numerous cancers. Its post-translationally controlled recruitment to the midbody is crucial to the structural coordination of the abscission sequence. Our recent evidence that CEP55 contains two ubiquitin-binding domains was the first structural and functional link between ubiquitin signaling and ESCRT-mediated severing of the intercellular bridge. So far, high-content screens focusing on cytokinesis have used multinucleation as the endpoint readout. Here, we report an automated image-based detection method of intercellular bridges, which we applied to further our understanding of late cytokinetic signaling by performing an RNAi screen of ubiquitin ligases and deubiquitinases. A secondary validation confirmed four candidate genes, i.e., LNX2, NEURL, UCHL1 and RNF157, whose downregulation variably affects interconnected phenotypes related to CEP55 and its UBDs, as follows: decreased recruitment of CEP55 to the midbody, increased number of midbody remnants per cell, and increased frequency of intercellular bridges or multinucleation events. This brings into question the Notch-dependent or independent contributions of LNX2 and NEURL proteins to late cytokinesis. Similarly, the role of UCHL1 in autophagy could link its function with the fate of midbody remnants. Beyond the biological interest, this high-content screening approach could also be used to isolate anticancer drugs that act by impairing cytokinesis and CEP55 functions.
Collapse
|
7
|
Wang Y, Lee H, Fear JM, Berger I, Oliver B, Przytycka TM. NetREX-CF integrates incomplete transcription factor data with gene expression to reconstruct gene regulatory networks. Commun Biol 2022; 5:1282. [PMID: 36418514 PMCID: PMC9684490 DOI: 10.1038/s42003-022-04226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The inference of Gene Regulatory Networks (GRNs) is one of the key challenges in systems biology. Leading algorithms utilize, in addition to gene expression, prior knowledge such as Transcription Factor (TF) DNA binding motifs or results of TF binding experiments. However, such prior knowledge is typically incomplete, therefore, integrating it with gene expression to infer GRNs remains difficult. To address this challenge, we introduce NetREX-CF-Regulatory Network Reconstruction using EXpression and Collaborative Filtering-a GRN reconstruction approach that brings together Collaborative Filtering to address the incompleteness of the prior knowledge and a biologically justified model of gene expression (sparse Network Component Analysis based model). We validated the NetREX-CF using Yeast data and then used it to construct the GRN for Drosophila Schneider 2 (S2) cells. To corroborate the GRN, we performed a large-scale RNA-Seq analysis followed by a high-throughput RNAi treatment against all 465 expressed TFs in the cell line. Our knockdown result has not only extensively validated the GRN we built, but also provides a benchmark that our community can use for evaluating GRNs. Finally, we demonstrate that NetREX-CF can infer GRNs using single-cell RNA-Seq, and outperforms other methods, by using previously published human data.
Collapse
Affiliation(s)
- Yijie Wang
- Computer Science Department, Indiana University, Bloomington, IN, 47408, USA.
| | - Hangnoh Lee
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD, 20892, USA
| | - Justin M Fear
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD, 20892, USA
| | - Isabelle Berger
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD, 20892, USA
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD, 20892, USA.
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, 20894, USA.
| |
Collapse
|
8
|
Habib EB, Mathavarajah S, Dellaire G. Tinker, Tailor, Tumour Suppressor: The Many Functions of PRP4K. Front Genet 2022; 13:839963. [PMID: 35281802 PMCID: PMC8912934 DOI: 10.3389/fgene.2022.839963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pre-mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential kinase first identified in the fission yeast Schizosaccharomyces pombe that is evolutionarily conserved from amoebae to animals. During spliceosomal assembly, PRP4K interacts with and phosphorylates PRPF6 and PRPF31 to facilitate the formation of the spliceosome B complex. However, over the past decade additional evidence has emerged that PRP4K has many diverse cellular roles beyond splicing that contribute to tumour suppression and chemotherapeutic responses in mammals. For example, PRP4K appears to play roles in regulating transcription and the spindle assembly checkpoint (SAC), a key pathway in maintaining chromosomes stability and the response of cancer cells to taxane-based chemotherapy. In addition, PRP4K has been revealed to be a haploinsufficient tumour suppressor that promotes aggressive cancer phenotypes when partially depleted. PRP4K is regulated by both the HER2 and estrogen receptor, and its partial loss increases resistance to the taxanes in multiple malignancies including cervical, breast and ovarian cancer. Moreover, ovarian and triple negative breast cancer patients harboring tumours with low PRP4K expression exhibit worse overall survival. The depletion of PRP4K also enhances both Yap and epidermal growth factor receptor (EGFR) signaling, the latter promoting anoikis resistance in breast and ovarian cancer. Finally, PRP4K is negatively regulated during epithelial-to-mesenchymal transition (EMT), a process that promotes increased cell motility, drug resistance and cancer metastasis. Thus, as we discuss in this review, PRP4K likely plays evolutionarily conserved roles not only in splicing but in a number of cellular pathways that together contribute to tumour suppression.
Collapse
Affiliation(s)
- Elias B. Habib
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
| | | | - Graham Dellaire
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- *Correspondence: Graham Dellaire,
| |
Collapse
|
9
|
Structure and function of an atypical homodimeric actin capping protein from the malaria parasite. Cell Mol Life Sci 2022; 79:125. [PMID: 35132495 PMCID: PMC8821504 DOI: 10.1007/s00018-021-04032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
Apicomplexan parasites, such as Plasmodium spp., rely on an unusual actomyosin motor, termed glideosome, for motility and host cell invasion. The actin filaments are maintained by a small set of essential regulators, which provide control over actin dynamics in the different stages of the parasite life cycle. Actin filament capping proteins (CPs) are indispensable heterodimeric regulators of actin dynamics. CPs have been extensively characterized in higher eukaryotes, but their role and functional mechanism in Apicomplexa remain enigmatic. Here, we present the first crystal structure of a homodimeric CP from the malaria parasite and compare the homo- and heterodimeric CP structures in detail. Despite retaining several characteristics of a canonical CP, the homodimeric Plasmodium berghei (Pb)CP exhibits crucial differences to the canonical heterodimers. Both homo- and heterodimeric PbCPs regulate actin dynamics in an atypical manner, facilitating rapid turnover of parasite actin, without affecting its critical concentration. Homo- and heterodimeric PbCPs show partially redundant activities, possibly to rescue actin filament capping in life cycle stages where the β-subunit is downregulated. Our data suggest that the homodimeric PbCP also influences actin kinetics by recruiting lateral actin dimers. This unusual function could arise from the absence of a β-subunit, as the asymmetric PbCP homodimer lacks structural elements essential for canonical barbed end interactions suggesting a novel CP binding mode. These findings will facilitate further studies aimed at elucidating the precise actin filament capping mechanism in Plasmodium.
Collapse
|
10
|
Tsai CR, Wang Y, Jacobson A, Sankoorikkal N, Chirinos JD, Burra S, Makthal N, Kumaraswami M, Galko MJ. Pvr and distinct downstream signaling factors are required for hemocyte spreading and epidermal wound closure at Drosophila larval wound sites. G3-GENES GENOMES GENETICS 2021; 12:6423993. [PMID: 34751396 PMCID: PMC8728012 DOI: 10.1093/g3journal/jkab388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/12/2021] [Indexed: 12/03/2022]
Abstract
Tissue injury is typically accompanied by inflammation. In Drosophila melanogaster larvae, wound-induced inflammation involves adhesive capture of hemocytes at the wound surface followed by hemocyte spreading to assume a flat, lamellar morphology. The factors that mediate this cell spreading at the wound site are not known. Here, we discover a role for the platelet-derived growth factor/vascular endothelial growth factor-related receptor (Pvr) and its ligand, Pvf1, in blood cell spreading at the wound site. Pvr and Pvf1 are required for spreading in vivo and in an in vitro spreading assay where spreading can be directly induced by Pvf1 application or by constitutive Pvr activation. In an effort to identify factors that act downstream of Pvr, we performed a genetic screen in which select candidates were tested to determine if they could suppress the lethality of Pvr overexpression in the larval epidermis. Some of the suppressors identified are required for epidermal wound closure (WC), another Pvr-mediated wound response, some are required for hemocyte spreading in vitro, and some are required for both. One of the downstream factors, Mask, is also required for efficient wound-induced hemocyte spreading in vivo. Our data reveal that Pvr signaling is required for wound responses in hemocytes (cell spreading) and defines distinct downstream signaling factors that are required for either epidermal WC or hemocyte spreading.
Collapse
Affiliation(s)
- Chang-Ru Tsai
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yan Wang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Alec Jacobson
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Niki Sankoorikkal
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Josue D Chirinos
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Sirisha Burra
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Nishanth Makthal
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Muthiah Kumaraswami
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Michael J Galko
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Genetics & Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
11
|
El-Sharkawy YH, Elbasuney S, Radwan SM, Askar MA, El-Sayyad GS. Total RNA nonlinear polarization: towards facile early diagnosis of breast cancer. RSC Adv 2021; 11:33319-33325. [PMID: 35497529 PMCID: PMC9042301 DOI: 10.1039/d1ra05599b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Different cancers are caused by accumulation of numerous genetic and epigenetic changes. Recently, nonlinear polarization has been considered as a marvelous tool for several medical applications. The capability of nonlinear polarization, to monitor any changes in RNA's spectral signature due to breast cancer (BC) was evaluated. Blood samples, from healthy controls and BC patients, were collected for whole blood preparation for genomic total RNA purification. Total RNA samples were stimulated with a light-emitting diode (LED) source of 565 nm; the resonance frequency of investigated RNA samples was captured and processed via hyperspectral imaging. Resonance frequency signatures were processed using fast Fourier transform in an attempt to differentiate between RNA (control) and RNA (BC) via frequency response. RNA (BC) demonstrated a characteristic signal at 0.02 GHz, as well as a phase shift at 0.031, and 0.070 GHZ from RNA (control). These features could offer early BC diagnosis. This is the first time to describe an optical methodology based on nonlinear polarization as a facile principle to distinguish and identify RNA alterations in BC by their characteristic fingerprint spectral signature. Nonlinear polarization has been considered as a marvelous tool for several medical applications, and the capability to monitor any changes in RNA's spectral signature due to breast cancer was evaluated by hyperspectral camera.![]()
Collapse
Affiliation(s)
- Yasser H El-Sharkawy
- Head of Biomedical Engineering Department, Military Technical College Cairo Egypt
| | - Sherif Elbasuney
- Head of Nanotechnology Research Center, Military Technical College Cairo Egypt
| | - Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University Cairo Egypt
| | - Mostafa A Askar
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| |
Collapse
|
12
|
Wang Z, Wang C, Jiang BH, Shi L, Lin S, Wang L, Liu LZ, Qiu JG, Qin Y, Jia Y. Predictive significance of STK17A in patients with gastric cancer and association with gastric cancer cell proliferation and migration. Oncol Rep 2021; 45:119. [PMID: 33955523 PMCID: PMC8107654 DOI: 10.3892/or.2021.8070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequently diagnosed types of cancer worldwide, and exploring its potential therapeutic targets is particularly important for improving the prognosis of patients with GC. The aim of the present study was to investigate the association between serine/threonine kinase 17a (STK17A) expression and GC prognosis. STK17A expression was measured by quantitative real-time PCR, western blotting and immunohistochemical staining. Standard stable transfection technology was also used to construct overexpression and knockdown cell lines. Wound healing, Transwell, Cell Counting Kit-8 and colony formation assays, as well as other methods, were used to explore the function and underlying molecular mechanism of STK17A in GC. The results indicated that STK17A overexpression significantly promoted the proliferation and migration of GC cells. The clinical significance of STK17A in a cohort of 102 cases of GC was assessed by clinical correlation and Kaplan-Meier analyses. Overexpression of STK17A was demonstrated to be associated with tumor invasion depth (P<0.001), lymph node metastasis (P<0.001) and poor prognosis in terms of 5-year survival (P<0.001). In addition, Cox multivariate analysis revealed that STK17A expression was an independent risk factor for overall and progress-free survival (P<0.001). Therefore, STK17A may be a valuable biomarker for the prognosis of patients with GC.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenyi Wang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Bing-Hua Jiang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Litong Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shan Lin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lei Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling-Zhi Liu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jian-Ge Qiu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yongxu Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
13
|
Paran Y, Liron Y, Batsir S, Mabjeesh N, Geiger B, Kam Z. Multi-parametric characterization of drug effects on cells. F1000Res 2021; 9. [PMID: 33363713 PMCID: PMC7737707 DOI: 10.12688/f1000research.26254.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
We present here a novel multi-parametric approach for the characterization of multiple cellular features, using images acquired by high-throughput and high-definition light microscopy. We specifically used this approach for deep and unbiased analysis of the effects of a drug library on five cultured cell lines. The presented method enables the acquisition and analysis of millions of images, of treated and control cells, followed by an automated identification of drugs inducing strong responses, evaluating the median effect concentrations and those cellular properties that are most highly affected by the drug. The tools described here provide standardized quantification of multiple attributes for systems level dissection of complex functions in normal and diseased cells, using multiple perturbations. Such analysis of cells, derived from pathological samples, may help in the diagnosis and follow-up of treatment in patients.
Collapse
Affiliation(s)
- Yael Paran
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel.,IDEA Biomedical Ltd., Rehovot, 76705, Israel
| | - Yuvalal Liron
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Sarit Batsir
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nicola Mabjeesh
- Department of Urology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Zvi Kam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
14
|
Rao C, Huisman DH, Vieira HM, Frodyma DE, Neilsen BK, Chakraborty B, Hight SK, White MA, Fisher KW, Lewis RE. A Gene Expression High-Throughput Screen (GE-HTS) for Coordinated Detection of Functionally Similar Effectors in Cancer. Cancers (Basel) 2020; 12:E3143. [PMID: 33120942 PMCID: PMC7692652 DOI: 10.3390/cancers12113143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Genome-wide, loss-of-function screening can be used to identify novel vulnerabilities upon which specific tumor cells depend for survival. Functional Signature Ontology (FUSION) is a gene expression-based high-throughput screening (GE-HTS) method that allows researchers to identify functionally similar proteins, small molecules, and microRNA mimics, revealing novel therapeutic targets. FUSION uses cell-based high-throughput screening and computational analysis to match gene expression signatures produced by natural products to those produced by small interfering RNA (siRNA) and synthetic microRNA libraries to identify putative protein targets and mechanisms of action (MoA) for several previously undescribed natural products. We have used FUSION to screen for functional analogues to Kinase suppressor of Ras 1 (KSR1), a scaffold protein downstream of Ras in the Raf-MEK-ERK kinase cascade, and biologically validated several proteins with functional similarity to KSR1. FUSION incorporates bioinformatics analysis that may offer higher resolution of the endpoint readout than other screens which utilize Boolean outputs regarding a single pathway activation (i.e., synthetic lethal and cell proliferation). Challenges associated with FUSION and other high-content genome-wide screens include variation, batch effects, and controlling for potential off-target effects. In this review, we discuss the efficacy of FUSION to identify novel inhibitors and oncogene-induced changes that may be cancer cell-specific as well as several potential pitfalls within FUSION and best practices to avoid them.
Collapse
Affiliation(s)
- Chaitra Rao
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Dianna H. Huisman
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Heidi M. Vieira
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Danielle E. Frodyma
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Beth K. Neilsen
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Binita Chakraborty
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Suzie K. Hight
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA;
| | - Michael A. White
- Chief Scientific Officer, Samumed, LLC, San Diego, CA 92121, USA;
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Robert E. Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| |
Collapse
|
15
|
Younes S, Al-Sulaiti A, Nasser EAA, Najjar H, Kamareddine L. Drosophila as a Model Organism in Host-Pathogen Interaction Studies. Front Cell Infect Microbiol 2020; 10:214. [PMID: 32656090 PMCID: PMC7324642 DOI: 10.3389/fcimb.2020.00214] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
Owing to the genetic similarities and conserved pathways between a fruit fly and mammals, the use of the Drosophila model as a platform to unveil novel mechanisms of infection and disease progression has been justified and widely instigated. Gaining proper insight into host-pathogen interactions and identifying chief factors involved in host defense and pathogen virulence in Drosophila serves as a foundation to establish novel strategies for infectious disease prevention and control in higher organisms, including humans.
Collapse
Affiliation(s)
- Salma Younes
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Asma Al-Sulaiti
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | - Hoda Najjar
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
16
|
Wheeler EC, Vu AQ, Einstein JM, DiSalvo M, Ahmed N, Van Nostrand EL, Shishkin AA, Jin W, Allbritton NL, Yeo GW. Pooled CRISPR screens with imaging on microraft arrays reveals stress granule-regulatory factors. Nat Methods 2020; 17:636-642. [PMID: 32393832 PMCID: PMC7357298 DOI: 10.1038/s41592-020-0826-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts, including survival, proliferation and sortable markers. However, many biologically relevant cell states involve cellular and subcellular changes that are only accessible by microscopic visualization, and are currently impossible to screen with pooled methods. Here we combine pooled CRISPR-Cas9 screening with microraft array technology and high-content imaging to screen image-based phenotypes (CRaft-ID; CRISPR-based microRaft followed by guide RNA identification). By isolating microrafts that contain genetic clones harboring individual guide RNAs (gRNA), we identify RNA-binding proteins (RBPs) that influence the formation of stress granules, the punctate protein-RNA assemblies that form during stress. To automate hit identification, we developed a machine-learning model trained on nuclear morphology to remove unhealthy cells or imaging artifacts. In doing so, we identified and validated previously uncharacterized RBPs that modulate stress granule abundance, highlighting the applicability of our approach to facilitate image-based pooled CRISPR screens.
Collapse
Affiliation(s)
- Emily C Wheeler
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA, USA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA, USA
| | - Jaclyn M Einstein
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA, USA
| | - Matthew DiSalvo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | - Noorsher Ahmed
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA, USA
| | - Alexander A Shishkin
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Eclipse BioInnovations, San Diego, CA, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA, USA
| | - Nancy L Allbritton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Nassiri I, McCall MN. Systematic exploration of cell morphological phenotypes associated with a transcriptomic query. Nucleic Acids Res 2019; 46:e116. [PMID: 30011038 PMCID: PMC6212779 DOI: 10.1093/nar/gky626] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/10/2018] [Indexed: 12/23/2022] Open
Abstract
Cell morphological phenotypes, including shape, size, intensity, and texture of cellular compartments have been shown to change in response to perturbation with small molecule compounds. Image-based cell profiling or cell morphological profiling has been used to associate changes of cell morphological features with alterations in cellular function and to infer molecular mechanisms of action. Recently, the Library of Integrated Network-based Cellular Signatures (LINCS) Project has measured gene expression and performed image-based cell profiling on cell lines treated with 9515 unique compounds. These data provide an opportunity to study the interdependence between transcription and cell morphology. Previous methods to investigate cell phenotypes have focused on targeting candidate genes as components of known pathways, RNAi morphological profiling, and cataloging morphological defects; however, these methods do not provide an explicit model to link transcriptomic changes with corresponding alterations in morphology. To address this, we propose a cell morphology enrichment analysis to assess the association between transcriptomic alterations and changes in cell morphology. Additionally, for a new transcriptomic query, our approach can be used to predict associated changes in cellular morphology. We demonstrate the utility of our method by applying it to cell morphological changes in a human bone osteosarcoma cell line.
Collapse
Affiliation(s)
- Isar Nassiri
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Oncology, Weatherall Institute for Molecular Medicine, University of Oxford, UK
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
18
|
Isozaki A, Mikami H, Hiramatsu K, Sakuma S, Kasai Y, Iino T, Yamano T, Yasumoto A, Oguchi Y, Suzuki N, Shirasaki Y, Endo T, Ito T, Hiraki K, Yamada M, Matsusaka S, Hayakawa T, Fukuzawa H, Yatomi Y, Arai F, Di Carlo D, Nakagawa A, Hoshino Y, Hosokawa Y, Uemura S, Sugimura T, Ozeki Y, Nitta N, Goda K. A practical guide to intelligent image-activated cell sorting. Nat Protoc 2019; 14:2370-2415. [PMID: 31278398 DOI: 10.1038/s41596-019-0183-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
Intelligent image-activated cell sorting (iIACS) is a machine-intelligence technology that performs real-time intelligent image-based sorting of single cells with high throughput. iIACS extends beyond the capabilities of fluorescence-activated cell sorting (FACS) from fluorescence intensity profiles of cells to multidimensional images, thereby enabling high-content sorting of cells or cell clusters with unique spatial chemical and morphological traits. Therefore, iIACS serves as an integral part of holistic single-cell analysis by enabling direct links between population-level analysis (flow cytometry), cell-level analysis (microscopy), and gene-level analysis (sequencing). Specifically, iIACS is based on a seamless integration of high-throughput cell microscopy (e.g., multicolor fluorescence imaging, bright-field imaging), cell focusing, cell sorting, and deep learning on a hybrid software-hardware data management infrastructure, enabling real-time automated operation for data acquisition, data processing, intelligent decision making, and actuation. Here, we provide a practical guide to iIACS that describes how to design, build, characterize, and use an iIACS machine. The guide includes the consideration of several important design parameters, such as throughput, sensitivity, dynamic range, image quality, sort purity, and sort yield; the development and integration of optical, microfluidic, electrical, computational, and mechanical components; and the characterization and practical usage of the integrated system. Assuming that all components are readily available, a team of several researchers experienced in optics, electronics, digital signal processing, microfluidics, mechatronics, and flow cytometry can complete this protocol in ~3 months.
Collapse
Affiliation(s)
- Akihiro Isozaki
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Hideharu Mikami
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | | | - Shinya Sakuma
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya, Japan
| | - Yusuke Kasai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya, Japan
| | - Takanori Iino
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Takashi Yamano
- Laboratory of Applied Molecular Microbiology, Kyoto University, Kyoto, Japan
| | - Atsushi Yasumoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Oguchi
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobutake Suzuki
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Takuro Ito
- Department of Chemistry, The University of Tokyo, Tokyo, Japan.,Japan Science and Technology Agency, Saitama, Japan
| | - Kei Hiraki
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Makoto Yamada
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takeshi Hayakawa
- Department of Precision Mechanics, Chuo University, Tokyo, Japan
| | - Hideya Fukuzawa
- Laboratory of Applied Molecular Microbiology, Kyoto University, Kyoto, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya, Japan
| | - Dino Di Carlo
- Department of Chemistry, The University of Tokyo, Tokyo, Japan.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Mechanical Engineering, University of California, Los Angeles, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Atsuhiro Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, Fukuoka, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeaki Sugimura
- Department of Chemistry, The University of Tokyo, Tokyo, Japan.,Japan Science and Technology Agency, Saitama, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Nao Nitta
- Department of Chemistry, The University of Tokyo, Tokyo, Japan.,Japan Science and Technology Agency, Saitama, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo, Japan. .,Japan Science and Technology Agency, Saitama, Japan. .,Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Nurse P, Hayles J. Using genetics to understand biology. Heredity (Edinb) 2019; 123:4-13. [PMID: 31189902 PMCID: PMC6781147 DOI: 10.1038/s41437-019-0209-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Paul Nurse
- The Francis Crick Institute, 1, Midland Road, London, NW1 1AT, UK
| | | |
Collapse
|
20
|
Myat MM, Louis D, Mavrommatis A, Collins L, Mattis J, Ledru M, Verghese S, Su TT. Regulators of cell movement during development and regeneration in Drosophila. Open Biol 2019; 9:180245. [PMID: 31039676 PMCID: PMC6544984 DOI: 10.1098/rsob.180245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Cell migration is a fundamental cell biological process essential both for normal development and for tissue regeneration after damage. Cells can migrate individually or as a collective. To better understand the genetic requirements for collective migration, we expressed RNA interference (RNAi) against 30 genes in the Drosophila embryonic salivary gland cells that are known to migrate collectively. The genes were selected based on their effect on cell and membrane morphology, cytoskeleton and cell adhesion in cell culture-based screens or in Drosophila tissues other than salivary glands. Of these, eight disrupted salivary gland migration, targeting: Rac2, Rab35 and Rab40 GTPases, MAP kinase-activated kinase-2 (MAPk-AK2), RdgA diacylglycerol kinase, Cdk9, the PDSW subunit of NADH dehydrogenase (ND-PDSW) and actin regulator Enabled (Ena). The same RNAi lines were used to determine their effect during regeneration of X-ray-damaged larval wing discs. Cells translocate during this process, but it remained unknown whether they do so by directed cell divisions, by cell migration or both. We found that RNAi targeting Rac2, MAPk-AK2 and RdgA disrupted cell translocation during wing disc regeneration, but RNAi against Ena and ND-PDSW had little effect. We conclude that, in Drosophila, cell movements in development and regeneration have common as well as distinct genetic requirements.
Collapse
Affiliation(s)
- Monn Monn Myat
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Dheveline Louis
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Andreas Mavrommatis
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Latoya Collins
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Jamal Mattis
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Michelle Ledru
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Shilpi Verghese
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
- University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Vorontsova YE, Zavoloka EL, Cherezov RO, Simonova OB. Drosophila as a Model System Used for Searching the Genes, Signaling Pathways, and Mechanisms Controlling Cytoskeleton Formation. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Wang J, Wu MY, Tan JQ, Li M, Lu JH. High content screening for drug discovery from traditional Chinese medicine. Chin Med 2019; 14:5. [PMID: 30858873 PMCID: PMC6394041 DOI: 10.1186/s13020-019-0228-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/25/2019] [Indexed: 12/30/2022] Open
Abstract
Traditional Chinese medicine (TCM) represents the crystallization of Chinese wisdom and civilization. It has been valued as the renewable source for the discovery of novel drugs, owing to its long-term proved efficacy in human diseases and abundant biologically active components pools. To dissect the mystery of TCM, modern technologies such as omics approaches (proteomics, genomics, metabolomics) and drug screening technologies (high through-put screening, high content screening and virtual screening) have been widely applied to either identify the drug target of TCM or identify the active component with certain bio-activity. The advent of high content screening technology has absolutely contributed to a breakthrough in compounds discovery and influenced the evolution of technology in screening field. The review introduces the concept and principle of high content screening, lists and compares the currently used HCS instruments, and summarizes the examples from ours and others research work which applied HCS in TCM-derived compounds screening. Meanwhile, this article also discusses the advantages and limitations of HSC technology in drug discovery from TCM libraries.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ming-Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jie-Qiong Tan
- 2Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha, Hunan China
| | - Min Li
- 3Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
23
|
Hao Y, Yu S, Luo F, Jin LH. Jumu is required for circulating hemocyte differentiation and phagocytosis in Drosophila. Cell Commun Signal 2018; 16:95. [PMID: 30518379 PMCID: PMC6280549 DOI: 10.1186/s12964-018-0305-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Background The regulatory mechanisms of hematopoiesis and cellular immunity show a high degree of similarity between insects and mammals, and Drosophila has become a good model for investigating cellular immune responses. Jumeau (Jumu) is a member of the winged-helix/forkhead (FKH) transcription factor family and is required for Drosophila development. Adult jumu mutant flies show defective hemocyte phagocytosis and a weaker defense capability against pathogen infection. Here, we further investigated the role of jumu in the regulation of larval hemocyte development and phagocytosis. Methods In vivo phagocytosis assays, immunohistochemistry, Real-time quantitative PCR and immunoblotting were performed to investigate the effect of Jumu on hemocyte phagocytosis. 5-Bromo-2-deoxyUridine (BrdU) labeling, phospho-histone H3 (PH3) and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining were performed to analyze the proliferation and apoptosis of hemocyte; immunohistochemistry and Mosaic analysis with a repressible cell marker (MARCM) clone analysis were performed to investigate the role of Jumu in the activation of Toll pathway. Results Jumu indirectly controls hemocyte phagocytosis by regulating the expression of NimC1 and cytoskeleton reorganization. The loss of jumu also causes abnormal proliferation and differentiation in circulating hemocytes. Our results suggest that a severe deficiency of jumu leads to the generation of enlarged multinucleate hemocytes by affecting the normal cell mitosis process and induces numerous lamellocytes by activating the Toll pathway. Conclusions Jumu regulates circulating hemocyte differentiation and phagocytosis in Drosophila. Our findings provide new insight into the mechanistic roles of cytoskeleton regulatory proteins in phagocytosis and establish a basis for further analyses of the regulatory mechanism of the mammalian ortholog of Jumu in mammalian innate immunity. Electronic supplementary material The online version of this article (10.1186/s12964-018-0305-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yangguang Hao
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China.,Department of Translational medicine research center, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| |
Collapse
|
24
|
Quantum mechanical investigation of the nature of nucleobase-urea stacking interaction, a crucial driving force in RNA unfolding in aqueous urea. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Scheeder C, Heigwer F, Boutros M. Machine learning and image-based profiling in drug discovery. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 10:43-52. [PMID: 30159406 PMCID: PMC6109111 DOI: 10.1016/j.coisb.2018.05.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The increase in imaging throughput, new analytical frameworks and high-performance computational resources open new avenues for data-rich phenotypic profiling of small molecules in drug discovery. Image-based profiling assays assessing single-cell phenotypes have been used to explore mechanisms of action, target efficacy and toxicity of small molecules. Technological advances to generate large data sets together with new machine learning approaches for the analysis of high-dimensional profiling data create opportunities to improve many steps in drug discovery. In this review, we will discuss how recent studies applied machine learning approaches in functional profiling workflows with a focus on chemical genetics. While their utility in image-based screening and profiling is predictably evident, examples of novel insights beyond the status quo based on the applications of machine learning approaches are just beginning to emerge. To enable discoveries, future studies also need to develop methodologies that lower the entry barriers to high-throughput profiling experiments by streamlining image-based profiling assays and providing applications for advanced learning technologies such as easy to deploy deep neural networks.
Collapse
Affiliation(s)
| | | | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
Heigwer F, Port F, Boutros M. RNA Interference (RNAi) Screening in Drosophila. Genetics 2018; 208:853-874. [PMID: 29487145 PMCID: PMC5844339 DOI: 10.1534/genetics.117.300077] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
In the last decade, RNA interference (RNAi), a cellular mechanism that uses RNA-guided degradation of messenger RNA transcripts, has had an important impact on identifying and characterizing gene function. First discovered in Caenorhabditis elegans, RNAi can be used to silence the expression of genes through introduction of exogenous double-stranded RNA into cells. In Drosophila, RNAi has been applied in cultured cells or in vivo to perturb the function of single genes or to systematically probe gene function on a genome-wide scale. In this review, we will describe the use of RNAi to study gene function in Drosophila with a particular focus on high-throughput screening methods applied in cultured cells. We will discuss available reagent libraries and cell lines, methodological approaches for cell-based assays, and computational methods for the analysis of high-throughput screens. Furthermore, we will review the generation and use of genome-scale RNAi libraries for tissue-specific knockdown analysis in vivo and discuss the differences and similarities with the use of genome-engineering methods such as CRISPR/Cas9 for functional analysis.
Collapse
Affiliation(s)
- Florian Heigwer
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| | - Fillip Port
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| |
Collapse
|
27
|
Hasan MR, Hassan N, Khan R, Kim YT, Iqbal SM. Classification of cancer cells using computational analysis of dynamic morphology. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 156:105-112. [PMID: 29428061 DOI: 10.1016/j.cmpb.2017.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/09/2017] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Detection of metastatic tumor cells is important for early diagnosis and staging of cancer. However, such cells are exceedingly difficult to detect from blood or biopsy samples at the disease onset. It is reported that cancer cells, and especially metastatic tumor cells, show very distinctive morphological behavior compared to their healthy counterparts on aptamer functionalized substrates. The ability to quickly analyze the data and quantify the cell morphology for an instant real-time feedback can certainly contribute to early cancer diagnosis. A supervised machine learning approach is presented for identification and classification of cancer cell gestures for early diagnosis. METHODS We quantified the morphologically distinct behavior of metastatic cells and their healthy counterparts captured on aptamer-functionalized glass substrates from time-lapse optical micrographs. As a proof of concept, the morphologies of human glioblastoma (hGBM) and astrocyte cells were used. The cells were captured and imaged with an optical microscope. Multiple feature vectors were extracted to quantify and differentiate the complex physical gestures of cancerous and non-cancerous cells. Three different classifier models, Support Vector Machine (SVM), Random Forest Tree (RFT), and Naïve Bayes Classifier (NBC) were trained with the known dataset using machine learning algorithms. The performances of the classifiers were compared for accuracy, precision, and recall measurements using five-fold cross-validation technique. RESULTS All the classifier models detected the cancer cells with an average accuracy of at least 82%. The NBC performed the best among the three classifiers in terms of Precision (0.91), Recall (0.9), and F1-score (0.89) for the existing dataset. CONCLUSIONS This paper presents a standalone system built on machine learning techniques for cancer screening based on cell gestures. The system offers rapid, efficient, and novel identification of hGBM brain tumor cells and can be extended to define single cell analysis metrics for many other types of tumor cells.
Collapse
Affiliation(s)
- Mohammad R Hasan
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA; Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA; Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Naeemul Hassan
- Department of Computer and Information Science, University of Mississippi, University, MS 38677, USA
| | - Rayan Khan
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA; Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA; Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Young-Tae Kim
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA; Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA
| | - Samir M Iqbal
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA; Department of Electrical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| |
Collapse
|
28
|
Viswanatha R, Li Z, Hu Y, Perrimon N. Pooled genome-wide CRISPR screening for basal and context-specific fitness gene essentiality in Drosophila cells. eLife 2018; 7:36333. [PMID: 30051818 PMCID: PMC6063728 DOI: 10.7554/elife.36333] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/01/2018] [Indexed: 12/18/2022] Open
Abstract
Genome-wide screens in Drosophila cells have offered numerous insights into gene function, yet a major limitation has been the inability to stably deliver large multiplexed DNA libraries to cultured cells allowing barcoded pooled screens. Here, we developed a site-specific integration strategy for library delivery and performed a genome-wide CRISPR knockout screen in Drosophila S2R+ cells. Under basal growth conditions, 1235 genes were essential for cell fitness at a false-discovery rate of 5%, representing the highest-resolution fitness gene set yet assembled for Drosophila, including 407 genes which likely duplicated along the vertebrate lineage and whose orthologs were underrepresented in human CRISPR screens. We additionally performed context-specific fitness screens for resistance to or synergy with trametinib, a Ras/ERK/ETS inhibitor, or rapamycin, an mTOR inhibitor, and identified key regulators of each pathway. The results present a novel, scalable, and versatile platform for functional genomic screens in invertebrate cells.
Collapse
Affiliation(s)
| | - Zhongchi Li
- Department of GeneticsHarvard Medical SchoolBostonUnited States,School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Yanhui Hu
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Norbert Perrimon
- Department of GeneticsHarvard Medical SchoolBostonUnited States,Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
29
|
Haney SA. High-Content Screening Approaches That Minimize Confounding Factors in RNAi, CRISPR, and Small Molecule Screening. Methods Mol Biol 2018; 1683:113-130. [PMID: 29082490 DOI: 10.1007/978-1-4939-7357-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Screening arrayed libraries of reagents, particularly small molecules began as a vehicle for drug discovery, but the in last few years it has become a cornerstone of biological investigation, joining RNAi and CRISPR as methods for elucidating functional relationships that could not be anticipated, and illustrating the mechanisms behind basic and disease biology, and therapeutic resistance. However, these approaches share some common challenges, especially with respect to specificity or selectivity of the reagents as they are scaled to large protein families or the genome. High-content screening (HCS) has emerged as an important complement to screening, mostly the result of a wide array of specific molecular events, such as protein kinase and transcription factor activation, morphological changes associated with stem cell differentiation or the epithelial-mesenchymal transition of cancer cells. Beyond the range of cellular events that can be screened by HCS, image-based screening introduces new processes for differentiating between specific and nonspecific effects on cells. This chapter introduces these complexities and discusses strategies available in image-based screening that can mitigate the challenges they can bring to screening.
Collapse
Affiliation(s)
- Steven A Haney
- Cancer Biology and the Tumor Microenvironment, Discovery Oncology, Lilly Research Laboratories/Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| |
Collapse
|
30
|
Das R, Bhattacharjee S, Patel AA, Harris JM, Bhattacharya S, Letcher JM, Clark SG, Nanda S, Iyer EPR, Ascoli GA, Cox DN. Dendritic Cytoskeletal Architecture Is Modulated by Combinatorial Transcriptional Regulation in Drosophila melanogaster. Genetics 2017; 207:1401-1421. [PMID: 29025914 PMCID: PMC5714456 DOI: 10.1534/genetics.117.300393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/04/2017] [Indexed: 01/08/2023] Open
Abstract
Transcription factors (TFs) have emerged as essential cell autonomous mediators of subtype specific dendritogenesis; however, the downstream effectors of these TFs remain largely unknown, as are the cellular events that TFs control to direct morphological change. As dendritic morphology is largely dictated by the organization of the actin and microtubule (MT) cytoskeletons, elucidating TF-mediated cytoskeletal regulatory programs is key to understanding molecular control of diverse dendritic morphologies. Previous studies in Drosophila melanogaster have demonstrated that the conserved TFs Cut and Knot exert combinatorial control over aspects of dendritic cytoskeleton development, promoting actin and MT-based arbor morphology, respectively. To investigate transcriptional targets of Cut and/or Knot regulation, we conducted systematic neurogenomic studies, coupled with in vivo genetic screens utilizing multi-fluor cytoskeletal and membrane marker reporters. These analyses identified a host of putative Cut and/or Knot effector molecules, and a subset of these putative TF targets converge on modulating dendritic cytoskeletal architecture, which are grouped into three major phenotypic categories, based upon neuromorphometric analyses: complexity enhancer, complexity shifter, and complexity suppressor. Complexity enhancer genes normally function to promote higher order dendritic growth and branching with variable effects on MT stabilization and F-actin organization, whereas complexity shifter and complexity suppressor genes normally function in regulating proximal-distal branching distribution or in restricting higher order branching complexity, respectively, with spatially restricted impacts on the dendritic cytoskeleton. Collectively, we implicate novel genes and cellular programs by which TFs distinctly and combinatorially govern dendritogenesis via cytoskeletal modulation.
Collapse
Affiliation(s)
- Ravi Das
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | | | - Atit A Patel
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | - Jenna M Harris
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | | | - Jamin M Letcher
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | - Sarah G Clark
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | - Sumit Nanda
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030
| | | | - Giorgio A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| |
Collapse
|
31
|
Data-analysis strategies for image-based cell profiling. Nat Methods 2017; 14:849-863. [PMID: 28858338 PMCID: PMC6871000 DOI: 10.1038/nmeth.4397] [Citation(s) in RCA: 433] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/28/2017] [Indexed: 12/16/2022]
Abstract
Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.
Collapse
|
32
|
Yu X, Gowda S, Killiny N. Double-stranded RNA delivery through soaking mediates silencing of the muscle protein 20 and increases mortality to the Asian citrus psyllid, Diaphorina citri. PEST MANAGEMENT SCIENCE 2017; 73:1846-1853. [PMID: 28195429 DOI: 10.1002/ps.4549] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 01/26/2017] [Accepted: 02/07/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Asian citrus psyllid, Diaphorina citri Kuwayama, is the most important economic pest of citrus because it transmits Candidatus Liberibacter asiaticus (CLas), the causal agent of huanglongbing (HLB). Silencing genes by RNA interference (RNAi) is a promising approach for controlling D. citri. RNAi-based insect management strategies depend on the selection of suitable target genes. RESULTS The muscle protein 20 gene DcMP20 was characterized from D. citri in an effort to impair proper muscle development through RNAi. Phylogenetic analysis showed that DcMP20 was more closely related to MP20 from Drosophila compared with its counterpart from other insect species. Developmental expression analysis revealed that transcription of DcMP20 was development dependent and reached a maximum level in the last instar (fourth-fifth) of the nymphal stage. The extent of RNAi in D. citri was dose dependent, with dsRNA-DcMP20 at 75 ng µL-1 being sufficient to knock down endogenous DcMP20 expression, which resulted in significant mortality and reduced body weight that positively correlated with the silencing of DcMP20. No effect was found when dsRNA-GFP or water was used, indicating the specific effect of dsRNA-DcMP20. CONCLUSION Our results suggest that dsRNA can be delivered to D. citri through soaking, and DcMP20 is an effective RNAi target to be used in the management of D. citri. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiudao Yu
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
- School of Agricultural Engineering/Henan Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, Henan, China
| | - Siddarame Gowda
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
33
|
RNAi-Mediated Reverse Genetic Screen Identified Drosophila Chaperones Regulating Eye and Neuromuscular Junction Morphology. G3-GENES GENOMES GENETICS 2017; 7:2023-2038. [PMID: 28500055 PMCID: PMC5499113 DOI: 10.1534/g3.117.041632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.
Collapse
|
34
|
Ketteler R, Freeman J, Ferraro F, Bata N, Cutler DF, Kriston-Vizi J, Stevenson N. Image-based siRNA screen to identify kinases regulating Weibel-Palade body size control using electroporation. Sci Data 2017; 4:170022. [PMID: 28248923 PMCID: PMC5332014 DOI: 10.1038/sdata.2017.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/22/2016] [Indexed: 11/09/2022] Open
Abstract
High-content screening of kinase inhibitors is important in order to identify biogenesis and function mechanisms of subcellular organelles. Here, we present a human kinome siRNA high-content screen on primary human umbilical vein endothelial cells, that were transfected by electroporation. The data descriptor contains a confocal fluorescence, microscopic image dataset. We also describe an open source, automated image analysis workflow that can be reused to perform high-content analysis of other organelles. This dataset is suitable for analysis of morphological parameters that are linked to human umbilical vein endothelial cell (HUVEC) biology.
Collapse
Affiliation(s)
- Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jamie Freeman
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Francesco Ferraro
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nicole Bata
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Dan F. Cutler
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK,
J.K.-V. ()
| | - Nicola Stevenson
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
35
|
|
36
|
An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock. G3-GENES GENOMES GENETICS 2016; 6:4227-4238. [PMID: 27784754 PMCID: PMC5144990 DOI: 10.1534/g3.116.035345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Circadian clocks in eukaryotes keep time via cell-autonomous transcriptional feedback loops. A well-characterized example of such a transcriptional feedback loop is in Drosophila, where CLOCK-CYCLE (CLK-CYC) complexes activate transcription of period (per) and timeless (tim) genes, rising levels of PER-TIM complexes feed-back to repress CLK-CYC activity, and degradation of PER and TIM permits the next cycle of CLK-CYC transcription. The timing of CLK-CYC activation and PER-TIM repression is regulated posttranslationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Previous behavioral screens identified several kinases that control CLK, PER, and TIM levels, subcellular localization, and/or activity, but two phosphatases that function within the clock were identified through the analysis of candidate genes from other pathways or model systems. To identify phosphatases that play a role in the clock, we screened clock cell-specific RNA interference (RNAi) knockdowns of all annotated protein phosphatases and protein phosphatase regulators in Drosophila for altered activity rhythms. This screen identified 19 protein phosphatases that lengthened or shortened the circadian period by ≥1 hr (p ≤ 0.05 compared to controls) or were arrhythmic. Additional RNAi lines, transposon inserts, overexpression, and loss-of-function mutants were tested to independently confirm these RNAi phenotypes. Based on genetic validation and molecular analysis, 15 viable protein phosphatases remain for future studies. These candidates are expected to reveal novel features of the circadian timekeeping mechanism in Drosophila that are likely to be conserved in all animals including humans.
Collapse
|
37
|
Jodoin JN, Martin AC. Abl suppresses cell extrusion and intercalation during epithelium folding. Mol Biol Cell 2016; 27:2822-32. [PMID: 27440923 PMCID: PMC5025269 DOI: 10.1091/mbc.e16-05-0336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/11/2016] [Indexed: 01/06/2023] Open
Abstract
Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical-basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT.
Collapse
Affiliation(s)
- Jeanne N Jodoin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
38
|
Abstract
ATR (Ataxia Telangiectasia and Rad3-related) is a member of the Phosphatidylinositol 3-kinase-related kinases (PIKKs) family, amongst six other vertebrate proteins known so far. ATR is indispensable for cell survival and its essential role is in sensing DNA damage and initiating appropriate repair responses. In this review we highlight emerging and recent observations connecting ATR to alternative roles in controlling the nuclear envelope, nucleolus, centrosome and other organelles in response to both internal and external stress conditions. We propose that ATR functions control cell plasticity by sensing structural deformations of different cellular components, including DNA and initiating appropriate repair responses, most of which are yet to be understood completely.
Collapse
Affiliation(s)
- Gururaj Rao Kidiyoor
- Istituto FIRC di Oncologia Molecolare, Milan, Italy; University of Milan, Milan, Italy
| | - Amit Kumar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Marco Foiani
- Istituto FIRC di Oncologia Molecolare, Milan, Italy; University of Milan, Milan, Italy.
| |
Collapse
|
39
|
Talapatra SN, Mitra P, Swarnakar S. Morphology and Phenotype of Peripheral Erythrocytes of Fish: A Rapid Screening of Images by Using Software. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2016. [DOI: 10.18052/www.scipress.com/ilns.54.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many information of biological study as stained cells analysis under microscope cannot be obtained rich information like detail morphology, shape, size, proper intensity etc. but image analysis software can easily be detected all these parameters within short duration. The cells types can be yeast cells to mammalian cells. An attempt has been made to detect cellular abnormalities from an image of metronidazole (MTZ) treated compared to control images of peripheral erythrocytes of fish by using non-commercial, open-source, CellProfiler (CP) image analysis software (Ver. 2.1.0). The comparative results were obtained after analysis the software. In conclusion, this image based screening of Giemsa stained fish erythrocytes can be a suitable tool in biological research for primary toxicity prediction at DNA level alongwith cellular phenotypes. Moreover, still suggestions are needed in relation to accuracy of present analysis for Giemsa stained fish erythrocytes because previous works have been carried out images of cells with fluorescence dye.
Collapse
|
40
|
Billmann M, Horn T, Fischer B, Sandmann T, Huber W, Boutros M. A genetic interaction map of cell cycle regulators. Mol Biol Cell 2016; 27:1397-407. [PMID: 26912791 PMCID: PMC4831891 DOI: 10.1091/mbc.e15-07-0467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 02/10/2016] [Indexed: 12/20/2022] Open
Abstract
A combination of genome-scale RNA interference screening and genetic interaction analysis using process-directed phenotypes is used to assign components to specific pathways and complexes for modulators of mitosis and cytokinesis in Drosophila S2 cells. Cell-based RNA interference (RNAi) is a powerful approach to screen for modulators of many cellular processes. However, resulting candidate gene lists from cell-based assays comprise diverse effectors, both direct and indirect, and further dissecting their functions can be challenging. Here we screened a genome-wide RNAi library for modulators of mitosis and cytokinesis in Drosophila S2 cells. The screen identified many previously known genes as well as modulators that have previously not been connected to cell cycle control. We then characterized ∼300 candidate modifiers further by genetic interaction analysis using double RNAi and a multiparametric, imaging-based assay. We found that analyzing cell cycle–relevant phenotypes increased the sensitivity for associating novel gene function. Genetic interaction maps based on mitotic index and nuclear size grouped candidates into known regulatory complexes of mitosis or cytokinesis, respectively, and predicted previously uncharacterized components of known processes. For example, we confirmed a role for the Drosophila CCR4 mRNA processing complex component l(2)NC136 during the mitotic exit. Our results show that the combination of genome-scale RNAi screening and genetic interaction analysis using process-directed phenotypes provides a powerful two-step approach to assigning components to specific pathways and complexes.
Collapse
Affiliation(s)
- Maximilian Billmann
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Horn
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Bernd Fischer
- Genome Biology Unit, EMBL, 69118 Heidelberg, Germany Computational Genome Biology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Thomas Sandmann
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
41
|
Applewhite DA, Davis CA, Griffis ER, Quintero OA. Imaging of the Cytoskeleton Using Live and Fixed Drosophila Tissue Culture Cells. Methods Mol Biol 2016; 1365:83-97. [PMID: 26498780 DOI: 10.1007/978-1-4939-3124-8_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
In recent years, the convergence of multiple technologies and experimental approaches has led to the expanded use of cultured Drosophila cells as a model system. Their ease of culture and maintenance, susceptibility to RNA interference, and imaging characteristics have led to extensive use in both traditional experimental approaches as well as high-throughput RNAi screens. Here we describe Drosophila S2 cell culture and preparation for live-cell and fixed-cell fluorescence microscopy and scanning electron microscopy.
Collapse
Affiliation(s)
| | - Christine A Davis
- Department of Biology, University of Richmond, B-214 Gottwald science Center, 28 Westhampton Way, Richmond, VA, 23173, USA
| | - Eric R Griffis
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, UK
| | - Omar A Quintero
- Department of Biology, University of Richmond, B-214 Gottwald science Center, 28 Westhampton Way, Richmond, VA, 23173, USA.
| |
Collapse
|
42
|
Abstract
RNA interference (RNAi) is a potent tool for perturbation of gene function in model organisms and human cells. In Drosophila, efficient RNAi enables screening approaches for components of cellular processes in vivo and in vitro. In cultured cells, measuring the effect of depleting gene products on a genome-wide scale can systematically associate gene function with diverse processes, such as cell growth and proliferation, signaling and trafficking. Here, we describe methods for RNAi experiments in cultured Drosophila cells with a focus on genome-wide loss-of-function screening. We illustrate the design of long double-stranded RNAs and provide protocols for their production by in vitro transcription and delivery in cell-based assays. Furthermore, we provide methods to fine-tune signaling reporters and high-content microscopy assays for genome-wide screening. Finally, we describe essential steps of high-throughput data analysis and how the experimental set-up can improve data normalization using a genome-wide RNAi screen for Wnt pathway activity data as an example.
Collapse
Affiliation(s)
- Maximilian Billmann
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| |
Collapse
|
43
|
Brüser L, Bogdan S. Molecular Control of Actin Dynamics In Vivo: Insights from Drosophila. Handb Exp Pharmacol 2016; 235:285-310. [PMID: 27757759 DOI: 10.1007/164_2016_33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The actin cytoskeleton provides mechanical support for cells and generates forces to drive cell shape changes and cell migration in morphogenesis. Molecular understanding of actin dynamics requires a genetically traceable model system that allows interdisciplinary experimental approaches to elucidate the regulatory network of cytoskeletal proteins in vivo. Here, we will discuss some examples of how advances in Drosophila genetics and high-resolution imaging techniques contribute to the discovery of new actin functions, signaling pathways, and mechanisms of actin regulation in vivo.
Collapse
Affiliation(s)
- Lena Brüser
- Institute for Neurobiology, University of Muenster, Badestrasse 9, 48149, Muenster, Germany
| | - Sven Bogdan
- Institute for Neurobiology, University of Muenster, Badestrasse 9, 48149, Muenster, Germany.
| |
Collapse
|
44
|
Im SH, Takle K, Jo J, Babcock DT, Ma Z, Xiang Y, Galko MJ. Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila. eLife 2015; 4:e10735. [PMID: 26575288 PMCID: PMC4739760 DOI: 10.7554/elife.10735] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022] Open
Abstract
Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception. DOI:http://dx.doi.org/10.7554/eLife.10735.001 Injured animals from humans to insects become extra sensitive to sensations such as touch and heat. This hypersensitivity is thought to protect areas of injury or inflammation while they heal, but it is not clear how it comes about. Now, Im et al. have addressed this question by assessing pain in fruit flies after tissue damage. The experiments used ultraviolet radiation to essentially cause ‘localized sunburn’ to fruit fly larvae. Electrical impulses were then recorded from the larvae’s pain-detecting neurons and the larvae were analyzed for behaviors that indicate pain responses (for example, rolling). Im et al. found that tissue injury lowers the threshold at which temperature causes pain in fruit fly larvae. Further experiments using mutant flies that lacked genes involved in two signaling pathways showed that a signaling molecule called Tachykinin and its receptor (called DTKR) are needed to regulate the observed threshold lowering. When the genes for either of these proteins were deleted, the larvae no longer showed the pain hypersensitivity following an injury. Further experiments then uncovered a genetic interaction between Tachykinin signaling and a second signaling pathway that also regulates pain sensitization (called Hedgehog signaling). Im et al. found that Tachykinin acts upstream of Hedgehog in the pain-detecting neurons. Following on from these findings, the biggest outstanding questions are: how, when and where does tissue damage lead to the release of Tachykinin to sensitize neurons? Future studies could also ask whether the genetic interactions between Hedgehog and Tachykinin (or related proteins) are conserved in other animals such as humans and mice. DOI:http://dx.doi.org/10.7554/eLife.10735.002
Collapse
Affiliation(s)
- Seol Hee Im
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Kendra Takle
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Juyeon Jo
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, United States.,Genes and Development Graduate Program, University of Texas Graduate School of Biomedical Sciences, Houston, United States
| | - Daniel T Babcock
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, United States.,Neuroscience Graduate Program, University of Texas Graduate School of Biomedical Sciences, Houston, United States
| | - Zhiguo Ma
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Michael J Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, United States.,Genes and Development Graduate Program, University of Texas Graduate School of Biomedical Sciences, Houston, United States.,Neuroscience Graduate Program, University of Texas Graduate School of Biomedical Sciences, Houston, United States
| |
Collapse
|
45
|
Agrotis A, Ketteler R. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Front Genet 2015; 6:300. [PMID: 26442115 PMCID: PMC4585242 DOI: 10.3389/fgene.2015.00300] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/10/2015] [Indexed: 12/18/2022] Open
Abstract
CRISPR technology has rapidly changed the face of biological research, such that precise genome editing has now become routine for many labs within several years of its initial development. What makes CRISPR/Cas9 so revolutionary is the ability to target a protein (Cas9) to an exact genomic locus, through designing a specific short complementary nucleotide sequence, that together with a common scaffold sequence, constitute the guide RNA bridging the protein and the DNA. Wild-type Cas9 cleaves both DNA strands at its target sequence, but this protein can also be modified to exert many other functions. For instance, by attaching an activation domain to catalytically inactive Cas9 and targeting a promoter region, it is possible to stimulate the expression of a specific endogenous gene. In principle, any genomic region can be targeted, and recent efforts have successfully generated pooled guide RNA libraries for coding and regulatory regions of human, mouse and Drosophila genomes with high coverage, thus facilitating functional phenotypic screening. In this review, we will highlight recent developments in the area of CRISPR-based functional genomics and discuss potential future directions, with a special focus on mammalian cell systems and arrayed library screening.
Collapse
Affiliation(s)
- Alexander Agrotis
- MRC Laboratory for Molecular Cell Biology, University College London, London UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London UK
| |
Collapse
|
46
|
Housden BE, Valvezan AJ, Kelley C, Sopko R, Hu Y, Roesel C, Lin S, Buckner M, Tao R, Yilmazel B, Mohr SE, Manning BD, Perrimon N. Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci Signal 2015; 8:rs9. [PMID: 26350902 PMCID: PMC4642709 DOI: 10.1126/scisignal.aab3729] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tuberous sclerosis complex (TSC) family of tumor suppressors, TSC1 and TSC2, function together in an evolutionarily conserved protein complex that is a point of convergence for major cell signaling pathways that regulate mTOR complex 1 (mTORC1). Mutation or aberrant inhibition of the TSC complex is common in various human tumor syndromes and cancers. The discovery of novel therapeutic strategies to selectively target cells with functional loss of this complex is therefore of clinical relevance to patients with nonmalignant TSC and those with sporadic cancers. We developed a CRISPR-based method to generate homogeneous mutant Drosophila cell lines. By combining TSC1 or TSC2 mutant cell lines with RNAi screens against all kinases and phosphatases, we identified synthetic interactions with TSC1 and TSC2. Individual knockdown of three candidate genes (mRNA-cap, Pitslre, and CycT; orthologs of RNGTT, CDK11, and CCNT1 in humans) reduced the population growth rate of Drosophila cells lacking either TSC1 or TSC2 but not that of wild-type cells. Moreover, individual knockdown of these three genes had similar growth-inhibiting effects in mammalian TSC2-deficient cell lines, including human tumor-derived cells, illustrating the power of this cross-species screening strategy to identify potential drug targets.
Collapse
Affiliation(s)
| | - Alexander J Valvezan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Colleen Kelley
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Charles Roesel
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Shuailiang Lin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Buckner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rong Tao
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Bahar Yilmazel
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
47
|
A large-scale in vivo RNAi screen to identify genes involved in Notch-mediated follicle cell differentiation and cell cycle switches. Sci Rep 2015. [PMID: 26205122 PMCID: PMC4513280 DOI: 10.1038/srep12328] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During Drosophila oogenesis, follicle cells sequentially undergo three distinct cell-cycle programs: the mitotic cycle, endocycle, and gene amplification. Notch signaling plays a central role in regulating follicle-cell differentiation and cell-cycle switches; its activation is essential for the mitotic cycle/endocycle (M/E) switch. Cut, a linker between Notch signaling and cell-cycle regulators, is specifically downregulated by Notch during the endocycle stage. To determine how signaling pathways coordinate during the M/E switch and to identify novel genes involved in follicle cell differentiation, we performed an in vivo RNAi screen through induced knockdown of gene expression and examination of Cut expression in follicle cells. We screened 2205 RNAi lines and found 33 genes regulating Cut expression during the M/E switch. These genes were confirmed with the staining of two other Notch signaling downstream factors, Hindsight and Broad, and validated with multiple independent RNAi lines. We applied gene ontology software to find enriched biological meaning and compared our results with other publications to find conserved genes across tissues. Specifically, we found earlier endocycle entry in anterior follicle cells than those in the posterior, identified that the insulin-PI3K pathway participates in the precise M/E switch, and suggested Nejire as a cofactor of Notch signaling during oogenesis.
Collapse
|
48
|
Dobbelaere J. Genome-wide RNAi screens in S2 cells to identify centrosome components. Methods Cell Biol 2015; 129:279-300. [PMID: 26175444 DOI: 10.1016/bs.mcb.2015.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Centrosomes act as the major microtubule organizing centers in animal cells. To fully understand how the centrosome functions, a detailed analysis of its principal structural components and regulators is needed. Genome-wide RNA interference (RNAi) allows for comprehensive screening of all components. Drosophila tissue culture cells provide an attractive model for such screens. First, Drosophila centrosomes are similar to their human counterparts, but less complex. Thus, all major centrosome components are conserved and fewer redundancies apply. Second, RNAi is highly efficient in Drosophila tissue culture cells and, compared to RNAi in human cells, it is cost-effective. Finally, the availability of comprehensive libraries permits easy genome-wide screening of most of Drosophila's 14,000 protein coding genes. In this paper, we present detailed instructions for designing, performing, and analyzing a genome-wide screen in Drosophila tissue culture cells to identify centrosome components using a microscopy-based approach.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
49
|
Rodal AA, Del Signore SJ, Martin AC. Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms. Cytoskeleton (Hoboken) 2015; 72:207-24. [PMID: 26074334 DOI: 10.1002/cm.21228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 01/30/2023]
Abstract
For the last 100 years, Drosophila melanogaster has been a powerhouse genetic system for understanding mechanisms of inheritance, development, and behavior in animals. In recent years, advances in imaging and genetic tools have led to Drosophila becoming one of the most effective systems for unlocking the subcellular functions of proteins (and particularly cytoskeletal proteins) in complex developmental settings. In this review, written for non-Drosophila experts, we will discuss critical technical advances that have enabled these cell biological insights, highlighting three examples of cytoskeletal discoveries that have arisen as a result: (1) regulation of Arp2/3 complex in myoblast fusion, (2) cooperation of the actin filament nucleators Spire and Cappuccino in establishment of oocyte polarity, and (3) coordination of supracellular myosin cables. These specific examples illustrate the unique power of Drosophila both to uncover new cytoskeletal structures and functions, and to place these discoveries in a broader in vivo context, providing insights that would have been impossible in a cell culture model or in vitro. Many of the cellular structures identified in Drosophila have clear counterparts in mammalian cells and tissues, and therefore elucidating cytoskeletal functions in Drosophila will be broadly applicable to other organisms.
Collapse
Affiliation(s)
- Avital A Rodal
- Department of Biology, Brandeis University, Waltham, Massachusetts
| | | | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
50
|
Yeh TH, Huang SY, Lan WY, Liaw GJ, Yu JY. Modulation of cell morphogenesis by tousled-like kinase in the Drosophila follicle cell. Dev Dyn 2015; 244:852-65. [PMID: 25981356 DOI: 10.1002/dvdy.24292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tousled-like kinase (Tlk) is a conserved serine/threonine kinase regulating DNA replication, chromatin assembly, and DNA repair. Previous studies have suggested that Tlk is involved in cell morphogenesis in vitro. In addition, tlk genetically interact with Rho1, which encodes a key regulator of the cytoskeleton. However, whether Tlk plays a physiological role in cell morphogenesis and cytoskeleton rearrangement remains unknown. RESULTS In tlk mutant follicle cells, area of the apical domain was reduced. The density of microtubules was increased in tlk mutant cells. The density of actin filaments was increased in the apical region and decreased in the basal region. Because area of the apical domain was reduced, we examined the levels of proteins located in the apical region by using immunofluorescence. The fluorescence intensities of two adherens junction proteins Armadillo (Arm) and DE-cadherin (DE-cad), atypical protein kinase C (aPKC), and Notch, were all increased in tlk mutant cells. The basolateral localized Discs large (Dlg) shifted apically in tlk mutant cells. CONCLUSIONS Increase of protein densities in the apical region might be resulted from disruption of the cytoskeleton and shrinkage of the apical domain. Together, these data suggest a novel role of Tlk in maintaining cell morphology, possibly through modulating the cytoskeleton.
Collapse
Affiliation(s)
- Tsung-Han Yeh
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Yu Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Yu Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Gwo-Jen Liaw
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jenn-Yah Yu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|